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Zhixiu Li 

COMPUTATIONAL PROTEIN DESIGN: ASSESSMENT AND APPLICATIONS 

Computational protein design aims at designing amino acid sequences that can fold into a 

target structure and perform a desired function.  Many computational design methods 

have been developed and their applications have been successful during past two decades. 

However, the success rate of protein design remains too low to be of a useful tool by 

biochemists whom are not an expert of computational biology. In this dissertation, we 

first developed novel computational assessment techniques to assess several state-of-the-

art computational techniques. We found that significant progresses were made in several 

important measures by two new scoring functions from RosettaDesign and from 

OSCAR-design, respectively. We also developed the first machine-learning technique 

called SPIN that predicts a sequence profile compatible to a given structure with a novel 

nonlocal energy-based feature. The accuracy of predicted sequences is comparable to 

RosettaDesign in term of sequence identity to wild type sequences. In the last two 

application chapters, we have designed self-inhibitory peptides of Escherichia coli 

methionine aminopeptidase (EcMetAP) and de novo designed barstar. Several peptides 

were confirmed inhibition of EcMetAP at the micromole-range 50% inhibitory 

concentration. Meanwhile, the assessment of designed barstar sequences indicates the 

improvement of OSCAR-design over RosettaDesign.  

Yunlong Liu, PhD, Chair 
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Chapter 1 Introduction 

1.1  Protein: From Sequence to Structure 

Proteins are biological macromolecules made of chains of amino acid residues.  Each 

amino acid residue consists of α carbon atom (Cα) chemically bonded to amine (NH2), 

carboxyl (COOH) atoms and a variable side chain group R specific to a particular type of 

amino acid residues. Proteins are building blocks of life that perform various important 

functions in most processes of live cells. The function of an individual protein depends 

on its structure. The structure of a protein is characterized at primary, secondary, tertiary 

and quaternary levels (Figure 1.1). 

 

Primary structure refers to the linear-amino acid sequence in the polypeptide chain.  This 

sequence is encoded by the nucleotide sequence of the gene. The primary structure is 

joined together by peptide bonds formed by reaction between the carboxyl group of one 

amino acid with the amino group of another amino acid during the polymerization 

process shown Figure 1.1. An amino acid in the polypeptide chain is called residue due to 

the loss of one water molecule in the process. Because the R group of an amino acid, 

which presents as side chain in a protein, is specific to different amino acid types, a 

protein of N amino-acid long will have 20N possible sequences. That is, protein sequence 

space is astronomically large.  

 1 



 

Figure 1.1 Formation of peptide bond and description of four protein structure 

levels.   
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Secondary structure is highly regular local backbone sub-structure stabilized by backbone 

hydrogen bonds. The sub-structure usually classified into α-helix, β-sheet and coil 

according to the patterns of hydrogen bonds [1]. These secondary structures are further 

packed into a unique compact tertiary structure (3D-structure).  This process is driven by 

interplay of hydrophobic interaction, hydrogen bonding, electrostatic interactions and 

disulfide bonds.  Individual proteins can interact with each other and form stable complex 

structures or quaternary structures.  The interface between two interacting proteins is also 

stabilized by hydrophobic and other interactions. A nascent polypeptide synthesized in 

ribosome is not functional until it folds into a unique 3D-structure from random coils in 

the order of micro to milliseconds in most cases. This process is driven by various 

interactions including but not limited to hydrophobic interactions among side chains, 

hydrophilic interactions with water, hydrogen bonding within the backbone (forming of 

α-helix and β-sheet), salt-bridges (forming by interacting polar residue pairs), disulfide 

bonds, van der Waals forces and electrostatics. These interactions are utilized in protein 

structure prediction and protein design.  

 

1.2  Computational Protein Design  

Nature has produced proteins with diverse structures and functions, and creates new 

structural topology and function through evolution. Experimental techniques, such as 

direct evolution, attempt to mimic the process of natural selections to generate protein 

with improved functionality or new functions. An experimental approach was the primary 

choice to obtain a protein sequence with a desired function [2-9]. However, a successful 

evolution process takes millions of years and an experimental study can only explore a 
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very limited sequence space. Therefore, evolving protein sequences computationally are 

more desirable. Computational protein design aims at computationally designing protein 

sequences that will fold into a desirable 3D structure and perform a desired biological 

function. It allows efficiently exploring a much larger sequence space at low cost, 

comparing to experimental approaches. Significant progress has been made in both 

design methods and applications in last two decades. Proteins have been successfully 

redesigned or de novo designed to perform a diverse range of functions and even fold 

into novel protein structures [10-16]. Those successfully designed proteins provide 

insights into the relation between protein sequence, structure, stability, and functions.  

 

Computational protein design faces two challenges: efficient search in the sequence space 

and an accurate energy function to evaluate the design.  In a typical design, the starting 

target backbone structure is obtained from the known X-ray structure of a protein, from 

homology modelling, or from other ab initio folding methods. Each sequence position 

can have 20 possible amino acids and each amino acid type can have several rotational 

isomers, call rotamers. Figure 1.2 illustrates two rotamers of asparagine with coordinates 

from http://kinemage.biochem.duke.edu/databases/rotkins.php. To speed up the search, 

side chains are often assumed to have only a discrete set of statistically preferred 

rotamers instead of continuous side chain configurations.  The most widely used rotamer 

library is backbone-dependant rotamer library developed by Dunbrack et. al. [17,18].  

Despite the reduction of search space by using a rotamer library, the remaining search 

space is still formidable. Thus an efficient search algorithm is required for an effective 

computational protein design. 
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Figure 1.2 An example of two asparagine rotamers with backbone atoms.Hydrogen, 

carbon, nitrogen, and oxygen atoms are colored as gray, green, blue and red, 

respectively.   

 

1.2.1  Searching Algorithm 

Several algorithms have been successfully employed for the protein design problem. 

Examples are dead end elimination (DEE), branch and bound, Monte Carlo simulated 

annealing (MCSA), and genetic algorithm (GA) [13,16,19-28].   For example, Monte 

Carlo simulated annealing starts with a random sequence mapped to the target structure 

and then randomly mutates a residue with a random rotamer. The new sequence is 

evaluated by a specific scoring function and the energy is compared with the previous 

energy (ΔE = Enew –Eold). The new sequence will be accepted if the energy is lower than 

that of old sequence or accepted with a weighted probability (𝑃𝑃(ΔE) = 𝑒𝑒−ΔE/KT  at a 

temperature T) if it is higher than that of old sequence. Simulated annealing is a 
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commonly used technique for searching the global minimum by slowly decreasing 

temperatures. However, the rate of temperature reduction is not infinitely slow and thus a 

global minimum is not guaranteed.  

 

 DEE is a deterministic technique employed in many protein design programs [20,29-36]. 

Examples are, OSPREY [29] and ORBIT  [36]. DEE removes a rotamer if other rotamers 

yield a lower energy. It also removes the rotamer pair in two positions if there is a pair of 

rotamers giving lower energy.  Those values are pre-calculated and stored to speed up the 

computing. 

 

1.2.2  Energy Function 

Searching algorithms described above are guided by a scoring function that distinguishes 

sequences compatible to a target structure from those that do not. In general, the 

interaction terms of an energy function can be classified as knowledge-based and 

physical-based.  

 

Knowledge-based energy terms, or statistical energy terms, are derived from a database 

of known protein structures (i.e. Protein Data Bank). There are many types of knowledge-

based terms employed in different design methods. One simple example is that residues 

in the protein core tend to be more hydrophobic while residues on the surface tend to be 

more hydrophilic. Thus an energy penalty can be applied to exposed hydrophobic 

residues [32,37,38].  
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Physical-based energy terms model atomic interaction based on the molecular mechanics 

force field employed for molecular dynamics simulations of proteins. A physical-based 

energy function typically contains van der Waals interactions, orientation-dependent 

hydrogen bonding potential, an implicit solvation term and electrostatic interaction.  

 

Energy functions for protein design are usually a mixture of knowledge-based and 

physical-based energy terms [29,32,39-41] with empirical reference states for the 

denatured states of 20 amino acid types. Weights of various energy terms were often 

optimized to ensure that the energy of a wild-type residue in its native rotamer is the 

lowest among all possibilities. Some design methods employed purely physical-based 

energy terms [42,43].   

 

1.3  Overview of the Dissertation 

In this dissertation we addressed two fundamental questions facing protein design: how to 

assess designed sequences computationally and improve an energy function for design. In 

0, we developed several novel assessment techniques that allow us to better understand 

strengths and weaknesses of different program design techniques. In 0, these newly 

developed assessment techniques were applied to the newest version of RosettaDesign 

and a new technique called OSCAR-design and demonstrated significant improvement 

over previous methods. In Chapter 4, we propose to employ a structure-compatible 

sequence profile as a potential novel energy term for design and developed a machine-

learning technique to obtain it. In Chapter 5 and Chapter 6, we designed self-inhibitory 
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peptides of Escherichia coli methionine aminopeptidase and de novo designed barstar to 

compare with experimental studies. 
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Chapter 2 Energy Functions in De Novo Protein Design 

2.1  Abstract 

In the past decade, a concerted effort to successfully capture specific tertiary packing 

interactions produced specific three-dimensional structures for many de novo designed 

proteins that are validated by nuclear magnetic resonance and/or X-ray crystallographic 

techniques. However, the success rate of computational design remains low. In this 

review, we provide an overview of experimentally validated, de novo designed proteins 

and compare four available programs, RosettaDesign, EGAD, Liang-Grishin, and 

RosettaDesign-SR, by assessing designed sequences computationally. Computational 

assessment includes the recovery of native sequences, the calculation of sizes of 

hydrophobic patches and total solvent-accessible surface area, and the prediction of 

structural properties such as intrinsic disorder, secondary structures, and three-

dimensional structures. This computational assessment, together with a recent 

community-wide experiment in assessing scoring functions for interface design, suggests 

that the next-generation protein-design scoring function will come from the right balance 

of complementary interaction terms. Such balance may be found when more negative 

experimental data become available as part of a training set. 

 

2.2  Introduction 

De novo protein design refers to computational design of new protein molecules that 

possess desired biological functions. Such computational design is needed to supplement 

and accelerate naturally occurring processes that can create conformationally and 

functionally novel proteins, as naturally occurring processes are constrained by biological 
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functional requirements and limited by the tools available in nature. For example, one 

naturally occurring process that produces new topologically linked protein structures is 

circular permutation, a process that closes the N and C termini with a short loop and 

opens another loop for new termini [44,45]. This single loop permutation, however, is not 

efficient in producing new structures because most resulting structures are nearly the 

same as the structure prior to circular permutation [46,47]. By comparison, new 

topologically folded structures can be generated efficiently by computationally changing 

the connections of multiple rather than single loops while maintaining the core packing 

[48]. This and other studies [49,50] suggest the existence of vast structural fold space that 

is yet to be explored. A limited exploration of the protein structural space is more obvious 

for proteins with a knot in their polypeptide backbones. There are only 78 non-redundant 

knotted proteins in the entire Protein Data Bank of 30,000 structures (90% sequence 

identity cutoff), a number much lower than would be expected to occur by chance [51,52]. 

Most of these 78 knots are the simple three-point crossing (trefoil) knot, and the most 

complex is a sixpoint crossing knot for one protein called α-haloacid dehalogenase (the 

Stevedore knot) [53,54]. The rarity and simplicity of knotted proteins again suggest the 

opportunity to supplement natively knotted proteins with designed ones [48,55]. The 

functional space of proteins is also far from fully explored by nature. For example, 

enzymes can catalyze only a selected set of chemical reactions required for the life cycle 

of living organisms. Such vast unexplored structural and functional space of proteins has 

motivated active research in protein design, which is steadily increasing our knowledge 

of protein structure and function while more clearly defining opportunities for future 

explorations. 
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Significant strides in a number of areas have been made in the past two decades. In the 

early 1990s, most designed proteins had molten-globule-like structures with low stability 

[14,56-58]. Currently, on the other hand, specific structures of de novo designed proteins 

are routinely validated by NMR or X-ray structure determination [32,59-68]. New 

structural folds were also successfully designed in 2003 [13] and 2009 [69] were also 

successfully designed. Progress in structural specificity and stability was accompanied by 

novel proteins designed with functions ranging from protein binding [70-76], catalytic 

activities [77-82] to conformational switches [83,84]. Such advances make it clear that de 

novo protein design holds promise to significantly accelerate the development of novel 

proteins for diagnostic, therapeutic, and industrial purposes. 

 

This promise, however, is still unfulfilled largely because of the low success rate of de 

novo design [85-89]. Dantas et al. [90] performed a large-scale test of nine proteins 

designed by RosettaDesign and found that only "half of the folded designs have NMR 

spectra and temperature melts typical of tightly packed proteins''. Schreier et al. [91] re-

examined five computationally designed proteins and found that none of them performed 

as expected due to instability, aggregation, or lack of detectable designed ligand binding. 

Fleishman et al. [87] showed that only 2 of 73 designed proteins bind with detectable 

binding affinity to the targeted stem region of influenza hemagglutinin. 

 

To improve the success rate of protein design faces two practical challenges. First, 

because experimentally measuring the success rate of design is time-consuming and 

costly, many studies relied on manual inspection and human expertise in selecting 
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designed sequences likely to be successful [86]. As a result, it is difficult to know the 

actual success rate of a fully automated design that is necessary for routine usage by 

biochemists. Second, because most protein design software is not openly available for 

academic users, few comparisons between different computational techniques have been 

made. These factors have made it difficult to determine what makes one design 

successful and another design unsuccessful. 

 

To limit our scope, this review focuses on de novo design of protein structures. We 

compare four available protein design programs by computationally assessing designed 

sequences. We show how different balances of energetic terms lead to different outcomes 

in native sequence recovery, sizes of hydrophobic patches, and intrinsic disorder, among 

others. We propose that inaccurate scoring functions are the origin of low success rates of 

protein design. Locating the right balance for the right energy terms is the key to further 

improving protein design.  

 

2.3  De Novo Designed and Structurally Validated Proteins  

To retrieve all de novo designed and structurally validated proteins, we searched 

keywords “synthetic”, “de novo designed”, or “designed proteins” in protein databank 

and excluded coiled coil, peptides and those proteins that were not computationally 

designed (i.e. not by optimizing an energy function). We further removed those structures 

that do not have corresponding publications. This leads to a small list of 12 proteins (see 

Table 2.1) whose structures were determined by NMR or X-ray diffractions over the span 

of 15 years. As shown in Figure 1, various structural folds ranging from all alpha, mixed 
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alpha and beta, and all beta proteins with increased complexities and sizes were 

successfully designed. The largest computationally designed protein has 127 residues. Six 

of the 12 proteins listed were designed by RosettaDesign [13,67,68,92-94] that utilized a 

mixed knowledge-based and physical based energy terms with heavy emphasis on 

specific packing of hydrophobic and hydrophilic residues. The use of knowledge-based 

and/or physical-based energy functions for packing interactions is also crucial for other 

computational techniques [32,60,62,69,95,96] to achieve structural specific. However, 

over the past 15 years we have seen no significant change in the number of proteins that 

are de novo designed and structurally validated in a given year. It is either 0, 1, or 2 per 

year. This low number of designed proteins suggests lack of a broader utilization of 

computational design, lack of improvement in success rates, or both. 
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Table 2.1 De novo, computationally designed proteins validated by NMR or X-ray 

structure determination.  

Year PDB# Length Fold Expt. Computational 

1997 1fsd 28 β−β−α motif NMR 

pairwise residue rotamer energy 

optimization by dead-end elimination 

[32] 

1999 2a3d 73 3-helix bundle NMR 
Started from coiled coil and hydrophobic 

core repacked by genetic algorithm [60] 

2003 1qys 93 novel α+β 
X-ray 

(1.2Å) 

Combining structure prediction with 

sequence design (Rosetta-Design) [13] 

2004 1vjq 79 α/β 
X-ray 

(2.1Å) 
RosettaDesign [68] 

2005 2cw1 65 α+β NMR 
Optimizing a knowledge-based function 

by simulated annealing [95] 

2005 2a3j 127 α+β NMR Rosetta-Design [67] 

2007 2p6j 52 3-helix bundle NMR 

Fixed binary pattern, energy 

optimization by dead-end elimination, 

sidechain conformations by MC 

simulated annealing [62] 

2007 3b83 100 Beta-sandwich 
X-ray 

(2.4Å) 

Specific energy function optimized for 

beta proteins by Rosetta-design [92] 

2008 2jvf 96 α+β NMR 

Sequences generated from local 

tetrapeptide fragment library with some 

core residues fixed [96] 

2009 2ki0 36 Novel β−α−β NMR 

A combination of knowledge-based 

secondary structure design with energy 

optimization [69] 

2011 3u3b 113 4-helix bundle 
X-ray 

(1.85Å) 

Allowed backbone flexibility for 

redesigning the entire hydrophobic core 

(Rosetta-Design) [93] 

2011 3tdm 126 Tim-Barrel α/β X-ray (2Å) 
Imposing symmetry in Rosetta-Design 

[94] 
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Figure 2.1 The sizes of computationally designed proteins for the past 15 years. 

