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Deepali Jhamb 

 

CONDITION-SPECIFIC DIFFERENTIAL SUBNETWORK ANALYSIS  

FOR BIOLOGICAL SYSTEMS 

 

Biological systems behave differently under different conditions. Advances in 

sequencing technology over the last decade have led to the generation of enormous 

amounts of condition-specific data.  However, these measurements often fail to identify 

low abundance genes/proteins that can be biologically crucial. In this work, a novel text-

mining system was first developed to extract condition-specific proteins from the 

biomedical literature. The literature-derived data was then combined with proteomics 

data to construct condition-specific protein interaction networks. Further, an innovative 

condition-specific differential analysis approach was designed to identify key differences, 

in the form of subnetworks, between any two given biological systems.  

The framework developed here was implemented to understand the differences 

between limb regeneration-competent Ambystoma mexicanum and –deficient Xenopus 

laevis. This study provides an exhaustive systems level analysis to compare regeneration 

competent and deficient subnetworks to show how molecular entities inter-connect with 

each other and are rewired during the formation of an accumulation blastema in 

regenerating axolotl limbs. This study also demonstrates the importance of literature-

derived knowledge, specific to limb regeneration, to augment the systems biology 

analysis. Our findings show that although the proteins might be common between the two 

given biological conditions, they can have a high dissimilarity based on their biological 
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and topological properties in the subnetwork. The knowledge gained from the 

distinguishing features of limb regeneration in amphibians can be used in future to 

chemically induce regeneration in mammalian systems.  

The approach developed in this dissertation is scalable and adaptable to 

understand differential subnetworks between any two biological systems. This 

methodology will not only facilitate the understanding of biological processes and 

molecular functions which govern a given system but also provide novel intuitions about 

the pathophysiology of diseases/conditions. 

  Xiaowen Liu, PhD, Chair 
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CHAPTER ONE: INTRODUCTION 

Overview of the Problem 

Systems biology was introduced in 2001 as a framework to study the behavior 

and relationships between different entities of a biological system [1]. The last fourteen 

years have seen tremendous progress in this field, leading to a paradigm shift in 

biology—from being a descriptive science to a predictive science. In the 20
th

 century, 

reductionism dominated the research in biology. It was based on the “divide and 

conquer” policy and hence focused on identification of smaller, simpler solutions of a 

complex biological system. This approach was largely successful in providing 

information about several biological processes and molecular functions and also resulted 

in finding cures for several diseases, especially metabolic disorders. However, for 

complex diseases such as cancer, this approach has not succeeded and as more data is 

being collected, it has become clear that the complexity of a biological system is greater 

than the mere sum of its individual parts [1-4]. 

With the advent of sequencing technologies, enormous amounts of data are being 

generated and deposited in public repositories such as the Gene Expression Omnibus [5]. 

High throughput measurements are an important source of large and heterogeneous 

biological information such as genomics, transcriptomics, proteomics, interactomics, and 

variant data. However, high throughput measurements often fail to identify low abundant 

genes/proteins which can be biologically crucial [6, 7]. Biomedical literature or 

publications are the most comprehensive resource of the knowledge amassed in this 

discipline. This collection can hence be used to extract the “missing” knowledge (not 

obtained by high throughput analysis). Since it is hard for scientists to manually keep up 

with this exploding amount of biomedical literature, text mining or automated retrieval of 

knowledge from biomedical literature has gained more importance over the last few 

years. Text mining has its strengths and weaknesses, the most common weakness being 

the noisy and unspecific data generated as a result of natural language processing. It is 

important to develop effective and efficient information retrieval techniques to 

circumvent the problem of noisy data. 

An important issue that needs to be addressed during automated information 

retrieval is content-focused querying. Any particular biological entity is often discussed 
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in sufficient detail in a given article. However, the traditional text mining approaches 

usually discard these content-specific details and return a subset of documents which 

contain the keywords specified by the user. This results in generation of a lot of false-

positives or noisy data. For example, from a sentence like “collagen deposition is 

suppressed during limb regeneration, so we investigated collagen deposition and apical 

epithelial cap (AEC) formation during axolotl limb regeneration,” biological features 

such as appendage (limb), biological process (regeneration), tissue (AEC), and organism 

(axolotl) are usually ignored by keyword retrieval methods (unless these were specified 

as keywords). Such biological features are crucial to defining and understanding the 

concept/context of an article. Several document clustering or text categorization 

approaches have been used to cluster the documents based on context. However, these 

approaches either suffer from the problem of high dimensionality and hence cannot be 

applied to large collections such as PubMed [8, 9] or are based on ontologies such as 

Medical Subject Headings (MeSH) [10] which are not always up to date and can generate 

a high number of false positives. The performance evaluation of these methods has 

suggested that it varies based on the domain/field under investigation [8]. 

Systems biology models can be used to logically integrate the knowledge (such as 

genes/proteins) extracted from context-specific text mining and high throughput 

measurements. This approach can build the foundation to integrate several datasets in an 

attempt to better understand complex biological systems. Network analysis has found  

application in several areas ranging from electrical circuits to social networks. It is also 

now being extensively used to study the inter-relations between different molecular 

components of a biological system [11]. Most of the work in network biology has 

focused on static networks. Static networks however merely represent the state of a 

system at any given point and cannot be used to make predictions about network 

behavior. As described by Hiroki Kitano [4], one of the pioneers in systems biology:  

“Although such a diagram represents an important first step, it is analogous to a 

static roadmap, whereas what we really seek to know are the traffic patterns, why such 

traffic patterns emerge, and how we can control them.”  

One of the key challenges then is to understand how the networks change with 

different states of a system. In other words, it is critical to understand the network 
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dynamics or “rewiring.” Biological systems behave differently under different conditions 

and network comparisons such as between disease and normal state can offer novel 

intuitions into the pathophysiological process of a disease and also suggest 

biomarkers/drug targets for the same. This can also help formulate a novel hypothesis 

about the change in the biological processes, and regulation patterns across different 

conditions. 

