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Jeff R. Gehlhausen 

 

PHENOTYPIC AND MOLECULAR CHARACTERIZATION OF A NOVEL 

MOUSE MODEL OF NEUROFIBROMATOSIS TYPE 2 

 

Neurofibromatosis Type 2 is a genetic disease that predisoposes patients to the 

development of multiple benign nervous system tumors, the most common being 

schwannoma.  To date, there are no mainstream medical alternatives to surgical 

excision for these tumors, which has the potential to increase disease burden.  

To better study NF2 disease, we generated a conditional knockout mouse that 

excises the Nf2 gene in the developing Schwann cell lineages.  Phenotypically, 

this mouse recapitulates important aspects of human NF2 disease, including 

complete schwannoma penetrance and hearing loss that correlates with 

vestibular schwannoma development.  

 

In parallel studies, we analyzed genomics data comparing human schwannomas 

and normal nerve tissue for deregulated signaling pathways that may be involved 

in schwannoma genesis.  Our investigation suggested that the NF-κB signaling 

pathway is activated in schwannoma tumors.  The NF-κB pathway is known to 

regulate cellular proliferation and survival, and has been implicated as the driver 

of other cancers, including ependymomas, which also frequently arise in NF2 

patients.  We validated these findings in our NF2 mouse model by demonstrating  
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increased nuclear accumulation of NF-κB transcription factors in schwannomas 

with a concomitant increase in NF-κB target gene expression.  Analysis of human 

and mouse tumors for upstream kinases regulating NF-κB transcription factor 

localization revealed a fragment of the kinase domain of NIK, a potent oncogene 

in the NF KappaB signaling pathway. Transduction of primary Schwann cells with 

this NIK kinase fragment increased proliferation, survival, and adhesion, while 

also inducing a gene expression profile highly reminiscent of that observed in 

both human and mouse schwannoma.  Altogether, these studies demonstrate 

the remarkable ability of a phenotypically accurate genetic murine model to 

provide molecular insights into human disease.  

 

D. Wade Clapp, M.D., Chair 
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INTRODUCTION TO CHAPTER ONE 

 

Neurofibromatosis Type 2 

Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder that arises 

from germline heterozygosity of the NF2 tumor suppressor gene located on the 

long arm of chromosome 22.  Affected individuals have a high propensity for the 

acquisition of multiple tumors of the nervous sytem, especially schwannomas.  

NF2 disease is observed at a frequency of roughly 1 in 25,000 individuals [1].  

Phenotypically, NF2 is known to demonstrate variable expressivity, but it is 

almost fully penetrant by the age of 60 [2, 3]. 

 

NF2 patients are predisposed to develop benign lesions of the skin, eyes, and 

nervous system.  Bilaterial vestibular schwannomas (VS) are pathognomonic for 

NF2 disease, with up to 95% of patients acquiring these tumors.  These tumors 

are referred to as VS because they grow on cranial nerve VIII (CN VIII), the 

vestibulocochlear nerve.  This is the nerve that mediates both the sense of 

hearing and balance from structures in the inner ear.  Most patients also develop 

multiple schwannomas in the cranial, spinal, and peripheral nerves [4-14].  

Schwannomas are also the most common peripheral nerve tumor in non-NF2 

patients and are almost universally NF2-deficient, underscoring the critical 

function of this tumor suppressor in the Schwann cell lineage [1].  Other tumors 

often seen in NF2 patients include intracranial meningioma (up to 58%) and 
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spinal cord ependymoma (up to 53%).  Cutaneous tumors, typically 

schwannomas, are seen in up to 68% of patients [15, 16].  Cataracts and/or 

hamartomatous lesions of the eye are also common findings, present in up to 

81% of patients.   

 

Despite the fact that NF2 is a genetic disease, the diagnosis of patients remains 

one based on clinical criteria, and the presence of a germline NF2 mutation is not 

required.  The most popular tool used to diagnose patients, the Manchester 

criteria [17], primarily uses the knowledge that an individual has a known family 

history of NF2 or bilaterial vestibular schwannomas along with other NF2-related 

manifestations.  The wide acceptance of these criteria is largely based on its 

sensitivity, as well as ability to diagnose patients with no family history of NF2, 

which occurs in more than half of patients [18].  

 

Individuals afflicted with NF2 typically present as young adults with hearing loss 

resulting from a VS.  Frequently, hearing loss is only on one side, and can be 

accompanied by vestibular symptoms including tinnitus (“ringing of the ears”), 

dizziness, and loss of normal balance [4, 5].  Interestingly, children often present 

with a different constellation of symptoms, including visual abnormalities 

(resulting from eye lesions or intracranial tumors), cutaneous tumors, spinal cord 

tumors, and mononeuropathy [19-21]. 
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The first account of a patient with NF2 was in 1822, with the physician describing 

a deaf patient with multiple tumors in the skull, dura, and brain [22].  The disease 

was identified as having an autosomal dominant mode of transmission after 

following two families with NF2 manifestations, including VS, through multiple 

generations [23, 24].  NF2 was frequently confused with Neurofibromatosis Type 

1, another autosomal dominant disease predisposing patients to tumors of the 

nervous system, until linkage analysis studies demonstrated these diseases to 

be genetically distinct [25, 26].   

 

NF2 disease course and severity is frequently similar within families but can differ 

substantially between families, suggestive of a genotype-phenotype association 

[1].  More detailed genetic studies revealed this phenomenon to be true, with 

germline nonsense or frameshift mutations resulting in more severe disease 

when compared to those harboring missense mutations [27, 28].  Splice-site 

mutations can lead to variable disease phenotypes, but it has been noted that 

mutations affecting exons 1-5 of NF2 result in increased disease severity than 

mutations in exons 11-15 [29]. The genotype-phenotype association is also 

observed with risk of mortality, as patients with more severe mutations end up 

with an increased disease burden including more spinal and peripheral nerve 

tumors, intracranial meningiomas, and cataracts [30].  Overall, NF2 patients do 

suffer from early mortality, but they also face substantial morbidities, as most 

become deaf and many will require wheelchair assistance.   
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VS are the chief source of morbidity for NF2 patients.  They can also contribute 

to early mortality due to brainstem compression and surgical complications [1, 

31].  Early surgical intervention in VS can preserve some degree of CN VII and 

CN VIII function, though the decision of when to intervene can be challenging 

[32].  Much of the difficulty comes from the knowledge that there appears to be 

little to no correlation between tumor size and hearing loss [33].  Further 

confounding the issue is that VS are known to have highly variable rates of 

growth [1].  Some clinicians may wait to intervene surgically until deterioration in 

hearing is noted, but operative morbidities increase with tumor size [1].  Surgical 

resection also remains the treatment of choice for symptomatic spinal 

schwannomas.  Overall, this is a very challenging disease to manage surgically, 

as the surgeries inevitably take place in and around critical anatomical structures 

of the nervous system.  With this in mind, compromised or total loss of nerve 

function after surgical intervention is not an unusual event. 

 

Histopathological examination of human schwannomas reveals a few hallmark 

features that distinguish them from other tumors of the nervous system.  They 

tend to demonstrate a biphasic growth pattern, with some regions displaying a 

dense arrangement of spindle-shapped schwannoma cells (“Antoni A”), and 

other regions appearing to be largely acellular (“Antoni B”).  Verocay bodies are 

also observed, which are seen as with rows of tumor cells (nuclear palisades) 
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separated by acellular regions.  Nuclear pleomorphism may also be observed.  

Schwannomas are found to be uniformly positive for the neural crest marker 

S100 [34]. 

 

NF2 molecular biology 

NF2 is a 595 amino acid protein encoded by 17 exons.  Two isoforms, I and II, 

exist in humans and are the result of alternative splicing.  Isoform I includes exon 

17 with exon 16 spliced out, while Isoform II includes exon 16 but not exon 17.  

There are conflicting data on which isoform predominantly functions as a tumor 

suppressor, as evidence has been found for both isoforms [35, 36].  NF2 is a 

member of the ERM family of proteins, where ERM stands for Ezrin, Radixin, and 

Moesin.  Ezrin, Radixin, and Moexin are the canonical proteins of the ERM 

family, with an amino-terminal FERM domain followed by a coiled-coil domain 

and a C-terminal hyprohilic region [37, 38].  Though NF2 has the same 

organization of the ERM proteins, it also has distinct sequence motifs as well [38, 

39].  Two major differences in NF2 when compared to other ERM proteins is the 

lack of a C-terminal actin-binding motif, as well as the inclusion of a seven 

amino-acid (AA) Blue-box motif in the FERM domain that is evolutionarily 

conserved.   

 

ERM proteins are held in an inactivated state by an association between the C-

terminus and FERM domain, and in response to activation by Rho kinases, a C-
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terminal residue of the ERM protein is phosphorylated.  This phosphorylation 

disrupts the closed FERM domain-C-terminal association, opening the ERM 

protein for interactions with binding partners.  In their open configuration, ERM 

proteins bind the cytoplasmic regions of cell-adhesion receptors like CD44 and 

ICAM through their FERM domain.  They are also free to bind actin filaments 

through their C-terminal actin-binding domains.  Through these molecular 

interactions, ERM proteins function as regulators of the cell cytoskeleton [40-43].   

 

NF2 has also been shown to be regulated in a similar fashion to other ERM 

proteins, switching from a closed, tumor-supressive form to an inactive, open 

configuration in response to phosphorylation at Serine 518 by P21-activated 

kinase (PAK1) [44].  Support of this relationship is seen through site-mutant 

studies, with mutation of Serine 518 to Alanine increasing the inhibitory function 

of NF2, while mutation to an Aspartic Acid abolishes NF2’s tumor suppressive 

function [45-47].  Deletion of the Blue Box motif in NF2 is sufficient to induce 

dominant-negative behaviour, as overexpression of this mutant promotes cellular 

transformation in-vitro [48].  Additional evidence of the importance of this motif is 

seen in Drosophila, where overexpression of a Blue box deletion mutant causes 

excessive wing proliferation [49].   

 

In response to various anti-mitogenic signals, such as growth factor starvation, 

contact inhibition, and loss of cell adhesion to the ECM, the dephosphorylated, 
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tumor suppressive form of NF2 is increased [50].  Activation of Integrin or 

receptor tyrosine kinase (RTK) signalling leads to activation of CDC42/Rac1, 

which are well-established activators of PAK1.  Activated PAK1 then 

phosphorylates NF2 at S518, inactivating its tumor suppressive function [51, 52].  

NF2 also exerts a negative regulatory function on PAK1, preventing it from being 

activated by upstream Rac singaling through binding to the P21-binding domain 

of PAK [53].  Overall, the molecular interplay present in the Rac-PAK-NF2 axis 

has been suggested to resemble a feed-forward inactivation loop, whereby Rac 

activates PAK1, which inactivates NF2, freeing PAK to promote downstream 

signalling [51-53].   

 

In the context of contact inhibition of cell proliferation, homophilic cadherin 

interactions lead to inactivation of PAK1, resulting in an increase of the closed, 

tumor-supressive form of NF2 [50].  Considering NF2 is an ERM family member 

with prevalant cortical localization, it has been suggested that NF2 exerts its 

function as a tumor suppressor by regulating molecular events at the cell 

membrane.  Support of this relationship is seen in NF2-deficient cells, which do 

not arrest in the cell cycle at confluency as do normal, contact-inhibited cells [51]. 

The localization of NF2 in confluent cell states also supports this hypothesis, as it 

has been observed to accumulate to cell-cell contacts in epithelial cell types at 

confluency in cell culture [51, 54].  Another study identified NF2 to accumulation 

and interaction with a protein complex at the tight junction in epithelial cells [55].   
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NF2 is also an inhibitor of mTORC1 signalling, a fundamental pathway known to 

control protein translation [56, 57].  mTORC1 activation increases cell 

proliferation and survival through phosphorylation and inhibition of two 

downstream targets, p70-S6K1 and 4E-BP1.  In response to activation by 

integrin signalling, PAK1 phosphorylates and inactivates NF2, leading to an 

increase in downstream mTORC1 activation.  A schematic of the relationship 

between Rac, PAK, NF2, and mTORC1 is seen in Figure 1. Support for this 

relationship is seen in constitutive activation of mTORC1 in NF2-deficient 

mesothelioma, meningnioma, and vestibular schwannoma cell lines.  This 

activation appears to be independent of two well-established upstream regulators 

of mTORC1, AKT and ERK [57].  NF2-deficient mesothelioma cell lines are more 

sensitive to mTORC1 inhibition by Rapamycin than NF2-competent 

mesothelioma cell lines, which suggests an important role for mTORC1 signaling 

in NF2-deficient tumors [56].  
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Figure 1. Schematic representation of Rac-PAK-NF2 signaling axis.  In 

response to stimulation through activated RTKs or Integrin signaling, Rac’s 

activated GTP-bound form is recruited to the cell cortex where it promotes PAK1 

autophosphorylation and activation.  Once activated, PAK1 phosphorylates NF2 

at Serine 518, resulting in its inactivation.  The inactivation of NF2 results in 

constitutive activation of mTORC1, which increases ribosomal biogenesis and 

protein translation.  The net effect of mTORC1 activation is an increase in cell 

survival and proliferation, amongst other changes in cell function and behavior. 
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The Schwann cell lineage 

Schwann cells are a neural crest-derived glial cell population and the primary 

glial cell found in peripheral nerves.  They differ from oligodendrocytes, the 

myelinating CNS glial cell population, in that Schwann cells form myelin around 

single axons only.  Developmentally, there are three different embryonic 

Schwann cell stages.  The first stage includes neural crest cells, which gives rise 

to Schwann cell precursors (SCP, present from Embryonic day 12-13 in mice), 

and finally to Immature Schwann cells (present  from Embryonic day 13-15 in 

mice) [58, 59].  These cell types are transient, and their ultimate fate as a 

myelinating or non-myelinating Schwann cells depends on the caliber of the axon 

they associate with.  Myelinating Schwann cells are found in association with 

large caliber axons, whereas non-myelinating Schwann cells are found with small 

diameter axons [60]. 

 

Many different signals have been identified as important for the progression of 

glial cells from neural crest cells into a mature, myelinating phenotype [60].  

SOX10, a transcription factor, is required for the development of all peripheral 

glial cells [61].  NRG1, a ligand for the ErbB family of receptors, is essential for 

SCP survival [59, 62].  Autocrine signalling is critical for Immature Schwann cells, 

especially signalling derived from NRG1-ErbB family of receptors and Laminin-β1 

Integrin interactions [63-66].  Promotion from immature Schwann cells into a 
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myelinating phenotype involves the integration of many different signals, 

including those from NF-κB, Krox20, and OCT6 [67-70].   

 

Mouse models of NF2 

A useful preclinical animal model of human disease requires broad physiological 

relevance at both genotypic and phenotypic levels [71]. Therefore, genetically 

engineered murine (GEM) models of human disease should harbor mutations in 

gene(s) homologous to gene(s) mutated in human cancer. Moreover, this genetic 

perturbation should occur in cell types and gene doses similar to the hypothetical 

human tumor cell of origin. These tissue-specific genetic mutations should induce 

tumors that share histological and biological characteristics with the 

corresponding human tumors. Additionally, the GEM tumors should be expected 

to develop in a similar anatomical distribution and with similar functional 

consequence as human tumors. Since loss of Nf2 expression results in 

embryonic lethality in mice and Nf2+/- mice do not have a Schwann cell 

phenotype, conditional knockout technologies must be employed for the 

generation of NF2 mouse models [72, 73].  Importantly, the first generation 

murine NF2 model demonstrated that Nf2 disruption in Schwann cell lineages 

during embryogenesis promotes schwannoma formation [74, 75]. In existing 

models, however, schwannomas are incompletely penetrant (only occurring in 

about one-third of mice), and, generally, arise only late in life. Furthermore, 

vestibular schwannomas have not been observed in existing murine models of 
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NF2. These temporal, anatomical, and functional divergences from the human 

phenotype are critical barriers to in vivo genetic and pharmacologic studies that 

could facilitate better understanding of the molecular pathogenesis of NF2-

associated schwannomas. Additionally, lack of an optimal mouse model NF2-

associated schwannomas prevents the development and preclinical testing of 

novel therapeutics for these tumors.   