 

2.4  Origin of Low Success Rate in Protein Design 

For a given length, an astronomically large number of possible sequences can be 

generated from different combination of amino acid residues (20100 for a 100-residue 

protein). Only a tiny fraction of those sequences can be folded into specific structures by 

the water-mediated interaction among amino acid residues. Thus, observed low success 

rates in protein design can be caused either by failure to locate the global minimum 

specified by the free energy function, or both. To assess which one is the likely cause, we 

examined 100 sequences designed by RosettaDesign 2.3 on the basis of different initial 

conditions. We [97] found that these sequences are highly homologous among each other, 
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with an average sequence identity of 68% based on a database of 944 proteins. In other 

words, all designed sequences are converging to a single solution, suggesting that 

searching for a global minimum is not a major issue, at least for proteins designed with a 

fixed backbone. To confirm this, we added a harmonic restraint to the RosettaDesign 

energy function [E=-wseq(SeqID-SeqID0)2 with wseq=10000] so that we could sample 

sequences around a fixed sequence identity (SeqID0) to the wild type sequence of the 

target structure. Figure 2.2 shows that RosettaDesign energy scores of 1010 sequences 

designed for the structure of the acyl carrier protein from Thermus thermophilus HB8 

(PDB ID: 1X3O) at different SeqID0 ranging from 0 to 1 (100%). Without the harmonic 

restraint, the average sequence identity to the wild type sequence of the acyl carrier 

protein is around 50%. The energy score increases significantly when sequence identity 

moves toward either 0% or 100% sequence identity. This finding indicates that the wild-

type sequence is not part of the solution. Because each RosettaDesign energy unit is 0.5-1 

kcal/mole according to some estimates [82,98,99], the energy difference between the 

sequence at 100% sequence identity and at 50% sequence identity is about 15 

RosettaDesign energy units or approximately 8-15 kcal/mole. Although a wild-type 

sequence is not necessarily optimized for its structure, this energy difference is too large 

to be realistic as it is close to the typical stability free energy of proteins (-10 kcal/mole) 

[100]. The limitation of existing energy functions is further reflected from poorer 

performance in designing for NMR structures than for X-ray structures [101,102]. In 

other words, the quality of an energy function remains the main obstacle to successful 

computational design. 
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Figure 2.2 The RosettaDesign energy score (RosettaDesign 2.3) as a function of 

sequence identity from the wild-type of sequence of the acyl carrier protein from 

Thermus thermophilus HB8 (PDB ID: 1X3O). Different sequence identities were 

sampled by a harmonic restraint. The curved red line indicates the quadratic fit. 

Black circles at 100% sequence identity represent the energy value of the native 

structure with its wild-type sequence after side chain optimization from 

RosettaDesign (bottom), and the average energy value from 10 designed structures 

from RosettaDesign after fixing all residues to wild-type sequences without a 

harmonic restraint (top). The black circle at 0% sequence identity is the average 

energy value of 10 designed structures from RosettaDesign after excluding the type 
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of wild-type amino acid residue at each sequence position without the harmonic 

restraint. 

 

2.5  Energy Function in Protein Design 

Energy functions for protein design are typically modified from the energy functions for 

protein folding or dynamics studies (for a discussion, see [85,86,103-108]). Because no 

major change in energy functions for protein design has occurred in the past decade, we 

do not provide a comprehensive summary of all existing energy functions employed in 

protein design. Instead, we describe in detail the energy functions of three programs 

(RosettaDesign [101,109,110], EGAD [43], and Liang-Grishin [40]), which are fairly 

representative of current state-of-the-art energy functions. RosettaDesign is dominated by 

knowledge-based energy functions derived from protein structures, with the exception of 

van derWaals and hydrogen bonding terms. EGAD attempts to build its energy function 

largely on a physical-based molecular mechanics force field. The Liang-Grishin scoring 

function, on the other hand, is an empirical mix of various geometry-based, knowledge-

based, and physical-based terms. More importantly, these programs are available for our 

comparative studies. 

 

2.5.1  RosettaDesign Energy Function 

The RosettaDesign energy function [101,109,110] is made of fourteen terms as shown in 

Equation 2.1 below: 
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 𝐸𝐸𝑅𝑅𝑅𝑅 = 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

+𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑊𝑊𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

+𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑊𝑊𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝐸𝐸𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘 + 𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑙𝑙𝑙𝑙 𝐸𝐸ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑙𝑙𝑙𝑙

+𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑛𝑛𝑛𝑛𝑛𝑛 𝐸𝐸ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑛𝑛𝑛𝑛𝑛𝑛 + 𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

𝑠𝑠𝑠𝑠𝑠𝑠 𝐸𝐸ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠𝑠𝑠

+𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑠𝑠𝑠𝑠 𝐸𝐸ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑠𝑠𝑠𝑠 + 𝑊𝑊𝑃𝑃𝑃𝑃𝑃𝑃𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 

(2.1) 

 

where Eref and W are optimized reference energies and weight factors for different energy 

terms, respectively. Eback is a backbone energy term for φ and ψ angles based on the 

Ramachandran diagram [111]. 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜is a statistical omega-angle potential. Erotamer is a 

backbone-dependent sidechain-rotamer energy term [112]. This is a knowledge-based 

self-energy of an amino acid residue at a specific rotameric state derived from known 

protein structures. 𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  and E𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  are attractive and repulsive portions of 12-6 Lennard-

Jones potential, respectively. E𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is finite, linearly dependent on distance for rij<0.89σij 

(rij  and σij  are the distance between atoms i and j and the average van der Waals radius 

of atoms i and j, respectively). Intra-residue repulsive interactions are weighted 

separately. Esolv is the Lazaridis-Karplus implicit solvation energy [113]. Ekelec is a 

knowledge-based, electrostatic interaction based on the probability of two polar amino 

acid residues at a given distance [114].  Eℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is a geometry-based hydrogen bonding 

term that is weighted separately for local backbone-backbone (lb), nonlocal backbone-

backbone (nlb), sidechain-backbone (scb) and sidechain-sidechain (sc), respectively. 

𝐸𝐸𝑃𝑃𝑃𝑃𝑃𝑃 is a specific energy term for proline ring closure. There are also four additional 

terms for disulfide bonds. We do not list them here because RosettaDesign typically fixes 

Cys residues. All parameters and reference state values were optimized by native 
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sequence recovery and amino acid compositions. Here we employ RosettaDesign 2.3 

only because more recent versions do not make significant changes to its energy function. 

 

2.5.2  EGAD Energy Function 

An EGAD energy function [43] contains four terms.  

 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂−𝐴𝐴𝐴𝐴 + 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑇𝑇𝑇𝑇𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 

 

 (2.2) 

 

where T is temperature. 𝐸𝐸𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂−𝐴𝐴𝐴𝐴 is the molecular mechanics energy function from the 

OPLS-AA force field [115] that includes a van der Waals term, the Coulombic 

interaction, and torsion-angle terms as well as truncated electrostatic energies between 

close atom pairs and a finite, linear repulsive term for the van derWaals interaction at 

rij<0.82σij. The purpose of modification was to reduce hard-core overlap energies due to 

approximations introduced from fixed backbone and discrete sidechain rotamers as in 

RosettaDesign. Esolv is the solvation free energy from the generalized Born model for 

electrostatic interactions and solvent-accessible-surface-area dependent term for 

hydrophobic interactions [116]. Eref  is a reference state energy estimated from the 

average of interaction energies for a given residue type in random sequences threaded 

onto protein structures. Sunfolded is sidechain entropy (dependent on residue types only) in 

the unfolded state estimated from peptide simulations and rotamer statistics [117]. In 

Equation 2.2, only two parameters for softening van der Waals repulsions were optimized 

for reproducing experimental mutation-induced change in protein stability. Pro, Gly and 

Cys residues are fixed in the program. 
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2.5.3  Liang-Grishin Energy Function 

The energy function for the Liang-Grishin method [40] is shown in Equation 2.3: 

 𝐸𝐸𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺ℎ𝑖𝑖𝑖𝑖 = −𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 +𝑊𝑊𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

+𝑊𝑊ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  𝐸𝐸ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 −𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑝𝑝

+𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
ℎ 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ + 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

ℎ𝑛𝑛ℎ𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑛𝑛ℎ +𝑊𝑊𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑉𝑉𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

+𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 

(2.3) 

 

where Eref and W are optimized reference energy and weight factors for different energy 

terms, respectively. 𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and 𝐸𝐸𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 are contacting surface area and overlapping 

volume between a rotamer and surrounding protein atoms [118], respectively. Ehbond is an 

empirical, geometry-based hydrogen-bond energy function. Eelec represents CHARMM 

eletrostatic interactions based on distance dependent dielectric constants [119]. There are 

four desolvation energy terms based on buried hydrophobic surface area (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑝𝑝 ), the 

hydrophilic surface area (𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ ), the fraction of buried surface area of non-hydrogen-

bonded hydrophilic atoms(𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑛𝑛ℎ) and solvent-exclusion volume of charged atoms Vexcl. 

𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  is an intrinsic rotamer energy term calculated on the basis of the expected 

rotamer frequency for a given amino-acid (AA) residue type multiplied by the frequency 

of that amino acid type for given backbone torsion angles. The program also utilizes a 

specific disulfide-bond term based on the number of disulfide bonds (𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . All 

parameters and reference state values were optimized by native sequence recovery and 

amino acid compositions as in RosettaDesign. 
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2.5.4  Balancing Nonlocal and Local Interactions 

All three energy functions, similar to other energy functions for protein design 

[85,86,103-108], heavily emphasize nonlocal interactions between residues that are 

located close to each other in the three-dimensional space but far from each other in 

sequence positions. These nonlocal interactions including van der Waals, electrostatic, 

hydrogen bonding, and solvation energies) were built for capturing tight and specific 

tertiary packing interactions. By comparison, local interactions between neighboring 

residues along the sequence is limited on single-residue property such as secondary 

structure propensity as used in ORBIT [32], backbone torsion-angle terms 

(RosettaDesign and EGAD), and backbone angle-dependent rotamer energy 

(RosettaDesign and Liang-Grishin). On the other hand, secondary structures (or backbone 

torsion angles) are determined largely by local sequence segment of 20 residues at about 

80% accuracy for three-state secondary structure [120,121] or 83% for backbone  and 

torsion angles both within 60 degree from their native values [122]. Thus, going beyond 

single-residue properties maybe required to account for the coupling between local 

backbone structure and sequence for protein design.  

 

2.5.5  RosettaDesign-SR Energy Function 

In order to examine the effect of local sequence-structure coupling, we modified the 

RosettaDesign energy function by adding three additional terms below [97]: 

 𝐸𝐸𝑅𝑅𝑅𝑅−𝑆𝑆𝑆𝑆 = 𝐸𝐸𝑅𝑅𝑅𝑅 − 𝑤𝑤profile� ln𝑃𝑃profile (𝑖𝑖, 𝐼𝐼𝑖𝑖)
𝑖𝑖

+ 𝑤𝑤rep� ln𝑁𝑁𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 (𝑖𝑖, 𝐼𝐼𝑖𝑖) + �𝐸𝐸ref

mod(𝑆𝑆𝑖𝑖, 𝐼𝐼𝑖𝑖)
𝑖𝑖𝑖𝑖

 

 

 (2.4) 
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where Pprofile(i, Ii) is a structure-derived sequence profile (probability of an amino acid 

residue type I at a given sequence position i). This sequence profile is generated by using 

target structural fragments to search matching structural fragments stored in a structural 

fragment library. The sequences of the matching structural fragments were employed to 

produce the probability of a given amino-acid residue type at a given sequence position. 

The sequence profile for the whole target structure can be produced by a sliding window 

from N-terminal to C-terminal. This structure-derived sequence profile was successfully 

employed for protein structure prediction [123] and protein design [124]. This profile 

term, however, leads to an increase in number of repeats of same residue types such as 

LLL and VVV and a reduction of complexity of the designed sequence. Because low 

complexity protein sequences are often associated with intrinsically disordered regions of 

a protein [125], such region is not desirable in designing structured proteins. Thus, to 

penalize a repetitive sequence segment, the second term in Equation 2.4 was introduced 

by calculating Ni
rep, the number of nearest and second nearest neighboring residues that 

repeat the residue type at the sequence position i (ranging from i-2 to i+2 including itself). 

This second term is a simplified measure of the extent of sequence randomness by 

Shannon's entropy [126]. The third term in Equation 2.4 reflects the change to the 

reference state energy due to introduction of new energy terms. 

 

2.6  Computational Assessment of Designed Proteins 

How to make an accurate, computational assessment of designed sequences is an 

unsolved problem. We attempt to assess RosettaDesign, EGAD, Liang-Grishin and 

RosettaDesign-SR structure-derived sequence profile and repetitive penalty) on the basis 
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of several criteria by employing a dataset of monomeric proteins to avoid possible 

complications due to interprotein interactions. The stably folded monomeric proteins is 

obtained by searching protein databank based on the following criteria: a) X-ray 

determined structures without DNA, RNA, hybrid or other ligands; b) having only one 

chain (both biological assembly and asymmetric unit); c) high resolution (≤3.0Å) with 

size ≥70 residues and ≤400; and d) no missing residues (except terminal regions) or 

abnormal amino acid types. A total of 616 proteins are obtained after removing redundant 

chains at 30% sequence identity. These proteins are then clustered according to the 

fraction of surface residues fsr because surface residues are more difficult to design due to 

larger conformational freedom and more direct interactions with solvent molecules. We 

define that a residue is “on surface” if its solvent accessible surface is greater than or 

equal to 20% of its reference value [127].  We divided proteins according to the ranges of 

fsr values ([0.4, 0.45), [0.45, 0.5), [0.5, 0.55), [0.55, 0.6), [0.6, 0.65), [0.65, 0.7), [0.7, 0.75) 

and [0.75-0.85)). We started from 0.4 because there are few proteins with fsr<0.4. For the 

same reason, the last bin was combined from two bins [0.75-0.8) and [0.8-0.85). Because 

designing proteins with EGAD and Liang-Grishin programs are computationally 

intensive, we only design 15 smallest proteins per bin except the last bin with 7 proteins 

only from the dataset of 616 proteins. A total of 112 proteins are designed by four 

programs (the list of protein can be found in Appendix A ). We employed all default 

setting in those programs for fixed backbone design to increase computational efficiency 

and removed all side chains from structures prior to computational design. 
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Computational programs including Real SPINE-3, SPINE-D, SPARKS-X, QUILT and 

STRIDE are involved in the assessment process. The developments of all of these 

programs are independent from the assessment work which makes them non-biased to the 

assessment of protein design methods. 

 

2.6.1  Sequence Assessment: Native Sequence Recovery 

One commonly employed approach is the sequence identity to the wild type sequence, or 

recovery of the native sequence. The reported sequence identities range from 30% to 37% 

[27,92,101,128,129]. These results were often based on a small number of proteins. 

Moreover, some methods fixed certain types of amino acid residues such as Gly, Cys or 

Pro. Figure 2.3a compares the average sequence identity of designed sequences to their 

respective wild-type sequences at different fractions of surface residues without fixing 

any residue types. RosettaDesign-SR gives the highest sequence identities ranging from 

36% to 44% that are close to 4-8% better than the next best while RosettaDesign and 

Liang-Grishin yield similar sequence identities. The lowest sequence identity was given 

by EGAD in all methods examined likely because EGAD was not optimized for native 

sequence recovery.  
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Figure 2.3 Computationally assess design methods. (a) The average sequence 

identity of sequences designed by RosettaDesign-SR, RosettaDesign, Liang-

Grishin, and EGAD is compared to their respective wild-type sequences as a 

function of the fraction of surface residues. (b) The average accuracy of predicted 

secondary structures from the sequences designed by four computational methods 

is compared with the results for wild-type sequences. SPINE-X was employed for 

sequence-based secondary structure prediction. (c) The average fractions of 

predicted disordered residues are compared. SPINE-D was employed for predicting 
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intrinsic disorder for designed and wild-type sequences. (d) The average correlation 

coefficients between predicted and actual solvent-accessible surface areas (ASA) 

from the target structure are compared. Real-SPINE 3 was employed for solvent 

accessibility prediction from designed and wild-type sequences 

 

2.6.2  Local Assessment: Secondary Structure Recovery 

The effect of lacking the local coupling term between sequence and backbone structure 

can be examined by comparing the accuracy of predicted secondary structures for 

designed sequences or the ability of recovering native secondary structures. We 

employed SPINE-X for secondary structure prediction that achieves 81-82% accuracy for 

large benchmark tests [121]. Figure 2.3b shows that the average accuracy for predicted 

secondary structures for sequences designed by RosettaDesign-SR is consistently higher 

than those predicted from wild-type sequences. This reflects the usefulness of utilizing 

the local-structure-derived sequence profile in RosettaDesign-SR. The sequences 

designed by the RosettaDesign and Liang-Grishin program yield more accurate 

secondary structures than wild-type sequences at low fractions of surface residues but not 

at high fractions of surface residues. This suggests that local sequence-structure coupling 

is more effective for capturing correct secondary structure in surface regions. EGAD has 

the lowest recovery of native secondary structure, consistent with its low sequence 

identity to wild type sequences. 
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2.6.3  Local Assessment: Intrinsic Disorder 

The possibility of low complexity in designed sequences leads us to examine predicted 

intrinsically disordered residues in designed sequences. We employ SPINE-D [130] for 

this task because it was one of the top disorder predictors in critical assessment of 

structure prediction techniques in 2010 (CASP 9) [131]. Figure 2.3c compares average 

fractions of disordered residues given by wild type sequences with those from designed 

sequences at different fractions of surface residues. Except for one bin where a few wild-

type sequences have regions with predicted disordered probability at about 0.5, the 

fractions of disordered residues in wild-type sequences are usually lower than those in 

designed sequences. This suggests the usefulness of using SPINE-D for detecting 

potentially unstable regions. Liang-Grishin and EGAD have the highest fraction of 

predicted disordered regions in all bins while RosettaDesign-SR and RosettaDesign have 

similar performance and close to wild-type sequences in most bins.  

 

2.6.4  Surface Assessment: Solvent Accessibility Recovery 

Another way to examine designed sequences is to test the conservation of solvent 

accessible surface area (ASA) of designed sequences relative to that of native structures 

of wild-type sequences. We calculate the correlation coefficient between the ASA 

predicted by real-SPINE 3 [132] and actual ASA based on the corresponding wild-type 

sequence on the target structure. Figure 2.3d shows that at low fractions of surface 

residues, all sequences yield similar correlation coefficients for ASA (∼0.75). The 

difference between different methods increases for proteins with higher fractions of 

surface residues. Sequences designed by RosettaDesign-SR and Liang-Grishin programs 
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produced ASA closer to that of wild-type sequences than did RosettaDesign and EGAD 

programs. 