Limitations of the Present Approaches 

Several studies have been performed for context-specific mining and network 

comparisons in the biomedical domain (as described in the Background section of this 

thesis). However, the following are some of the pitfalls in current studies: 

1. Most importantly, to our knowledge none of the studies so far has logically integrated 

context-specific text mining and high throughput datasets in a systems biology 

framework to compare subnetworks across different biological conditions for target 

discovery. Most of the studies have either focused on information retrieval techniques 

or systems biology analysis on high throughput measurements alone. In our opinion, 

information retrieval, information extraction, and downstream analysis through 

systems biology together can help formulate biologically meaningful hypotheses to 

identify new targets or to understand the pathophysiology of complex biological 

systems. 

2. The present work in document clustering or context based information retrieval 

suffers from the “curse of dimensionality” and hence cannot be used to cluster a large 

set of documents. The current approaches also generate a lot of false positives and the 

performance of a given method is highly dependent on the field/domain. 

3. Although a great deal of work has been done in the identification of functional 

modules and network analysis, not enough work has been done to identify 

functionally differential components by comparing subnetworks/networks between 

biological systems.  The current network comparison algorithms are focused on either 

the local or global alignment of networks with respect to sequence- or structure-based 

similarity between the network nodes. These approaches are suitable to find the 

common structures between networks so as to establish phylogenetic relationships but 
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are not capable of identifying the functionally differential subnetwork components 

between the two conditions. 

4. Network directionality has not been considered in most of the current network 

comparison approaches, which is critical to understanding the regulatory mechanisms 

and both the downstream and upstream effectors of a process. 

5. Existing tools like Ingenuity Pathway Analysis (IPA) [12], MetaCore
TM

 from 

GeneGO [13] also perform enrichment analysis, however their enrichment is 

restricted to the use of either the function or pathway information and they do not 

integrate condition-specific data from the biomedical literature. These tools have 

built-in algorithms to generate a list of important networks in a biological condition 

but do not contain effective differential network comparison algorithms. Moreover, 

these are commercial software tools and not freely available public tools. 

6. Network comparisons have been done based on either topology or coexpression 

networks from high throughput datasets. Each has its own limitations—for instance,  

topology alone might not be able to identify biologically relevant information while 

high throughput datasets often fail to identify genes/proteins with relatively low 

expression level. 

Summary of the Methodology 

The methodology for the systematic subnetwork comparison between biological 

conditions developed in this study can be broadly categorized into three steps: 

integration, filtration, and analysis. Briefly, an innovative algorithm was designed to 

mine the condition-specific (or context-specific) knowledge from the biomedical 

literature which and integrate it with the high throughput data. This information was used 

to construct protein interaction networks which were filtered using a rule based novel 

algorithm to generate subnetworks, based on both the topological (interaction profile) and 

biological parameters such as molecular class, expression, literature relevance, function 

and pathway information. A unique subnetwork comparison algorithm to identify 

differential subnetworks then analyzed subnetworks between two conditions. This 

algorithm, unlike current approaches, also considered the direction of interaction between 

the proteins on the subnetworks.  
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This framework described above was implemented to understand the difference 

between the limb regeneration competent system of Ambystoma mexicanum (axolotl) and 

the limb regeneration deficient system of adult Xenopus laevis froglets.  Proteomics data 

from the amputated limbs of both systems at multiple time points was used as the high 

throughput data in this study. The context-specific information retrieval method was then 

used to retrieve regeneration-specific articles. Proteins extracted from these relevant 

articles and proteomics data proteins were used to build protein interaction networks for 

the limb regeneration-competent and -deficient systems. The novel subnetwork 

comparison algorithm was further used to identify the most differential growth factor 

(GF), transcription factor (TF) and extracellular matrix (ECM) protein subnetworks in 

these conditions. This led to the generation of a hypothesis to suggest potential protein 

targets which can be instrumental in conferring limb-regeneration ability on Ambystoma 

mexicanum. A similar condition-specific data mining methodology was applied in order 

to understand the segment defect regeneration across a critical size defect. The key GFs 

identified by this study were validated in the biology laboratory and yielded positive 

results, thus demonstrating the efficiency of the approach developed. 

The approach developed in this dissertation is scalable and adaptable to 

understand differential subnetworks between any two biological systems. This 

methodology will not only facilitate the understanding of biological processes and 

molecular functions which govern a given system but also provide novel intuitions about 

the pathophysiology of diseases/conditions. 

Significance 

This approach is expected to increase general understanding about the underlying 

mechanisms of a biological condition. As an example, a comparison between the 

regeneration-competent and –deficient system provided insight into the complex 

mechanisms which confer regeneration ability on urodeles as compared to adult anurans. 

The knowledge gained from the distinguishing features of limb regeneration at systems 

level in amphibians can then be used to chemically induce regeneration in mammalian 

systems. These mechanisms can also be further analyzed to understand why humans are 

not capable of regenerating complex tissues. Hence, significant targets might be 

identified which in future can be used to confer this ability in humans. Similar analysis 
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can also be performed to distinguish other biological systems—such as performing a 

comparison between different types of cancer in order to provide intuitions about the 

pathophysiological processes of cancer. 

Innovation  

1. The novel bibliomics methodology proposed in this study identified context-specific 

data from the biomedical literature. Traditional text mining approaches lack in the 

identification of large-scale context-specific information from the text. This approach 

was used to identify limb regeneration-specific articles from a set of approximately 

200,000 documents—which is higher than any of the currently available methods. 

The approach developed here achieved a Mathew’s Correlation Coefficient (MCC) 

score of 0.92 and is easily scalable to a much higher number of articles.  