 

The prior published murine Nf2 conditional knockout model depends on Cre-

mediated Nf2 allele excision driven by the P0 promoter element, which is 

expressed in neural crest cells at embryonic day 9.5 (E9.5) and in SCPs at E12.5 

[75]. We hypothesized that an alternate promoter element with distinct 

developmental timing and anatomical distribution may provide an additional 

opportunity to recapitulate the phenotypic consequences of human NF2 

mutations and disease manifestations in mice. Therefore, we investigated Cre 

expression driven by the 3.9kb upstream promoter region of the Periostin gene 

(Postn-Cre), which prior studies have shown to drive robust reporter gene 

expression in Schwann cell progenitors beginning at E10 [76]. We intercrossed 

mice carrying loxp sequences flanking exon 2 of the Nf2 gene (Nf2flox/flox) [75]  

with Postn-Cre mice, generating Postn-Cre; Nf2flox/flox mice and their Cre-negative 

control littermates. Here, we present this intercross, which results in the 

consistent development of schwannomas that closely recapitulate features of the 

human disease, including hearing loss and vestibular impairment associated with 

vestibular schwannoma development.  
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MATERIALS AND METHODS 

 

Study approval 

All studies were carried out in accordance with, and approval of, the Institutional 

Animal Care and Use Committee (IACUC) of Indiana University Medical School, 

the U.S. Department of Agriculture’s (USDA) Animal Welfare Act (9 CFR Parts 1, 

2, and 3) and the Guide for the Care and Use of Laboratory Animals.  

 

Statistical methods 

Statistical analyses were performed with GraphPad Prism 5.0. The Kaplan-Meier 

method was used to analyze the survival outcomes of mice, and the Log Rank 

(Mantel-Cox) test was used to compare survival curves. As noted in the text, 

Analysis of Variance (ANOVA) with Bonferonni post-hoc analysis or Student’s T-

test was used to test for differences in tumor volume and hearing threshold. 

Specific tests and significance levels can be found in the figures and figure 

legends. Fischer’s Exact test for Independence was performed on the vestibular 

phenotypic data using the R Statistical Programming Environment. P values less 

than .05 were considered significant.   
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Hearing screening 

Auditory brainstem responses (ABRs) were recorded from left and right ears of 

anesthetized mice (100 mg/kg ketamine and 10 mg/kg xylazine by intraperitoneal 

injection) using subdermal needle electrodes. Stimuli were produced and 

responses were recorded with a Tucker-Davis Technologies (TDT) BioSigRZ 

system, using a RZ6 digital/analog converter (TDT). Responses to clicks (512 

repetitions, 30-90 dB SPL in 10 dB steps, presented at 21/s with a closed-field 

system) were amplified, filtered (3 Hz - 3 kHz), averaged, and stored for offline 

analysis in Matlab (Mathworks, Natick, MA). ABR waveforms were additionally 

high-pass filtered (cutoff 200 Hz) to remove slow oscillations and emphasize 

characteristic ABR peaks. ABR threshold was defined as the lowest measured 

SPL at which a reproducible peak or trough was identified. Amplitude of the 

summating potential (SP) was calculated as baseline-to-peak, and amplitude of 

wave 1 (W1) was calculated as peak-to-trough. 

 

Mice and genotyping 

Postn-Cre and Nf2flox/flox transgenic lines were maintained on Teklad Lab Animal 

Diet (TD 2014, Harlan Laboratories USA) using a 12:12 (light/dark) photoperiod 

at 22-24 degrees Celsius. Nf2flox2 and Nf2∆2 bands were detected by PCR 

Analysis as described in Giovannini et al., Genes and Dev., 2000. The Postn-Cre 

transgene was detected by PCR analysis with the following primers: P1 (CAT-

TTG-GGC-CAG-CTA-AAC-AT) and P2 (CCC-GGC-AAA-ACA-GGT-AGT-TA). 
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Band sizes are reported in Figure 10. Postn-Cre; Nf2flox/flox mice and Cre-

negative controls possessed the same mixed genetic background, with SNP 

analysis indicating close relation to the FVB/NTac strain (87.37% identity). 

 

Histology and immunohistochemistry  

Tumors were excised from recently sacrificed animals, fixed with 10% formalin, 

embedded in paraffin, sectioned, and stained with H&E. Embryos were fixed in 

4% Paraformaldehyde (PFA), stained with X-gal, embedded in paraffin, and then 

sectioned. Vector labs ABC (PK-6100), DAB (SK-4100), and Avidin/Biotin 

blocking (SP-2001) kits were used for immunoperoxidase staining. BLBP 

(Abcam, ab32423) primary antibody was detected with biotinylated Goat anti-

Rabbit secondary antibody from Sigma (cat. B8896). For sectioning and staining 

of inner ear structures, mice were fixed with 4% PFA injected via intracardiac 

perfusion into the right atrium. Samples were then sent to Dr. Brian Faddis at the 

Otolaryngology Histology Core at Washington University in St. Louis for 

processing and staining.  

 

Tumor volume quantitation 

After fixation and decalcification in 5% formic acid, the DRG and spinal nerves 

were then dissected out under a microscope. Tumor volume was calculated 
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using the length and width values for a particular tumor in the formula volume = 

length x width2 x .52, the approximate volume of a spheroid. 

 

Vestibular studies 

All of the functional vestibular studies (trunk curl, contact righting, and swim) 

were performed on three consecutive days, with each test being performed once 

per day. The tests were scored by two independent observers experimentally 

blinded to the genotype of each animal. Fischer’s Exact test was used to test for 

differences in the two genotypes. 

 

For the trunk curl test, mice were individually suspended by their tails and 

presented with a horizontal platform roughly 2 cm outside their reach. Control 

mice will reach toward this platform, but mice with vestibular impairment will tend 

to curl in toward their abdomen with their head and upper-body. This inward-

curling was scored as a failure for the test. Mice were scored on a two-point 

system, either succeeding or failing the test. 

 

In the contact righting test, mice were placed in a 45 cm Plexiglas tube with a 

diameter of 6 cm, and the tube was re-oriented until the mouse was at the 

approximate center of the tube, facing toward the closed end. The tube was then 

rotated and the ability of the mice to correct their posture was assessed. Mice 
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that had significant difficulty adjusting to the rotation fell on their sides or on their 

backs. This was scored as a failure of the test. Mice were scored on a two-point 

system, either succeeding or failing the test. 

 

For the swim test, a large sink (50 cm x 40 cm x 20 cm) was filled with tepid 

water to a depth of 18 cm and given several hours to equilibrate to room 

temperature. Mice were placed in the sink individually and their ability to swim 

was assessed for one minute. Normal swimming behavior was noted when the 

animal kept its body aligned horizontally in the water with its nose clearly above 

the surface. Abnormal swimming was noted when the animal made vertical 

deviations, had substantial head tilt, assumed an immobile floating position, or 

had significant lower limb thrashing. Any abnormal swimming was scored as a 

failure. Mice were scored on a two-point system, either succeeding or failing the 

test.  
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RESULTS 

 

Postn-Cre+ mice develop schwannomas 

Initial studies demonstrated that all Postn-Cre; Nf2flox/flox mice sacrificed at 15 

months of age possessed significant enlargements of the dorsal root ganglion 

(DRG) and proximal spinal nerve roots (Figure 2A and 2B). Subsequent 

histologic analyses indicated these enlargements are present at every vertebral 

level in Postn-Cre; Nf2flox/flox mice. To better understand the time course of these 

enlargements, we sacrificed and dissected mice at multiple time points. By five 

months of age, all Postn-Cre; Nf2flox/flox mice acquired enlargements of their DRG 

and proximal spinal nerve roots, with microscopic evidence of Schwann cell 

hyperplasia and/or schwannoma, featuring dense, intersecting fascicles of 

Schwann cells (Figure 3). By eight months, all Postn-Cre; Nf2flox/flox mice 

demonstrated DRG and proximal spinal nerve tumors with histological 

characteristics of frank schwannoma (Figure 2C and 2D). Further analyses 

demonstrated diffuse S100-positivity of tumors from Postn-Cre; Nf2flox/flox mice, 

consistent with previously established criteria for genetically engineered mouse 

(GEM) Grade I schwannoma (Figure 2E) [34]. At fifteen months, dissected spinal 

cords from Postn-Cre; Nf2flox/flox mice demonstrated more than a five-fold 

increase in DRG volume as compared to Cre-negative control littermates (Figure 

2F). Thus, Postn-Cre; Nf2flox/flox mice develop slow growing, low-grade 
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schwannomas highly reminiscent of schwannomas observed in individuals with 

NF2.  

 

Detailed temporal analysis of cohorts revealed that Postn-Cre; Nf2flox/flox mice had 

a reduced lifespan as compared to Cre-negative Nf2flox/flox control mice (Figure 

2G). In the majority of mice, only multiple large schwannomas were observed. 

However, 5/16 Postn-Cre; Nf2flox/flox mice analyzed required sacrifice due to the 

development of tumors that, upon histological examination, were found to be 

GEM Grade III lesions consistent with malignant peripheral nerve sheath tumors 

(MPNST) (Figure 4). MPNSTs, malignant sarcomas, and malignant carcinomas 

have also been observed with disruption of Nf2 in other genetically engineered 

models [75].  

 

Detailed examination of schwannomas excised from Postn-Cre; Nf2flox/flox mice 

indicated these tumors possessed an architecture highly reminiscent of 

schwannomas found in human NF2 disease. Some nerves demonstrated 

discrete nodules of schwannoma, similar to the Schwann cell tumorlets 

commonly observed in the cauda equina of NF2 patients (Figure 5A) [77]. In 

multiple cases, proliferating schwann cells caused diffuse expansion of the nerve 

and extended into its ramifications, simulating plexiform schwannomas frequently 

encountered in human NF2 patients (Figure 5B). Other focal lesions 

demonstrated pseudo-onion bulb formations comprised of proliferating Schwann 
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cells tightly whorled around a central axon, a histological feature also found in 

some human NF2-associated schwannomas (Figure 5C). Finally, in some 

nerves, proliferating Schwann cells did not form a discrete mass, but rather 

exhibited diffuse regions of hypercellularity, possibly representing an early 

neoplastic change prior to schwannoma development (Figure 5D). 
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Figure 2. Postn-Cre; Nf2flox/flox 
 
mice develop schwannomas of the DRG and 

spinal nerves.  (A and B) Dissected spinal cord of 15 month old Cre-negative 

control (A) and Postn-Cre; Nf2flox/flox (B) mice, with Postn-Cre; Nf2flox/flox mice 

displaying diffusely enlarged DRG and spinal nerves (red arrowheads).  (C and 

D) Hematoxylin and Eosin (H&E) stain of the DRG from seven month Cre-

negative control and Postn-Cre; Nf2flox/flox mice, respectively. The whorls of 

Schwann cell proliferation observed in D are characteristic of schwannoma 

histology. Original magnification x200.  (E) Immunohistochemical S100 stain 

indicating tumors are comprised of mature Schwann cells. Original magnification 

x400.  (F) DRG volume quantitation of 15 month old Cre-negative control mice 

(4) and Postn-Cre; Nf2flox/flox mice (6). P < .0001, Unpaired Student’s T-test with 

Welch’s correction.  (G) Kaplan-Meier survival analysis of Cre-negative control 

mice (8) and Postn-Cre;Nf2flox/flox
 
 mice (16). P < .001, Log-Rank (Mantel-Cox) 

Test.  



22 
 

 

Figure 3. Temporal analysis of spinal nerve tumors in Postn-Cre; Nf2flox/flox 

mice.  (A and B) Gross dissected spinal cord and H&E stain from representative 

5 month old Cre-negative control (A1 and A2) and Postn-Cre;Nf2flox/flox mouse 

(B1 and B2), respectively.  Red arrowheads in B1 highlight the spinal 

enlargements observed in the Postn-Cre; Nf2flox/flox mouse at 5 months of age. 

A2 and B2, original magnification x400. 
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Figure 4. A small percentage of schwannomas in Postn-Cre; Nf2flox/flox mice 

progress into MPNSTs.  (A) H&E stain of a GEM Grade III tumor (MPNST) 

observed in a Postn-Cre; Nf2flox/flox mouse, showing that some schwannomas 

progress into malignant Schwann cell tumors with large, pleomorphic cells 

arranged in intersecting fascicles.  These tumors were diffusely infiltrative, 

possessed regions of necrosis, and also included mitotic figures.  This mouse 

was sacrificed at the age of seven months.  A1, original magnification x100.  A2, 

original magnification x200. 
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Figure 5. Schwannomas observed in Postn-Cre; Nf2flox/flox mice 

histologically resemble those observed in human patients.  (A) H&E stain 

showing a multifocal pattern of schwannoma growth along a nerve (red 

arrowheads). Original magnification x100.  (B) Example of a plexiform 

schwannoma involving a nerve twig with peripheral axons.  Original magnification 

x400.  (C) Pseudo-onion bulb formation of proliferating Schwann cells forming 

whorls around centrally-located axons within a nerve.  Original magnification 

x200.  (D) Diffuse spinal nerve hyperplasia observed in the nerve of a Postn-Cre; 

Nf2flox/flox mice.  Original magnification x400.  
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Vestibular schwannomas in Postn-Cre+ mice 

NF2 patients develop schwannomas in multiple anatomic regions, including 

peripheral, cranial, and spinal nerves [78]. Interestingly, by ten months of age, 

thorough dissection and histological analysis of each Postn-Cre; Nf2flox/flox mouse 

revealed schwannomas in nearly all histological specimens of peripheral, cranial, 

and spinal nerves. For example, all Postn-Cre; Nf2flox/flox mice examined for 

cranial nerve pathology featured schwannomas of the Trigeminal (CN V) and 

Facial (CN VII) nerves (Figure 6). Given the high correlation between human 

NF2 disease and the presence of bilateral vestibular schwannomas, we focused 

on CN VIII and its associated functions. Histological analysis of Postn-Cre; 

Nf2flox/flox mice revealed aberrant Schwann cell growth in CN VIII proximal to its 

entry into the inner ear, including tumors observed in Scarpa’s ganglion, the 

anatomic site of the afferent nerve cell bodies prior to their synapse with 

vestibular hair cells (Figure 7A and 7B). Postn-Cre; Nf2flox/flox  mice also 

demonstrated Schwann cell hyperplasia in the spiral ganglion (Figure 7C), a 

structure containing nerve cell bodies that transmit sound-derived nerve impulses 

from the cochlea to the brain. We observed none of these aberrations in Cre-

negative littermates. Importantly, the cochlea did not display any other obvious 

structural differences between the two genotypes (Figure 8).  
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Figure 6. Postn-Cre; Nf2flox/flox
 
mice develop schwannomas on CN V and CN 

VII.  (A and B) Representative H&E stains of CN V (A) and CN VII (B) from 

Postn-Cre; Nf2flox/flox  mice displaying schwannoma development in the cranial 

nerves.  Original magnification x200. 
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Figure 7. Postn-Cre; Nf2flox/flox
 
mice develop schwannomas on CN VIII.   

(A1) H&E stain of a vestibular schwannoma located in Scarpa’s ganglion (ScG). 

Original magnification x100.  In the 200x magnified inset image (A2), notice the 

Schwann cell proliferation displacing nerve cell bodies (black arrows) and 

pushing axons to the periphery of the nerve (red arrowheads).  (B) Diffuse 

hypercellularity observed in CN VIII. Original magnification x100.  (C1) Schwann 

cell proliferation in the spiral ganglion (SpG), expanding and disrupting the 

architecture of the ganglion. Original magnification x100.  In the magnified (400x) 

inset C2, notice the dysplastic, irregularly spaced Schwann cells.  Cochlea (Co), 

Scala Media (SM), Scala Vestibuli (SV), Scala Tympani (ST). 
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Figure 8. The cochleas in Postn-Cre; Nf2flox/flox mice are structurally similar 

to Cre-negative controls.  (A and B) Toludene Blue stain of the spiral ganglion 

and cochlea showing that cochleas of Postn-Cre;Nf2flox/flox mice (B) are 

structurally comparable to their Cre-negative (A) age-matched counterparts (16 

months), save for schwannoma/Schwann cell hyperplasia present in the spiral 

ganglion (red arrowheads).  Original magnification x100. 
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Postn-Cre+ mice experience hearing loss and vestibular impariment 

To correlate these CN VIII lesions with potential functional hearing deficits, we 

used click-evoked auditory brainstem response (ABR) testing, a standard method 

to assess hearing loss in humans and small animals [79]. ABRs are electrical 

potentials recorded from electrodes placed on the scalp and near the ear. In 

response to sound stimuli, a characteristic ABR waveform with a series of peaks 

and troughs is observed, where peaks correspond to different components of the 

ascending auditory pathway [80]. We tested cohorts of mice at three, six, eight, 

and ten months of age, finding a progressively increasing ABR threshold in 

Postn-Cre; Nf2flox/flox mice, while control mice maintained a relatively consistent 

hearing threshold throughout the study (Figure 9A and 9B). Given that this click-

ABR screening was limited to a stimulus range from 30 – 90 decibel sound 

pressure level (dB SPL), and that the majority of Cre-negative mice exhibited 

robust waveforms at 30 dB SPL, it is likely that the mean differences between the 

two groups are even larger than those depicted in Figure 9B. Thus, the present 

data indicate a hearing loss that is temporally correlated with tumorigenesis in 

this mouse model. Functionally, a sensorineural hearing loss of this type would 

negatively impact a patient’s quality of life by limiting communication and social 

interaction in everyday listening environments with background noise.  