 

 

 

Figure 2.4 Comparisons of largest hydrophobic patch area and total ASA / 

maximum total ASA. (a) A comparison of the average largest hydrophobic patch 

area given by RosettaDesign-SR, RosettaDesign, Liang-Grishin, and EGAD with 

that given by wild-type proteins. (b) A comparison of the total solvent-accessible 

surface area (ASA) for all residues in a protein normalized by their maximum 

possible total solvent-accessible surface area for the four programs and wild type. 

 

2.6.5  Surface Assessment: Hydrophobic Patch 

Aggregation is one common problem for designed proteins [91]. Rate of aggregation is 

associated with exposed hydrophobic surface area [133]. Figure 2.4a compares the 

average largest hydrophobic patch area given by different methods. Hydrophobic patch 
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area is generated by the program QUILT [134]. RosettaDesign and RosettaDesign-SR 

produced significantly higher hydrophobic patch area (2-3 times higher) than wild-type 

proteins. Remarkably, the sequences designed by Liang-Grishin program have smaller 

hydrophobic patch area than wild-type sequences. This finding highlights the emphasis of 

the Liang-Grishin energy function on surface-exposed residues with four separate 

solvation terms. EGAD-designed proteins also produced smaller hydrophobic patches 

than wild-type proteins. One should note, however, that designed sequences with large 

hydrophobic patches may be filtered by manual selection of sequences for experimental 

validations. 

 

2.6.6  Packing Assessment: Total Accessible Surface Area 

Packing interaction is the dominant stabilization factor for specific tertiary structures. We 

utilized the target structure with designed sequences to calculate total solvent accessible 

surface areas for all residues in a protein normalized by their maximum total (reference) 

solvent-accessible area. Figure 2.4b shows that RosettaDesign and RosettaDesign-SR 

programs yielded higher values (about 8%) of total ASA than wild-type sequences did, 

whereas the Liang-Grishin program gave significantly lower values of total ASA. The 

EGAD program, on the other hand, yielded ASA values essentially equal to those of 

wild-type sequences. This suggests that protein cores designed by RosettaDesign and 

RosettaDesign-SR do not pack as tightly as EGAD and native proteins. The Liang-

Grishin program seems to pack protein cores more tightly than native proteins. 
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Figure 2.5 The average root-mean-squared distance (RMSD) between the target 

structure and the structure predicted by the template-based structure prediction 

method SPARKS-X, based on designed sequences at different fractions of surface 

residues. 

 

2.6.7  Global Structure Assessment 

Designed sequences can also be assessed globally. One method to examine the stabilities 

of designed proteins is to perform molecular dynamics simulations. A stably folded 

protein is expected to maintain its structure after a long molecular dynamics simulation. 

For example, Tsai et al. [124] designed two proteins (protein GB1 domain and ubiquitin) 

by combinatorial assembly of fragments in Protein Data Bank. Stabilities of designed 
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proteins were tested by molecular dynamics simulations. Designed proteins for protein 

GB1 domain and ubiquitin have higher root-mean squared distances (RMSD) from the 

target structure than wild-type proteins but lower RMSD than nonprotein controls 

(inverted hydrophobic/hydrophilic residue patterns).). Liang et al. [135] designed protein-

protein interaction interfaces by grafting binding epitopes onto small proteins. Molecular 

dynamics simulations revealed that some designed interfaces are not stable 

(disassociating) during the course of long molecular dynamics simulations whereas 

interfaces and natively binding proteins remain stable. Another way to assess designed 

proteins globally is to predict structures of designed sequences. For example, Bazzoli et 

al. [136] assessed designed sequences by fragment/template-based structure prediction 

technique I-TASSER. They found that the majority of top designed sequences have 

folded into the structures within 2Å RMSD from the target structure, even though 

different energy-scoring functions were used in design and folding assembly. Here, we 

[137] employ the template-based structure prediction tool SPARKS-X to predict 

structures of designed sequences where the target structures are contained in the template 

library. The predicted structures are then compared to their respective target structures by 

RMSD. Figure 2.5 shows that the performances of Liang-Grishin, RosettaDesign, and 

RosettaDesign-SR programs are similar. EGAD performed the worst largely because its 

low native sequence recovery makes recognizing correct template structures difficult. 

Note that even wild-type sequences have small RMSD values because SPARKS-X 

rebuilt and refined predicted structures using the program MODELLER [138]. 
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2.6.8  Summary 

Based on results from Figure 2.3 to Figure 2.5, it is clear that introducing local sequence-

structure coupling and sequence complexity terms in RosettaDesign (RosettaDesign-SR) 

leads to the intended effect of increasing sequence identity to wild-type sequence (Figure 

2.3a) and improving the consistency between predicted secondary structure and actual 

secondary structure (Figure 2.3b) and between predicted ASA and actual ASA (Figure 

2.3d). However, the average largest hydrophobic patch area given by RosettaDesign-SR, 

as by RosettaDesign, is too large, compared with that given by wild-type sequences. This 

result points out an area for future improvement by introducing explicit [110,139,140] or 

implicit [141] scoring methods for hydrophobic patches. Although reference energies, in 

principle, can control the amount of the hydrophobic surface area exposed by controlling 

the ratio of hydrophobic to hydrophilic residues, such reference states do not seem 

adequate in RosettaDesign or RosettaDesign-SR. Another interesting result is that Liang-

Grishin and EGAD programs performed the best in terms of sizes of the largest 

hydrophobic patch. However, too few hydrophobic residues on the surface may reduce 

the overall stability of proteins because hydrophobic interactions are the major driving 

force of protein stability [142]. Even surface hydrophobic residues improve protein 

stability [143,144]. Thus, weighting various energetic terms differently leads to different 

outcomes. Determining how to balance these different interactions is the key to 

successful protein design. 
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2.7  Community-wide Scoring Function Assessment  

Recently, a large number of designed proteins targeting the conserved stem region of 

influenza hemagglutinin [87] offered an unprecedented opportunity to examine the ability 

of energy scoring functions to separate binders from nonbinders by a blind-prediction, 

community-wide experiment [145]. Twenty-eight groups, including ours, armed with 

different energy functions participated in this experiment. These energy functions range 

from physical-based molecular mechanics force fields, knowledge-based energy 

functions, empirical combinations of various knowledge-based and physical-based terms, 

to scoring functions trained by machine learning techniques. The highest area under the 

receiver operating characteristic curve for two-state binding/nonbinding prediction is 0.86 

by three scoring functions. Two scoring functions (Group 2 J.C. Mitchell & O.N.A. 

Demerdash and Group 6 by I.H. Moal, X. Li & P.A. Bates) are specifically trained for 

binding/nonbinding classification by employing support vector machines (SVM) with 

many knowledge-based and physical-based features. The third scoring function (Group 7 

by M. Zacharias) is a coarse-grained force field with energy parameters optimized for 

scoring near-native docking decoys [146]. Yet, these best scoring methods continue to 

fail to adequately separate native from designed interfaces and to identify an 

experimentally validated designed binder [145]. Thus, it is difficult to assess what really 

worked for these best energy-scoring functions except that specific training is needed for 

balancing the terms in the scoring functions. 
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2.8  Current Challenges and Future Prospects 

The above assessment of designed sequences highlights the importance of balancing 

different types of interactions. Folded and functional proteins result from the interplay of 

backbone and side chain interactions and delicate balance among van der Waals 

interactions, electrostatic interactions, and solvation effects. Nature has mastered the art 

of balance via trial and error over the course of billions of years. Furthermore, it employs 

quantum effects to enhance its magic. Various knowledge-based, physical-based, and 

empirical energy functions have been proposed over the years [85,86,103-108,147], 

including a recent solvent-exposure dependent potential [148] and structure-derived 

sequence profile and sequence complexity [97]. We believe that the next practical step 

for significantly improving protein design is not to search for new terms but to select the 

correct terms whose weights are optimized with appropriate objective functions. The 

usefulness of rebalancing energy terms is suggested from the success of employing SVM-

trained scoring functions to separate binding from nonbinding designed interfaces [145] 

and of balancing local and nonlocal interactions to achieve higher recovery of native 

sequence, secondary structure, and solvent accessibility [97]. Balancing stability and 

solubility [110,139,140] is another key aspect for producing functional and foldable 

globular proteins.  

 

Our optimism for individual energy terms is built on the discovery that in some cases 

knowledge-based energy functions are directly comparable to quantum calculations. 

Examples include the agreement between a statistical hydrogen-bonding potential and 

quantum mechanical calculations [149] and the strong positive correlation between 
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statistical descriptions of cation-π and amino-π interactions and quantum calculations at 

the Hartree-Fock and the second-order Moller-Plesset perturbation theory levels [150]. In 

addition, recently developed, orientation-dependent [151-154] and multibody [155] 

energy functions have yet to be tested for protein design. For example, dipolar DFIRE 

(Distance-scaled, Finite, Ideal-gas REference) energy function [151] based on a DFIRE 

stat [156] accounts for the orientation dependence of the interactions not only between 

hydrogen-bonded polar atoms but also between other polar atoms and between polar 

atoms and nonpolar atoms. The last interaction is known to play important role in 

secondary structure formation [157-159]. 

 

There is another balance that needs attention: the balance of speed and accuracy. Fixed 

backbone structures were employed for all tests performed here in order to reduce 

computing time. Fixing backbone structures may have made protein structures less 

favorable to native sequences as a result of employing less accurate energy functions for 

compensating the effects of rigid backbone and discretization of side chain conformations. 

Allowing flexibility improved sequence identity between designed and wild-type 

sequences [160] and in successful redesign of hydrophobic core [93]. Discretization of 

side chain rotamers is another issue that may adversely affect the performance of an 

energy function. Gainza et al. [161] employing continuous rotamers leads to an 

impressive 10% improvement in sequence identity by redesigning 12–15 selected core 

residues. That is, not all problems in protein design are caused by defects in energy 

functions. Unfortunately, efficient sampling of the conformational space of flexible 

proteins is still an unsolved problem, although progresses are made [162]. 
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The main obstacle to searching for the right balance of correct terms in energy functions 

is the lack of a large number of negative experiments for understanding where designs 

have failed and for training the delicate balance of various energetic terms. This lack is 

caused by two factors. First, most publications reported only successfully designed 

sequences. Second, few laboratories can afford a large number of experiments to measure 

the success rate of protein design. The large number of designed proteins targeting 

influenza hemagglutinin [87] is the first sizeable dataset of negative examples for protein-

protein interactions. Experiments such as this in de novo protein design are needed to 

further understand deficiencies in existing energy-scoring functions and to achieve the 

optimal balance between selected energetic terms. This balance will happen when 

inexpensive high-throughput techniques for measuring the success rate of protein design 

become available. 
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Chapter 3 Assessment of Novel Energy Functions for Design  

3.1  Introduction 

 De novo protein design aims to computationally design new protein molecules that have 

desirable 3D structures and perform desired biological functions. It is a powerful tool to 

explore protein structural and functional spaces in nature by creating novel proteins. 

Nature has provided abundant structures and functions, and creates new topology and 

function through evolution. Computational protein design speeds up this process in silico 

and holds the promise to accelerate development of novel catalytic, pharmaceutical, 

structural, and sensing proteins for diagnostic, therapeutic, and industrial purposes. 

Impressive number of successful designs has been made during the last decade [13-

16,92,94,163]. In the meantime, many computational design methods have been 

developed, including RosettaDesign [101], RosettaDesign-SR [41], Liang-Grishin [118], 

Medusa [164], EGAD [27], ORBIT [32]  and others. RosettaDesign energy function is 

composed by different physical energy terms. In Chapter 2, we reviewed RosettaDesign, 

RosettaDesign-SR, Liang-Grishin and EGAD by assessing their performances on the 

sequence recovery rate, sizes of hydrophobic patches and total solvent-accessible surface 

area, and the prediction of structural properties such as intrinsic disorder, secondary 

structures, and three-dimensional structures.  Among these methods, RosettaDesign has 

updated their default energy function from score12 to Talaris2013 and has replaced the 

Dunbrack's 2002 version of the backbone dependent rotamer library [165] by the 2010 

version [17] . The Talaris2013 score function made several improvements to the previous 

default score function, score12, including a sp2 hydrogen bond potential, a new explicit 

electrostatics term with a distance dependent dielectric, rather than a pairwise knowledge-
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based electrostatic potential, an adjustment to the LK_DGFREE  parameters for four 

atom types, an expansion of hydroxyl sampling for serine and  threonine, the use of 

bicubic spline interpolation in RosettaDesign knowledge-based potentials instead of 

bilinear interpolation, an improved disulfide potential, analytic evaluation of Lennard-

Jones and EEF1 potentials and a new set of reference-state energies consistent with the 

above modifications. The new version of the RosettaDesign program also changed the 

atomic coordinates to 05.2009 ideal coordinates. This new version achieved 39.4% 

sequence recovery rate on Jane Richardson's HiQ54 benchmark dataset which contains 

55 high quality monomeric PDB structures with pre-relaxation. We labelled this energy 

function as RosettaTalaris in order to distinguish from its older version RosettaDesign2.3.  

Meanwhile, Shide Liang and Yaoqi Zhou developed a new protein design method 

labelled as OSCAR-design. The energy function is similar to the orientation-dependent 

optimized side-chain atomic energy OSCAR-o [166]. The distance-dependent and side-

chain dihedral-angle components of the design energy function were represented as 

power and Fourier series, respectively. OSCAR-o was developed by maximizing the 

energy gap between the native conformation and other rotamer types.   In OSCAR-design, 

all the parameters were re-optimized to maximize the recovery rate of native residue type 

of a single residue while fixing all other residues. In this chapter, we examined these two 

new methods using the same assessment criteria discussed in Chapter 2. Same dataset of 

112 stably folded monomeric proteins used in ref [167] were employed to assess the new 

design program OSCAR-design and RosettaTalaris. The test dataset was obtained by 

searching the Protein Data Bank with the following criteria: (a) X-ray-determined 

structures without DNA, RNA, hybrid, or other ligands; (b) proteins having only one 
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chain (both biological assembly and asymmetric unit); (c) high resolution (≤3.0Å), with 

the number of residues ≥70 and ≤ 400; and (d) proteins with no missing residues (except 

terminal regions) or abnormal amino acid types. A total of 616 proteins were obtained 

after removing redundant chains at 30% sequence identity. Afterwards, these proteins 

were clustered by the fraction of surface residues (>20% solvent-accessible area exposed). 

 

3.2  Results 

As shown in Figure 3.1, we compared five design energy functions including two newly 

updated versions from Liang and RosettaDesign in sequence identity, the accuracy of 

predicted secondary structure, the fraction of disordered residues, the area of hydrophobic 

patches, the correlation coefficient between predicted accessible surface area (ASA) and 

actual ASA, the ratio of total ASA over maximum total ASA and the RMSD between 

predicted 3D structure for a designed sequence and that for the wild-type sequence.  

 

Figure 3.1 Computational assessment of designed sequences according to several 

criteria.  
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3.2.1  Sequence Assessment: Native Sequence Recovery 

Sequence identity to wild-type sequence is a common computational assessment for 

protein design.  The sequence identities range from 30% to 37% for previously published 

methods. The RosettaTalaris achieved 39.4% after pre-relaxing the structure on Jane 

Richardson's HiQ54 benchmark dataset according to RosettaDesign documentation 

(unpublished). Figure 3.2 compares the average sequence identity of designed sequences 

to their corresponding wild-type sequences at different fractions of surface residues 

without fixing any residue types. RosettaDesign-SR gives the highest sequence identities, 

in average 39.8%, which are 0.7% better than the next best OSCAR-design and 3.7% 

better than RosettaTalaris. OSCAR-design performs about 7-10% better than Liang-

Grishin in all the bins while RosettaTalaris also improves the performance in sequence 

identity to wild-type sequence over its previous version.  As shown in Table 3.1, 

OSCAR-design improves about 6.5% in average sequence identity for the whole dataset 

comparing to Liang-Grishin. RosettaTalaris also improves about 2.9% in average 

sequence identity compared to RosettaDesign2.3. OSCAR-design is about 2.7% higher 

than RosettaTalaris. This result confirmed the improvement of new energy functions over 

previous energy functions for protein design.  
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Figure 3.2 The average sequence identity to wild-type sequences of sequences  

designed by RosettaDesign-SR, RosettaDesign2.3, RosettaTalaris, Liang-Grishin 

and OSCAR-design  as a function of the fraction of surface residues 
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Table 3.1 Average sequence identity to wild-type sequences by RosettaDesign-SR, 

RosettaDesign2.3, RosettaTalaris, Liang-Grishin and OSCAR-design. 

Method Sequence Identity% 

Wild-type 100 

RosettaDesign-SR 39.8 

OSCAR-design 39.1 

RosettaTalaris 36.1 

Rosetta2.3 33.2 

Liang_ Grishin 32.3 
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3.2.2  Local Assessment: Secondary Structure Recovery 

 

Figure 3.3 The average accuracy of predicted secondary structures from the 

designed sequences by five computational methods is compared to the results from 

wild-type sequences. SPINE-X was employed for sequence-based secondary 

structure prediction 

 

Comparing the accuracy of predicted secondary structures for designed sequences or the 

ability of recovering native secondary structures is another way to assess whether a 

design method can capture the local coupling between sequence and backbone structure. 

SPINE-X was employed for secondary structure prediction, which achieves 81–82% 

accuracy in large benchmark tests. Figure 3.3 shows that the average accuracy of 
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predicted secondary structures for sequences designed by five different methods and 

wild-type sequences. RosettaDesign-SR shows consistently higher accuracy of structures 

predicted from other design methods and even higher than that from wild-type sequences. 