2. An innovative rule based algorithm was developed to identify subnetworks from a 

global context-specific biological network. This algorithm used both the biological 

and topological properties of proteins on the network.  

3. To our knowledge, this is the only functional and molecular class based differential 

subnetwork analysis which includes directed protein interactions between proteins 

mined from condition-specific literature and high throughput experiments.  

4. Systems biology approaches have not been applied yet to study the limb regeneration 

system and the present studies have not been able to confer regeneration-competence 

upon the deficient mammals. We propose a novel way to analyze the regeneration 

system so as to discover the governing molecules and mechanisms of limb 

regeneration in axolotl.  

5. In a screen of growth factor combinations (identified by text mining and systems 

biology) and protein extracts of axolotl whole limb and regeneration blastema tissues, 

we found that a combination of BMP-4 and HGF, as well as limb tissue protein 

extract, but not blastema extract of amputated limbs, stimulated skeletal regeneration 

across 50% segment defects when delivered by a pig small intestine submucosa (SIS) 

scaffold.    

6. There is enough evidence to indicate that regenerating cells show stem cell-like 

characteristics. Hence, we believe that the regeneration mechanisms unraveled here 

will also help in the progression of stem cell research and medicine. 



7 

 

CHAPTER TWO: BACKGROUND 

Bibliomics 

Text mining refers to the discovery of novel patterns by automatically extracting 

information from text. This usually involves “connecting the dots” or different pieces of 

information from text and linking them together to derive a meaningful, testable 

hypothesis [14]. Within the domain of text mining, the bioinformatics discipline which 

deals specifically with the structural and semantic analysis of the vast biomedical 

literature is generally referred to as bibliomics. The advancement of new high throughput 

technologies and research capabilities in the last decade have contributed to the 

exponential growth of biomedical literature [9]. As a result, bibliomics has gained more 

importance over the last few years. The ultimate goal of bibliomics is to make relevant 

judgments about new targets to help in progression of basic science and drug discovery.  

Biomedical Literature 

Biology has often been referred to as a knowledge-based science—unlike 

chemistry and physics that can be defined by laws and mathematical equations. There is a 

huge amount of biological data (especially with the advent of current genomics 

platforms) available for the research community. However, this data is complex, volatile, 

and heterogeneous [15, 16].  PubMed, a resource developed and maintained by the 

National Center for Biotechnology Information (NCBI), provides free access to over 24 

million citations and abstracts in the biomedical literature [17]. In addition to PubMed 

there are several other data resources available from NCBI and the European 

Bioinformatics Institute (EBI) for biomedical and genomic information [18, 19]. Several 

other initiatives have been taken by different research groups and institutions for 

organization of biological information such as, but not limited to, UniProt [20], the 

Human Protein Reference Database (HPRD) [21], and BioGRID [22].  

Information Retrieval 

Information retrieval (IR) or obtaining relevant information from a large 

collection is typically the first task in text mining. Although PubMed provides the 

interface for querying the most comprehensive resource for the biomedical literature, 

users are often overwhelmed with the long list of results. It has been previously shown 

that over one-third of the searches on PubMed yield 100 or more documents [23]. The 
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strategy for IR in PubMed uses automatic term mapping (ATM) for a given query. 

Briefly, the terms in a query are searched in several lists in the following order: MeSH 

terms, journal names, and author names. If there is a match in any list, mapping stops and 

the matched terms and query terms are searched in the “All Fields” of PubMed. If there is 

no match, PubMed builds a Boolean query with the query terms and searches in the “All 

Fields” [24]. Query expansion methods like the one used in PubMed and other methods 

such as retrieval feedback aim to increase the search accuracy [25]. However, some 

research suggests an improved performance while others suggest no improvement in 

retrieval by using the query expansion methods [26]. The accuracy of these methods 

varies with topics, the most common issue being the increased number of false positives. 

Since the users searching PubMed are usually interested in more specific hits to their 

domain, the value of query expansion to the end user is questionable [27]. 

Document Similarity 

Document similarity is very crucial for the purpose of IR and several methods 

have been investigated which aim to improve the ranking of the search results so that 

similar documents (in relation to the query) rank higher [28, 29]. Text REtrieval 

Conferences (TREC) have been a significant part of this effort including their genomics 

track which ran from 2003-2007 [30, 31]. The methods used for ranking the retrieved 

documents are generally derived from two earlier publications on vector space models or 

probabilistic models [28, 32]. MedlineRanker uses supervised learning to identify the list 

of discriminative words (nouns in a set of known documents) by using a linear Naïve 

Bayesian classifier. This method can rank a maximum of the 10,000 most recent articles 

in PubMed, related to the initial set of known domain-specific documents [33]. Several 

other features such as MeSH terms, Unified Medical Language System (UMLS) 

concepts, gene ontology (GO) terms, author names, journals, year of publication have 

been used by tools such as XplorMed, Multi-document clustering system for Biomedicine 

(McSyBi), and GOPubmed to improve the performance of IR in biomedical literature 

[34-37]. Alibaba, PubMed-EX, Information Hyperlinked over Proteins (iHOP), and 

EBIMed identify biomedical entities such as proteins, genes, drugs, diseases, etc. and 

then compute their co-occurrence in a sentence [38-41]. The method employed in 

Publication Network Graph Utility (PubNet) uses articles, authors, genes, or MeSH terms 
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or location as nodes on the network [42]. The Relevance Feedback Search Engine for 

PubMed (RefMed) and MiSearch are examples of methods based on user feedback [43, 

44]. RefMed uses learning to rank algorithms and Rank Support Vector Machines 

(RankSVM) to learn relevant documents based on user feedback [43]. The different 

methods to enhance IR in biomedical literature have been summarized effectively by 

Zhiyong Lu [9]. 