 

To expand our analysis of the hearing impairment in Postn-Cre; Nf2flox/flox mice, 

we studied the individual peaks present in click-ABR waveforms (Figure 9C and 
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9E). The first ABR wave (W1) represents potentials generated from the cochlear 

nerve [81]. The summating potential (SP), which appears as a small shoulder 

preceding W1, is largely comprised of potentials originating from the inner hair 

cells of the cochlea, with some contributions from outer hair cells [82, 83]. No 

significant differences were observed between Postn-Cre; Nf2flox/flox mice and 

Cre-negative control SPs at both the six and eight month time points, but a 

significant reduction in SP amplitude was observed in the Postn-Cre; Nf2flox/flox 

mice at ten months (Figure 9D). W1 amplitude was significantly attenuated in the 

Postn-Cre; Nf2flox/flox mice compared with Cre-negative controls at all of the tested 

time points (Figure 9F). The reduction in W1 amplitude at the six and eight 

month time points, when contrasted with the non-significant differences in SP 

amplitude, specifically points to a functional disruption in the cochlear synapse 

and/or cochlear nerve in Postn-Cre; Nf2flox/flox mice. These data also indicate a 

more extensive disruption of auditory function at the ten month time point, with 

decreased SPs suggesting diminished hair-cell function in addition to deficits in 

the cochlear synapse and/or cochlear nerve. Altogether, these studies reveal that 

Postn-Cre; Nf2flox/flox mice acquire sensorineural hearing loss that, in 

consideration of the schwannoma histopathology described in Figure 3, likely 

originates in the cochlear nerve. 

 

Vestibular schwannomas can also severely impair a patient’s sense of normal 

balance and orientation, leading to vertigo, nausea, accidents related to falls, 

and, thus, substantially decreased quality of life. In our studies with Postn-Cre; 
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Nf2flox/flox mice, we observed that some mice acquired a phenotype suggestive of 

vestibular dysfunction, as they exhibited head tilting, head tossing, head bobbing, 

and locomotive circling behavior. This behavior is collectively referred to as 

shaker/waltzer behavior, and has been observed in mice possessing defects in 

their vestibular organs [84, 85]. To test for vestibular dysfunction, we conducted 

three different behavioral tests to examine the integrity of the vestibular system 

[86]. Each mouse underwent a trunk curl, contact righting, and swim test on three 

occasions over the course of three consecutive days, with the results scored by 

two independent observers experimentally blinded to the genotype of the mice. 

Postn-Cre; Nf2flox/flox mice demonstrated profound impairment in their ability to 

successfully complete each of the three tests when compared to their Cre-

negative littermates (Table 1).  
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Figure 9. Postn-Cre; Nf2flox/flox mice show deficits in both threshold and 

supra-threshold auditory brainstem responses (ABRs).  (A) Representative 

ABR waveforms from individual Cre-negative (left) and Postn-Cre; Nf2flox/flox mice 

(right) at 10 months of age.  (B) Time-course click-ABR study quantitating 

differences between Cre-negative and Postn-Cre; Nf2flox/flox mice. Significant 

threshold elevations were seen in Postn-Cre; Nf2flox/flox mice at 8 (P < .01) and 10 
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(P < .001) months of age (n = 15, 12, 15, and 19 mice for 3, 6, 8, and 10 months, 

respectively). Thresholds were averaged across animals (mean ± SEM).  (C and 

D) The summating potential (SP) (C), dominated by inner-hair-cell receptor 

potentials and evident in the ABR waveform immediately preceding peak 1, is 

comparable in amplitude across groups at 6 and 8 months of age, but is reduced 

in Postn-Cre; Nf2flox/flox mice at 10 months (P < .001) (D).  (E and F) ABR wave 1 

(W1) (E), representing the summed response of the cochlear nerve, is reduced in 

Postn-Cre; Nf2flox/flox  mice compared to Cre-negative controls at all ages (P < .05, 

P < .05, P < .001) (F), indicating deficits in pre- and/or post-synaptic cochlear 

nerve function.  All statistical tests: two-way ANOVA with Bonferonni post-hoc 

analysis.  Thickness of waveforms (C and E) represent mean ± SEM.  

Amplitudes (D and F) represent high-level responses (across 60-90 dB SPL) 

averaged across animals (mean ± SEM).  Horizontal dotted lines (D and F) at the 

base of the y-axis indicate the noise floor measurement. 
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Table 1: Postn-Cre; Nf2flox/flox mice develop vestibular impairment.  

Results of examination of the vestibular system in Postn-Cre; Nf2flox/flox mice and 

Cre-negative controls.  Tests were conducted on three consecutive days and 

scored by two independent scorers experimentally blinded to the animal’s 

genotype.  Mice were scored on a two-point scale, either succeeding or failing a 

particular test.  A detailed description of the three tests can be found in the 

methods section.  All mice were 13 months old at the time of testing.  Fischer’s 

Exact Test was used to test for statistically significant differences. 
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Embryonic analysis of PostnCre+ progenitor populations 

To gain a more detailed understanding of the temporal, anatomical, and cellular 

origins of Nf2-associated schwannomas, we further characterized gene 

expression driven by the 3.9kbPeriostin promoter element. First, recombination 

of Nf2 was confirmed in the cranial and spinal nerves (Figure 10). Next, we 

performed embryologic studies with an intercross between Postn-Cre and 

Rosa26 lox-stop-lox LacZ reporter mice. By E12.5, robust β-galactosidase 

expression was observed in the DRG, facial ganglia, and the developing cranial, 

spinal, and peripheral nerves (Figure 11A, 11B, and 11C). Approximately half of 

Schwann cells derived from the sciatic nerve of adult mice demonstrated positive 

X-gal staining with universal S100-positivity (Figure 11D and 11E). In the DRG, 

nerve roots, and peripheral nerves of E14 and E14.5 tissue, β-galactosidase 

expression coincided with Brain Lipid-Binding Protein (Blbp) expression, an 

established immunological marker of Schwann cell precursors and immature 

Schwann cells (Figure 11F and 11G) [60]. Schwann cell precursors and 

immature Schwann cells are multipotential embryonic Schwann cell lineages that 

descend from neural crest cells and represent the progenitor cell populations that 

give rise to mature Schwann cells. Importantly, the time points of the X-gal 

stained embryos in Supplemental Figure 6 represent the transition from Schwann 

cell precursors (E12-E13) to immature Schwann cells (E13-E15) [60]. These data 

indicate that Postn-Cre is expressed in early multipotent glial cell populations, 

likely representing the tumor cell of origin for this model.  
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Figure 10: Postn-Cre induces recombination in neural crest-derived 

tissues.  (A) PCR analysis demonstrating that Postn-Cre induces recombination 

in adult nerve tissues, but not the blood. Blood was taken from the tail vein of a 

Postn-Cre; Nf2flox/flox mouse prior to sacrifice.  After sacrifice, spinal and 

Trigeminal nerve tissue were dissected from the same mouse.  DNA was then 

isolated from these tissues and used for PCR analysis.  The presence of the 

Nf2delta2 allele indicates recombination of the Nf2flox2 allele.  This is representative 

data of PCR analysis in three different Postn-Cre; Nf2flox/flox mice.  The Nf2flox2 

allele is 440 base pairs (bp), Nf2delta2 allele is 338 bp, and Postn-Cre is 450 bp in 

length. Trigeminal Nerve (TG Nerve). 
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Figure 11. Postn-Cre is expressed in multipotent embryonic Schwann cell 

lineages.  (A and C) Beta-Galactosidase activity in Postn-Cre; Rosa26 lox-stop-

lox Lacz embryos at indicated embryonic time points (A, E12.5; C, E14.5).  (B) 

Beta-Galactosidase activity in the DRG of an E13.5 embryo.  (D) Beta-

Galactosidase activity in cultured Schwann cells from the adult sciatic nerve of a 

Postn-Cre; Rosa26 lox-stop-lox LacZ mouse. Original magnification x400.  (E) 

S100 stain of cultured Schwann cells from the adult sciatic nerve of a Postn-Cre; 

Nf2flox/flox mouse.  All cells were found to be S100 positive.  Original magnification 

x200.  (F and G) Immunostaining of BLBP in X-gal stained E14.5 (F) and E14 (G) 

embryo sections.  BLBP is a marker of Schwann cell precursors and immature 



38 
 

Schwann cells.  F, Original magnification x100.  G, Original magnification x200. 

Neural Tube (NT), Dorsal Root (Dr), Ventral Root (Vr), Peripheral Nerve (PN). 
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DISCUSSION 

 

In this study, we describe a novel NF2 mouse model recapitulating schwannoma 

phenotypes found in human patients. NF2-associated schwannomas are most 

frequently located on CN VIII and/or the spinal roots, and these tumors are seen 

in nearly all NF2 patients [1]. The NF2 mouse model presented in this study 

develops tumors on both structures with complete penetrance, and it also 

demonstrates functional impairments in hearing and balance that are commonly 

associated with human vestibular schwannomas.  

 

The characteristics of this model permit three broad areas of translational study. 

First, the genesis of genetically engineered models and the use of genetic 

intercrosses to provide in vivo proofs of concept have recently resulted in 

advances in the understanding of tumor suppressor genes and their roles in 

regulating specific signalling pathways, including other neurocutaneous disorders 

such as NF1 and tuberous sclerosis [87-92]. While the NF2 gene product was 

identified as mutated in familial NF2 disease over 25 years ago, it remains 

unclear which pathways are critical to tumor development downstream of NF2 

[93]. This genetic model may provide the means for elucidating which signalling 

pathways downstream of NF2 are essential to schwannoma development. 
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Second, the utility of accurate preclinical models that allow physiologic testing of 

clinical phenotypes is particularly important for orphan genetic diseases such as 

NF2, where patient numbers limit the ability to conduct multiple meaningful trials. 

In the entire United States, it is estimated that there are 12,000 individuals that 

have NF2. Though nearly all patients acquire vestibular schwannomas, at any 

given time only a small number of patients are available for clinical trials. Thus, 

preclinical models that can effectively screen for pharmaceutical agents that have 

meaningful therapeutic benefit for schwannomas are essential for the 

advancement of NF2 therapies. Functional ABR assessment of hearing during 

studies utilizing this model provides a unique, non-invasive, and physiologically 

relevant measure for determining therapeutic efficacy of compounds. 

 

Finally, a preclinical model can assist in understanding the basic biology of the 

hearing loss associated with vestibular schwannomas, which is incompletely 

understood. Tumor size resulting in local compression of CN VIII does not 

appear to account completely for the onset and progression of hearing loss in 

NF2 patients [33]. Interestingly, the recent short-term improvements in hearing 

with Bevacizumab treatment of vestibular schwannomas in NF2 patients are not 

consistently associated with a reduction in tumor size [94]. It has also been 

suggested that biochemical disturbance of the inner-ear fluids could be the 

underlying cause of hearing loss related to these tumors [95]. Otoacoustic-

emission studies in patients with vestibular schwannomas support the hypothesis 

that some degree of hearing loss is cochlear in origin [96, 97]. Altogether, the 
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degree to which hearing loss in these patients is retrocochlear (thus likely 

originating in the cochlear nerve) or cochlear in origin remains an open question. 

Our studies suggest functional impairment of cochlear-nerve activity in Postn-

Cre; Nf2flox/flox mice at both early (six and eight months) and later (ten months) 

stages of disease progression. In contrast, Postn-Cre; Nf2flox/flox mice have 

significantly reduced summating potentials only at ten months, suggesting that 

the structures required for mechanoelectric transduction of sound prior to the 

inner hair cell-cochlear nerve synapse are not significantly impaired earlier in the 

disease process. These findings, in association with the neoplastic Schwann-cell 

accumulation and extensive morphologic changes seen in the spiral ganglion, 

strongly suggest that a significant component of the hearing loss in this model 

originates in the cochlear nerve. Evidence for an additional, later-onset 

dysfunction of cochlear origin comes from the combination of increased 

thresholds at ten months with further decreased wave 1 amplitude and 

decreased summating potential. In summary, these data suggest an early 

retrocochlear form of hearing loss beginning in the cochlear nerve, and, at later 

time points, a more extensive form of hearing loss incorporating both the 

cochlear nerve and cochlea. Further studies utilizing the Postn-Cre-based NF2 

mouse model may allow additional insights into this clinical question regarding 

the mechanisms of hearing loss present in vestibular schwannoma patients.  
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INTRODUCTION TO CHAPTER TWO 

 

NF-κB signaling pathway 

The NF-κB (nuclear factor kappa-light-chain enhancer of activated B cells) family 

of DNA-binding protein complexes was first identified as a B-cell specific 

transcription factor in 1986 [98].  Subsequent work by the same group discovered 

that this family of proteins possessed inducible DNA-binding activity and was 

expressed in a wide-variety of cell types [99, 100].  In the nearly 30 years since, 

NF-κB has emerged as a major regulator of immunity and inflammation, among a 

host of other basic functions in cellular physiology [101, 102]. 

 

The NF-κB family of transcription factors is comprised of NF-κB1/p105, NF-

κB2/p100, RELA, RELB, and c-REL.  All of these transcription factors possess an 

N-terminal Rel homology domain (RHD), which is known to mediate both the 

homo-/heterodimerization characteristic of NF-κB proteins as well as their DNA-

binding sequence specificity.  NFκB1 and NFκB2 encode the precursor proteins 

p105 and p100, respectively, which are subsequently processed to their 

transcription factor counterparts, p50 and p52.  RELA, RELB, and c-REL contain 

a C-terminal transcriptional activation domain (TAD) which distinguishes them 

from p50 and p52.  Thus, p50 and p52 rely on dimerization with other Rel family 

members to promote the transcription of target genes[103].  RELA and c-REL 

preferentially interact with p50 [104], while RELB is predominantly found with 

p100 or p52 [105-107]. 
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Dimers of NF-κB transcription factors are largely regulated by nucleo-cytoplasmic 

shuttling.  The principal mediators of this regulation are the IκB proteins, also 

known as the inhibitors of NF-κB [104]. IκB proteins possess multiple ankyrin 

repeats that are responsible for the binding of NF-κB transcription factors.  Their 

ability to sequester NF-κB proteins in the cytoplasm depends on their ability to 

obscure the nuclear localization signal present in the NF-κB proteins.  Though 

there are a number of IκB proteins, this introduction will only focus on IκBα, a 

classical IκB, and p100, an atypical IκB. RELA:p50 heterodimers are primarily 

held in the cytoplasm by IκBα [104].  p100 is thought to predominantly bind RELB 

in the cytoplasm, while not having a substantial effect on other NF-κB proteins 

[105-107].  Some have reported that p100 may also play a role in regulating 

RELA localization, however [108].  p105 contains C-terminal ankyrin repeats and 

does possess IκB activity for p50, RELA, and c-REL, but it is constitutively 

processed to p50 in unstimulated cells and primary function is believed to reside 

in the production of p50 [109-111]. In response to a broad set of stimuli that 

result in upstream NF-κB pathway activation, IκB proteins are degraded by the 

proteasome [101].  For example, IκBα is rapidly degraded in response to TNF-α 

and LPS, two well-studied activators of NF-κB.  NF-κB pathway activation also 

promotes the transcription of the gene encoding IκBα, which is one of the many 

examples of feedback regulation present in this particular pathway [112, 113]. 
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The most well-studied arm of NF-κB signaling, the canonical pathway, primarily 

results in the nuclear accumulation of p50:RELA and p50:c-REL heterodimers.  