This reflects the usefulness of utilizing the local-structure-derived sequence profile in 

RosettaDesign-SR. The sequences designed by the RosettaTalaris yielded more accurate 

secondary structures than its corresponding previous method RosettaDesign2.3. OSCAR-

design performs as the 2nd best methods especially in the bins with large fraction of 

surface residues.  Apparently, improvement in hydrogen bonding in the RosettaTalaris 

energy function is successful whereas OSCAR-design takes into account orientation 

dependence by Fourier expansion.  

 

3.2.3  Local Assessment: Predicted Intrinsic Disorder and Low Complexity 

Residues  

We further examined possible unstable structural regions inherent in designed sequences 

by predicting intrinsically disordered residues. SPINE-D [130], one of the top disorder 

predictors in CASP 9 was employed to predict intrinsically disordered residues. Figure 

3.4 compares average fractions of disordered residues given by wild-type sequences with 

those from designed sequences at different fractions of surface residues. The fractions of 

disordered residues in wild-type sequences are lower than those in designed sequences, 

except for bin 0.725 where a few wild-type sequences have regions with predicted 

disorder probabilities at about 0.5. Liang-Grishin and RosettaDesign2.3 programs yielded 

sequences with higher fractions of predicted disordered residues than wild-type 

sequences did, whereas the sequences generated from RosettaDesignSR, RosettaTalaris 
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and RosettaDesign2.3 programs and wild-type sequences have a similar amount of 

disorder in most bins. However, OSCAR-design produces higher number of disordered 

residues than wild type sequences for non-globular proteins with high fractions of surface 

residues.  RosettaTalaris performs slightly worse than RosettaDesign2.3 in term of 

structural disorder.   
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Figure 3.4 The average fraction of predicted disordered residues as a function of 

fraction of surface residues SPINE-D was employed for predicting intrinsic 

disorder for designed and wild-type sequences. 

 

3.2.4  Surface Assessment: Solvent Accessibility Recovery 

Solvent-accessible surface area (ASA) is an important physical property in protein design. 

It also contributes to protein solvation energies [168].   Therefore another way to examine 
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designed sequences is to test the conservation of ASA in designed sequences relative to 

that of native structures of wild-type sequences. Real-SPINE 3 [169] was employed to 

predict solvent accessibility from designed and wild-type sequences.  We calculated the 

correlation coefficient between predicted ASA and actual ASA values based on the 

corresponding wild-type sequence on the target structure. Figure 3.5 shows that OSCAR-

design has the highest correlation coefficient except bin 0.675. At this bin, the correlation 

coefficient of OSCAR-design is slightly lower than that of wild-type but higher (0.05-0.2) 

than those of other design methods.   The difference between different methods increases 

as the fraction of surface residues increases. Sequences designed by RosettaDesignSR 

and Liang-Grishin programs produced ASA closer to that of wild-type sequences than 

RosettaDesign2.3. Sequences designed by OSCAR-design significantly improved the 

ASA correlation over the sequences designed by the previous methods. 
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Figure 3.5 The average correlation coefficients between predicted and actual 

solvent-accessible surface areas (ASA) from the target structure by several design 

methods as labeled are compared in bins of proteins in different fraction of surface 

residues.  
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3.2.5  Surface Assessment: Hydrophobic Patch 

A prevalent problem in designed proteins is protein aggregation [170].  Protein 

aggregation is associated with large exposed hydrophobic surface areas [133,171]. The 

hydrophobic surface patch area of a designed or wild-type structure was calculated by the 

program QUILT [172]. Figure 3.6 compares the average of the largest hydrophobic patch 

area of proteins in different bins by five design methods. It is clear that designed proteins 

by RosettaDesign have larger hydrophobic patch areas than wild-type proteins do.  

RosettaTalaris significantly improves over RosettaDesign 2.3 although it still yields a 

slightly larger hydrophobic patch area than wild type sequences. The sequences designed 

by OSCAR-design have very similar patch areas to wild-type sequences. By comparison, 

the Liang-Grishin method yields hydrophobic patch areas smaller than wild-type 

sequences.  
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Figure 3.6 The average largest hydrophobic patch area given by RosettaDesign-SR, 

RosettaDesign2.3, RosettaTalaris Liang-Grishin, OSCAR-design and wild-type 

proteins. 

 

3.2.6  Packing Assessment: Total Accessible Surface Area 

Packing interaction plays important role in stabilizing specific protein tertiary structures 

[173,174]. The total solvent accessible surface areas (ASA) of all residues of a protein 
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were calculated on the target structure with designed sequence by STRIDE [175] and 

then normalized by their maximum total (reference) solvent-accessible area by Equation 

3.1: 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  ∑ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖)𝐿𝐿
𝑖𝑖

∑ max (𝐴𝐴𝐴𝐴𝐴𝐴(𝑖𝑖))𝐿𝐿
𝑖𝑖

�  

 

(3.1) 

 

Where 𝑖𝑖 is the residue position and L is the protein length. ASA(𝑖𝑖) is the ASA value of a 

certain amino acid of residue position 𝑖𝑖.  max(ASA(𝑖𝑖)) is the reference ASA of a given 

residue type at residue position 𝑖𝑖.  

 

As shown in Figure 3.7, sequences designed by RosettaDesign 2.3 have higher ratio (total 

ASA / maximum total ASA) while sequences designed by Liang’s methods have lower 

ratio than wild-type sequences.  This indicates that proteins designed by 

RosettaDesign2.3 and RosettaTalaris do not pack as tightly as those designed by the 

Liang-Grishin and OSCAR-design methods and wild-type proteins.  RosettaTalaris 

slightly improves over Rosetta2.3 while OSCAR-design’s result moves closer to wild 

type’s comparing to the Liang-Grishin method. 
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Figure 3.7 The total solvent-accessible surface area (SASA) for all residues in a 

protein normalized by their maximum possible total solvent-accessible surface 

areagiven for wild type sequences and designed sequences.  
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3.2.7  Global Structure Assessment 

In order to examine whether the designed sequence can fold into the target structure, we 

can also assess the designed sequence by structure prediction.  Here we utilized 

SPARKS-X, a template-based structure prediction tool, to predict the 3D structure of 

designed sequences.  Figure 3.8 shows two examples of predicted 3D structures of 

designed sequences by both OSCAR-design and RosettaTalaris aligned to corresponding 

wild-type structure.   Figure 3.8a shows the superposition of the target structure (PDB ID 

3PTE) and the best predicted 3D structure from designed sequence by OSCAR-design. 

The RMSD between predicted structure is 0.12 Å with 50.7% overall sequence identity.  

Figure 3.8b shows that the structure alignment between 3PTE and the best predicted 3D 

structure for the sequence designed by RosettaTalaris with an overall sequence identity of 

45% and RMSD as 0.57 Å. Figure 3.8c and d show that the structure comparison between 

1B1U and the best predicted 3D structure of designed sequences. Both designed 

sequences of 1B1U have sequence identity to wild-type sequence lower than 30% but 

both predicted 3D structures are very similar to wild-type structure. Figure 3.8 indicates 

that SPARKS-X can predict reasonable structure similar to target structure even though 

designed protein sequences have low sequence identity to wild-type sequences.  
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Figure 3.8 Superposition of the target structures (PDB ID 3PTE and 1B1U, cyan) 

and the best 3D structure predicted from designed sequence by SPARKS-X.  (a). 

The wild-type structure of 3PTE and best 3D structure predicted by SPARKS-X 

from the sequence designed by OSCAR-design (green). The RMSD between two 

structures is 0.12 Å while sequence identity is 50.7%. (b). Superposition of 3PTE 

and the best 3D structure predicted by SPARKS-X from the sequence designed by 

RosettaTalaris (magentas). The RMSD between the predicted structure and the 

target structure is 0.57 Å with overall sequence identity of 45%. (c). Superposition 

of 1B1U (cyan) and the best predicted 3D structure of designed sequence by 

OSCAR-design (green). The RMSD is 0.39 Å with sequence identity of 28.2%. (d). 
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Superposition of 1B1U (cyan) and the best predicted 3D structure of designed 

sequence by RosettaTalaris (magentas). The RMSD is 0.84 Å with sequence 

identity of 23.9%. The circles indicate where not in perfect alignment. 

   

The Figure 3.9 shows the average RMSD between target structures and structure 

predicted by SPARKS-X for designed sequences by five design methods and wild-type 

sequences. The wild-type sequences yield the smallest RMSD but not equal to 0 since 

SPARKS-X  re-built the final structure by MODELLER [176]. As expected, the RMSD 

increases as the fraction of surface residues increases for all design techniques. OSCAR-

design has the smallest RMSD to the target structure and RosettaTalaris is the 2nd best 

method according to RMSD.  The average RMSDs between predicted structures and 

target structures of both methods are lower than 2Å. Both OSCAR-design and 

RosettaTalaris improve the performance over previously developed techniques in nearly 

all the bins, especially in the bins with higher fraction of surface residues. 
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Figure 3.9 The average RMSD between the target structures and the structures 

predicted by SPARKS-X from the designed sequences and wild-type sequences as 

a function of the fraction of surface residues. 

 

3.3  Conclusion 

In this chapter, we employed different criteria to assess two novel design methods by 

employing the benchmark of 112 monomers. These methods were assessed by sequence 

identity to wild-type sequence, the accuracy of predicted secondary structure, fraction of 
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predicted disordered residues, the correlation between predicted and actual ASA, the 

areas of hydrophobic patches, the relative total ASA and the RMSD between predicted 

and the target structures. OSCAR-design performs the best in surface, packing and global 

structure assessment while RosettaDesign-SR performs the best in sequence and local 

assessment.  All assessments indicate that both OSCAR-design and RosettaTalaris made 

significant improvement over previously developed methods. They have higher sequence 

recovery rate, better packing and less disordered residues, and hydrophobic patches 

closer to wild-type structures and better in target structure recovery.   Thus, 

RosettaTalaris is the best RosettaDesign program.  OSCAR-design, whose energy 

function is purely mathematical and optimized for native residue type, performs better 

than RosettaTalaris in most assessments. The computational assessments from multiple 

angles provide a reliable initial examination of design programs. To confirm 

computational assessment, large-scale experimental measurement of success rate for 

protein design is required. 
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Chapter 4 Direct Prediction of the Profile of Sequences Compatible to a Protein 

Structure by Neural Networks with Fragment-Based Local and 

Energy-Based Nonlocal Profiles 

4.1  Abstract 

Locating sequences compatible with a protein structural fold is the well-known inverse 

protein-folding problem. While significant progress has been made, the success rate of 

protein design remains low. As a result, a library of designed sequences or profile of 

sequences is currently employed for guiding experimental screening or directed evolution. 

Sequence profiles can be computationally predicted by iterative mutations of a random 

sequence to produce energy-optimized sequences, or by combining sequences of 

structurally similar fragments in a template library. The latter approach is 

computationally more efficient but yields less accurate profiles than the former because 

of lacking tertiary structural information. Here we present a method called SPIN that 

predicts Sequence Profiles by Integrated Neural network based on fragment-derived 

sequence profiles and structure-derived energy profiles. SPIN improves over the 

fragment-derived profile by 6.7% (from 23.6 to 30.3%) in sequence identity between 

predicted and wild-type sequences. The method also reduces the number of residues in 

low complex regions by 15.7% and has a significantly better balance of hydrophilic and 

hydrophobic residues at protein surface. The accuracy of sequence profiles obtained is 

comparable to those generated from the protein design program RosettaDesign 3.5. This 

highly efficient method for predicting sequence profiles from structures will be useful as 

a single-body scoring term for improving scoring functions used in protein design and 

fold recognition. It also complements protein design programs in guiding experimental 
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design of the sequence library for screening and directed evolution of designed sequences. 

The SPIN server is available at http://sparks-lab.org. 

 

4.2  Introduction 

Designing a protein sequence that would fold into a given structure is the well-known 

inverse-protein folding problem. Solving this problem will not only improve our 

fundamental understanding of the interactions responsible for protein folding and 

structure prediction but also advance our capability of designing novel proteins with 

existing function improved or with completely new functionality. 

 

Significant progress in protein design has been made in recent years with a number of 

designed sequences successfully validated experimentally in terms of their structures and 

their functions [32,59-68]. These designs typically start from random protein sequences 

and iteratively optimize an energy score via mutations until the scoring function reaches a 

minimum. However, existing scoring functions for protein design are not yet accurate 

enough to produce high success rates [85-89]. In fact, designed sequences usually do not 

contain wild-type sequences as a part of the solution [97,177]. Low success rate of single 

sequence design has led to current effort in employing multiple computationally 

predicted sequences (or sequence profiles) to build a sequence library for large-scale 

experimental screening of desirable properties [178-182] or for directed evolution 

[87,183]. Sequence or sequence profiles obtained from protein design programs require 

solving a NP-hard combinatorial optimization problem[184]. Thus, it is time consuming 

to produce sequence profiles based on multiple runs. 
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In addition to above energy-based methods, sequence profiles can also be predicted by 

employing local fragment structures [185]. In this approach, fragment structures from a 

target structure are compared to the fragment structures from a template library of known 

protein structures. Sequences of those template fragment structures with high structural 

similarity to target fragments are obtained to produce the sequence profile for the entire 

target structure by a sliding-widow approach. Sequence profiles generated from fragment 

structures and/or from protein design programs have been found useful for enhancing the 

ability of recognizing structural similarity in the absence of sequence similarity (fold 

recognition) by matching a sequence profile of a query not only with the sequence profile 

of a template sequence but also the sequence profile predicted from a template structure 

[185-187]. More recently, sequence profiles derived from fragment structures were 

employed as a single-body energy term for improving the energy function of protein 

design [97]. Predicting sequence profiles by fragments only needs to perform pairwise 

structural alignment between short fragments and, thus, is computationally much more 

efficient than solving the combinatorial optimization problem required by an energy-

based design. However, sequence profiles derived from short fragments are dominated by 

local structural information. That is, they are only useful for capturing the interactions 

responsible for local structure formation, but do not account for non-local interactions 

(interactions between structural but not sequence neighbours) that are responsible for the 

stability of tertiary structure. As a result, fragment-derived profiles are not as useful as 

the profiles derived from energy optimization for using in experimental screening or 

directed evolution. 
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In this paper, we test the idea of using neural network (NN) to improve fragment-derived 

sequence profiles by incorporating a mean-field like non-local interaction. We found that 

an energy-based nonlocal feature makes a significant improvement in the quality of 

sequence profiles over that from fragment structural alignment in terms of sequence 

identity to wild-type sequences, fraction of hydrophilic residues, recovery rate of wild-

type residue types, precision of predicted amino-acid residue types, distribution of amino-

acid residue types, and fraction of low complexity regions. The quality of predicted 

sequence profiles is comparable to the profiles generated from the protein design program 

RosettaDesign 3.5 [101] based on several measures. This NN-derived profile is 

complementary to existing energy-based techniques for identifying sequences that are 

compatible with a desired structural fold. It should be also useful as a single-body term 

for improving the fold-recognition scoring function or protein-design energy function as 

fragment-based profiles did [97,185-187]. 

 

4.3  Methods 

4.3.1  Datasets 

To perform training and test and avoid over-training, we need three datasets: structural 

templates, a dataset for training the neural network, and a dataset for independent test. 

For the template library, we started from a non-redundant protein set with resolution 

better than 2.0 Å, pair-wise sequence identity of less than 30% from the PISCES server 

[188] downloaded on October 17, 2008. This set contains 4803 protein chains that were 

further reduced to 2528 chains after removing chains with missing residues or backbone 

atoms. We further cleaned the dataset by removing proteins (1) complexed with DNA or 
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RNA, (2) whose sequence contain un-recognized residue types; and (3) whose secondary 

structures were not defined by DSSP [189]. This leads to a total of 2282 protein chains 

that are employed as our templates for fragment structures (TL2282).  

 

For training and test sets, we started from the new non-redundant protein set with 

resolution better than 3.0 Å, pair-wise sequence identity of less than 30% from the 

PISCES server [188] on April 28, 2013. This set contains 10460 protein chains. We 

cleaned the dataset using the same criteria above and removed all chains with >30% 

sequence identity to the proteins in the template library (TL2282). This leads to a dataset 

of 2032 proteins. We randomly selected 500 proteins for independent test (TS500) and 

utilized the remaining proteins for training and ten-fold cross validation (TR1532).    

 

From TS500, we randomly selected 50 small proteins with sequence length between 60-

200 and fraction of surface residue between 0.5-0.8 (TS50). This small dataset is used to 

compare the sequence profiles generated from our neural-network approach with those 

generated from RosettaDesign, one of the most widely used programs for protein 

design(Kuhlman and Baker, 2000). A small dataset is used because it is computationally 

intensive to produce sequence profiles by designing 1000 sequences utilizing 

RosettaDesign. These 50 proteins (PDB ID plus chain ID) are 1eteA, 1v7mV, 1y1lA, 

3pivA, 1or4A, 2i39A, 4gcnA, 1bvyF, 3on9A, 3vjzA, 3nbkA, 3l4rA, 3gwiA, 4dkcA, 

3so6A, 3lqcA, 3gknA, 3nngA, 2j49A, 3fhkA, 2va0A, 3hklA, 2xr6A, 3ii2A, 2cayA, 

3t5gB, 3ieyB, 3aqgA, 3q4oA, 2qdlA, 3ejfA, 3gfsA, 1ahsA, 2fvvA, 2a2lA, 3nzmA, 
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3e8mA, 3k7pA, 3ny7A, 2gu3A, 1pdoA, 1h4aX, 1dx5I, 1i8nA, 2cviA, 3a4rA, 1lpbA, 

1mr1C, 2xcjA, and 2xdgA. 

 

To remove all information from wild-type sequences in their structures, amino-acid 

residue types in the PDB structural files of all datasets were labelled as ALA (alanine). 