The different document similarity approaches in the biomedical domain can be 

broadly classified into: text-based, citation-based, and hybrid approaches [8]. The text-

based approaches use a natural language processing toolkit such as tf-idf (term 

frequency-inverse document frequency) to identify parts of text (words or phrases) which 

can be used for document clustering. Citation-based approaches are based on the concept 

that similar articles must have similar bibliographic information. Hybrid approaches 

integrate both text and citation -based methods. Performance results of these approaches 

are domain/field specific and hence there is no consensus on the best performing method.  

Document Clustering 

Document clustering or text categorization groups similar documents to provide 

relevant results for a users’ query.  Document clustering is often limited to a small set of 

documents since it suffers from the “curse of dimensionality.” Most of the approaches for 

document clustering follow a vector space model to represent the important words from 

the text and hence suffer from the problem of high dimensionality [45]. Several different 

machine learning or statistical approaches have been employed for document clustering 

such as Bayes probability distribution [46], neural networks [47], nearest neighbor 

classification [48], decision trees [49], etc.  

One of the first and most well recognized studies that described document 

clustering on biomedical data, TextQuest, was based on creating a fixed length array bit 

vector representation of important words (identified by tf-idf and frequency distribution) 

for each document and then using k-means unsupervised clustering to cluster the 

documents. A final set of representational terms of a cluster were identified by using log-

odds ratio [50]. This work has been extended as BioTextQuest and more recently as 

BioTextQuest
+
 [51, 52]. Although the fundamental principles are the same as in the 

initial study, it uses better stemming and clustering algorithms. In the most recent 
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version, queries can be made on both PubMed and Online Mendelian Inheritance in Man 

(OMIM) resources—it also enables extraction of biological entities such as genes and 

proteins from the relevant document clusters. The recent versions also support better 

visualization of results such as tag clouds of overrepresented terms [53].  Several other 

approaches have taken advantage of ontologies such as MeSH to cluster articles in the 

biomedical literature [54-57]. The use of ontologies reduces the burden of dimensionality 

as well as proves to be an effective way to deal with synonyms. However, most of these 

approaches work only on a small set of documents and results vary based on the 

field/domain being investigated. The study by Boyack et al is the most comprehensive 

evaluation of different text-based document similarity measures for document clustering 

such as tf-idf, latent semantic analysis, topic modeling, self-organizing maps, and 

Poisson-based methods [8]. In their study, they found PubMed Related Article search 

algorithm (PMRA) [58] and BM25 [59] perform the best. 

The PubMed Related Article (PMRA) search algorithm and BM25, both use 

Poisson distribution for calculating term-weight. However, there are fundamental 

differences between these two approaches. The main goal of PMRA is to identify 

“relatedness” of documents rather than “relevance” as estimated by BM25.  The retrieval 

model employed in PMRA is used to populate the related articles in the right hand panel 

of PubMed. The derivation of Poisson parameters in these two models has important 

differences especially in the definition of “elite” vs. “non-elite” distributions. PMRA 

method also accounts for document length since identification of related documents uses 

the entire document as a query and so query length normalization plays a significant role 

in the model. PMRA is a topic based content similarity model which uses MeSH terms, 

title, and abstract words to determine concept based term frequencies [58, 60]. 

Biomedical Ontologies 

Ontologies provide a computational framework to help in the structural and 

semantic classification of biological data. Ontologies help tremendously in the storage, 

representation, and dissemination of biological information [15, 16]. Some well-known 

ontologies in the biomedical domain are: GO[61], UMLS [62], MeSH [10], and 

Systematized Nomenclature of Medicine - Clinical Terms (SNOMED CT) [63]. The 

National Center for Biomedical Ontology (NCBO) maintains a repository of biomedical 
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ontologies that can be accessed programmatically or through a web-based resource called 

BioPortal [64, 65]. A similar effort is the ZOOMA, which uses the Experimental Factor 

Ontology (EFO) available from EBI [66].  

NCBO BioPortal provides the most comprehensive collection of biomedical 

ontologies. At present, it contains 393 ontologies with 5,299,586 classes. This can be 

easily used to build tools and web services to solve specific problems in the biomedical 

domain. Such ontologies facilitate translational work in biomedicine by allowing a 

semantic integration of biological terms. Ontologies make it possible to draw correlations 

between different biological entities such as diseases, proteins, etc.  

Ontologies in BioPortal can be searched in many different ways, including the 

standard tree based search, or queried programmatically through web services [64]. The 

“Mapping” functionality allows the user to search if there are shared terms between two 

or more ontologies to facilitate direct comparisons. The “Recommender” and 

“Annotator” are two very useful tools for natural language processing of the biomedical 

text. The “Recommender” service takes the text documents (such as abstracts of articles) 

or keywords as input and suggests the most appropriate ontologies related to the text. It 

also provides a ranking of the ontologies based on coverage, connectivity, and the 

number of concepts in ontologies [67]. NCBO “Annotator” is the most widely used tool 

which takes the text as input and returns matched terms from ontologies. The user can 

select direct or hierarchical matching to the ontology concepts and the ontologies to use 

can be specified as well [68]. NCBO “Resource Index” is another useful tool which 

relates the ontology concepts with the metadata from the online data resources such as 

ArrayExpress. It can be linked with the output of Annotator to identify useful online 

resources related to the matching ontology concepts from the text [69]. 

The condition-specific data mining algorithm developed in this study used the 

ontologies specific to a biological domain to first build a list of concept terms. These 

terms were then used to retrieve condition-specific documents from which proteins were 

extracted and classified as literature-derived condition specific proteins. We believe that 

the work done here is scalable to multiple biological domains, is more specific (concept 

list is different and consists of terms specific for each biological domains since it is built 
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on a known set of positive articles from that domain), and is capable of processing a 

much higher number of documents as compared to the current studies. 