The degradation of IκBα and nuclear translocation of NF-κB proteins depends on 

activation of the upstream IKK complex.  The IKK complex consists of the 

catalytically active IKKα and IKKβ subunits and the regulatory subunit NEMO 

(also referred to as IKKγ).  The activation of the IKK complex is intricate and 

quite different depending on the particular ligand/cognate receptor interaction, 

and as such is beyond the scope of this introduction.  Once activated, the IKK 

complex phosphorylates IκBα at Serine 32 and 36, promoting its K48-

polyubiquitination and degradation by the proteasome [104].  IKKβ is believed to 

be the major IκB kinase in most cell types [114]. 

 

The alternative or non-canonical NF-κB signaling pathway is not as well-studied 

as the canonical pathway.  In response to non-canonical NF-κB stimuli, NF-κB 

inducing kinase (NIK) is stabilized, resulting the phosphorylation and activation of 

its preferred substrate, IKKα [106, 115].  Activated IKKα homodimers 

phosphorylate p100 in its C-terminal ankyrin repeat domain, resulting in its 

polyubiquitination and partial processing by the proteasome.  This partial 

processing of p100 to p52 results in the accumulation of p52:RELB heterodimers 

that are free to translocate to the nucleus and induce target gene expression.  A 

diagram depicting the major proteins in both the canonical and non-canonical 

NF-κB signaling pathways is seen in Figure 12. 
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Figure 12. Schematic representation of the NF-κB signaling pathway. 

Diagram depicting a selected group of the critical proteins involved with canonical 

and non-canonical NF-κB signaling.  In the canonical pathway, upstream signals 

including cytokines and TNF ligands result in activation of an IKK complex 

comprised of IKKα and IKKβ.  IκB phosphorylation by IKKβ leads to proteosomal 

degradation of IκB, freeing p50:RELA dimers to translocate to the nucleus and 

transactivate target genes.  In the non-canonical pathway, ligands such as 

BAFF/LTβ induce NIK stabilization. NIK stabilization is sufficient to activate an 

IKKα homodimeric complex, which phosphorylates p100, leading to its 
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proteosomal processing to p52.  The degradation of p100 allows p52:RELB 

complexes formerly sequestered in the cytoplasm to translocate to the nucleus 

and induce the expression of target genes. NF-κB target genes include those 

known to promote survival, proliferation, and inflammation.  Notice that NIK is 

placed upstream of both pathways, as it is sufficient to activate both canonical 

and non-canonical NF-κB signaling. 
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Interestingly, canonical NF-κB pathway activation can also feed into the non-

canonical pathway. NFκB2, the gene encoding p100 is a known target gene of 

the canonical pathway [116].  This suggests the possibility of synergistic 

crosstalk between the canonical and non-canonical NF-κB pathways.  An 

observation supporting this theory is that basal RELA NF-kB activity is required 

for LTβ-induced RELB:p52 dimer generation [117].  Given that four of the five 

RHD containing NF-κB transcription factors are encoded by canonical NF-κB 

target genes [116, 118-121], the pathway as a whole has been suggested to be 

dynamic in its ability to amplify and/or alter target gene expression [122].   

 

NIK, NF-κB, and cancer 

Previous studies of mice carrying a point mutation or knockout of NIK indicated 

its requirement in regulating the non-canonical NF-κB pathway [123, 124].  

Further study of NIK revealed it to be a tremendously unstable protein that is 

rapidly degraded in cells under basal conditions [125].  In response to certain 

ligands including CD40L, LTβ, and RANKL, NIK is stabilized, phosphorylating 

IKKα and inducing downstream p100 processing [125, 126].  NIK degradation is 

regulated by an E3 ligase complex comprised of TRAF2, TRAF3, c-IAP1, and c-

IAP2 [127, 128].  TRAF3 functions as a molecular tether to a complex of TRAF2 

and c-IAP1/2, in which c-IAP1/2 actually mediate the K48-polyubiquitination of 

NIK, targeting it to the proteasome for degradation (Figure 13).  
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Figure 13. Schematic representation of NIK degradation by an E3 Ligase 

protein complex including TRAF2, TRAF3, and c-IAP1/2.  NIK is a protein 

maintained at low basal levels due to constitutive turnover by the proteasome.  

TRAF3 interacts with NIK in its TRAF3 binding domain in the N-terminus, 

tethering it to an E3 complex containing TRAF2 and c-IAP1/2.  Once formed, c-

IAP1/2 mediates the K48-polyubiquitination of NIK, leading to its proteasomal 

degradation. 
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Recent Multiple Myeloma (MM) studies have provided additional insights into the 

mechanism of NIK degradation.  Many MM cell lines possess mutations/deletions 

in TRAF3 or NIK that preclude their interaction at the protein level, resulting in 

stabilization of NIK [129, 130].  Additional MM cell lines were found to have large 

deletions of the locus including BIRC2 and BIRC3, the genes encoding c-IAP1 

and c-IAP2, respectively [130].  A subset of MALT Lymphomas harboring an 

oncogenic fusion resulting in a c-IAP2-MALT1 fusion protein are also driven by 

stabilization of NIK signaling [131].  The resultant fusion protein is a protease 

with unique specificity for NIK, cleaving the N-terminus and removing the TRAF3 

binding domain.  The remaining NIK C-terminal fragment is resistant to 

proteasomal degradation and is now free to drive downstream oncogenic 

signaling.  Importantly, NIK stabilization is also capable of inducing canonical NF-

κB signaling through activation of IKKα\β heterodimers [129, 132].  It has 

previously been suggested that NIK’s ability to activate both pathways is a 

possible explanation for the multitude of genetic alterations observed in MM that 

all result in stabilization of NIK [133].  A trenchant explanation for the tight 

regulation of NIK at the protein level is that studies have shown NIK to be a 

constitutively activated kinase independent of additional post-translational 

modifications [134]. Overall, these studies implicate NIK as a potent oncogene 

and regulator of NF-κB signaling. 

 

The first direct connection between NF-κB activation and cancer came from the 

characterization of the viral homolog to c-REL, v-REL.  v-REL was shown to be a 
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driver of avian leukemias and lymphomas [135].  Further support of NF-κB’s role 

in oncogenesis is demonstrated by the observation of constitutive NF-κB activity 

in cancer cells derived from patients with MM, Acute Lymphocytic Luekemia 

(ALL), and Chronic Myelogenous Leukemia (CML) [136].  NF-κB is a well-

established regulator of normal lymphocyte development and physiology, and as 

such is capable of activating genes involved with cellular proliferation and 

survival [137]. Deregulation of NF-kB, which is seen in most cancers [138], can 

result in the expression of proteins regulating cell cycle progression and survival, 

including Cyclin D1, Cyclin D2, CDK6, c-Myc, c-Myb, BCL2, ERBB2, and MET 

[139-145].  Given the central role of NF-κB in integrating signals from a diverse 

array of stimuli and transducing these signals into vital basic cellular functions, 

one can begin to understand why many cancers co-opt this pathway for selective 

advantage. 

 

NF-κB and NF2 in the nervous system 

Since its initial discovery as an important regulator of hematopoietic cell function, 

the bulk of studies investigating pathologic roles for NF-κB focus on 

hematopoietic cell types.  Because of this bias, there exists a relative dearth of 

knowledge on the role NF-κB plays in non-hematopoetic cell types and solid 

tumor biology. Due to the focus of this manuscript on schwannomas, a peripheral 

nerve tumor, we now review what is known of NF-κB in cell types and tumors of 

the nervous system, with a particular focus on glial cells. 
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NF-κB signaling in glial cells is believed to be heavily inducible but possess low 

basal activity [146, 147].  Because of this inducible nature of NF-κB in glial cells, 

it has been suggested that NF-κB activity may be linked to pathologic events 

[148].  Spinal cord injury studies in a transgenic mouse conditionally 

overexpressing a non-phosphorylatable form of IκBα in astrocytes, a glial cell of 

the CNS, support this hypothesis [149].  The authors concluded that NF-κB does 

not play a substantial role in regulating normal astrocyte homeostatic function but 

it does clearly contribute to astrocyte chemokine secretion in response to spinal 

cord injury.  These studies demonstrated that by blocking NF-κB signaling in 

activated astrocytes, mice had fewer healing defects post-injury and glial scarring 

was reduced. 

 

Canonical NF-κB activity involving RELA is required for peripheral myelination of 

axons by Schwann cells, indicating this developmental program is regulated by 

NF-κB [68] .  In the sciatic nerves of rats, increased NF-κB activation was 

observed in pre-myelinating Schwann cells in vivo and in vitro.  Further evidence 

of this relationship was seen in Rela knockout mice, which failed to properly 

myelinate peripheral nerves.  Blocking NF-κB activity in Schwann cell and neuron 

co-cultures significantly attenuated myelination and, additionally, prevented the 

induction of OCT6, a transcription factor required for proper myelination. These 

data suggest that NF-κB signaling is an essential mediator of the pre-myelinating 

Schwann cell developmental stage.  Additional studies support the notion that 

NF-κB is a regulator of Schwann cell differentiation [150, 151].   
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Previous studies have indicated that, at the molecular level, schwannomas 

resemble Schwann cells at the pre-myelinating stage of differentiation.  In one 

immunohistochemical study, the investigators found that the schwannoma cells 

had lost expression of markers of a mature myelinated phenotype, including P0 

and MBP.  Rather, the schwannoma cells now expressed markers of embryonic 

Schwann cell lineages, including NGFR, NCAM, L1CAM, and OCT6 [152]. In a 

recent microarray study of schwannomas, the investigators also found that 

schwannomas possessed a molecular phenotype similar to that of pre-

myelinating Schwann cells [153]. This study made the observation that 

schwannomas overexpressed L1CAM, ITGA4, TFAP2A, CDH2, and CDH19, 

which are all molecular markers of developing Schwann cell lineages prior to a 

mature myelinated phenotype [60].   

 

Given that loss of NF2 is the rate-limiting step in schwannoma formation [74, 75, 

154], the above studies suggest a fascinating potential link between 

schwannomas, NF2, and NF-κB signaling.  Indeed, NF2 has been previously 

identified as a negative regulator of canonical NF-κB activation [155].  In a more 

recent study using human schwannoma cells, Cyclin-D1 and Survivin were found 

to be expressed in an NF-κB dependent manner in vitro [156].  Further, the 

authors observed that total RELA and Phosphorylated S536-RELA, a marker of 

canonical NF-κB activation and RELA nuclear localization, are increased in 

schwannoma cells when compared to normal nerves. 
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Another interesting potential link between NF2 and NF-κB comes from a study 

examining a different tumor in the nervous system called ependymoma.  

Ependymomas are observed in up to 50% of NF2 patients, and are the 3rd most 

common tumor observed in these patients behind schwannoma and meningioma 

[1].  In this study, the authors identified a recurring C11orf95-RELA oncogenic 

translocation in sporadic supratentorial ependymomas [157].  The resulting RELA 

fusion protein, which also contains the C11orf95 zinc-finger domain, 

spontaneously translocates to the nucleus to transactivate target genes.  

Transplantation of neural stem cells expressing this fusion protein into mice 

resulted in ependymoma formation and dramatically reduced survival when 

compared to mice transplanted with stem cells expressing WT RELA or a control 

vector.  These studies demonstrate that constitutive NF-κB signaling is sufficient 

to drive ependymoma development, a tumor NF2 patients are genetically 

predisposed to acquire.   

 

In summary, there exist several studies connecting NF2, NF-κB, and 

schwannoma formation.  The studies herein employ broad genomic analyses to 

further implicate NF-κB activation in schwannomas, and then examine NF-κB 

signaling in murine and human schwannoma.  Finally, we show activation of this 

pathway through an upstream regulator, NIK, is sufficient to increase the 

proliferation, survival, and adhesion of primary Schwann cells and, additionally, 



54 
 

induce a transcriptional profile that is remarkably similar to that observed in 

murine and human schwannomas.  
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MATERIALS AND METHODS 

 

Microarray and Ingenuity Pathway Analysis 

Previously published schwannoma microarray data [153] 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39645) were 

downloaded from the Gene Expression Omnibus (GEO) and loaded into Partek 

Genomics Suite (Partek, Inc.).  In our analysis, we included 31 schwannoma 

samples and 8 control samples (the human Schwann cell group was excluded 

from the controls). The data were then quantile-normalized and differentially-

expressed genes (DEGs) were identified by ANOVA as those having P-values 

less than .05.  The Bejamini and Hochberg method was used to correct for 

multiple testing.  Further filtering of DEGs was completed to remove genes with 

fold changes between -2 and 2.  Network analysis was then completed with this 

DEG set with Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City, 

www.qiagen.com/ingenuity). Microarray analysis and IPA were completed by the 

Indiana University School of Medicine Center for Computational Biology and 

Bioinformatics. 

 

Statistical methods 

Statistical analyses were performed with GraphPad Prism 6.0. As noted in the 

text, ANOVA or Student’s T-test was used to test for differences between 

samples.  Specific tests and significance levels can be found in the figures and 

figure legends. 
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Preparation of mouse Trigeminal nerves for RNA and protein studies 

Mice were sacrificed and Trigeminal nerve tissue was freshly dissected, minced 

with a scalpel, and washed 3 times with cold PBS, pelleting the tissue in between 

washes using a tabletop centrifuge (Eppendorf) at 4C.  Tissue was then prepared 

for protein or RNA studies.  For whole lysate protein studies, xTractor Lysis 

buffer (Clontech) with cOmplete Protease inhibitor cocktail (Roche) and 

PhosSTOP Phosphatase inhibitor cocktail (Roche) was incubated with the 

tissues.  This mixture was then sonicated on ice, spun down at max speed on a 

tabletop centrifuge for 10 minutes at 4C, and the supernatant was collected and 

stored at -80 for future use.  Trigeminal nerve tissue was fractionated into 

cytoplasmic and nuclear protein fractions using the NE-PER Subcellular 

fractionation kit (Thermo Pierce). For subsequent RNA extraction, tissues were 

suspended in RNALater (Life Technologies) and stored at -20.  

 

RNA extraction from Trigeminal Nerves and primary Schwann cells 

RNA extraction, cDNA synthesis, qRT-PCR, data acquisition, analysis, and QC 

of mouse Trigeminal nerve samples were completed by Genome Explorations 

USA (Memphis, TN).  All other RNA work was completed at Indiana University 

School of Medicine.  RNA was extracted from primary Schwann cells with Trizol 

(Life technologies).  QuantiTect Reverse Transcription kit (Qiagen) and Fast 

SYBR Green Real-Time PCR Master Mix (Life Technologies) were then used for 

two-step qRT-PCR with an ABI 7500 Fast Thermal Cycler.   
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qRT-PCR Primer list (all are targeted to genes in mice) 

gene/primer name Sequence 

Bcl2 For aagctgtcacagaggggcta 

Bcl2 Rev ctctcaggctggaaggagaa 

Birc2 For tgtggcctgatgttggataac 

Birc2 Rev ggtgacgaatgtgcaaatctact 

Birc3 For acgcagcaatcgtgcattttg 

Birc3 Rev cctataacgaggtcactgacgg 

Casp8 For tgcttggactacatcccacac 

Casp8 Rev tgcagtctaggaagttgacca 

Ccnd1 For tctttccagagtcatcaagtgtg 

Ccnd1 Rev gactccagaagggcttcaat 

Ccnd2 For gctgtgcatttacaccgaca 

Ccnd2 Rev acactaccagttcccactcca 

Erbb2 For gagacagagctaaggaagctga 

Erbb2 Rev acggggattttcacgttctcc 

Gapdh For aggtcggtgtgaacggatttg 

Gapdh Rev  tgtagaccatgtagttgaggtca 

Met For gtgaacatgaagtatcagctccc 

Met Rev tgtagtttgtggctccgagat 

Nfkb1 For tcaggtgcagtgtcttgagc 

Nfkb1 Rev ggagggacagcagtaacaaca 

Nfkb2 For agtgtgcgctgtgtctgtag 

Nfkb2 Rev gttcttcttggttacatgcagga 

Rela For tgcccagaccgcagtatc 

Rela Rev ggattcgctggctaatgg 

Relb For gtgacctctcttccctgtcact 

Relb Rev tgtattcgtcgatgatttccaa 

Rel For agaggggaatgcggtttagat 

Rel Rev ttctggtccaaattctgcttcat 
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Procurement and preparation of human vestibular schwannoma tissue for 

protein and histological studies 

Freshly excised tumor specimen was snap frozen and stored in liquid nitrogen.  