All native positions of  Cβ  atoms were removed and replaced by the positions of 

pseudo Cβ atoms based on standard 1.54 Å for the Cα − Cβ bond length, 109.538° for the 

N − Cα − Cβ  bond angle and 109.468° for the C − N − Cα − Cβ dihedral angle.  All 

protein structures are not energy minimized prior to removal of original side chains to 

avoid possible “memory” of side chains by the energy function used in minimization. The 

latter could lead to artificially high sequence identity to wild type sequences. 

 

4.3.2  Neural Network 

We employed the same neural-network method developed for sequence-based 

continuous-value prediction of backbone torsion angles and residue solvent accessibility 

[122,169,190]. It contains a two-hidden-layer neural network. Each of the two hidden 

layers contains 51 hidden neurons and one bias. We employed a bipolar activation 

function given by f (x) = tanh(αx), with α = 0.2. Back propagation with momentum was 

applied to optimize the weights. The learning rate and momentum were set to 0.001 and 

0.4, respectively. 
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4.3.3  Input Features 

4.3.3.1 Local Features 

There are two types of local features. The first one is backbone torsion angles (ϕ and ψ) 

at a given sequence position. The second one is the fragment-derived sequence profile. 

The method for obtaining the fragment-derived sequence profile was described in [97]. 

Briefly, 5-residue fragments (from i to i+4; i=1, 2, …, L-4) in a target structure of 

sequence length L are structurally compared to all fragments in the same length located in 

the structural template library (TL2282). The sequences of most structurally similar 

fragments (in RMSD) are utilized to calculate probability of a residue type at each 

sequence position (sequence profile). For each sequence position, this profile has a 

dimension of twenty for 20 residue types.  

 

4.3.3.2 Energy-based Non-local Features 

We introduced an energy-based non-local feature as follows. For a given sequence 

position, we built the full side-chain based on the rotamers of each amino-acid residue 

type, one rotamer at a time while assuming that the residue type at all other positions is 

alanine. The total interaction energies of the residue of 20 residue types in all rotameric 

states with all other alanine residues are calculated separately. We record only the lowest 

total energy in all rotameric states of each residue type at a given sequence position plus 

the energies of six most frequent rotamers (or less if a residue type has less than six 

rotamers). The total number of features is 114 (=7×13+4×4+3×1+2×2) because four 

residue types have only three rotamers, Proline has two, and Glycine and Alanine have 

one conformation]. Here, the bbdep02 rotamer library [165] and a knowledge-based 
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energy function based on the distance-scaled finite-ideal gas reference state (DFIRE) 

[156,191] were employed. 

 

4.3.3.3 Sliding Window and Normalization of Input Values 

In addition to the features from the current position (i), we also include the features from 

two sequence neighbors (i-1 and i+1). That is, a window size of 3 is employed. We 

utilized this window size because a larger window size did not improve our prediction. 

The values of all input features were linearly transformed to [-1, 1]. The total number of 

input features is 136×3 (136=2+20+114). 

 

4.3.4  Output Layer 

The output layer contains 20 nodes with each node representing one amino-acid residue 

type. We trained the neural network to make two types of predictions. The first one is to 

predict wild-type sequences where each sequence is represented by a 20×L matrix. That 

is, each sequence position has a 20-dimension vector for 20 amino-acid residue types. 

The value is 1 if a particular residue type is located at the sequence position and -1 for all 

other dimensions. The second one is to predict position-specific substitution matrix 

(PSSM) generated by PSI-BLAST [192]. This prediction takes into account the fact that 

more than one sequence can have the same structure. In this case, a 20×L matrix 

generated from PSI-BLAST [192] is used as the target for training and prediction. 
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4.3.5  Ten-fold Cross Validation and Independent Test 

To examine the accuracy of prediction, we performed 10-fold cross validation on 

TR1532. The dataset is randomly divided into 10 equal parts. Nine were used for training 

and the remaining was for testing. This process was repeated 10 times, once for each of 

the 10 parts. To prevent over-training, a random over-fit protection set with 5% of the 

training set is excluded from training and is used as a small test set for determining the 

stop criterion for neural-network weight optimization.   We did 10 fold cross-validations 

for five times with different random seeds. The consensus of predicted amino-acid types 

of 5 independent runs is employed to calculate the sequence identity to wild-type 

sequences. For independent test, TR1532 was employed for training and TS500 was for 

test only. 

 

4.3.6  Performance Evaluation 

The objective function in the neural network is to minimize the difference between 

predicted and actual values (20-dimension 1 and -1 vector or PSSM). The performance, 

on the other hand, is assessed by several different measures. One is the sequence identity 

between predicted sequence and the wild-type sequence, which is equal to the number of 

correctly predicted residue types divided by the total number of residues.  We also 

calculated precision and recovery rate of each residue type where precision is the fraction 

of correctly predicted residues for a given residue type in the number of predicted 

residues of that type. Recovery rate is the fraction of correctly predicted residues of a 

given residue type in the number of wild-type residues of that type. 
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Another measure of performance is mean square error, In order to calculate the mean 

square error between PSSM and a predicted profile, the predicted profile (fragment and 

single-sequence NN-based approaches, or RosettaDesign) was transformed to a pseudo 

PSSM by log�𝑃𝑃𝑖𝑖𝑖𝑖�, where 𝑃𝑃𝑖𝑖𝑖𝑖 Is the probability for given residue type i in position j. Both 

pseudo PSSM and PSSM are normalized from 0 to 1. The mean square error is obtained 

by calculating the difference between PSSM and the best linear fit of the pseudo PSSM to 

the PSSM. 

 

4.3.7  RosettaDesign 

RosettaDesign 3.5 was downloaded from https://www.rosettacommons.org/software/. 

Proteins are designed based on a fixed backbone structure with the command 

“fixbb.linuxgccrelease -s  example.pdb -resfile example.resfile -ex1  -ex2 -nstruct 100 -

database ROSETTA_DATABASE  -linmem_ig 10 -extrachi_cutoff  0 -

ignore_unrecognized_res -no_opth false -skip_set_reasonable_fold_tree -

no_his_his_paire -score:weights score12prime.wts”. 1000 sequences were designed by 

optimizing all residues simultaneously for each protein in order to obtain a sequence 

profile. All positions are set as ALLAA in example.resfile. All structures are not 

minimized prior to optimization for design. 

 

4.4  Results 

4.4.1  Sequence Prediction 

One way to measure the accuracy of design is to estimate the sequence identity between 

designed sequence and the original wild-type sequence. The fragment-based approach 
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yields an average sequence identity of 23.6% for TR1532, which is consistent with 24% 

obtained by using other databases [97]. For the neural-network (NN) based approach, we 

can predict the “best” sequence based on the residue type that has the highest predicted 

value at each sequence position. We found that neural-network based prediction made a 

7.1% improvement from 23.6% to 30.7% over the fragment-based approach. We can also 

evaluate the improvement based on top 2 predicted residue types. A correct prediction is 

made if one of the top 2 predictions matches to the wild-type sequence. The improvement 

is 8% from 36.3% by the fragment-based approach to 44.3% by the neural-network-based 

approach. For the independent test (TS500), the improvement is essentially identical at 

7.1% (23.6% to 30.7%) for top 1 and 7.7% (36.1% to 43.8%) for top 2 matching, 

respectively. 

 

To examine the relative importance of different features, we evaluated different 

combinations of three features employed here. Because we would like to compare against 

the fragment-based approach, we utilized the structure fragment profile as a base feature 

and added torsion angles or the energy-based profile for comparison.  We found that 

adding the energy-based profile improves the sequence identity to wild-type sequences 

by 6% while adding the dihedral angles adds 1.4% only. In addition, using the energy-

based profile alone can yield an average sequence identity of 26% to wild type sequences 

which is 2% higher than the fragment-based profile. These results highlight the 

importance of nonlocal interaction energy function in neural-network learning. 

 69 



 

Figure 4.1 Average sequence identity between predicted and wild-type sequences 

as a function of protein length (ten-fold cross validation on TR1532, open symbols 

and independent test on TS500, filled symbols) by the fragment-based (dashed 

lines) and neural-network based approaches (solid lines). 

 

Figure 4.1 compares average sequence identities as a function of protein lengths (number 

of amino acid residues). The bins for protein lengths are [0-100), [100-200), and etc. The 

last bin contains all proteins with greater than 700 amino acid residues for TR1532 and 

greater than 600 residues for TS500. The figure reveals a consistent improvement of the 

neural-network based prediction over the fragment-based prediction for different sizes of 

proteins. Moreover, the result from the independent test is nearly indistinguishable from 

ten-fold cross validation, highlighting the robustness of our training method. 
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Figure 4.2 Average sequence identity between predicted and wild-type sequences 

as a function of the fraction of surface residues (ten-fold cross validation on 

TR1532, open symbols and independent test on TS500, filled symbols) by the 

fragment-based (dashed lines) and the neural-network (NN) based approaches 

(solid lines). 

 

Because it is more difficult to design regions exposed to water, it is useful to examine 

how sequence identity will change for proteins with different fractions of surface residues. 

A residue is defined as on surface if its solvent accessible surface is greater than or equal 

to 20% of its reference value. All proteins were divided into 12 bins according to 

fractions of surface residues ([0.35-0.4), [0.4, 0.45), [0.45, 0.5), [0.5, 0.55), [0.55, 0.6), 

[0.6, 0.65), [0.65, 0.7), [0.7, 0.75),[0.75-0.8), [0.8-0.85), [0.85-0.9) ,[0.9,1]).  Because the 
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dataset TS500 does not have enough data to form the bin [0.9,1], we combined those 

proteins to the bin [0.85-0. 9). We started from a fraction of 0.35 because all proteins 

contain at least 35% surface residues.  Figure 4.2 displays the average sequence identity 

as a function of the fraction of surface residues in a protein. Consistent with other 

methods [97,177], sequence identities between predicted and actual sequences are lower 

for proteins with higher fraction of surface residues. Again, there is a consistent 

improvement of 2-10% by the neural-network-based method over the fragment-based 

method regardless the value of the fraction of the surface residues. We further observed 

the consistency between the ten-fold cross validation and the independent test. 
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Figure 4.3 Recovery rate, precision and frequencies for each residue type. (A) 

Recovery rate and precision for each amino acid type by fragment-based and 

neural-network-based approaches as labeled. (B) Frequencies of 20 types of amino 

acid by fragment-based and NN-based approaches are compared to those from 

wild-type sequences as labeled. 

 

We calculated the recovery rate and precision for each residue type. As shown in Figure 

4.3Figure 4.3A, the NN-based approach improves over the fragment-based approach in 

15 out of 20 residue types for both precision and recovery rate. We noted that glycine (G) 

and proline (P) are the most accurately predicted residue types because of their unique 
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backbone conformations. Recovery rates for R (Arg), H (His), Q (Glu), C (Cys), M (Met), 

and W (Trp) for both approaches are very low. This behavior is likely due to low 

occurrence of residue types such as W, M, C, and H in wild-type sequences. Figure 4.3B 

compares the occurrence of 20 amino acid residue types in wild-type sequences with 

those in predicted sequences. We calculated the Kullback–Leibler divergence of residue 

distribution between NN approach and wild-type and that between fragment-based 

approach and wild-type sequences. The former is 0.18 and the latter is 0.31. That is, the 

NN approach yields a distribution much closer to that of wild-type sequences than the 

fragment-based approach except for residue E (Glu) where the NN approach over-

predicts it. We found that the NN approach over-predicts E because it often mis-predicts 

R and Q as E. 27.8% Q residues were predicted as E, 13.6% as K and 11% as L.  20.8% 

of R residues were predicted as E, 15.3% as K and 12.2% as L.  The confusion between R 

and Q (both under-predict) with E and K (both over-predict) are likely due to the fact that 

all of them are hydrophilic residues with relatively long side-chains. 

 

Table 4.1 Sequence identities between predicted and wild-type sequences along 

with the fraction of hydrophilic residues (the number in parentheses) in different 

secondary structure surface (residues with 20% or more solvent accessible surface) 

and core regions for the independent test set 

% 
Ha 

(fh
b) 

Sa 

(fh) 

Ca 

(fh) 

Surf 

(fh) 

Core 

(fh) 
Lcc 

Fragment- 

Based 
18.1 (24.9) 19.6 (16.8) 29.9 (37.4) 

22.1 

(33.5) 

26.2 

(17.8) 
50.8 

Neural 

Network 
26.1 (43.7) 24.5 (30.2) 35.0 (47.7) 

26.2 

(60.0) 

36.7 

(17.8) 
34.5 
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Wild-Type 
100 

(52.2) 

100 

(35.7) 

100 

(53.6) 

100 

(64.7) 

100 

(27.6) 
3 

 

a H, S, and C denote helix, sheet and coil, respectively.  

b fh denotes fraction of hydrophilic residues (D, E, H, K, N, Q, R, S, T, and Y).  

c fraction of residues in low complexity regions. 

 

Table 4.1 further examines sequence identity in different secondary structure and in 

surface regions (only independent test results shown as they are essentially same as ten-

fold cross validation). Interestingly, coil regions in protein backbones have the highest 

identity (30% by fragment and 35% by neural network), compared to 26% in helical or 

25% in sheet regions. This is largely because of high occurrence of Gly and Pro in coil 

regions. These two residue types were most accurately predicted because of their unique 

backbone conformations. The most significant improvement of the NN approach over the 

fragment-based approach is in the core region (10.5% increasement in sequence identity). 

Table 4.1 also shows the fraction of hydrophilic residues. It is clear that the NN approach 

has a significantly better balance of hydrophilic-hydrophobic residues on the surface of 

proteins in particular (34% by the fragment-based approach, 60% by the NN approach 

and 65% in wild-type sequences). However, there is no improvement in the core of 

proteins which have 10% less hydrophilic residues in predicted sequences than in wild-

type sequences. Here hydrophilic residues refer to D, E, H, K, N, Q, R, S, T, and Y. Low 

complexity region (e.g. multiple repeats of same residue type such as VVV) is often 

associated with intrinsically disordered regions of proteins. We have employed the 

program SEG[126] to locate low complexity regions in predicted sequences. As Table 4.1 
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shows, the fraction of residues in low complexity regions is as high as 50.8% per protein 

by the fragment-based approach for the test set TS500. The NN approach cuts it to 34.5%, 

although it is still significantly higher than 3% in wild-type sequences.  

 

4.4.2  PSSM Prediction 

So far, we have trained our NN to predict a single sequence despite the fact that there are 

more than one sequence that could be fitted for a single structure. Thus, it is of interest to 

know if training a NN to predict sequence profile directly, rather than a single sequence, 

would lead to an improved result. To do this, we use the Position Specific Substitute 

Matrix (PSSM) generated from PSI-BLAST [192] for training and testing the NN 

approach. The PSSM is normalized to -1 to 1. We define a PSSM consensus sequence 

based on the most frequent residue from PSSM at each sequence position.    

 

Table 4.2 compares sequence identities between consensus sequences from PSSM and 

predicted consensus sequences by the fragment-based approach, the NN trained by single 

sequence and the NN trained by PSSM. Interestingly, the NN trained by PSSM is similar 

to the NN trained by a single sequence when judged by the sequence identity to the 

PSSM consensus sequence (26.6% versus 26.1% for TR1532 and 26.3% versus 26.7% 

for TS500 for top 1). Improvement on the mean square error (MSE) is greater because the 

NN trained by PSSM was directly optimized for MSE. The difference in conserved 

regions between NN (single sequence) and NN (PSSM) is also small. For example, the 

sequence identity to the consensus sequence in the conserved regions (PSSM≥7) is 31.8% 

by single-sequence trained NN (single sequence) and 32.4% by PSSM-trained NN. 
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Table 4.2 Performance of various methods measured according to sequence identity 

to wild-type sequences, consensus sequences from PSSM (either top 1 match or 

either of the top 2 match) and mean-square error (MSE) to PSSM on the dataset of 

TR1532 or TS500 (the number in parentheses). 

 PSSM 

Method 
Top 1% 

TR1532 (TS500) 

Top 2% 

TR1532 (TS500) 

MSE 

TR1532 (TS500) 

Fragment- 
Based 

21.5 
(21.5) 

42.7 
(41.8) 

0.24 
(0.24) 

NN 
(Single) 

26.6 
(26.3) 

51.7 
(51.7) 

0.21 
(0.21） 

NN 
(PSSM) 

26.1 
(26.7) 

50.3 
(50.7) 

0.18 
(0.18) 

 

athe mean square error between predicted and actual PSSM.  

bthe average sequence identity between predicted consensus sequence and wild-type   

sequence for NN methods.  The seqid for RosettaDesign is based on the average seqid of 

1000 designed sequences.  The numbers in parentheses are sequence identities for core 

and surface regions of proteins, respectively.  

cthe number of designed sequences that are homologous to a wild-type sequence based on 

a PSI-BLAST search. The number in parentheses is the number of designed sequences 

that can find the hits which are 100% sequence identity to wild-type sequences of target 

structures according BLAST.  

dthe average fraction of low complexity residues per protein. For RosettaDesign it is 

based on consensus sequence of 1000 designed sequences.  

 ethe fraction of predicted hydrophilic residues in consensus sequences in core and 

surface of proteins, respectively.  
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fthe average sequence identity from 1000 designed sequences. 

 

We compared the fractions of hydrophilic residues in PSSM consensus sequences and in 

wild-type sequences and found that they are quite similar (28.4% in PSSM consensus 

sequence versus 27.9% in wild-type sequence in protein core and 61.3% in PSSM 

consensus sequence versus 64.3% in wild-type sequences in protein surface). However, 

the PSSM trained NN predicts significantly more hydrophilic residues (5%) on protein 

surface and 3% more in protein core than the single-sequence trained NN. It is unclear 

why using PSSM for training neural networks would significantly increase the number of 

hydrophilic residues on the surface of proteins. 