Systems Biology 

Topology of Biological Networks 

A biological network is modeled as a directed or undirected graph, with a set of 

nodes (proteins, genes, etc.) and edges (interactions between the nodes). These graphs 

can be weighted or unweighted on both nodes and edges. Different network analysis 

algorithms are now available to understand biological networks. Most of these analysis 

algorithms are based on topological parameters such as degree, eccentricity, closeness, 

radiality, etc. Degree is the number of nodes directly connected to a given node and so a 

node with high degree has many connections and many researchers use it as a measure by 

which to assign significance. Eccentricity refers to the reciprocal of the direct path from a 

given node to the farthest away node on the network and so a high eccentricity value for a 

node implies that it is close to all other nodes. Closeness, like eccentricity defines how 

close a node on the network is to all the other nodes. Radiality compares the direct paths 

of a node with the longest direct path in the network which is the network diameter. A 

high value of radiality implies how central a node is in the network [4, 70-76]. It has been 

established that biological networks are scale-free networks and not random. In scale-free 

networks, the degree of a network approximates to a power law              where   is 

found to be less than three. In other words, biological networks have a small number of 

hub nodes and most of the other nodes have fewer connections[77].  

Topological properties can be analyzed at both local and global levels. The local 

topological measures only consider the direct neighborhood of a node while global 

measures consider the entire network.  Cytoscape is free network visualization software 

which provides access to several plugins capable of estimating topological scores for the 

network. The latest version of Cytoscape (3.1) has a built-in feature,  “Analyze 

Networks,” which can be used to perform simple topological calculations [78]. 

CytoHUBBA is an example of a well-known Cytoscape plugin which has the capability 

to analyze both local and global measures of topology [79]. 

Topological parameters usually vary in their capability to identify essential genes. 

Even though the identification of essential genes worked in organisms like yeast, they are 
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much less complex. The key molecules (or essential nodes) identified by such parameters 

usually tend to be hub nodes (high degree nodes) which are not necessarily biologically 

significant. Hub nodes might not be specific to a condition since most of them are found 

to be the regulators of multiple processes even in a normal state. Moreover, targeting 

such genes also increases the lethality of an organism and hence they cannot be used as 

potential key targets to induce a response or even as drug targets. It is important to infuse 

biological knowledge into node ranking so that the condition-specific targets can be 

identified.  Recently, Dezso et al focused on incorporating the connectivity profile with 

biologically relevant information (such as gene expression) to identify important nodes in 

the network. Their approach ranked the nodes based on the connectivity of a given node 

with genes from expression data. The hub nodes that were not connected to the genes 

from expression were given a low score despite the large number of connections. The 

nodes which connect most of the genes from expression data were ranked higher by this 

methodology [80].  

Modules and Motifs 

Biological networks can be analyzed in a top down fashion or a bottom up 

fashion. The latter involves the use of subgraphs for the analysis and interpretation of 

biological data. It is known that several biological networks have a high clustering 

coefficient which in turn indicates presence of motifs [76, 81]. Motifs are statistically 

overrepresented, highly interconnected subgraphs with a distinct pattern such as 

triangular motifs, which form the feed forward loops in the regulatory networks [82-85]. 

It has also been observed that these motifs are evolutionarily conserved such as in the 

yeast protein interaction network [86-88]. Many other motifs have been studied such as 

autoregulation, single input module, dense overlapping regulons, and feedback loops [89, 

90].  

A module is a type of subgraph (or subnetwork) with a highly interconnected 

group of nodes which work together to result in a definite function [76]. Modules in 

biology were first studied using the genomics or proteomics data where genes/proteins 

were clustered based on their expression and hence coexpression modules were generated 

[91-93]. It became clear that these coexpression modules were also functionally related 

and several studies have been done to identify functional modules in the data based on 
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several properties such as network topology, phenotypic data, expression, gene ontology, 

pathway information, etc. [94-100]. Modules are known to be present in metabolic, 

protein-protein interaction, signaling and regulatory networks. However, it should be 

noted that module detection methods are highly ambiguous and predict different modules 

for the same dataset [76]. Often times these module detection algorithms also miss 

properties of a network, such as directionality.  

Network Comparison 

Network alignment aims to find a common subgraph among the input networks. 

Like sequence alignment, network alignments can be used to establish evolutionary 

relationships, ortholog predictions, annotating the protein functions for relatively less-

studied species, and to understand the biological processes in a cell. The network 

alignment problem can be either defined as a local or global network alignment. Local 

network alignment is commonly used to find regions or small subnetworks or pathways 

that are conserved in species. It can also refer to identification of modules with high 

functional similarity across species. Global network alignment on the other hand aims to 

find the region of maximal similarity among the given networks. Global alignment aims 

to map every node in the smaller network uniquely with exactly one node in the larger 

network. Although the local alignments create ambiguity since one node can map to more 

than one node in other networks, local alignments are more consistent in identifying 

functionally conserved regions of similarity between species and are computationally 

more tractable  [101, 102].  

Coexpression networks coupled with several statistical techniques such as 

singular value decomposition, Pearson correlation or biological datasets such as 

phenotypic, transcription regulation, and promoter data have also been extensively used 

for the purpose of network comparison [103-110]. Coexpression networks are believed to 

identify groups of differentially regulated genes or modules usually belonging to a 

particular biological process or function [111-113]. One of the most fundamental works 

in this domain by Segal et al was to identify coregulated genes for different conditions in 

yeast. Two different sets of data were used for this purpose: yeast microarray data and the 

data for regulatory programs in yeast. The genes from expression data were assigned to 

modules based on probabilistic graphical models which matched the expression of genes 
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with the expression profiles of transcription factors such that the TF expression profile 

could explain the expression pattern of genes in the module [114]. The importance of 

identifying subnetworks over individual genes has been clearly shown in the work in 

which subnetworks were used to classify breast cancer metastasis. In this study, the 

values of gene expression from two well-known cohorts of breast cancer patients were 

overlaid on protein interaction networks and patterns with high discriminative metastasis 

potential across patients were searched. The study showed that network based 

classification was more accurate in predicting metastasis in breast cancer.  [115]. Some 

other methods also used for network comparison are topological comparisons based on 

degree [116-119], clustering coefficient [116], path length [116], and centrality [116, 

119-121], protein structure based comparisons [122-124], and dynamic Bayesian models 

[125]. 