Tissue was then prepared for protein studies similar to the procedure outlined 

above for murine nerve tissue.  Preparation of tissues for histological studies was 

completed as per the fixation and embedding protocol outlined in Chapter One 

for murine nerve tissues.  All studies were conducted under IRB approval 

(IRB#  1107006213, “Genotype, Phenotype, and Treatment of Human Vestibular 

Schwannomas.”). 

 

Primary antibody list 

The following antibodies were used for Western Blotting experiments: RELA (Cell 

Signaling #8242), RELB (Cell Signaling #4954), p100/p52 (Cell Signaling #4882), 

c-REL (Cell Signaling #12707), GAPDH (Cell Signaling #5174), NIK (Cell 

Signaling #4994),  IKKα (Cell Signaling #2682),  IκBα (Cell Signaling #4814), 

Myc (Cell Signaling #2278), HA (Cell Signaling #3724), FLAG (Cell Signaling 

#8146), NF2 (Abcam ab30329), and Caspase 8 (Santa Cruz sc-6136).  The 

custom polyclonal NIK antibody targeting murine NIK residues 311:328 was 

generated by Thermo Pierce custom antibody services.  For IHC/IF, the following 

antibodies were used: RELA (Santa Cruz sc-109), RELB (Santa Cruz sc-226), 

NIK (Santa Cruz sc-7211), GFP (Abcam ab1218), and S100 (Dako IS504). 
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Western Blot densitometry 

Western blot film was scanned into a digital format and intensity values were 

determined using the Image Studio Lite Version 3.1 (LI-COR Biosciences). 

 

Histology and immunohistochemistry 

Immunohistochemistry for RELA (Santa Cruz, sc-109), RELB (Santa Cruz, sc-

226), and NIK (Santa Cruz, sc-7211) using formalin-fixed, paraffin-embedded 

mouse and human samples was completed by the Indiana University School of 

Medicine Immunohistochemistry core.  RELA and RELB were visualized using 

the Dako EnVision+ Rabbit system and NIK was visualized with the DAKO Flex 

HRP system.  Schwannoma tissue microarrays (US Biomax) stained for RELA 

and NIK were also completed by the Indiana University School of Medicine 

Immunohistochemistry core. 

 

Cell culture and transfection  

HEK-293T cells (American Type Culture Collection, ATCC) were used for 

transfection experiments with polyethyleneimine (PEI, Sigma).  Unless otherwise 

noted, Dulbecco’s Modified Eagle Medium (DMEM, Gibco/Invitrogen) containing 

10% Fetal Bovine Serum(Sigma), 50 U/mL penicillin, 50 ug/mL streptomycin, and 

2mM L-Glutamine(Lonza) was used for cell culture.  For creation of a stable NF-

κB reporter cell line, 293T cells were transduced with Cignal NF-κB GFP 

Reporter Lentivirus (Qiagen) and selected with puromycin (Sigma).  The Cignal 

NFκB GFP Lentivirus stably inserts a modified form of the GFP gene under the 
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control of a minimal CMV promoter with tandem repeats of the canonical NF-κB 

transcriptional response element. 

 

Plasmids and site-directed mutagenesis 

C-terminal Myc/FLAG-tagged full-length (FL) NIK and Caspase-8 cDNAs in the 

PCMV6-Entry vector were purchased from Origene.  The Caspase-8 cDNA was 

then shuttled into the PCMV6-AC-HA backbone (Origene) using the Sgf1 and 

Mlu1 restriction sites.  N-Myc FL NIK, N-Myc and C-FLAG 309-801 NIK were 

PCR-amplified (adding epitope tag sequences and cloning sites) using Phusion 

Hi-Fidelity polymerase (New England Biolabs) from a vector containing FL NIK, 

subcloned into a TOPO-TA cloning vector (Life Technologies), and then cloned 

into the PCMV6-XL5 backbone (Origene) using the EcoRI and SalI cloning sites.  

The pCR-FLAG-IKKalpha-KM, pFlag-CrmA, and pcDNA-CrmA plasmids were 

acquired from Addgene.  Site-directed mutagenesis of FL NIK was completed 

using the New England Biolabs Q5 QuickChange Site-Directed Mutagenesis kit 

and validated by Sanger sequencing.  The NEBaseChanger web application was 

used for primer design.   

 

Virus generation and titration 

The puc2CL6IEGwo Lentiviral IRES-EGFP construct was a kind gift of Helmut 

Hannenberg at Indiana University School of Medicine.  Using standard molecular 

cloning techniques, we cloned C-FLAG 309-801 NIK into the puc2CL6IEGwo 

construct using the EcoRI and BamHI cloning sites.  The puc2CL6IEGwo 
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construct contains an IRES-EGFP cassette and multiple cloning site downstream 

of the spleen focus-forming virus (SFFV) promoter, which robustly drives 

transcription in Eukaryotic cells.  To generate virus, 293T cells grown to 70% 

confluence were transfected with 10 ug each of C-FLAG 309-801 NIK 

puc2CL6IEGwo (Lenti 309-801 NIK) or empty vector puc2CL6IEGwo (Lenti IRES 

EGFP), 5 ug of gag-pol expressing plasmid, and 1 ug of foamyviral envelope 

containing plasmid (PCOPE01) in 6 mL of Dulbecco’s Modified Eagle Medium 

(DMEM, Gibco/Invitrogen) containing 10% FBS and 0.0075 mg/mL 

polyethyleneimine (PEI, Sigma).  After roughly 16 hours of transfection at 37C, 

transfection media was replaced with 6 mL fresh DMEM containing 10% FBS, 50 

U/mL penicillin, 50 ug/mL streptomycin, 2mM L-Glutamine(Lonza).  After 24 

hours, cultures were collected and filtered through a .22 um polyethersulfone 

(PES) membrane Stericup unit (Millipore) and centrifuged at 30,000 x g at 4C for 

2 hours in a polycarbonate Oak Ridge centrifuge tube (Nalgene).  Supernatant 

was then decanted, bleached, and placed in biohazard waste. The viral pellet 

was then resuspended in 1 mL of DMEM containing 10% FBS.  Virus was then 

stored in aliquots at -80C.  Titration of virus to calculate effective infectious 

particles per unit volume (Transduction Units, or TU, per mL) was determined by 

percent GFP-positivity (as measured by flow cytometry) of serially transduced 

HT1080 cells plated at 100,000 per well on a six-well plate in 1 mL of 

DMEM/10% FBS.  Serial dilutions started at 10-3 and ended with 10-8 dilution.   
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Primary Schwann cell procurement and culture 

Wild type (WT) embryonic day 13.5 (E13.5) embryos were harvested from 

pregnant dams after sacrifice. The dorsal root ganglion (DRG) was then 

dissected from each embryo with the aid of a dissecting microscope.  The DRGs 

were then digested in Trypsin and dissociated with syringes.  Individual DRGs (a 

collection from a single embryo) were then plated on Poly-D-Lysine (PDL, 

.1mg/mL)/Laminin (.25mg/mL, Sigma) coated 12-well plates at one embryo per 

well in Schwann Cell Media I (SCM-I) comprised of DMEM with 50 U/mL 

penicillin, 50 ug/mL streptomycin, 2mM L-Glutamine(Lonza), 1X N2 supplement 

(Life Technologies), and 250 ng/mL Nerve Growth Factor (NGF, Sigma).  The 

following day, the media was changed to Schwann Cell Media II (SCM-II), which 

was identical to SCM-I except for the substitution of 2 uM Forskolin and 10 ng/mL 

Neuregulin (Sigma) for NGF. 

 

Transduction of primary Schwann cells 

Three days after harvesting and plating WT Schwann cells on 12-well plates, 

cells were then transduced with Lentivirus in 1 mL of SCM-II at a MOI of 20 

(based on an approximate cell number of 200,000 cells per well).  Cells were 

incubated in SCM-II with virus for 72 hours before replating.  All experiments 

utilized passage 1 Schwann cells. 
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Schwann cell proliferation assays 

Hemacytometer-based: 200,000 Schwann cells of each genotype were seeded in 

triplicate on a PDL/Laminin-coated 12-well plate and allowed to adhere overnight.  

The following morning, the media was changed to fresh SCM-II, and 72 hours 

later the cell number in each well was calculated by Trypan Blue exclusion with a 

hemacytometer. 

 

EdU with fluorescent microscopy: 200,000 Schwann cells of each genotype were 

plated on coated coverslips in 12-well plates.  The following morning, the media 

was changed to fresh SCM-II with 10 uM EdU.  Cells were pulsed for 8 hours and 

fixed.  Life Technologies  Alexa 594 EdU Imaging kit was used to complete the 

staining of the cells.  Coverslips were then imaged on the deconvolution 

microscope. 

 

Schwann cell survival assay 

In a PDL/Laminin-coated 12-well plate, 200,000 Schwann cells of each genotype 

were seeded in triplicate and allowed to adhere overnight.  The following day, the 

media was removed, cells washed 1X with PBS, and growth-factor free DMEM 

with 50 U/mL penicillin, 50 ug/mL streptomycin, and 2mM L-Glutamine was 

added.  The number of living cells in each well was counted 48 hours later by 

Trypan Blue exclusion with a hemacytometer. 
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Schwann cell adhesion assay 

For measurement of cell adhesion, the ACEA iCelligence system was used.  The 

iCelligence system uses an impedance calculation that allows for real-time 

monitoring of diverse cellular processes, including cellular adhesion.  First, E-

plates (ACEA) were coated with PDL/Laminin and 250 uL of SCM-II was added 

to the plates to take an initial impedance reading.  Next, IRES-EGFP and 309-

801 NIK Schwann cells were added to the wells at 25,000 cells/well with a final 

volume of 500 uL.  Impedance values were measured every second for the 

following three hours. 

 

Cycloheximide NIK protein stability assay 

293T cells at 70% confluency in 10 cm dishes (BD Falcon) were transfected with 

4 ug/dish of FL N-Myc NIK or N-Myc 309-801 NIK for 36 hours prior to addition of 

media containing 10 ug/mL Cycloheximide (Sigma).  Cells were then lysed at the 

indicated conditions/time points and the protein visualized by SDS-PAGE. 

 

Immunoprecipitation experiments in 293T cells 

Immunoprecipitation experiments were completed in 293T cells transfected with 

the indicated plasmids/concentrations at 70% confluency in 10 cm dishes.  Two 

days after transfection, cells were lysed with RIPA Buffer (50 mM Tris-HCl pH 

8.0, 150 mM NaCl, 1% Triton X-100, .5% Sodium Deoxycholate, .1% SDS, 

protease and phosphatase inhibitors), sonicated, and samples were standardized 

by BCA (Thermo Pierce).  Samples were then incubated overnight with M2 Flag 
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Affinity Gel (Sigma).  Immunoprecipitated proteins were then visualized with 

SDS-PAGE.   

 

In vitro Caspase-8 cleavage assay 

Purification of FLAG-NIK: FLAG-NIK was transfected at 20 ug/dish in 70% 

confluent 15 cm dishes and harvested 48 hours later in Lysis Buffer (25 mM 

HEPES pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, protease and 

phosphatase inhibitors) and sonicated.  These samples were then incubated 

overnight with M2 Flag Affinity Gel.  Flag NIK was then eluted from the resin with 

100 uL of Flag peptide elution solution (200 ug/mL in TBS, Sigma).   

 

In vitro Caspase-8 cleavage of NIK: 200 ng of activated Caspase-8(BD) was 

added to 200 ng of purified NIK protein in a 50 uL volume of reaction buffer (20 

mM HEPES pH 7.4, 20 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1.5 mM MgCL2, 10 

mM DTT) for 1 hour at 37C.  Q-VD-Oph, an irreversible pan-caspase inhibitor, 

was purchased from ApexBio.   

 

Prediction of Caspase-8 cleavage sites and orthologous cleavage site 

analysis 

Caspase-8 cleavage sites were predicted for human NIK using two different 

applications, Cascleave 2.0 [158, 159] and SitePrediction [160].  Cascleave 2.0 

was set to a medium stringency threshold for prediction of cleavage sites.  The 
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NCBI homologene application was used to identify orthologous cleavage sites in 

chimpanzee, macaque, mouse, rat, dog, and cow.   

 

Deconvolution microscopy 

Cells were fixed in 4% Paraformaldehyde on coverslips in 12-well plates (BD 

Falcon). Following fixation, coverslips were washed 2X in PBS and 

permeabilized in .2% Triton X-100 in PBS and Blocked in .2% Triton X-100, 2% 

BSA in PBS.  Coverslips were then incubated with primary antibody in 1% BSA in 

PBS overnight at 4C, washed three times in PBS, and subsequently incubated 

for one hour at room temperature with fluorophore-conjugated anti-mouse or anti-

rabbit antibodies (Molecular Probes, Invitrogen).  After washing in PBS three 

times, coverslips were then incubated in PBS containing Hoescht and Phalloidin 

(Life Technologies) to stain the nuclei and actin cytoskeleton, respectively. 

Coverslips were then sealed on microscope slides (Fischer Scientific) with 

lacquer and allowed to dry overnight.  Data were acquired on a DeltaVision 

deconvoloving microscopy system (Applied Precision).  Typical controls included 

cells incubated with secondary (fluorophore-conjugated) antibody but not primary 

antibody. 
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RESULTS 

 

Genomic studies indicate NF-κB is activated in schwannomas 

In an effort to better understand the signaling pathways deregulated in human 

schwannomas, we retrieved and re-analyzed published microarray data [153] 

from a recent study on the Gene Expression Omnibus [161, 162].  In this study, 

31 human vestibular schwannomas were compared to normal nerve samples.  

After generating a set of differentially expressed genes (DEGs), we input this 

gene set into Ingenuity Pathway Analysis (IPA) to identify activated 

transcriptional modules and signaling pathways.  IPA canonical pathway and 

upstream regulator analyses both identified the NF-κB pathway as deregulated in 

schwannomas (Figure 14A).  A number of genes formerly identified as either 

regulated by NF2 or overexpressed in schwannomas are NF-κB target genes, 

including CCND1, ERBB2, and MET, and were also overexpressed in this 

dataset (Figure 14B) [139, 143, 145, 163-167].  To validate these deregulated 

genes, we performed qRT-PCR on primary nerve tissue from WT (Postn-Cre-

;Nf2flox/flox) and NF2-KO mice (Postn-Cre+;Nf2flox/flox, Figure 14C).  All genes 

listed in Figure 14B with the exception of Bcl2 (P = .073) were also 

overexpressed in murine schwannomas.   
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Figure 14. Ingenuity Pathway Analysis and qRT-PCR in schwannomas 

suggests activation of the NF-κB pathway. (A) Ingenuity Pathway Analysis 

(IPA) of human schwannoma microarray data.  IPA Canonical Pathway analysis 

indicated significant deregulation of NF-κB signaling, with 32 genes in the human 

schwannoma differentially expressed gene (DEG) group annotated as NF-κB 

signaling pathway members.  Similarly, IPA Upstream analysis indicated 61 

DEGs as NF-κB target genes. (B) Selected NF-κB target genes deregulated in 

human schwannomas, some of which have been previously identified as genes 

regulated by NF2. (C) Validation of the deregulated genes in B by qRT-PCR in 

primary nerve tissues derived from eight month old WT and NF2-KO mice. The 

experiment testing Birc2 and Birc3 included three WT and four NF2-KO mice.  All 

other genes tested included four WT and four NF2-KO mice.  ns = not significant, 
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* = P < .05, ** = P < .01, *** = P < .001; unpaired Student’s T test. Error bars 

represent SEM.  
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Increased expression of REL proteins in schwannomas 

Equipped with the knowledge that schwannomas from the NF2 mouse model 

resemble human schwannomas at the molecular level, we decided to examine 

these tumors for NF-κB activation.  qRT-PCR from age-matched primary nerve 

tissues revealed that all Rel family transcription factors were overexpressed at 

the RNA level (Figure 15A).  To see if this was also the case at the protein level, 

we analyzed whole lysate nerve tissues by SDS-PAGE.  Western blotting 

revealed increases in p100, RELA, RELB, and c-REL in NF2-KO tissues when 

compared to WT (Figure 15B).  p100, RELA, RELB, and c-REL are encoded by 

Nfkb2, Rela, Relb, and Rel genes, respectively.  We also observed an increase 

in p52 levels in NF2-KO nerve tissue.  The accumulation of p52 is an indicator of 

non-canonical NF-κB activation in murine schwannomas.  IκBα was increased in 

NF2-KO tissue at the protein level, and it appeared to migrate as a doublet in 

both WT and NF2-KO tissues (Figure 15B).  The upper band of IκBα was 

especially robust in the NF2-KO tissues, suggesting that a large fraction of the 

increased pool of IκBα was possibly phosphorylated and inactivated.  Overall, the 

increase in p100 and IκBα, IκB proteins, makes the net effect of the increase in 

RELA, c-REL, RELB, and p52 unclear, as it is possible that the increase in REL 

proteins is countered by the increase in IκB activity.  To address this question, 

we used Immunohistochemisty (IHC) and subcellular fractionation to localize the 

increase in REL proteins to the cytoplasm and nucleus. By IHC, we noted a 

diffuse increase in both cytoplasmic and nuclear accumulation of RELA in both 

mouse and human schwannoma (Figure 16).  Additional examples of the 
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increase in nuclear RELA staining in human schwannomas can be seen in 

Figure 17.  A diffuse increase in cytoplasmic and nuclear RELB staining was 

also seen by IHC in human schwannomas (Figure 18).  Finally, by subcellular 

fractionation, we further identified the increase in RELA and RELB in murine 

schwannomas to be both in cytoplasm and nucleus (Figure 19).  Altogether, 

these data indicate activation of both canonical and non-canonical NF-κB in 

schwannomas. 