 

4.4.3   Comparison to Profiles Generated by RosettaDesign  

We compared to RosettaDesign [101] for 50 proteins due to costly computational 

requirement by using RosettaDesign for producing sequence profiles.  As shown in  

, RosettaDesign deviates more from wild-type PSSM than NN-based approaches do. Its 

sequence identity to wild-type sequence (based on the average sequence identity from 

1000 designed sequences) is similar to the NN-based approach. Interestingly, 

RosettaDesign employs significantly more hydrophilic residues in core than wild-type 

sequences while fragment-based and NN-based approaches consistently under-predict 

hydrophilic residues in the core. RosettaDesign, however, has similar number of residues 

in low complexity regions as wild-type sequences, as it was optimized for. 
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Table 4.3 Comparison of predicted sequence profiles with wild-type sequence or 

profile for a dataset of randomly selected 50 small proteins with sequence length 

between 60 and 200 and fraction of surface residue between 0.5 and 0.8. 

 MSEa SeqID(C,S)b %lcc Fh(C,S)d 

Fragment- 

Based 
0.230 

23.4 

(24.0, 20.6) 
50.4 15.8, 34.6 

Rosetta 

Design 
0.223 

30.0e 

(45.2, 23.1) 
7.1 33.7, 65.2 

NN 

(Single) 
0.198 

30.3 

(37.6, 25.5) 
28.5 18.7, 58.4 

NN (PSSM) 0.177 
27.3 

(33.1 ,23.4) 
36.1 16.9, 64.5 

Wild-Type 0 
100 

(100, 100) 
3.7 26.5, 66.2 

 

aThe mean square error between predicted and actual PSSM. 

bThe average sequence identity between predicted consensus sequence and wild-type 

sequence for NN methods. The SeqID for RosettaDesign is based on the average SeqID 

of 1000 designed sequences. The numbers in parentheses are sequence identities for core 

and surface regions of proteins, respectively. 

cThe average fraction of low complexity residues per protein. For RosettaDesign it is 

based on consensus sequence of 1000 designed sequences. 

dThe fraction of predicted hydrophilic residues in consensus sequences in core and 

surface of proteins, respectively. 

eThe average sequence identity from 1000 designed sequences. 
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4.5  Discussion 

In this paper, we employed neural networks for predicting sequences associated with a 

given protein structure. We found that a local fragment-derived sequence profile can be 

significantly improved by integrating with an energy-based nonlocal feature through 

neural networks. Together with backbone torsion angles, the neural-network based 

method SPIN makes 7% improvement over fragment-derived sequence profiles in 

sequence identity to wild-type sequences. The accuracy of sequence profiles from SPIN 

is comparable to RosettaDesign in term of sequence identity to wild-type sequences and 

sequence variation. The MSE between predicted and actual PSSM given by single-

sequence trained SPIN is 0.198, compared to 0.223 by RosettaDesign for a dataset of 50 

proteins. SPIN and RosettaDesign also yield similar sequence identities to wild-type 

sequences (~30%). 

 

The average 30% sequence identity for 50 proteins achieved by RosettaDesign is 

significantly lower than 37.0% reported by Leaver-Fay et al. [193] despite the same 

scoring function and procedures were employed. A close examination found that this 

discrepancy is caused by structural relaxation prior to sequence design. Structural 

relaxation of crystal structures by RosettaDesign prior to design inevitably introduces the 

bias toward wild-type sequences and lead to a higher sequence identity. We found that 

for the 50 proteins, relaxation prior to design yielded an average sequence identity of 

35.6%. Here, we reported the results from RosettaDesign without pre-relaxation to be 

consistent with the structures employed for SPIN. 
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SPIN can be considered as a mean-field like approach. This is because nonlocal 

interaction energy is calculated by assuming that all neighboring residues except the 

residue of interest are alanine. We used alanine because it is the smallest amino acid 

residue except glycine. Using a residue with a small side chain is necessary to avoid 

steric clashes. We do not utilize glycine because lacking a side chain makes it different 

from most residue types by allowing a much more flexible backbone conformation. 

Moreover, alanine has only one conformation. Thus, there is no need for optimizing its 

rotameric state. In addition, alanine is the second most widely employed amino acid 

residues in proteins (8.1%, only 1% behind 9.5% for leucine). The abundance level in 

protein structures is important for minimizing the error caused by approximating all other 

positions as alanine. It should be mentioned that using alanine for the energy-based 

nonlocal profile brings over-predicted alanine (19%) by fragment-based profile to a 

population (7%) similar to the actual population (8%).  

 

The comparable accuracy between SPIN and RosettaDesign suggests that there is room 

for further improving an energy-based approach. In fact, thirty percent sequence identity 

to wild-type sequence reached by this neural-network method and the difficulty to 

improve much beyond 30% for protein design by energy optimization [97,177] suggests a 

common bottleneck facing protein design. This 30% sequence identity is in a so-called 

twilight zone [194] where two protein sequences may or may not have the same structure 

[97]. That is, going beyond 30% is necessary to significantly improve the success rate of 

protein design. Typical energy functions for protein design contain, at minimum, single-

body profiles and two-body pairwise interaction terms. In contrast, SPIN relied on single 
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body energetic terms only.  Thus, SPIN raises the bar for protein design programs that are 

based on more sophisticated energetic terms. On the other hand, the results of SPIN can 

be effectively employed as a single-body energy term to improve an energy function for 

design. In our previous work, we found that incorporation of the fragment-derived profile 

into the RosettaDesign energy function [90] can increase the sequence identity by 4-8% 

[97]. Using this newly improved profile (7% higher sequence identity over the fragment-

based approach) as an energy term may further improve the ability of recovering wild-

type sequences. 

 

Another potential application of this structure-derived profile is fold recognition. Several 

studies have found that sequence profiles from protein design significantly improve the 

ability of recognizing structural similarity in the absence of sequence similarity [185-187]. 

This is particularly important for recognizing new structure folds that do not have wild-

type sequence information but are generated from multiple loop permutations [48]. 

Application to fold recognition is feasible because SPIN is computationally efficient. It 

takes only 343 processor seconds to predict one sequence profile from structures, 

compared to 833×1000 processor seconds by RosettaDesign for predicting 1000 

sequences by Intel(R) Xeon(R) CPU E5-2670 0 @ 2.60 GHz.  

 

There is a recent trend to overcome low success rate of design by using a library of 

protein sequences designed by a design program. The library is then utilized for large-

scale experimental screening of desirable properties [178-182] or for directed evolution 

[87,183]. SPIN provides a complementary approach to protein design programs for 
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building a library of sequences that are compatible to a given structure with similar 

accuracy at a much lower computational cost. 

 

One way to further improve SPIN is to improve its energy-based features. The nonlocal 

energy profile was obtained by employing a DFIRE-based statistical energy function.  

We employed this energy function because it has been found useful in protein structure 

and binding prediction and other applications [147]. Other coarse-grained statistical 

potentials (backbone only) [195] can also be employed here. Obviously, DFIRE or any 

other statistical energy functions were not optimized for this purpose. One might expect 

that our method can be further improved if a knowledge-based potential is optimized for 

single-residue-type recovery when the rest proteins are approximated as occupied by 

alanine residues. 

 

One surprising finding is that using PSSM to train neural networks does not lead to any 

visible improvement over the single-sequence based training. Essentially the same 

sequence identity to PSSM consensus sequences is observed despite that the single-

sequence method was not trained for predicting PSSM at all. In fact, we found that the 

top two amino acid residue types predicted by single-sequence-trained NN are essentially 

the same as the top two amino acid residue types by the PSSM-trained NN (87.5% in 

agreement). This suggests that a neural network is capable of capturing the profile 

encoded in a given protein structure regardless if it was trained or not trained by a profile. 

In other words, the structure of a protein has a dominated effect on the evolution of 

sequences.
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Chapter 5 Self-inhibitory Peptides of Escherichia coli Methionine 

Aminopeptidase 

5.1  Introduction 

The start codon in a messenger RNA always codes for methionine in eukaryotes (or 

modified methionine in prokaryotes). The resulting N-terminal methionine from nascent 

proteins during protein synthesis is removed in all organisms by a protein called 

methionine aminopeptidase (MetAP) [196], particularly when it is connected to a smaller 

and uncharged residue such as Ala, Cys, Gly, Pro, Ser, Thr, or Val [197,198]. The 

removal of methionine, known as the N-terminal methionine excision (NME), is a major 

proteolytic process responsible for the diversity of amino-termini of proteins in both 

prokaryotes and eukaryotes [199].  MetAP is an essential gene in the bacterium; its 

knockout in Escherichia coli and other bacteria leads to cell inviability [200,201].  As a 

result, MetAP is a drug target for anti-bacteria agents [202-204].  In human, MetAP is 

found important in facilitating intracellular translocation of newly synthesized proteins 

from the ribosome [205] and in tumor progression of various cancers [206] and has been 

employed as potential targets for treatment of gastrointestinal cancers and other tumours 

[207]. Inhibition of the methionine aminopeptidase 2 enzyme, targeted by angiogenesis 

inhibitors AGM-1470 and ovalicin [208], is a potential treatment for obesity [209]. Thus, 

developing inhibitors of MetAP and understanding of their molecular mechanisms is an 

important area of research that has implications in many human diseases. 

 

In this chapter, we will focus on inhibition of the E. coli methionine aminopeptidase 

(EcMetAP) by self-inhibitory peptides. Peptide is an important class of therapeutics in 
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addition to small molecular and protein drugs in pharmaceutical industry.  Peptide drugs 

such as Goserelin and Copaxone have been successfully applied to treat human disease 

including breast cancer and prostate cancer, type 2 diabetes, neuroendocrine tumors and 

HIV [210-220]. Although not yet received FDA approval [221], many antimicrobial 

peptides in clinical trials were published and under clinical trials [222,223]. 

 

Self-inhibitory peptide is a peptide derived from a segment of a protein that inhibits the 

protein itself. In the past decades, many self-inhibitory peptides were developed to inhibit 

a disease-related protein [224-229].  Some of these peptides were found useful as an 

antiviral agent in fighting against viruses such as HIV, Dengue virus, and West Nile virus.  

Their mechanisms, however, remain poorly understood. As result, locating self-inhibitory 

peptides is more an art than a science.  

 

Here, we hypothesize that self-inhibitory peptides disrupt the folded structure of its target 

protein through direct competition with the same peptide segment in the target protein for 

interaction with the rest of the protein. We tested this assumption by experimentally 

validating several selected peptides (Chapter 5.2) and by designing new peptide inhibitors 

of EcMetAP (Chapter 5.3). 
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Figure 5.1 The X-ray structure of EcMetAP. It contains four helices and 16 beta sheets.  

 

5.2  Selection and Validation of Self-inhibitory Peptides of EcMetAP 

EcMetAP is a monomer contains 264 amino acids with a molecular weight of 29,333 Da 

[230].  The 3D-structure of EcMetAP with substrate and iron has been solved [231-233].  

Figure 5.1 shows the X-ray structure (PDB ID 1XNZ) rendered by Pymol [234].  It 

contains 4 helixes and 16 beta sheets.  

 

We assume that a self-inhibitory peptide of EcMetAP disrupts the folded structure by 

competing directly with the segment of the same sequence to bind with the rest of protein. 

In other words, most stable structured regions should be most self-inhibitory. To validate 

this assumption, we employed a method called SPINE-D that predicts intrinsically 

disordered and structured regions of a protein [235]. This method was one of the top 
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intrinsic disorder predictors according to critical assessments of structure prediction 

techniques in 2010 (CASP 9) [131]. It takes a protein sequence and predicts the disorder 

probability of each amino acid along the protein sequence.  

 

Figure 5.2 shows the predicted disordered probability as a function of the residue index in 

EcMetAP. We found that four helical regions and two beta sheets are located at the most 

stable structural region with predicted disordered probability around 0.1. We only choose 

four helical regions (P1, P2, P3, and P4) as candidate self-inhibitory peptides because 

they are more likely to have residual structures than beta sheet regions when isolated. 

Figure 5.2 listed the details information of these four selected peptides. The peptide 

length for P2, P3, and P4 is 20 amino acids. P1 has 24 residues because the entire helical 

region is 24 amino-acids long. P2, P3 and P4 have similar average disorder probability. 

The slightly higher disorder probability in P1 is likely due to over prediction of disorder 

near the terminal region by SPINE-D [235].  A   control peptide from β sheet region with 

index from 244-263 is labelled as P5.  
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Figure 5.2 Predicted disorder probability of EcMetAP. The bar represents the location of 

each peptide. 

 

Table 5.1 Properties of four selected and one control peptides. 

 P1 P2 P3 P4 P5 

Sequence 

PEDIEKMRVAG

RLAAEVLEMIE

PY 

VSTGELDRICN

DYIVNEQHA 

IMGERLCRITQ

ESLYLALRM 

GINLREIGAAI

QKFVEAEGF 

GCEILTLRKDD

TIPAIISHD 

Length 24 AA 20 AA 20 AA 20 AA 20AA 

Position 

(PDB index) 
8-31 36-55 120-139 143-162 244-263 
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Ave. Disorder 

Probability 
0.137 0.095 0.096 0.098 0.537 

 

These four peptides at 98% purity were synthesized by the commercial company 

Genscript. We obtained active, wild type EcMetAP by expression and purification from 

BL21(DE3). Then, 4uM EcMetAP was incubated with each peptide at a concentration of 

20uM in a 50mM MOPS (3-(N-morpholino)propanesulfonic acid) buffer under 4°C 

overnight. Afterwards, they were diluted by 2X reaction master mix containing 

fluorogenic substrate L-Methionine-7-amido-4-methylcoumarin (Met-AMC). The 

inhibitory effects of four peptides on EcMetAP are measured according to the relative 

enzyme activity with 10uM synthesized peptides compared with the enzyme activity 

without peptides. Results of enzymatic activity assays in the presence and absence of 

peptides are shown in Figure 5.3 along with a self-derived peptide P5 from EcMetAP β 

sheet area and a 20-aa peptide GFP11 derived from the green fluoresce protein as 

negative controls. Figure 5.3 shows that P2 and P4 have weak inhibition to EcMetAP 

while P1 and P3 significantly reduced the enzymatic activity. P3 has the strongest 

inhibition with the lowest enzyme activity. P5 and GFP11 do not affect the enzymatic 

activity of MetAP as expected. These results confirm that most self-derived peptides 

from stable, structured helical regions (3 out of 4) can indeed inhibit the protein itself.   
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Figure 5.3 Relative enzyme activity of designed peptides. 

 

We further obtained 50% inhibition concentrations (IC50) for P1 and P3. This was 

obtained by measuring enzymatic activities at different peptide concentrations from 

dilution with 50mM MOPS buffer at pH 7.5. As shown in, IC50 values are 1.2 µM for P1 

and 0.67µM for P3.  

 

Figure 5.4 IC50 determination for P1 and P3. Lines were fitted by SigmaPlot. 
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In order to gain some understanding of why different helical regions have different 

inhibition capability, we compared several chemical/physical properties of P2, P3, and P4. 

We did not list P1 here because its longer length (24 amino acid residues) makes it 

difficult to compare with others. Two active peptides (P3 and P4) are close to neutral 

with charge of 1 and -1, respectively. P2 has a negative charge of -3. However, the charge 

is not the issue because P1 also has a negative charge of -3. We calculated the number of 

contacts between a peptide segment and the rest of the protein. A contact is defined if the 

distance between the two atoms in two different amino acid residues is less than 4 Å. The 

number of contact of a peptide segment to the rest of proteins is similar to each other 

(194-210) among P2, P3, and P4, thus, cannot account for difference in IC50. P3 and P4 

have more hydrophobic residues, stronger interaction energy with the rest of the protein 

than P2. This is consistent with P3 and P4 having smaller IC50 than P2. Here, Residues 

A, C, F, G, I, L, M, P, V and W are defined as hydrophobic. The interaction energy (the 

total energy excluding the energy of peptide and the energy of the rest of the protein 

themselves) is calculated by  the statistical energy function called dDFIRE [236]. The 

dDFIRE energy function has the same trend as the IC50: P2>P4>P3, supporting the 

relation between self-inhibition and structural disruption.  

 

Table 5.2 Properties of wild-type peptides. 

 P2 P3 P4 

IC59 (uM) Poor 0.67 10 

Length 20 20 20 
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sequence 
VSTGELDRICN

DYIVNEQHA 

IMGERLCRITQE

SLYLALRM 

GINLREIGAAIQ

KFVEAEGF 

Charge -3 1 -1 

# Contacts 200 194 210 

# Hydrophobic residues 8 11 13 

dDFIRE energy -38.26 -50.50 -44.09 

 

5.3  De novo Design of Self-inhibitory Peptides of EcMetAP 

The relation between dDFIRE energy scores and IC50 encourages us to further explore 

the possibility if we could redesign the peptide region by energy optimization and 

maintain its inhibition capability. We employed a program called OSCAR-design 

developed by Shide Liang and Yaoqi Zhou (publication in preparation) in which the 

distance-dependent and side-chain dihedral-angle components of the design energy 

function were represented as power and Fourier series, respectively, similar to the 

orientation-dependent optimized side-chain atomic energy OSCAR-o for predicting 

protein side chain conformations [166].  Unlike the side-chain program, the parameters 

for OSCAR-design were optimized so that the native residue type has the lowest energy 

in all 20 residue types and the native conformation has the lowest energy in all side chain 

rotamers. We utilized OSCAR-design to design P2, P3, and P4 segments while keeping 

the rest of the protein unchanged. Each peptide was designed 1000 times (i.e. 1000 

sequences).   The designed peptides were ranked according to the energy score and the 

number of conformations for a designed sequence. The energy score was calculated by 

the dDFIRE energy function, rather than the OSCAR-design energy function. The 

number of conformations for a designed sequence is due to the fact that identical 

 92 



sequences were resulted from the design but they are in different side chain 

conformations. A larger number of conformations for the same sequence from the design 

indicates a greater entropy for the sequence at a low energy level. 1000 designed 

sequences were clustered into different clusters according to sequence identity. The 

sequences with the lowest dDFIRE energy from each cluster were selected.  To avoid 

examination of nearly identical sequences, we require at least four-residue difference 

between different clusters. We also clustered the sequences according to the number of 

conformations and applied the same sequence identity restraint. The sequence with most 

conformations at each cluster was selected.  In addition, the candidate peptides must be 

predicted with good solubility according to Innovagen's  peptide calculator 

(http://pepcalc.com/). 