Network comparison methods in biology have been mainly used to establish 

evolutionary relationships or to create phylogenetic trees from protein interaction 

networks. Since global network alignment is computationally intractable; most of the 

studies either used some heuristic method to identify an optimal alignment solution or 

they sought to identify smaller conserved regions in these networks (motifs, modules, or 

subgraphs) [102, 126-145] . Some approaches also used metabolic networks instead of 

protein interaction networks to establish evolutionary relationships [146-150]. 

Traditionally, functional annotation of unannotated proteins was based on amino acid 

sequence similarity alone. Currently, several homology-based approaches are being 

followed, of which similarity in protein networks (determined using network comparison) 

has become the method of choice for protein annotation [126, 151-155].  

The differential subnetwork analysis work in this thesis is based on comparing 

both the biological as well as the topological properties of a specific molecular class of 

proteins (such as GFs, TFs etc.) to identify significant differential subnetworks. These 

properties are specific for a given condition and so we believe that our method is more 

robust and consistent for identifying differential components between the biological 

systems and for highlighting the physiological mechanisms between the different 

conditions. We have demonstrated this by unraveling the differential components that 

confer limb regeneration ability in axolotls. 
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Limb Regeneration 

Two hundred fifty years after Lazzaro Spallanzani first demonstrated the 

regeneration of amputated newt limbs [156], we still do not fully understand the 

mechanisms of this process. The recent breakthrough of converting human adult somatic 

cells in vitro to embryonic stem cells has made the prospect of a regenerative medicine 

seem well within our grasp. Current thinking in regenerative medicine envisions the 

derivation, from autogeneic somatic cells, of pluripotent cells that can be directed to 

differentiate into transplantable replacements for cells destroyed by injury or disease 

[157].  Beyond this, however, is another goal, the chemical induction of regeneration 

directly at the site of tissue damage [158].  Achievement of this goal will require a deep 

understanding of the molecular components, networks and pathways that characterize 

regenerative competence.   

Urodele Limb Regeneration 

With the exception of cervid antlers [159, 160],  terminal phalanges of humans 

and rodents [161-163], and ear tissue of certain strains of mice and rabbits, [164, 165], 

mammalian appendages do not regenerate after amputation. Urodele (axolotls, 

salamanders and newts) amphibians, which regenerate amputated limbs perfectly 

throughout larval and adult life, provide a research model that lends itself well to 

furthering our understanding of this process. Urodele limbs initiate regeneration by the 

formation of a blastema, a limb bud-like structure composed of undifferentiated 

progenitor cells. Blastema cells originate by a reverse developmental process in which 

the tissue matrix near the amputation plane is degraded by proteases, releasing both 

mature cells that are reprogrammed to a mesenchymal stem cell-like state, and muscle 

stem cells (satellite cells) [166-169].  The liberated cells migrate under the wound 

epidermis to form an avascular accumulation (also called early bud) blastema [170-172]. 

Once formed, the accumulation blastema is enlarged to the medium bud stage and beyond 

by a marked increase in mitosis [173-179].  Sustained mitosis of blastema cells, but not 

dedifferentiation, is dependent on factors from the wound epidermis [177] and 

regenerating nerves [180].  Histological [173, 174], cell marking [181, 182] and genetic 

marking [183] studies indicate that blastema cells derived from each tissue redifferentiate 
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into the same tissue, although some cells derived from the dermis differentiate into 

cartilage as well.       

Since the ability to form a blastema is what distinguishes urodele limbs from the 

limbs of most other tetrapod vertebrates that do not regenerate, or regenerate poorly, 

understanding the mechanisms that lead to blastema formation is crucial to understanding 

why urodele limbs regenerate, and why the limbs of other species do not.  In general, the 

reductionist approach has been to study the individual genes or proteins involved in 

biological processes. With the development of high throughput technology over the last 

decade, there has been a shift in this approach. The ability to obtain large scale omics 

data has led to the development of discovery approaches that interrelate the elements of 

biological processes to reveal networks and pathways of organization in a system [184].  

Very few studies so far have analyzed global gene or protein expression patterns during 

limb regeneration. In the axolotl Ambystoma mexicanum, expressed sequence tag (EST) 

resources have been developed [185] and transcription profiles of denervated vs. 

innervated limbs have been analyzed [186]. A number of studies have been carried out on 

protein synthesis and separation in regenerating urodele limbs.  Autoradiographic studies 

of C
14

 methionine, S
35

 thioamino acids or C
14

 leucine incorporation revealed intense 

protein synthesis throughout regeneration [187-192].  Several protein separation analyses 

have been carried out using one-dimensional or two-dimensional gel electrophoresis 

[193-196]. These resolved up to 800 individual proteins [195] and revealed differences in 

protein composition at succeeding stages of regeneration in normal [194, 195] and 

denervated limbs [193].  