 

The simultaneous increase in REL proteins and IκB proteins in schwannomas 

seemed unusual, as activation of NF-κB is typically paired with a decrease in IκB 

proteins.  We reasoned that chronic activation of NF-κB could result in 

upregulation of both REL family members and IκB proteins since they are 

encoded by genes upregulated by NF-κB, with the exception of RELA.  Indeed, 

similar observations have been made in Cylindromatosis, a disease exhibiting 

chronic activation of NF-κB.  In B-cells expressing a mutant form of CYLD, a 

gene encoding a NF-κB negative regulator and deubiquitinase, an increase in 

both IκBα and p100 was observed [168].  Yet CYLD mutant B cells still exhibited 

an increase in NF-κB DNA binding by Electrophoretic Mobility Shift Assays 

(EMSA) and, additionally, an increase in both cytoplasmic and nuclear RELB.  

Interestingly, human patients with germline mutations in CYLD develop multiple 

benign tumors of skin appendages.   
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Figure 15. Murine schwannomas exhibit increased levels of Rel 

transcription factors at the RNA and protein level. (A) qRT-PCR of NF-κB 

transcription factors in primary nerve tissue from WT and NF2-KO mice showing 

an increase in all Rel family members at the RNA level.  All experiments involved 

four WT and four NF2-KO mice, except for Rel, which included three WT and 

four NF2-KO mice.  ns = not significant, * = P < .05, ** = P < .01; unpaired 

Student’s T test. Error bars represent SEM. (B) Whole Lysate SDS-PAGE 

Western blot demonstrating an increase in NF-κB transcription factor and 

signaling pathway members at the protein level in NF2-KO nerve tissue.  Note 

the red asterisk next to p100, the protein encoded by the Nfkb2 gene and the red 

arrowhead next to p52, the resulting protein from p100 processing by the 

proteasome.  p52 accumulation, as seen in this blot, indicates activation of the 

non-canonical arm of NF-κB.  Increased IκBα was observed in murine 

schwannomas, which is an NF-κB target gene and a negative regulator of the 

canonical pathway. IκBα also migrated as a doublet in WT and NF2-KO tissues, 
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with an especially robust upper band in NF2-KO tissues.  All tissues are derived 

from eight month old mice.   
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Figure 16. Increased cytoplasmic and nuclear RELA reactivity observed by 

immunohistochemistry in murine and human schwannomas. (A and B) IHC 

of RELA in age-matched 12 month old murine WT (A) and NF2-KO DRG (B).  

Similarly, C and D present RELA IHC of control human nerve (C) and human 

vestibular schwannoma tissue (D), respectively.  Original magnification x400.  

Arrows in B and D point to nuclei with positive staining for RELA.  The magnified 

(1000x) images in the bottom right corner of B and D are examples of positive 

nuclear staining. 
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Figure 17. Expanded immunohistochemical panel of RELA in human 

schwannomas. (A-D) IHC of RELA in four different human schwannomas. Note 

that these tumors are not vestibular schwannomas. Arrows point to nuclei with 

positive staining for RELA. Original magnification x400.   
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Figure 18. Increased cytoplasmic and nuclear RELB reactivity observed by 

immunohistochemistry in human schwannomas. (A,B, and C) IHC of RELB 

in control human nerve tissue (A) and human vestibular schwannomas (HVS,B 

and C). Note the intense nuclear signal of RELB in vestibular schwannomas, in 

particular the tumor shown in B. Original magnification x400. 
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Figure 19. Increased cytoplasmic and nuclear RELA and RELB seen by 

subcellular fractionation in murine schwannomas. Subcellular fractionation 

and subsequent SDS-PAGE Western Blot of primary Trigeminal nerve tissue 

from age-matched eight month old WT and NF2-KO mice demonstrating a 

relative increase in cytoplasmic and nuclear levels of RELA and RELB proteins. 

The black line separating cytoplasmic and nuclear fractions in the RELA blots 

indicate different exposures of the cytoplasmic and nuclear fractions.  cyto = 

cytoplasmic fraction, nuc = nuclear fraction. 
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Schwannomas exhibit an increase in NIK and fragments of the NIK kinase 

domain 

Considering that our data indicated both the canonical and non-canonical NF-κB 

pathways were activated, we decided to look for upstream NF-κB regulators that 

are known to activate both pathways.  MAP3K14/NIK, a protein kinase, was first 

identified as an activator of the canonical pathway but is now better known as an 

essential regulator of the non-canonical pathway [126, 132, 169]. NIK-deficient 

human patients have been described, and isolated cells from these patients were 

deficient in both canonical and non-canonical NF-κB activation [170].  Further 

implication of NIK comes from previous studies utilizing NIK mutant and knockout 

mice, which exhibit decreased basal levels of Rel family proteins, suggesting that 

NIK signaling influences the overall levels of NF-κB transcription factors present 

in cells [171, 172].  If NIK does indeed regulate the level of Rel family proteins 

present in cells, then an increase in NIK signaling could explain the overall 

increase seen schwannomas.  Whole lysate SDS-PAGE analysis of primary 

nerve tissues from WT and NF2-KO mice for NIK revealed accumulation of 

fragments of the kinase domain of NIK the NF2-KO nerves, in particular a band 

that migrated around 55 kilodaltons (Figure 20A).  We also observed the 

presence of this 55 kD fragment of the kinase domain (p55 NIK) in three of three 

analyzed human vestibular schwannomas (Figure 20B).  In addition to this 

fragment, we saw a remarkable increase in full length (FL) NIK in the human 

tumors, which typically migrates around 120 kD.  In an expanded panel of murine 

tissues analyzed by SDS-PAGE, we saw a roughly three fold increase in FL NIK 
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in NF2-KO nerves (Figure 21).  IHC localized the increase in NIK to the 

tumorigenic cells in both human and murine schwannoma (Figure 22 and 23).  

Since NIK is a constitutively activated kinase [134], the relative increase in NIK 

between WT and NF2-KO tissues as measured by our Western Blotting studies 

could possibly explain the downstream activation of NF-κB.  Additionally, since 

cleavage of NIK to generate a stable, proteasome resistant fragment of the 

kinase domain has already been observed as a driver of cancer [131], we were 

intrigued to study the 55 kD fragment accumulating in both human and mouse 

schwannoma samples. 
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Figure 20. Accumulation of NIK and fragments of the NIK kinase domain in 

murine and human schwannomas. (A) Whole lysate SDS-PAGE Western blot 

demonstrating the accumulation of multiple fragments of the kinase domain of 

NIK in NF2-KO nerve tissue, including a 55 kD fragment indicated by the red 

arrowhead.  FL NIK can be identified by the red asterisk.  All tissues are derived 

from eight month old mice. (B) Similar to A, Western blot showing accumulation 

of a 55 kD fragment of the NIK kinase domain in three human vestibular 

schwannomas (HVS).  Note the increase in FL NIK seen in human tumors, 

indicated by the red asterisk.  The far two left lanes are mouse WT and NF2-KO 

tissues, respectively.   
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Figure 21. Accumulation of FL NIK and p55 NIK in murine schwannomas. 

Whole lysate SDS-PAGE Western blot of mouse primary nerve tissue showing 

accumulation of both the 55 kD fragment of the NIK kinase domain (red 

arrowhead) as well as FL NIK (red asterisk).  All tissues shown are from eight 

month old mice, save for the far two right lanes, which are from 12 month old 

mice. (B) Densitometry of FL NIK (red asterisk) in A.  ns = not significant, * = P < 

.05, ** = P < .01, *** = P < .001; unpaired Student’s T test.  Error bars represent 

SEM. 
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Figure 22. Immunohistochemistry localizes NIK accumulation to 

tumorigenic cells in schwannomas.  (A and B) IHC of NIK in age-matched 12 

month old murine WT (A) and NF2-KO DRG (B). (C and D) NIK IHC of control 

human nerve (C) and human vestibular schwannoma tissue (D). Original 

magnification x400.   
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Figure 23. Expanded immunohistochemical panel of NIK-positive human 

schwannomas.  (A-D) IHC of NIK in four different human schwannomas. 

Original magnification x400.   
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Caspase-8 cleaves NIK to generate a fragment of the kinase domain 

To our knowledge, only two previous studies have identified fragments of NIK 

and the proteases responsible for the cleavage event.  In the study mentioned 

previously [131], the authors found that a fusion cIAP2-MALT1 protease cleaved 

NIK at Arg-325, removing NIK’s TRAF3 binding domain.  Importantly, this study 

showed that wild type (WT) MALT1 does not demonstrate any protease activity 

on NIK.  Another study found that the cysteine-protease Caspase-8 was capable 

of cleaving NIK, generating fragments of the N and C-terminus [173].  The 

authors inferred from the migration of the fragments the actual sites of cleavage, 

and went on to build constructs that they used in overexpression studies.  No 55 

kD fragment of the kinase domain was observed, and none of the predicted NIK 

fragments were capable of activating NF-κB.  In this study, however, antibodies 

were used against the N and C-terminus of NIK, but no antibodies directed to 

internal regions of NIK were used.  Our Western Blotting experiments in 

schwannomas employed an antibody targeting an internal region of NIK 

surrounding Gly-659 of the kinase domain.  Thus, it remains an open question 

whether Caspase-8 cleavage of NIK can generate an internal fragment of NIK.  

We found that co-transfection of NIK and Caspase-8 in 293T cells resulted in the 

cleavage of NIK, generating a 55 kD fragment of the kinase domain (Figure 24).  

CrmA, a caspase inhibitor with high affinity for Caspase-1 and Caspase-8, 

inhibited Caspase-8 activation as seen by the abolishment of p43 and p18 

Caspase-8 fragments.  Procaspase-8 monomers are activated by dimerization 

and subsequent interchain proteolysis [174, 175]. CrmA inhibition of caspase 
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activity also prevented cleavage of NIK.  To confirm this cleavage event was 

specific to Caspase-8, we performed an in vitro cleavage assay with purified NIK 

and activated Caspase-8 (Figure 25), demonstrating that Caspase-8 does 

indeed cleave NIK, producing a 55 kD fragment of the kinase domain.  We did 

not detect any differences in Caspase-8 at the RNA level in NF2-KO tissues, but 

we did observe a decrease in Procaspase-8, which could mean increased 

processing of Procaspase-8 into its activated form in schwannoma samples 

(Figure 26). 

 

Caspase cleavage-mediated regulation of kinase function is a known 

phenomenon, with the bulk of studies focusing on this event in a pro-apoptotic 

context [176].  Importantly, NIK is a member of the STE family of kinases, in 

which there are many examples of caspase cleavage removing a negative 

regulatory region of the kinase, rendering the kinase constitutively active.  HPK1, 

MST1, MST2, MST3, PAK2, and MEKK1 are all STE family kinases that are 

cleaved and activated by caspases (Figure 27) [177-188].  This supports the 

notion of caspase cleavage activating NIK and subsequent downstream 

signaling. 

 

Despite its well-established role as an initiator of apoptosis, multiple studies have 

identified Caspase-8 as an activator of NF-κB [173, 189, 190].  Two of these 

studies identified a physical interaction between Caspase-8 and NIK, and went 
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on to show that NF-κB activation by Caspase-8 required NIK.  Through a co-

immunoprecipitation experiment in 293T cells, we also confirmed that NIK and 

Caspase-8 are found in together in a protein complex (Figure 28).  Interestingly, 

both Caspase-8 and NIK-deficient human patients have been described, and 

both manifest as a primary immunodeficiency with substantially impaired 

lymphocyte and Natural Killer (NK) cell function [170, 191].  Basic studies of 

Caspase-8 and NIK deficient cells support these observations, indicating that the 

impaired immunity seen in these patients results from defective activation of NF-

κB [124, 192-194]. 
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Figure 24. Caspase-8 is sufficient to induce cleavage of NIK, resulting in a 

55 kD fragment of the kinase domain.  Transfection experiment in 293T cells 

demonstrating that caspase-8 activity is sufficient to induce the cleavage of NIK, 

resulting in a 55 kD fragment of the kinase domain.  CrmA, a protein isolated 

from smallpox, is a caspase inhibitor that preferentially inhibits Caspase-8 and 

Caspase-1.  The red asterisk indicates FL NIK, while the red arrowhead points to 

the 55 kD fragment of the kinase domain. 
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Figure 25. Caspase-8 is sufficient to cleave NIK in vitro.  Purified NIK protein 

was incubated in the presence activated Caspase-8, 10 uM of Q-VD-Oph (a pan-

Caspase inhibitor), or both for 1 hour.  Incubation of NIK with activated Caspase-

8 was capable of producing a 55 kD fragment of the NIK kinase domain.  The red 

asterisk indicates FL NIK, while the red arrowhead points to the 55 kD fragment 

of the kinase domain. 
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Figure 26. Decreased levels of Procaspase-8 seen at the protein level in 

schwannomas.  (A) qRT-PCR of 8 month old WT and NF2-KO primary nerve 

tissues (seven mice total, 3 WT, 4 NF2-KO).  Caspase-8 mRNA trended higher in 

NF2-KO tissues but no significant difference was seen between genotypes.  ns = 

not significant, unpaired Student’s T-test.  Error bars represent SEM.  (B) 

Western Blotting of whole lysate SDS-PAGE samples revealed a decrease in 

Procaspase-8 at the protein level in NF2-KO tissues, suggestive of possible 

Caspase-8 activation.    
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Figure 27. Diagram indicating which STE family kinases are cleaved by 

caspases.  Phylogenetic tree of STE family kinases indicating which members 

are cleaved and activated by caspases.  NIK is identified by the blue arrowhead, 

while other STE family kinases regulated by caspase cleavage are identified with 

red arrowheads.  This image has been modified from the Promega website 

(available at the URL http://www.promega.com/a/kinase/). 
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Figure 28. Caspase-8 co-immunoprecipitates with NIK in 293T cells.  Co-

Immunoprecipitation experiment in 293T cells.  FLAG-NIK (10 ug/10 cm dish) 

was co-transfected with HA-Casp8 (1 ug/10 cm dish) in 293T cells.  FLAG-NIK 

was immunoprecipitated with FLAG antibody-conjugated agarose beads and 

samples were then separated by SDS-PAGE for subsequent Western Blotting. IB 

= Immunoblot, IP = Immunoprecipitation, WCL = Whole cell lysate. 
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Bioinformatics analysis identifies clusters of Caspase-8 cleavage sites in 

NIK 

Since we established that Caspase-8 does indeed cleave NIK to generate a 55 

kD fragment of the kinase domain, we then used Bioinformatics tools to identify 

putative sites of cleavage in NIK.  To this end, we employed two different 

software programs, Cascleave 2.0 [158, 159] and SitePrediction [160].  Both 

programs utilize features that are important to known caspase cleavage motifs, 

such as amino acid preference, secondary structure, and solvent accessibility, for 

the prediction of novel motifs.  Caspases recognize and cleave scissile bonds 

featuring a P4-P3-P2-P1-P1’-P2’-P3’-P4’ motif, with the P1 residue being an 

Aspartic acid (Asp, D) or, in certain cases, a Glutamic Acid (Glu, E) residue.  