 

Table 5.3 shows statistics of designed P2, P3, and P4 regions. P4 has the least while P2 

has the most unique number of sequences out of 1000 designed ones. Overall speaking, 

the average sequence identity of design sequences to the respective wild-type sequence is 

about 40-60%. That is, about 8-12 residues of a design sequence are identical to wild-

type residues. The diversity of designed sequences is similar according to the average 

pairwise sequence identity (71-73% for P2-P4). The average number of hydrophobic 

residues in designed P2 sequences (7.6) is very close to the wild-type P2 peptide (8) 

while designed P3 and P4 have 1 or 2 more hydrophobic residues than corresponding 

wild-type sequences.  In average, the net electronic charges of design P2 and P3 

sequences have the same sign as their wild-type peptides but that of P4 is the opposite. 
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Interestingly, only 7 designed P2 sequences have lower dDFIRE energies than its wild-

type sequence while P3 has the most sequences with lower dDFIRE energy scores.   

 

Table 5.3 Statistics of designed peptides. All the numbers here are calculated on 

unique sequences. 

 P2 P3 P4 

No. of unique 

sequence 
577 460 327 

Ave. sequence ID 56.4% 42.9% 59.1% 

Ave. Pairwise 

sequence identity 
71.0% 70.7% 73.4% 

Ave. hydrophobic 

residue 
7.648 (8) 12.9(11) 9.1(8) 

Ave. charge -0.714 (-3) 1.6(1) 0.25(-1) 

No.  of sequence with 

a better dDFIRE 

energy 

11 405 100 
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Table 5.4 Experimental results of 20 designed peptides. 

Peptide ID 
dDFIRE 

Score 

# of 

Conformations 

Exp Result 

Solubility(buffer) 

Estimated 

Conc. (uM) 

 

Relative 

Enzyme 

Activity 

Ratio 

p2_1 Y  Water 150 0.82 

p2_2 Y  Water 450 0.84 

p2_350  Y 0.1M NH4OH 350 0.92 

p2_157  Y Water 400 1.03 

p3_66 Y  Water 600 0.12 

p3_67 Y  Water 800 0.01 

p3_78 Y  Water 700 0.02 

p3_136 Y  Non-dissolvable 10mg/mLa 0.1 

p3_157 Y  0.1M NH4OH 800 0.89 

p3_169 Y  20% AcOH 100 0.34 

p3_201 Y  20% AcOH 100 0.22 

p3_261  Y 20% AcOH N/Ab 0.83 

p3_140  Y 0.1M NH4OH 550 1.34 

p3_225  Y 20% AcOH 200 0.97 

p4_1 Y  10% AcOH 650 0.82 

p4_12 Y  10% AcOH 500 0.95 

p4_15 Y  Non-dissolvable 10mg/mLa 0.15 

p4_20  Y 0.1M NH4OH 200 0.66 

p4_58  Y 10% AcOH 700 0.92 

p4_35  Y 10% AcOH 650 0.36 
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aEstimated concentration of undesalted peptides which cannot dissolve in water. 

bEffective concentration cannot be determined due to the zero extinction coefficient.  

 

We selected 20 peptides for experimental examination according to the dDFIRE energy 

or the number of conformations (Table 5.4). The peptides were synthesized by Genscript 

as crude products. Though all of them were predicted to have good water solubility, only 

6 peptides can be fully dissolved in distilled water. 12 of them were can be dissolve in 

other aqueous solvent including 10% Acetic Acid or 0.1M NH4OH. Two of them were 

totally unable to be dissolved in aqueous solvent (P3_136 and P4_15). The 18 dissolvable 

peptides were desalted using Qiagen DyeEx 2.0 spin columns and resuspend in 50mM 

MOPS (pH 7.5).  Their concentrations were estimated using the absorbance at 280nm 

except P3_261 since it does not contain aromatic residues. Due to the variance in 

solubility, the experimental concentrations of peptides are different. And for Peptides 

P3_136 and P4_15 their turbid suspensions were directly tested for enzyme inhibition.  

 

Table 5.4 shows the inhibitory effects of the concentrated designed peptides derived from 

P2, P3 and P4. The peptides derived from P2 show very weak inhibition to EcMetAP. 

Two out of six peptides from P4 show relative inhibition ratio less than 50%. The non-

desalted P3_136 and P4_15 show strong inhibition, however insolubility prevents more 

detailed analysis. The top 4 P3 derived peptides ranked by minimal dDFIRE energy show 

1% - 10% enzyme activity ratio which indicates that they can inhibit about 90-99% 

EcMetAP. Two designed peptides with the strongest inhibition, P3_67 and P3_78 (the 

redesigned P3 region), can inhibit EcMetAP to less than 2% enzyme activity. They were 
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ranked as the top 1st and the 3rd by dDFIRE binding energy among all the P3 derived 

peptides. Their IC50s were further determined and shown in Figure 5.5. However, the 

IC50 values of P3_67 and P3_78 (33µM and 19µM, respectively), are higher than the 

IC50 of wild-type P3 (0.62 µM).  The 20 designed sequences are listed in Appendix B. 

 

 

Figure 5.5 IC50 determination for P3_67 and P3_78.  Lines were fitted by SigmaPlot. 

 

 

5.4  Mutation Design of Self-inhibitory Peptides of EcMetAP 

Facing the difficulty to improve over wild-type self-inhibition by de novo design, we 

examine the possibility by protein engineering. We employed the same hypothesis that a 

better self-inhibitory peptide is a peptide with more stable interaction with the rest of 

protein but tried to improve stability by mutations. Similar to the previous study [237], a 

position specific scoring matrix (PSSM) and position specific amino acid frequency 

matrix were generated by PSI-BLAST [238]. Here, a residue 𝑖𝑖   in position 𝑗𝑗 is consider 

as mutable if the either the PSSM(  𝑗𝑗, 𝑖𝑖 ) ≥ PSSM(j, wild-type) or Frequency( 𝑗𝑗, 𝑖𝑖 ) ≥ 

Frequency(j, wild-type). Mutations selected by PSSM are scored by the dDFIRE energy 

function on 20 independent conformations for those mutations produced by OSCAR-
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design.  Minimal, median and average dDFIRE energies are obtained. We located two 

single-mutation mutants, one double-mutation mutants and one triple-mutation mutants 

by the dDFIRE energy (Table 5.5). The energy score for the wild type is calculated based 

on the side-chain optimized confirmation by OSCAR-design. The single mutation G121A 

and S136C are both mutated from small to large volume which increasing the interaction 

with other residues. Those two mutations have much higher PSSM value (more than two 

folds) and frequency in sequence alignment which indicates the mutant are more 

conserved than the wild-type.  The double mutation combines G121A and S136C while 

triple mutation combines both of them in addition of L131I. The PSSM value and 

frequency in sequence alignment of I is significant higher than wild-type L.  I and L have 

same volume but different isomers.  The dDFIRE energy values of all mutants are better 

than the wild-type in minimal, average and median.  These mutated peptides are currently 

under synthetizing and will be further tested for their inhibition capability.  

 

Table 5.5  Details of PSSM guided mutations. 

Residue index 
Mutation(PSSM, 

Frequency)a 
Min. Ave. Med. 

121 G->A(2:5 7:63) -621.19 -619.21 -619.07 

136 S->C(3:8 27:45) -622.42 -619.81 -619.71 

121_131 
G->A(2:5 7:63) 

S->C(3:8 27:45) 
-622.85 -621.47 -621.67 
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121_131_136 

G->A(2:5 7:63) 

S->C(3:8 27:45) 

L->I(2:7 14:81 ) 

-623.53 -621.11 -621.03 

Wild-type  -619.38 -617.03 -616.98 

 

aThe values in the parenthesis are PSSM (wild-type) : PSSM(mutant) , Frequency (wild-

type) : Frequency (mutant). The larger value means more conserved in sequence.  

 

5.5  Conclusion 

EcMetAP is a very import drug target for anti-bacterial agent. This work designed and 

experimentally validated several self-inhibitory peptides for EcMetAP. In this chapter we 

first identified two strong self-derived peptides (P1 and P3) with IC50 values in the 

micromolar range. Computational optimization was later applied to P2, P3 and P4 

sequences and 20 candidate peptide candidates were tested. Two designed peptides of P3 

(P3_67 and P3_78) did inhibit EcMetAP with IC50 values within the micromolar range. 

However, the inhibition ability of P3_67 and P3_78 is weaker than the wild-type P3, 

highlighting the difficult to improve over wild-type by de novo design. We have 

introduced PSSM guided mutations to wild-type P3 peptide with increased the interaction 

between the self-inhibitory segment with the rest of protein. Further experimental studies 

are in progress. In summary, EcMetAP can be inhibited by its self-inhibitory peptides. De 

novo designed self-inhibitory peptide regions are also self-inhibitory, confirming the role 

of peptide-protein core interaction in self-inhibition. 
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Chapter 6 Computational Design of a Ribonuclease Inhibitor Barstar 

6.1  Introduction 

Protein design aims to design a protein sequence which can fold into the target structure 

and perform desired function. Designing proteins is a powerful method for understanding 

the underlying physical principles of protein folding and function. Moreover, it brings 

new topologies and functions to proteins much faster than nature evolution.  Furthermore, 

it holds the promise of accelerating the creation of novel catalytic, pharmaceutical, 

structural, and sensing properties for diagnostic, therapeutic, and industrial purposes.  

Significant progress has been made in both design methods and applications for 

computational protein design in the last two decades. Researchers have successfully 

redesigned existing proteins and de novo designed proteins to perform a diverse range of 

functions and even designed novel protein structures [10-16]. These computationally 

designed proteins provide insights into physical interactions responsible for protein 

structure stability and folding. Computational protein design requires both an accurate 

energy function and an efficient search algorithm to locate the global minimum or 

reasonably low energy conformations from astronomically large conformational space. 

Our previous study suggests that all programs examined are able to locate near global 

minimal for a specific energy function in fixed backbone design [167] and the accuracy 

of an energy function limited the success rate of computational protein design. 

Traditionally, sequence identity to wild-type sequence is employed to assess the 

computational design and the success rate of protein design is obtained by experimentally 

testing designed proteins individually. Experimentally validation is very costly and time 

consuming due to structure determination is required to confirm the correct folding of 
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designed sequence. This has prevented large-scale experimental validation and 

measurement of success rate. Such a large-scale study would be useful for improving 

computational design techniques.  Therefore in this chapter, we computationally designed 

a total of 48000 sequences of barstar in the presence of barnase and selected 6000 

sequences. Those sequences are prepared for our high-throughput experiments that are in 

progress.   

 

Barnase is a single domain ribonuclease of 110 amino acids [239] and secreted to 

extracellular space by the bacterium Bacillus amyloliquefaciens. Barnase degrades RNA 

and destroys the cells in which it is present. Barstar is a smaller protein (89 amino acids) 

also synthesised by Bacillus amyloliquefaciens. It binds tightly to barnase and inhibits 

intracellular ribonuclease activity of barnase.  Barstar-barnase complexes are very stable 

and results in the inactivation of barnase cytotoxic activity.  Both barnase and barstar are 

water soluble and very stable in their monomeric and complex forms [240].  Therefore 

Barnase-Barstar is a well-studied protein complex for protein-protein binding study. We 

chose the barnase-barstar system as our design target because it is relative small, very 

stable and water soluble. The successful designed candidates of barstar can fold back to 

wild-type structure to inhibit barnase and maintain viability of cell. Unsuccessful 

designed barstar variants will not bind to barnase and lead to cell death. Thus, the success 

rate of the design can be measured by the number colonies on the selective plate divided 

by the tested number of designed sequences (non-selective plates).  
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6.2  Methods 

6.2.1  Design Programs 

In this study, we employed two methods: RosettaTalaris (the RosettaDesign method with 

Talaris2013 as default design scoring function) and OSCAR-design (Liang, et al. in 

preparation). As described in 0, OSCAR-design represents the distance-dependent and 

side-chain dihedral-angle components of the design energy function as power and Fourier 

series, respectively, similar to the orientation-dependent optimized side-chain atomic 

energy OSCAR-o for predicting protein side chain conformations. Unlike the side-chain 

program, the parameters for OSCAR-design were optimized so that the native residue 

type has the lowest energy in all 20 residue types and the native conformation has the 

lowest energy in all side chain rotamers. RosettaDesign [13,90,241-244] uses Monte 

Carlo simulated annealing to search the protein sequences based on an energy made of a 

combined physical and knowledge-based terms. A fixed backbone conformation with the 

latest talaris2013 energy function and Dunbrack 2010 rotamer library [17] was employed 

in this study. 

 

6.2.2  Target Structure Setup 

A barnase-barstar complex structure at 2.0Å resolution [245] was chose as the design 

target (PDB code 1BRS, uniprot ID P11540).  This structure is made of 6 chains: Chains 

A, B and C are belong to barnase and chains D, E and F are belong to barstar.  We 

employ the target structure based on Chain C (barnase) and F (barstar) because Chains D 

and E missed residues 64 and 65 (see Figure 6.1). There are one backbone oxygen atom 

missing in the terminal ARG in chain C and one backbone oxygen atom missing in 
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terminal SER in chain F. These missing backbone oxygen atoms were built by 

RosettaTalaris using NATRO (native rotamer confirmation) design. Program Reduce 

[246] was then used to add hydrogen atoms for the target structure because OSCAR-

design requires polar hydrogen atoms for its energy function.  

 

6.2.3  Target Region Designed 

The goal of this study is to design sequences that are foldable. That is, the protein-protein 

interface between barnase and barstar is not the focus. Thus, we fixed barnase structure 

and sequence as well as the interface residues of barstar. We define a residue as an 

interface residue if any heavy atom of this residue in barstar is within 4 Å to any heavy 

atom in barnase. As shown in Figure 6.1, there are 14 residues located in the dimeric 

interface discontinuously from positions 29 to 46 (coloured by orange in protein sequence) 

and one extra binding residue locates at index 76 (coloured by red) of barstar (sequence 

was renumbered from 1). To facilitate our design, we fixed native residue types 

continuously from 29 to 46 but not residue 76 (coloured by orange in PDB structure 

including 4 non-binding residues, coloured by blue in protein sequence) and allowed side 

chain flexibility. Fixing the binding interface allows us to examine the foldability of 

designed barstar variants. It is worthy to mention that although E76 is far from the major 

binding region, it forms a salt bridge with R59 residue in barnase. This salt bridge was 

found essential for inhibition of barnase by barstar [247].  Hence the recovery rate of E76 

is one way to assess the design programs computationally when E76 is not fixed.   
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Figure 6.1 The barnase-barstar complex structure. Barstar is colored by green (left) 

and barnase is colored by cyan (right). E76 (red) of barstar and R59 (purple) of 

barnase are shown in stick model.  The discontinuous dimer interface region 

(position 29-46) is colored by orange while non-interfacial residues in blue.  

 

6.3  Results 

We utilized both programs to design 12000 sequences for barstar in the presence of a 

fixed barnase. A total of 71 residues are designed when E76 is not fixed. We also 

designed the sequences when E76 is fixed. Table 6.1 shows the comparison between 
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RosettaTalaris and OSCAR-design. Sequences designed by OSCAR-design have a much 

higher sequence identity to wild types (7.2%) than RosettaTalaris. The similarity among 

sequences designed by OSCAR-design is slightly lower (more diverse) than that designed 

by RosettaTalaris (1.4-1.8% lower, about 1 amino acid residue). The sequence 

differences between designs with fixed or without fixed E76 are small in term of 

sequence identity to wild-type sequence and pairwise sequence similarity.  

 

As discussed above, the recovery rate of E76 of barstar can be viewed as a criterion for 

judging design success when E76 is not fixed. As Table 6.1 shows, the recovery rate of 

E76 for OSCAR-design is significantly higher (27.9%) than RosettaTalaris (4.7%).  

 

We further examined low complexity regions in designed sequences by SEG program 

[248]. A low complexity rate is measured at a residue level (SEG output) or at a protein 

level. A protein-level low-complexity rate is calculated by the total number of proteins 

with low complexity region divided by the total number of designed protein sequences 

(12000).  Sequences designed by RosettaTalaris have slightly high rate of low complexity 

at both residue (0.3% higher) and protein (1.2% higher) levels than those designed by 

OSCAR-design.  The overall rate is low for both methods. 

 

One important factor for a good protein design is to avoid large hydrophobic patch area. 

All designed sequences by OSCAR-design and RosettaTalaris with or without fixing E76 

have a larger hydrophobic patch area than wild-type. The areas for the sequences 

designed by OSCAR-design are about 37-38 Å2  larger than wild-type.  This increase, 
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however, is less than RosettaTalaris. The areas of the sequences designed by 

RosettaTalaris are 116 (not fixing E76) or 123 (fixing E76) Å2 than wild types.  We also 

examined the hydrogen bonds using the program HBPLUS [249] as hydrogen bonding 

plays an important role in determining protein three-dimensional structures. The more 

hydrogen bonds a protein has, the more likely its structure will be stable. Because the 

backbone of target structure is fixed, the number of backbone-backbone hydrogen bonds 

is the same in target structure and designed structures.  Thus, we only listed the total 

number of hydrogen bonds between main chain and side chain and between side chains. 