Anuran Limb Regeneration 

Xenopus possesses the ability to regenerate lost limbs in early tadpole stages of 

development, but gradually loses the capability for regeneration as development 

proceeds, until it is lost completely in adults [197] . Nieuwkoop-Faber (NF) stage 51–53 

limb buds of the anuran Xenopus laevis also regenerate perfectly at any level of 

amputation. After NF stage 53, however, regenerative capacity becomes progressively 

hypomorphic and spatially restricted to progressively more distal levels, until by stage 56 

or 57 amputation at any level results only in the regeneration of a muscle-less, un-

segmented cartilage spike covered by an envelope of skin [198-200]. This spatiotemporal 
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restriction of regenerative capacity is correlated with the general proximal to distal 

ossification of skeletal tissues, although regeneration is slightly better when amputation is 

through the soft tissue of the joints [201]. Loss of regenerative capacity during limb 

development in Xenopus is due to intrinsic changes in limb tissues, as shown by the fact 

that grafting regeneration-competent blastemas to regeneration-deficient limb stumps 

and vice versa does not alter the regenerative capacity of the blastema [202, 203]. 

Xenopus studies have focused on subtractive hybridization [204]; microarray analysis 

[205] and proteomics [206] for molecular screening of limb regeneration.  

So we believe that regeneration-competent axolotl and -deficient Xenopus form 

excellent models to understand the differences between regeneration-competence and 

deficiency. 

Regeneration-Competence vs. -Deficiency 

The Xenopus and urodele limb regeneration blastema share some features. Both 

rely on nerve-dependent signals from the wound epidermis for their formation and 

growth [207-210]. Both express prx1, a TF that serves as an early marker of 

dedifferentiated cells [211, 212]. Most often, however, the Xenopus blastema is described 

as a “fibroblastema” or “pseudoblastema,” as opposed to the mesenchymal nature of the 

urodele blastema. Although one study [213] reported that the morphology and fine 

structure of the cells released by histolysis is similar in amputated urodele 

and Xenopus limbs, most studies suggest that, compared to the amputated urodele limb, 

histolysis is limited in the amputated Xenopus limb, there is little if any cellular 

dedifferentiation, progenitor cells are fibroblastic rather than mesenchymal, muscle 

satellite cells do not contribute to the fibroblastema, neurovascular invasion is sparser, 

and the AEC is thinner with a connective tissue pad between it and the underlying 

cells [198, 201, 208, 214, 215]. These features have been correlated with a shift in the 

response to amputation brought about by the maturation of the immune system as the 

tadpole differentiates and undergoes metamorphosis [216-218]. 

Defining the cellular and molecular basis of the contrast in regenerative ability 

between regeneration-competent and regeneration-deficient limbs is of great interest, 

because of the potential to identify factors associated with successful regeneration and/or 

the factors that inhibit it. Differences in transcript expression by amputated regeneration-
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competent Xenopus limb buds (stage 52/53) vs. regeneration-deficient limbs (stage 57 or 

froglets) have been reported for specific genes and for global gene arrays compiled by 

subtractive hybridization or microarray [219-222]. In particular, proximo-distal axial 

patterning genes such as Hoxa9, Hoxa11, and Hoxa13 are expressed by the 

fibroblastemas of Xenopus limbs, but their expression is not deployed in the proper 

spatiotemporal organization characteristic of regeneration-competent blastemas [223]. 

Furthermore, regeneration-deficient Xenopus blastemas fail to express shh, an important 

regulator of anteroposterior (AP) axial patterning in axolotl limb buds and blastemas 

and Xenopus stage 52 limb buds [222], a failure due to the epigenetic hyper-methylation 

of an enhancer sequence regulating shh expression [224]. These findings have led to the 

idea that faulty expression of patterning genes is the major cause of regenerative 

deficiency in Xenopus limbs [223]. The reasons why Xenopus limb patterning genes are 

not activated in their proper spatiotemporal pattern are unknown, but are likely due to an 

inability to activate and/or inhibit other processes necessary to the formation of a 

regeneration-competent blastema. 

Although extensive research has been carried out to understand how the blastema 

is formed and which molecular entities are crucial to regeneration, very little is known 

about the interactive pathways and networks that lead to blastema formation in an 

amputated limb. In this work, we used the limb regeneration system to implement 

condition-specific data mining and differential subnetwork algorithms to understand the 

differences between the blastema formation in regeneration-competent and -deficient 

systems and to identify the key molecules (GFs, TFs, and ECM proteins) which might 

confer the regeneration ability on axolotl.  

Same techniques (text mining followed by systems biology) were also used to 

identify the growth factors that might be used to stimulate regeneration across segmental 

defects. A biological screening was then done to identify a successful combination of 

growth factors. Of eleven growth factors identified by this method, a combination of two 

(BMP-4 and HGF) was shown to stimulate skeletal regeneration across 50% defects 

when delivered by a pig SIS scaffold. These results validated the efficacy of the 

methodology developed in this dissertation work for identification of the targets/key 

molecules in a biological system. 
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CHAPTER THREE: METHODS 

The focus of the work developed here was to carry out an exhaustive systems 

level analysis to identify the differential components of a biological system. In order to 

achieve this task, it was crucial to integrate the vast knowledge present in the biomedical 

literature with high throughput experiments such as proteomics. This enabled the 

identification of low abundance genes/proteins which are often undetected by the high 

throughput experiments. This approach was applied to the limb regeneration system. 

 Briefly, proteomics data from limb regeneration-competent axolotl and deficient 

Xenopus was collected at different time points. Novel algorithms based on ontology 

matching were designed to obtain a concept list (CL) containing the relevant terms for a 

limb regeneration. The CL terms were used for article prioritization and classification 

based on the weights assigned to each article by Poisson distribution. These condition 

specific articles were then used to extract proteins by using exact dictionary chunking. 