Caspase-8 prefers an P4-P1 motif matching the pattern of IETD, but it is 

important to note that all caspases possess overlapping specificities and there 

are no absolute rules governing their cleavage, save for the D or E residue in the 

P1 position [195].  Unexpectedly, the output from both software programs 

predicted clusters of N and C-terminal Caspase-8 cleavage sites that give rise to 

an approximately 55 kD fragment of the kinase domain, with each cluster 

possessing multiple sites within roughly 20 residues of one another.  Specifically, 

both programs predicted the cleavage of D291 and D308, as well as D801, 

D807, D808, and D822 (Figure 29). The D298 site was predicted by Cascleave 

2.0 but not by SitePrediction.   
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Clusters of cleavage sites have been observed in caspase substrates before, 

and their presence would likely increase the probability of a cleavage event for 

the substrate in that region of the protein [196].  We looked at the conservation of 

these cleavage sites across other mammalian species, as conservation would 

suggest that these sites may subserve some critical function in NIK biology.  In 

the N-terminal cluster, cleavage sites homologous to D308 in human NIK were 

present in chimp, macaque, rat, mouse, dog, and cow NIK (Figure 30 A).  The 

additional cleavage site corresponding to D291 in human NIK was also present in 

chimp and macaque NIK.  Virtually all residues included in and around the C-

terminal cleavage motifs were conserved in all tested species (Figure 30 B).   

 

To further characterize the regions of NIK present in our 55 kD fragment in 

murine schwannomas, we probed these samples with a peptide antibody 

targeting murine NIK 311:328 (Figure 31).  The corresponding human residue to 

murine NIK amino acid (AA) 311 is AA 309, which would represent the 

hypothesized extreme N-terminus of our 55 kD cleavage fragment.  At least two 

fragments appeared to migrate around 55 kD in the NF2-KO tissues, providing 

additional evidence that the fragments appearing in schwannomas are the result 

of cleavages occurring in the N and C-terminal Caspase-8 cleavage site clusters 

located at roughly AA 300 and 800, respectively. 

 

After mapping the location of these cleavage sites onto the structure of human 

NIK, we made the observation that cleavage at the N and C-terminus would 
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liberate NIK from all known mechanisms of negative regulation and 

destabilization (Figure 32).  In the N-terminus of NIK, a fragment at the proposed 

cleavage sites would lose the TRAF3 binding domain (approximately residues 

30-120) as well as the overwhelming majority of the negative regulatory domain 

(NRD, approximately residues 121-317) [125, 134, 197]. Recently, an Inhibitor of 

Apoptosis (IAP) binding motif was discovered in the extreme N-terminus of NIK 

that increases the c-IAP1-mediated destabilization of NIK [198].  This motif would 

also be removed by a cleavage occurring near residue 300 in the N-terminus of 

NIK.  Structural studies of deletion mutants of NIK indicate that deletions 

proximal to residues 348 would be expected to have competent NIK kinase 

function, with residues 348-377 in the N-terminus of NIK appearing to be critical 

to the kinase function of NIK [134].  In the C-terminus of NIK, IKKα 

phosphorylates NIK at residues 809, 812, and 815, constituting a negative 

feedback mechanism that destabilizes NIK and attenuates non-canonical 

signaling [199].  In this case, cleavage at residues 801, 807, and 808 would fully 

relieve the NIK fragment of IKKα-mediated negative feedback.  The NRD of NIK 

has been shown to include a cis-acting element that disrupts the association of 

NIK with IKKα [197].  Again, a fragment at the proposed sites of cleavage would 

no longer be subject to this regulation, as this cis-acting element would be lost in 

an N-terminal cleavage event. 
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Figure 29. Computational prediction of caspase-8 cleavage sites. (A) Table 

displaying the prediction of human NIK cleavage by Caspase-8 in two different 

software programs, Cascleave 2.0 and SitePrediction.  The combination of any of 

the N-terminal cleavage site cluster (D291, D298, D308) and C-terminal cleavage 

site cluster (D801, D807, D808, and D822) results in a roughly 55 kD fragment of 

the kinase domain. (B) Mapping of cleavage sites onto the structure of human 

NIK.  Abbreviations are as follows: TRAF3-B = TRAF3 binding domain, NRD = 

Negative Regulatory domain, Kinase = Kinase domain, and CTD = C-terminal 

domain. 
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Figure 30. Caspase cleavage sites on human NIK are conserved across 

mammalian species. (A and B) Multiple sequence alignment of human NIK N-

terminal cleavage cluster (A) and C-terminal cleavage cluster (B).  Note that the 

cleavage site corresponding to human NIK residue D308 is conserved across all 

species, while all the cleavage sites in the C-terminal cleavage cluster are 

conserved.  Blue highlighting indicates the cleaved Aspartic Acid residue, while 

yellow highlighting indicates the eight amino acid caspase cleavage motif.  
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Figure 31. Further characterization of the 55 kilodalton fragment of the NIK 

kinase domain in murine schwannomas using a peptide antibody targeting 

internal NIK residues.  Whole lysate SDS-PAGE Western Blot of primary 

murine Trigeminal nerve tissue.  A custom antibody targeting a peptide 

corresponding to residues 311:328 of murine NIK was used.  Residue 311 in 

murine NIK corresponds to residue 309 in human NIK.  The antibody detected at 

least two fragments ~55 kD in NF2-KO mice.  All tissues are derived from eight 

month old mice.  The red asterisk indicates FL NIK, while the red arrowhead 

points to the 55 kD fragment of the kinase domain. 
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Figure 32. Caspase-8 cleavage of NIK renders the resulting kinase fragment 

resistant to known mechanisms of regulation of wild type NIK. Caspase-8 

cleavage sites mapped onto the structure of human NIK.  The c-IAP2/MALT1 

fusion protein cleavage site is also mapped onto the structure of NIK to 

demonstrate the location of another known cleavage site giving rise to a 

proteome-resistant fragment of NIK lacking the N-terminal TRAF3 binding 

domain.  Loss of the IAP binding motif in the N-terminus would render NIK more 

resistant to c-IAP1-mediated destabilization.  IKKα phosphorylation sites are 

included since they also are known to regulate NIK stability.  The phosphorylation 

of these sites by IKKα serves as a negative feedback loop, destabilizing NIK.  

Finally, loss of the NRD would remove a cis-acting element previously identified 

to disrupt NIK’s association with IKKα. Cleavage at the proposed sites would give 

rise to a fragment of the NIK kinase domain absent any known negative 

regulatory region present in NIK.  Abbreviations are as follows: TRAF3-B = 
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TRAF3 binding domain, NRD = Negative Regulatory domain, Kinase = Kinase 

domain, and CTD = C-terminal domain. 
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p55 NIK demonstrates increased protein stability and activates NF-κB 

To test the hypothesis that cleavages in the N and C-terminal clusters result in 

enhanced NIK stability, we generated a construct encoding residues 309-801 

NIK and transfected this construct or one encoding FL NIK into 293T cells.  We 

then pulsed cells in Cyloheximide (CHX), a protein translation inhibitor, for time 

points up to 24 hours.  The inhibition of protein translation enables us to view NIK 

protein levels purely as a function of protein degradation.  The first observation 

we made was that 309-801 NIK does indeed migrate at 55 kD, as predicted 

(Figure 33).  We also noticed increased basal stability over FL NIK.  By four 

hours of incubation with CHX, FL NIK levels had substantially decreased, and 

went on to decrease more at the ten and 24 hour time points.  309-801 NIK 

protein levels, however, did not appear to significantly change over the course of 

24 hours.  These data indicate that 309-801 NIK encodes a 55 kD fragment of 

the kinase domain with a remarkable increase in stability at the protein level 

when compared to FL NIK. 

 

Previous studies utilizing fragments of the NIK kinase domain suggest that a 

fragment encoding AA 309-801 of NIK would retain strong kinase activity toward 

IKKα, as a smaller fragment comprised of AA 329-667 was sufficient to 

phosphorylate IKKα in vitro [134].  In fact, their data demonstrates that fragments 

of 329-667 NIK and 329-747 both possess increased kinase activity toward IKKα 

compared to FL NIK, which is consistent with our reasoning outlined above.  To 

confirm that the 309-801 NIK fragment does activate downstream NF-κB 
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signaling, we transfected the 309-801 NIK construct into 293T cells.  309-801 

NIK, along with FL NIK, was sufficient to activate canonical NF-κB as measured 

by induction of phospho-S536 RELA, an IKKβ dependent site [200], and an 

increase in RELB (Figure 34A).  Both constructs also activated non-canonical 

signaling, indicated by the processing of p100 to p52.  To further assess 

canonical pathway activation, we transfected constructs into 293T cells that have 

stably integrated a consensus NF-κB responsive promoter upstream of a GFP 

reporter.  Both FL NIK and 309-801 NIK robustly activated GFP expression 

(Figure 34B).  Finally, we also validated an interaction of 309-801 NIK with IKKα 

through a co-immunoprecipitation experiment in 293T cells (Figure 35).   
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Figure 33. 309-801 NIK demonstrates increased stability over FL NIK. 

Transfection of 293Ts with the indicated plasmids.  Cycloheximide, a protein 

translation inhibitor, was added to cell culture medium and the protein levels of 

FL NIK or 309-801 NIK were monitored over a time course (labeled numbers 

above blots are hour time points).  The addition of Cycloheximide allows for the 

observation of differences in rates of protein degradation.  309-801 NIK is 

significantly more stable than FL NIK, owing to the lack of negative regulatory 

regions present in the wild type protein. 
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Figure 34. 309-801 NIK is sufficient to activate canonical and non-canonical 

NF-κB signaling. (A) Transfection of 293T cells with the indicated plasmids.  

The S536 phosphorylation of RELA and accumulation of RELB are indicative of 

activation of the canonical arm of NF-κB, while processing of p100 to p52 

demonstrate activation of the non-canonical arm of NF-κB. (B) Transfection of 

Cignal-293T cells possessing an NF-κB responsive promoter upstream of a GFP 

reporter.  FL NIK and 309-801 NIK robustly transactivate canonical NF-κB gene 

expression.  FL NIK = Full Length NIK, KD NIK = Kinase Dead NIK.  **** = P < 

.0001; ANOVA with Bonferonni post-hoc analysis.  Error bars represent SEM. 
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Figure 35. 309-801 NIK co-immunoprecipitates with IKKα in 293T cells. Co-

Immunoprecipitation experiment in 293T cells.  FLAG-IKKα (8 ug/10 cm dish) 

was co-transfected with Myc-FL NIK/Myc 309-801 NIK (3 ug/10 cm dish) in 293T 

cells.  FLAG-IKKα was immunoprecipitated with FLAG antibody-conjugated 

agarose beads and samples were then separated by SDS-PAGE and proteins 

detected through Western Blotting.  IB = Immunoblot, IP = Immunoprecipitation, 

WCL = Whole cell lysate. 
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NIK signaling regulates Schwann cell function and gene expression 

NF2-deficient cell types have previously been described to demonstrate 

abnormalities in cell proliferation, survival, and adhesion [50, 54, 201, 202].  Now 

that we identified 309-801 NIK as a kinase-competent fragment of NIK with 

enhanced stability, we examined what functional effects it has on primary 

Schwann cells.  We first confirmed that, in our culture conditions, passage one 

(P1) murine Schwann Cells are a homogenous population of mature S100+ 

Schwann cells (Figure 36A). We then transduced P1 Schwann cells with a 

Lentivirus stably inserting either an IRES-EGFP control or 309-801 NIK IRES-

EGFP cassette.  To observe for differences in cell cycle progression into or 

through S-phase, we pulsed both populations with the Thymidine analog EdU.  

Quantitation of Immunofluorescence staining revealed over a two-fold increase in 

EdU-positive nuclei in 309-801 NIK transduced Schwann cells, suggestive of an 

increase in cell proliferation (Figure 36B and C).  To address this question a 

different way, we performed manual cell counting of both genotypes three days 

after initial seeding.  This experiment revealed nearly a 1.5 fold increase in 

overall cell number in the 309-801 NIK transduced cells (Figure 36D).  We next 

assessed 309-801 NIK transduced Schwann Cells for an increase in survival in 

response to growth factor starvation.  After two days in starve media, nearly 50% 

of the 309-801 NIK transduced cells were still alive, whereas only 17% were alive 

in the IRES-EGFP control population (Figure 36E).  In addition to its more 

appreciated role governing cell proliferation and survival, NIK/NF-κB signaling 

has also been shown to regulate cell adhesion [131].  We tested if 309-801 NIK 
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transduced Schwann cells display increased adhesion relative to IRES-EGFP 

controls on Poly-D-Lysine/Laminin coated plates.  Using the iCelligence realtime 

cell monitoring assay, we noted a remarkable increase in cell adhesion through 

the first three hours after plating both populations of cells (Figure 36F). 

 

Having established that 309-801 NIK does increase Schwann cell proliferation, 

survival, and adhesion, we now used qRT-PCR to see if 309-801 NIK was 

sufficient to induce a gene expression profile similar to that observed in human 

and murine schwannomas.  As seen in Figure 37A, 309-801 NIK induces the 

transcription of four of the five Rel family transcription factors, all of which are 

NF-κB target genes, save for Rela.  Since previous studies suggest that NIK 

signaling may regulate overall levels of Rel family transcription factors [171, 172], 

this experiment presents strong supporting data that NIK signaling could be 

responsible the increased expression of Rel family proteins in schwannomas.   

 

We next examined the set of NF-κB target genes shown in Figure 12 to be 

increased in both human and murine schwannomas.  309-801 NIK positively 

regulated the expression of all analyzed genes, save for Ccnd1 (Figure 37B). 

Though 309-801 NIK only modestly increased the expression of Bcl2, a 2 fold or 

greater increase was seen in Birc2, Birc3, Ccnd2, Erbb2, and Met.  In fact, the 

overall levels of induction by 309-801 NIK mirror those seen in Figure 12C, with 

Birc2, Birc3, and Met increasing in expression the most in NF2-KO tissues 

relative to controls.  
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Figure 36. 309-801 NIK increases primary Schwann cell proliferation, 

survival, and adhesion.  (A) S100 staining of Passage one WT Schwann cells, 

confirming they are a homogenous population of mature Schwann cells in our 

culture conditions. Hoescht is a nuclear stain.  Original magnification x200. (B) 

Table quantitating EdU positive nuclei in both populations of Schwann cells.  P1 

primary Schwann cells were stably transduced with an IRES-EGFP control 

Lentivirus or 309-801 NIK IRES-EGFP Lentivirus.  Cells labeled with EdU are 

those that have progressed into or through S-phase of the cell cycle, which is 

indicator of cell cycle progression.  Over 400 cells were counted from three 
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biological replicates per genotype.  P < .0001, Fischer’s Exact test.  (C) 

Representative images of EdU Immunofluorescence experiment with IRES-

EGFP and 309-801 NIK transduced Schwann cells.  Red arrowheads point to 

EdU positive nuclei.  Original magnification x200.  (D) Cell counting experiment 

over the course of three days demonstrating a nearly 50 percent increase in the 

309-801 NIK transduced cell population.  ** = P < .01, unpaired Student’s T-test.  