Sequences designed by OSCAR-design have more hydrogen bonds than sequences 

designed by RosettaTalaris and wild-type sequences. It seems that the energy functions in 

both design programs have stronger hydrogen-bonding terms than wild types.  

 

Table 6.1 Statistical information of designed sequences. 

Method 
SeqID%a 

 

Pairwise 

SeqID%a 

E76 

recovery 

rate% 

Low 

complexity 

rate%b 

Hydrophobic 

patch 

area(Å2) 

# of 

hydrogen 

bond 

Wild-type 100 100 100 0/0 323.329c 20c 

RosettaTalaris 39.4 (51.7) 70.6(76.9) 4.7 0.5/(3.7) 439.37 28.3 

OSCAR-design 46.6 (57.4) 68.8(75.5) 27.9 0.2(1.5) 360.04 30.06 

RosettaTalaris 

(Fix E76) 
39.8 (52.7) 70.7(77.0) 100 0.4(3.1) 456.67 28.7 
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OSCAR-design 

(Fix E76) 
47.0 (58.3) 69.3(75.9) 100 0.4(3.4) 361.33 29.94 

 

aThe number in parenthesis is calculated based on the full length of barnase sequence. 

The number outside parenthesis is calculated based on the designed region only. 

bThe number in parenthesis is calculated by the number of proteins with the low 

complexity region divided by the total number of proteins in the corresponding dataset. 

cThe hydrophobic patch area was calculated based on the structure with missing 

sidechain and main chain filled by RosettaTalaris.  

 

We have designed four sets of sequences each containing 12000 designed sequences (two 

methods fixing and not fixing E76). To prepare for experimental studies of a total of 6000 

sequences, the program CD-HIT [250,251] was employed to cluster these four datasets.  

A sequence cut-off of 87% was applied to all the datasets with the command “cd-hit -i 

input_dataset -g 1 -c 0.87 -o output”.  We chose the top 1500 clusters with the most 

members of sequences from each dataset. Table 6.2 shows statistics of selected sequences. 

The top 1500 sequence clusters covered 84.8-86.5% sequences designed by OSCAR-

design. The top 1500 clusters designed by RosettaTalaris covered about 10% more, from 

95.8-95.9% of the whole dataset. That is, sequences designed by OSCAR-design are 

more diverse. Sequences designed by OSCAR-design have more than 3000 clusters while 

datasets designed by RosettaTalaris have less than 2000 clusters under the same cluster 

method. This indicates that the number of sequences in each cluster of RosettaTalaris is 

about 1.5 times more than that of OSCAR-design. We took a further inspection by using 

pairwise sequence identity between any two designed sequences in 1500 selected 
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sequences.  Interestingly, sequences designed by RosettaTalaris tend to be more diverse 

than sequences designed by OSCAR-design after clustering by CD-hit.  It is 1.8-1.9% 

difference (1.6-1.7 residue difference) in full sequence length (89 residues). Figure 6.2 

shows the distribution of overall pairwise sequence identity of datasets before clustering 

and after clustering. We only showed the distribution of sequences designed by both 

methods without fixing E76. OSCAR-design produces sequences having slightly higher 

diversity than RosettaTalaris before clustering but less after clustering.  

 

We also examined the E76 recovery rate in selected sequences. The E76 recovery rate 

increases in both methods while OSCAR-design has a significant higher E76 recovery 

rate.  Low complexity rate at the residue and protein levels increase slightly in 

RosettaTalaris fixing or not fixing E76. Selected sequences designed by OSCAR-design 

without fixing E76 also have slightly higher low complexity rate than the average for all 

sequences but is the same when fixing E76.  There are also minor increases in term of the 

hydrophobic patch areas of sequences designed by OSCAR-design (1Å increase) or by 

RosettaTalaris (6 Å increase). The number of hydrogen bonds for selected sequences is 

essentially the same as for all designed sequences designed by OSCAR-design and 

increased by 1 for the sequences designed by RosettaTalaris.  The average sequence 

identity to wild-type sequence in the designed region decreases about 0.1-0.3% in the 

clustered dataset designed by OSCAR-design but decreases more (1.4-2.1%) for 

sequences designed by RosettaTalaris.  OSCAR-design performs significantly better for 

the sequence identity to wild-type sequence in core, surface and different secondary 

structure regions than RosettaTalaris in the final selected sequences.  
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Hydrophilic-hydrophobic balance is very important for protein stabilization and protein 

function.  The interface of any two sub-units is often composed by hydrophobic residues 

but too many hydrophobic residues on surface may lead to protein aggregation [133,252]. 

Table 6.4 shows the distribution of hydrophilic residues and their recovery rates in 

protein core and on protein surface and in different secondary structures.  There are a 

total of 38 (37 with E76 fixed) hydrophilic residues in the designed region of wild-type 

sequence. The E76 is on protein surface and in a helix and thus the fractions of 

hydrophilic residues at surface and helical regions with E76 fixed are different from those 

with E76 not fixed.  There are 5 hydrophilic residues in β-sheet, 22 (21 with E76 fixed) in 

α-helix and 11 in coiled regions.  Overall fractions of hydrophilic residues are very 

similar to those of wild-type sequence.  OSCAR-design produced slightly more similar 

fraction of hydrophilic residues to the wild-type sequence comparing to RosettaTalaris 

and significantly higher rate of recovery in hydrophilic residues (> than 5%) than 

RosettaTalaris. OSCAR-design yielded a slightly higher fraction of hydrophilic residues 

in protein core (about 0.4-0.6%) while RosettaTalaris produced slightly less (~1.2-1.3%).  

But the difference in number of residues is very small (about 0.1-0.3 residue in average) 

because there are 26 core residues in the designed region. Overall speaking, designed 

sequences from both methods have hydrophilic residue contents very similar to the wild-

type sequence. OSCAR-design performs better than RosettaTalaris in the recovery rate in 

core, surface and different secondary structure regions.  
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Table 6.2 Statistics of designed sequences after clustering: Number of sequences covered 

by top 1500 clusters, the number of clusters, sequence identity to wild-type sequence in 

the designed region and in the whole sequence, in the core and surface, in different 

secondary structure regions for top 1500 selected sequences. 

Method 
Coverage%/

# of cluster 

Pairwise 

SeqID%a 
SeqID%a Core/Surface% Sheet/Helix/Coil% 

RosettaTalaris 95.8/1995 
64.9 

(72.0) 

38.0 

(50.5) 
61.2/24.6 45.1/37.7/32.3 

OSCAR-design 84.8/3172 
67.3 

(73.9) 

46.3 

(57.2) 
72.5/31.3 54.7/44.3/43.3 

RosettaTalaris 

(Fix E76) 
95.9/1983 

64.7 

(72.2) 

37.8 

(51.5) 
61.4/24.8 46.0/38.2 /32.1 

OSCAR-design 

(Fix E76) 
86.5/3027 

66.9 

(74.0) 

46.7 

(58.0) 
72.1/31.7 54.8/44.8/43.4 

 

Wild-type 
 100 100 100/100 100/100/100 

 

a The number in parenthesis is calculated based on the full length of barnase sequence. 

The number outside parenthesis is calculated based on the designed region only. 
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Figure 6.2 Distributions of pairwise sequence identity between any two designed 

sequences for the four datasets as labeled.  
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Table 6.3 E76 recovery rate, low complexity rate at residue and protein levels, the 

average hydrophobic patch area and the average number of hydrogen bonds 

involved with side chain for top 1500 selected sequences.  

Method 

E76 

recovery 

rate% 

Low complexity 

rate%a 

Ave. hydrophobic 

patch area(Å2) 

Ave. # of hydrogen 

bond 

RosettaTalaris 8.8 0.6(4.8) 440.94 29.33 

OSCAR-design 32.1 0.3(2.2) 362.55 30.32 

RosettaTalaris 

(Fix E76) 
100 0.6(5.2) 462.98 29.59 

OSCAR-design 

 (Fix E76) 
100 0.4(3.4) 362.89 30.14 

Wild-type 100 0(0) 323.329 20 

 

a The number in parenthesis is calculated by number of proteins contains low complexity 

region divided by total of numbers in the corresponding dataset. 

 

Table 6.4 The fraction (and recovery rate) of hydrophilic residues in core and on 

surface, and in different secondary structure regions for top 1500 selected 

sequences.  

Method Overall%a Core% Surface% Sheet% Helix% Coil% 

RosettaTalaris 50.2 14.1 71.1 28.5 58.4 53.0 
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(73.8) (41.5) (77.6) (69.7) (77.3) (68.6) 

OSCAR-design 
51.4 

(79.6) 

15.8 

(51.2) 

72.1 

(82.9) 

36.4 

(83.6) 

57.8 

(80.0) 

51.9 

(76.9) 

RosettaTalaris 

(Fix E76) 

49.8 

(73.6) 

14.2 

(41.5) 

70.8 

(77.5) 

28.1 

(69.6) 

57.3 

(76.1) 

54.2 

(70.8) 

OSCAR-design 

(Fix E76) 

50.8 

(79.1) 

16.0 

(51.1) 

71.4 

(82.5) 

36.4 

(83.2) 

56.6 

(79.2) 

52.0 

(76.9) 

Wild-type 53.5/52.8b 15.4 75.6/75.0 b 31.3 59.5/58.3 b 61.1 

 

a Hydrophilic residues are D, E, H, K, N, Q, R, S, T, and Y. 

bThe fraction of hydrophobic residues for the case of E76 fixed. 

 

6.4  Discussion 

Traditionally, the success rate of protein design is obtained by experimental testing of a 

number of designed sequences for a given protein. This is very costly and inefficient 

because an accurate measure requires testing a large number of design sequences [87,90]. 

High cost and inefficiency have prevented the use of experimental success rate as a tool 

to improve computational techniques. In this chapter we employed OSCAR-design and 

RosettaTalaris to design 15000 sequences for barstar with and without E76 fixed, 

respectively. A total of 6000 sequences will be tested by our high-throughput experiment 

and the success rate of computational design methods will be measured. The feedback 
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from experimental studies will help to further examine and improve the energy function 

of computational design. Improving success rate is needed for a more wide use of protein 

design as a tool for designing proteins with desirable structural and functional properties 

by experimental biochemists.   
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Chapter 7 Conclusion 

In summary, this dissertation presented a comprehensive assessment of state-of-the-art de 

novo computational protein design methods and developed a new energy term for design 

by neural-network-based prediction of structural compatible sequence profiles. It also 

presented two applications: designing and optimizing self-inhibitory peptides for 

methionine aminopeptidase and barstar for the barnase-barstar system. 

 

Low success rate of de novo computational protein design is not caused by insufficient 

search in the sequence space because all designed sequences from a given design 

program are converged around a single solution with pairwise sequence identity about 68% 

in a benchmark test. The low success rate is due to inaccurate energy functions currently 

employed because a wild-type sequence has an energy score much higher (about 8-15 

kcal/mole) than designed sequences (Chapter 2). To improve our understanding for the 

low success rate, we analysed the sequences designed by several representative design 

programs with several novel techniques. Two new scoring functions, OSCAR-design and 

RosettaTalaris, were found to significantly improve over previous methods in several 

important measurements including sequence identities to wild types and sizes of 

hydrophobic patches. OSCAR-design, despite of its purely mathematical energy function, 

is superior over RosettaDesign in the overall assessment.  

 

To overcome the deficiency in energy functions, we developed a machine-learning 

technique to predict sequences compatible to a given target structure. It produced 30.3% 

sequence identity to wild-type sequence in independent test dataset of 500 proteins.  The 
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sequence identity to the wild-type sequence by SPIN is comparable to RosettaDesign in 

randomly selected 50 proteins (30.3% vs 30.0%) without pre-minimizing target structures. 

SPIN produced a better sequence profile to PSSM than RosettaDesign based on MSE 

measurement with a much faster computing time (~103 order of magnitude faster).  The 

method can be further improved by optimizing the nonlocal energy profile and taking the 

advantage of deeper learning network technique.  

 

The discovery of improvement of OSCAR-design over RosettaDesign led us to employ it 

to design self-inhibitor peptides for methionine aminopeptidase (MetAP). Four peptides 

(P1, P3 and P3 derived P3_67 and P3_78) can achieve IC50 at a micromole concentration.  

These findings supported that MetAP can be inhibited by self-derived peptides and 

designed peptides can also be self-inhibitory, although not as strong as wild type peptides. 

We attempted to further improve efficiency of inhibition over wild-type peptides by 

utilizing PSSM guided mutations.  Experiments are in progress. Final experimental 

results will help to further understand the mechanism of self-inhibitory and develop better 

methods to design self-inhibitory peptide for biomedical purposes.  

 

To further test protein design techniques, we designed a total of 48000 sequences for the 

barnase-barstar system with OSCAR-design and RosettaTalaris. 6000 designed 

sequences were selected to further test by our high-throughput experiment that is in 

progress. Computational analysis of designed sequences suggests that OSCAR-design 

performed better in sequence identity to wild-type sequence, the recovery rate of the 

critical E76 residue, the size of hydrophobic patch areas, sequence complexity, the 
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number of hydrogen bonds, and the number of hydrophilic residues and their recovery 

rate.  The feedback from experimental studies (in progress) will help us to further 

examine current design methods and improve their energy functions.  
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Appendices 

Appendix A  List of 112 X-ray Monomeric Proteins 

1eur, 1ede, 1fhl, 1izz, 1mtz, 1qtr, 1ri6, 1v6y, 1xfk, 3d2a, 3f7m, 3hvm, 3ils, 3mxx, 3pte, 

153l, 1ahc, 1g62, 1nrf, 1o0x, 1olr, 1p3c, 1qtf, 1qva, 1vin, 2a6z, 2rkx, 3hoj, 3ne0, 3oc6, 

1ezk, 1gak, 1hzt, 1i04, 1kng, 1pzc, 1sau, 1tzv, 2a4v, 2ehg, 3csr, 3fh2, 3g7y, 3k8u, 3kh7, 

1e6m, 1aa2, 1b1u, 1bm8, 1gh2, 1ooi, 2aif, 2c6u, 2fc3, 2fi9, 2gkg, 2wz9, 3d4m, 3dju, 

3kt9, 1dsl, 1h75, 1hoe, 1ptf, 1tig, 1ulr, 1x3o, 1x6j, 2fi0, 2gtg, 2uwr, 2w9q, 2zeq, 2zrr, 

3llb, 1f0m, 1hyp, 1pht, 1tsf, 1uj8, 1vcc, 1zzk, 2b8i, 2cgq, 2ckx, 2evb, 2fq3, 2ywk, 2zqe, 

3adg, 1fna, 1n7e, 1o3x, 1wvn, 1yqb, 1zeq, 2o37, 2ozf, 2vc8, 2yxy, 3g7c, 3hak, 3rd2, 3hjl, 

2ciu, 1a32, 1dvo, 1ntn, 2cg7, 2wj5, 3pr9, 1lr9 
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Appendix B  Twenty Computationally Optimized and Experimentally Tested Self-  

inhibitory Peptides of EcMetAP 

Table B.1 Properties of twenty candidate peptides including dDFIRE energy, 

contacted residue pair, total charge, number of hydrophobic residue, Isoelectric 

point and number of confirmations for unique sequence. 

ID Sequence dDFIREa AA Pairb Charge 
Hydrophobic 

residue 
PIc Confirmation 

p2_1 
MSTGELNKICDKFI

REYQGA 
-38.85 54 0 9 6.47 1 

p2_2 
ESTGKLNKICQKFI

EEYQGA 
-38.74 54 0 8 6.51 1 

p2_350 
SSTGELDRICERYI

KEHQGA 
-36.04 54 -1 7 5.43 19 

p2_157 
SSTGDLDKICEKYI

KEYQGA 
-36.96 54 -1 7 4.56 14 

p3_66 
PLGEKLCKVTYEA

LLRALLL 
-55.49 59 1 13 8.84 3 

p3_67 
PLGKKLCEVTRKA

LYIALLL 
-55.49 60 3 13 10.05 1 

p3_78 
PLGKRLCEVTYKA

LVRALLL 
-55.29 57 3 13 10.18 1 

p3_136 
PLGARLCDVTRRA

LYRALLL 
-55.59 60 3 13 10.98 1 
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p3_157 
PLGERLCKVTLEAL

YRALLM 
-54.17 58 1 13 8.87 3 

p3_169 
PEAERLCRVTLRAL

YRALLL 
-53.93 59 2 12 9.86 1 

p3_201 
PLAQKLCDVTYEA

LKRALLL 
-53.60 58 1 12 8.84 1 

p3_261 
PLGEKLCKVTLEA

LQRALLL 
52.81 55 1 13 8.93 26 

p3_140 
PLGERLCKVTYEA

LVRALLM 
-54.37 60 1 13 8.87 5 

p3_225 
PLGQKLCDVTYEA

LKRALLL 
-53.17 60 1 12 8.84 5 

p4_1 
GVNLRDIGRLIQQY

VESKGF 
-46.13 61 1 10 9.71 1 

p4_12 
GVNLRDIGRKIEQY

INSQGF 
-45.14 61 1 9 9.71 1 

p4_13 
GVNLREIGRHIQQY

IESQGF 
-45.09 63 0 9 7.76 1 

p4_20 
GVNLREIGRHIQQY

VESQGF 
-45.00 64 0 9 7.76 126 

p4_58 
GTNLRDIGRAIQQY

VESKGF 
-44.42 61 1 9 9.71 11 

p4_35 
GVNLREIGRAIENY

VKSKGF 
-44.73 60 2 10 10.17 9 
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a minimal dDFIRE energy.  

b maximal contacted residue pair with 4 Å.  

c calculated Isoelectric point by Innovagen's  peptide calculator (http://pepcalc.com/). 
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