(E) Cells transduced with 309-801 NIK demonstrate increased survival.  Cells 

were plated in the evening and the following morning the media was changed to 

starve media absent growth factors for 48 hours.  Over a 2.5 fold increase in cell 

survival was observed in the 309-801 NIK transduced population.  ** = P < .01, 

unpaired Student’s T-test.  In D and E, the unpaired Student’s T-test was used 

on raw cell counts to test for differences in the two populations.  For presentation 

purposes, the data were then re-scaled and plotted as seen in the Figure.  (F) 

iCelligence cell adhesion assay showing increased adhesion in 309-801 NIK 

transduced Schwann cells.  The unpaired Student’s T-test was used to test for a 

significance difference at the three hour time point.  *** = P < .001.  Error bars 

represent SEM. 
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Figure 37. 309-801 NIK induces expression of Rel family transcription 

factors and NF-κB target genes that are deregulated in human and murine 

schwannomas. (A) qRT-PCR in primary Schwann cells showing that NIK 

induces the expression of NF-κB transcription factors.  Note that with the 

exception of Rela, NIK induces the transcription of all Rel family transcription 

factors. (B) qRT-PCR experiment demonstrating that 309-801 NIK induces NF-

κB target gene expression similar to that observed in human and murine 

schwannomas.  ns = not significant, * = P < .05, ** = P < .01, *** = P < .001, 

unpaired Student’s T-test.  Each experiment included three biological replicates 

per genotype, per gene tested. Error bars represent SEM. 
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Evidence of persistent NIK signaling in schwannomas 

NIK has previously been shown to direct its own expression, as well as its 

negative regulators TRAF2 and TRAF3 [203-205].  We demonstrate that NIK 

strongly induces the NF-κB target genes Birc2 and Birc3, which encode c-IAP1 

and c-IAP2, the other two members of the four-part E3 complex that degrades 

NIK (Figure 37B).  qRT-PCR of primary murine nerve tissues demonstrated that 

the genes encoding NIK, TRAF2, and TRAF3 are also overexpressed in NF2-KO 

tissues (Figure 38).  Thus, all four genes encoding the negative regulatory 

complex of NIK, as well as NIK itself, are found to be overexpressed in 

schwannomas.  From these results we conclude that there appears to be 

persistent NIK signaling present in schwannomas that is no longer subject to 

negative regulation by the E3 complex comprised of TRAF2, TRAF3, and c-

IAP1/2.   
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Figure 38. The genes encoding NIK, TRAF2, and TRAF3 are overexpressed 

in murine schwannomas. (A) qRT-PCR of Map3k14, Traf2, and Traf3 in 

primary nerve tissues derived from eight month old WT and NF2-KO mice.  The 

experiments testing Traf2 and Traf3 included three WT and four NF2-KO mice, 

while the experiment testing Map3k14 included five WT and five NF2-KO mice.  

ns = not significant, * = P < .05; unpaired Student’s T test.  Error bars represent 

SEM. 
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DISCUSSION 

 

In order to identify pathways deregulated in human schwannomas, we completed 

an unbiased genomics study of published microarray data.  Through our 

analysis, we discovered activation of the NF-κB signaling pathway, with members 

of the signaling pathway and target genes seen at increased levels in 

schwannomas.  We then validated these observations in both human tumors and 

our novel mouse model of NF2, described in Chapter One.  As we examined 

these tumors for proteins that could possibly explain the apparent chronic 

activation NF-κB, we discovered that the tumors had accumulated NIK, as well 

as fragments of the NIK kinase domain.  By combining bioinformatics and 

biochemical studies to support our observations, we characterized N and C-

terminal clusters of Caspase-8 cleavage sites in NIK that give rise to roughly 55 

kD fragments of the kinase domain that are absent any known NIK regulatory 

domains.  Importantly, the single genetic manipulation of transducing primary, 

untransformed Schwann cells with an expression cassette encoding this 55 kD 

fragment of the kinase domain was sufficient to induce a transcriptional profile 

that is strikingly similar to those we identified in both human and murine 

schwannomas. 

 

Though we have identified a number of genes regulated by NIK/NF-κB in 

schwannomas, of special interest are the receptor tyrosine kinases ERBB2 and 

MET.  Both ERBB2 and MET have previously been identified as oncogenes and 
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drivers of cancer [206-209].  ERBB2 signaling is critical for Schwann cell 

development, proliferation, and survival, and its hyperactivation is believed to be 

a contributor to schwannoma formation [165, 210, 211].  Indeed, the ErbB family 

of receptors is viewed as a possible therapeutic target for schwannomas, with 

clinical trials currently in progress [212].  MET receptor expression has been 

shown to regulate schwannoma cell proliferation in vitro and, additionally, has 

been implicated in the angiogenesis observed in vestibular schwannomas [167].  

The identification of NIK as the putative driver behind the expression of both 

ERBB2 and MET has tremendous implications for therapeutic strategies to treat 

these tumors, as it provides an additional approach to preventing the increased 

expression and activation of these oncogenes in schwannomas.  

 

Through our studies in Schwann cells, we demonstrated that persistent NIK 

signaling is sufficient to explain the much of the NF-κB activation that we 

observed in schwannomas.  The single exception is RELA, whose expression is 

not induced by 309-801 NIK in Schwann cells but is increased at the RNA and 

protein level in schwannomas.  From this result we conclude that the increase in 

RELA is likely either through signaling promoted by the schwannoma 

microenvironment, or possibly a different pathway under control of NF2.  Since 

RELA is the only Rel protein that is not encoded by a known NF-κB target gene, 

it makes sense that NIK activation in Schwann cells in vitro is insufficient to 

induce its expression.  Further support of NIK regulating the increase in other 

REL proteins is seen in previous studies utilizing NIK mutant and knockout mice, 
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which have decreased levels of p100, p52, p50, RELB, and c-REL [171, 172].  

One of these studies found no difference in RELA levels [172], while another did 

see a decrease in RELA [171].  Thus, there exists some conflicting data over 

whether NIK does regulate levels of RELA, and, if so, through what pathway, 

since Rela is not a known NF-κB target. 

 

Schwann cells possess some unique characteristics among terminally 

differentiated cell types, especially in the context of nerve repair.  In response to 

nerve injury, Schwann cells drive the process of Wallerian degeneration. 

Wallerian degeneration is a physiologic process preceding peripheral nerve 

regeneration where the axon distal to the site of injury is degenerated. In this 

process, Schwann cells de-differentiate and re-enter the cell cycle [213, 214].  

Further, they increase TLR expression, become phagocytic, and release 

inflammatory mediators like IL-6 and MCP-1 to attract inflammatory cells to the 

site of injury [215-219].  Schwannomas appear to share many features of 

Schwann cells undergoing Wallerian degeneration.  Studies have indicated that 

schwannomas resemble embryonic Schwann cell lineages at the molecular level, 

indicating de-differentiation [152, 153].  NF2-null cells are also deficient in the 

ability to growth arrest, implicating deregulation of their cell cycle [54, 201].  We 

also have data demonstrating murine schwannomas overexpress TLRs, IL-6, 

and MCP-1 (data not shown).   
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Interestingly, NIK/NF-κB activation is sufficient to explain aspects of the 

phenotypes seen in both schwannomas and Wallerian degeneration.  Our data in 

primary Schwann cells demonstrate that NF-κB activation through NIK 

upregulates the expression of genes known to promote cell proliferation and 

survival.  One study identified Met to be overexpressed in regenerating nerves 

when compared to naïve nerve samples [220].  We provide clear evidence of Met 

overexpression in schwannomas, and, further, that NIK is sufficient to induce its 

expression in primary Schwann cells.  Additionally, a number of studies implicate 

NF-κB as a crucial regulator of both Schwann cell differentiation and myelination 

[68, 150, 151, 221].  The strongest support for this relationship comes from a 

study using transgenic mice expressing a non-phosphorylatable mutant of IκBα, 

which showed a direct role for NF-κB in nerve regeneration and re-myelination 

[222].  In the regenerating nerve, Schwann cells must transiently suppress the 

genes involved in myelination and then, later in the repair process, markedly 

upregulate their expression [223].  A similar process of temporal modulation of 

myelination gene expression is seen in the developing nerve, which significantly 

upregulates myelinating gene expression until adulthood, where steady-state 

expression is achieved [60].  Though clearly this relationship between NF-κB, 

Wallerian degeneration, and schwannomas is speculative, it does provide a 

compelling explanation for the similar phenotypes observed in both the 

physiologic (Wallerian degeneration) and pathologic (schwannoma) Schwann cell 

states.   
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Recently, a surprising relationship was observed between patients taking aspirin 

and VS growth.  In a retrospective study, the authors noted that a substantial 

fraction of those who took aspirin did not experience an increase in VS size 

(Odds Ratio: .5, Confidence interval: .29-85) [224].  In a follow up study, the 

same group showed that non-steroidal anti-inflammatory drugs (NSAIDs) had a 

cytostatic effect on VS in vitro, and that COX-2 expression was elevated in VS 

samples compared to normal nerve[225].  An independent group has noted a 

correlation between COX-2 expression and VS growth rate [226].  Though 

NSAIDs are widely-appreciated to mediate their effects by knocking down COX-2 

function, they are also known to inhibit NF-κB activity at doses attainable in 

human patients [227].  Further, COX-2, encoded by the PTSG2 gene, is a well-

established NF-κB target [228-230].  Thus, it is possible that the cytostatic effects 

observed in these studies are due inhibition of NF-κB activation.  The observation 

of increased COX-2 levels also supports our hypothesis of aberrant NF-κB 

activation driving oncogenic signaling in schwannomas.   

 

Our data indicates that schwannomas exhibit a simultaneous increase in the 

mRNA of the gene encoding NIK as well as all four genes encoding the E3 

complex required to degrade NIK.  All five genes have been described to be 

induced by either NIK or NF-κB [203-205, 231].  However, one would expect an 

increase in the expression of the E3 complex to negatively regulate FL NIK levels 

and, as a result, attenuate the increased levels of NIK mRNA.  The presence of a 

stabilized, proteasome-resistant fragment of the NIK kinase domain provides a 
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cogent explanation for these apparently antagonistic molecular states.  p55 NIK, 

lacking a TRAF3 binding domain, is no longer recognizable by the E3 complex 

targeting it for degradation.  Thus, p55 NIK is free to activate downstream 

canonical and non-canonical signaling and its presence in NF2-KO tissues is 

sufficient to explain the chronic NF-κB activation observed in schwannomas, with 

persistent upregulation of genes encoding Rel family proteins, IκB proteins, and 

NF-κB targets (Figure 39).   
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Figure 39. Schematic representation of hypothesized persistent NIK 

signaling present in schwannomas.  NIK induces the expression of its 

negative regulators TRAF2, TRAF3, and c-IAP1/2.  This serves as a negative 

feedback mechanism to prevent sustained activation of NIK.  p55 NIK, however, 

no longer possesses a TRAF3 binding domain, and thus continues to drive 

downstream NF-κB signaling since it is no longer degraded by the proteasome.   
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It is plausible that an increase in stability is not the only gain in function for p55 

NIK.  Previous studies using fragments of the NIK kinase domain indicate similar 

truncations result in a remarkable increase in kinase activity toward IKKα when 

compared to FL NIK [134].  There are at least two possible explanations for this.  

First, the loss of the C-terminal IKKα phosphorylation sites would prevent the 

destabilization mediated by IKKα phosphorylation [199].  However, since this was 

an in vitro kinase assay performed in the absence of protein degradation 

machinery, this explanation is less likely to be the case.  An alternate explanation 

comes from the knowledge that NIK forms dimers and transautophoshorylates 

itself as it initiates downstream signaling through IKKα [232].  The NRD of NIK is 

known to negatively regulate NIK signaling by interfering with NIK’s interaction 

with IKKα through binding a region in the C-terminus of NIK, where IKKα also 

binds[197, 232].  Though this regulation would be expected to be present in cis, 

since NIK dimerizes to activate IKKα one would also expect this regulation to be 

relevant in trans as well.  p55 NIK, however, lacks both the NRD as well as a 

portion of its C-terminus.  Thus, p55 NIK no longer possesses the NRD that 

binds to the C-terminus, but it is also possible that p55 NIK can no longer be 

targeted by the NRD present in other FL NIK molecules because of its truncated 

C-terminus.  If this is indeed the case, p55 NIK would no longer exert a negative 

regulatory influence on itself or other NIK molecules, but it would also be 

impervious to the trans regulation imparted by the NRD in other NIK molecules.  

Though we did not work up this aspect of p55 NIK and rather focused on protein 

stability, support for the hypothesized increase in activity toward IKKα is seen in 
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Figure 34A, where transfection of 309-801 NIK results in increased processing 

of p100 to p52 when compared to FL NIK.   

 

To our knowledge, there is no known link between NF2 and caspase activity.  

Thus, how direct the relationship is between loss of NF2 and altered caspase 

function in schwannomas is unclear.  PAK1, which is negatively regulated by 

NF2, is known to phosphorylate and activate Caspase-1 [233].  Additionally, 

there are other examples of PAK family proteins interacting with caspases [234-

236].  It is possible that NF2 regulates caspase function through interactions with 

PAK proteins.  The negative regulation of PAK activation by NF2 prevents PAK 

localization to focal adhesions, where Caspase-8 has also been found to localize 

and enhance tumor cell migration [53, 237].  Importantly, PAK1 is also known to 

activate NF-κB signaling through phosphorylation of NIK, thereby supporting the 

notion of PAK proteins linking NF2, caspases, and NIK in a protein complex [238, 

239].  Though we demonstrate that Caspase-8 is sufficient to induce cleavage of 

NIK and the resulting p55 fragment of the kinase domain, we do not claim that it 

is the only caspase capable of cleaving NIK.  Caspases possess overlapping 

substrate specificities such that protein localization as well as protein levels also 

likely dictate cleavage events, in addition to the preferred motifs within a 

substrate [195].   

 

While these studies have tremendous relevance to schwannoma and Schwann 

cell biology, the identification of caspase-regulated NIK/NF-κB signaling in 
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schwannomas is also a significant contribution to basic caspase and NF-κB 

biology.  The conservation of N and C-terminal cleavage sites in NIK across 

species suggests that these sites may be important sites of NIK regulation 

(Figure 30).  Since being first identified in 2000, caspase activation of NF-κB 

remains poorly understood [173, 189].  Our studies provide a possible 

explanation of this event through cleavage of NIK rendering a fragment of the 

NIK kinase domain that is free to promote downstream NF-κB signaling 

independent of its normal mode(s) of regulation.  They also provide an 

explanation for the interesting similarities seen between Caspase-8 and NIK-

deficient patient phenotypes, as well as the abnormalities observed in isolated 

cells from these patients.   
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FUTURE DIRECTIONS 

 

There are many fascinating directions emanating from the studies described in 

this manuscript.  Of chief interest to our group is the determination if NIK 

signaling is necessary and sufficient for the development of schwannomas.  We 

are currently approaching this question by conducting two rigorous in vivo proof 

of concept experiments.  First, we seek to address the question of whether NIK 

signaling is necessary for NF2-deficient schwannoma formation by intercrossing 

our NF2-KO conditional knockout mouse with a constitutive NIK knockout (NIK-

KO) mouse.  NIK-KO mice are viable but do have lymphoid tissue abnormalities 

and display poor antibody responses [124].  We will examine these mice to see if 

loss of NIK signaling rescues NF2-KO mice from the tumor phenotype described 

in Chapter One.  To test whether NIK activation in Schwann cells is sufficient to 

induce schwannoma formation, we again turn to an in vivo system.  We are 

working with SAGE labs in St. Louis to generate injectable Crispr mRNA 

encoding a donor for a conditional knock-in of 309-801 NIK into the ROSA locus.  

This donor also includes an EGFP reporter, and the cassette is under control of 

the robust CAG promoter.  Thus, when intercrossing the resulting transgenic 

mouse with a tissue specific Cre recombinase mouse, such as Postn-Cre, we 

can conditionally overexpress our NIK kinase fragment specifically in the 

developing Schwann cell lineages.  We can then characterize this mouse and 

determine if it possesses a decrease in survival and/or develops schwannomas.   

 



123 
 

We are also excited to study the inflammatory cytokines elaborated from 

schwannomas.  Given that NF-κB is a central regulator of cytokine and 

immunomodulatory gene expression, we would expect schwannomas to 

elaborate of number of inflammatory mediators that could possibly serve as 

autocrine and paracrine signaling factors.  We already possess some preliminary 

cytokine data through multiplex analysis of IRES-EGFP and 309-801 NIK 

transduced Schwann cell conditioned medium.  Of interest, 309-801 NIK 

transduced Schwann cells secreted 5-fold more IL-6, 18-fold more TNF-α, 149-

fold more MIP-1β (CCL4), 163-fold more RANTES (CCL5), and over 1200-fold 

more GM-CSF.  Given the paracrine signaling loop that our lab has previously 

studied between NF1-deficient Schwann cells and mast cells in the 

microenvironment, we are well-poised to further examine the interplay between 

NF2-null Schwann cells and potential cooperating inflammatory cell types [87, 

240]. 
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