The literature-derived proteins were integrated with the proteins obtained from the 

proteomics data for each condition (regeneration-competent and deficient). Protein 

interaction networks were hence constructed for both axolotl and Xenopus. These 

networks were used to identify molecular class based subnetworks which were compared 

using an innovative rule based algorithm based on both the biological and topological 

properties of the proteins to identify differential subnetworks between regeneration-

competent and deficient systems. These differential subnetworks were also used to 

identify key targets of limb regeneration. Biological validation was carried out to show 

that key targets identified by such approach can be used to induce regeneration across a 

critical size defect. The following sections will describe each component of the 

methodology in-detail. 

Although this methodology was implemented on limb regeneration, it can be used 

to compare any two biological systems in future. Figure 1 represents the overall 

methodology using breast cancer (condition 1) and colon cancer (condition 2) as an 

example. The goal of this pipeline then will be to discover differential components (in the 

form of subnetworks) between breast cancer and colon cancer. In other words, using this 

pipeline a researcher will be able to answer, what makes breast cancer different from 

colon cancer in terms of the interconnected genes/proteins?   
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Figure 1. Overall methodology 

Proteomics 

Sample Preparation 

A total of 5 pools of tissue each from control, 1dpa, 4dpa and 7dpa limbs (dpa 

refers to days post amputation) were collected for Ambystoma mexicanum (will be 

referred to as axolotl throughout). Similar tissues were collected at 1dpa, 5dpa, 7dpa and 

12dpa for Xenopus laevis (will be referred as Xenopus throughout). Each pool contained 

6 tissues (from two hind limbs of three animals). The samples were processed as 

described earlier [225]. Briefly, flash-frozen tissues were homogenized in lysis buffer 

containing 8M urea and 10 mM dithiothreitol.  The resulting cell lysates were denatured 

by urea, reduced by triethylphosphine, alkylated by iododethanol and digested by trypsin.  

The Bicinchoninic Protein Assay was used to determine the peptide concentration in each 

pool.  More details about the sample collection, processing, and rest of the proteomics 

methodology can be found in our publications [7, 226]. 
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Liquid Chromatography/Mass Spectrometry Analysis 

Tryptic digested peptides were analyzed as previously described [225]. Samples 

were run on a Surveyor High Performance Liquid Chromatography (HPLC) system with 

a zorbax 300SB – C18 reverse column (1mmX5 cm). Each peptide pool (20 µg) was 

injected twice onto the column in a random order.  All injections were performed using 

the identical equipment configuration.  Peptides were eluted with a gradient from 5% - 

45% acetonitrile developed over 120 min at a flow rate of 50 µl/min, and effluent was 

electro-sprayed into the Linear Trap Quadrupole Mass Spectrometer (Thermo-Fisher 

Scientific). Data were collected in the “TriplePlay” mode (Mass Spectrometry (MS) scan, 

Zoom scan, and MS/MS scan). The resulting data were filtered (to increase the signal-to-

noise ratio) and analyzed by a proprietary algorithm developed by Higgs et al [227].  

Protein Identification 

Using SEQUEST and X!Tandem database search algorithms, database searches 

against non-redundant NCBI or International Protein Index databases were performed for 

peptide sequence identification. A confidence score was assigned to each peptide by q-

value (false discovery rate) [227]. The score was based on a random forest recursive 

partition supervised learning algorithm.  The % ID confidence score was calibrated so 

that approximately X% of the peptides with %ID confidence >X% were correctly 

identified [227].    

Proteins were classified according to identification quality (Priority). This priority 

system is based on the quality of the amino acid sequence identification (Peptide ID 

Confidence) and whether one or more unique peptide sequences were identified (Multiple 

Sequences).  The Peptide ID Confidence assigned a protein into ‘HIGH’ or 

‘MODERATE’ categories based on the peptide with the highest peptide ID Confidence 

(the best peptide). Proteins with “best peptide,” having a confidence between 90-100%, 

were assigned to the ‘HIGH’ category while proteins with best peptide having a 

confidence between 75-89% were assigned to the ‘MODERATE’ category. All peptides 

with confidence less than 75% were discarded.  To increase the confidence in protein 

identification, the proteins were further classified based on the number of distinct amino 

acid sequences identified. A protein was classified as “YES” if it had at least two distinct 

amino acid sequences with the required ID confidence; otherwise it was classified as 
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“NO.” Thus, the proteins with “HIGH” peptide ID confidence and with more than one 

identified peptide sequence were termed Priority 1.  Proteins with “HIGH” peptide 

confidence but with only one identified peptide sequence were termed Priority 2.  Priority 

3 and 4 proteins were those with “MODERATE” peptide confidence with more than one 

and only one peptide sequence identified, respectively.  Thus, Priority 1 proteins had the 

highest likelihood of correct identification and Priority 4 proteins the lowest likelihood of 

correct identification.  

Protein Quantification and Statistical Analysis 

Protein quantification was carried out using non-gel based and label-free 

proprietary protein quantification technology described previously [225, 227].  Every 

peptide quantified had an intensity measurement for every sample. This measurement is a 

relative quantity giving the area under the curve (AUC) from the extracted ion 

chromatogram after background noise removal. The AUC was measured at the same 

retention time window (1 min) for each sample after the sample chromatograms had been 

aligned [227]. The intensities were then transformed to the log base 2 scale (commonly 

used for genomic data), which served several purposes. First, relative changes in protein 

expression are best described by simple ratios.  However ratios are difficult to model 

statistically, so log transformation converts ratios to fold differences.  Second, the 

transformed data better approximate a normal distribution on a log scale [228], which is 

important because normality is an assumption of the Analysis of Variance (ANOVA) 

models used to analyze this data.  Third, log base 2 is easy to understand because a 2-fold 

change (or doubling, or 100% increase) yielding an expression ratio of 2 is transformed 

to 1 (i.e. a 2-fold change is a unit change on the log base 2 scale).  After log 

transformation, the data was then quantile normalized [229]. This normalization removed 

trends introduced by sample handling, sample preparation, HPLC, mass spectrometry, 

and possible total protein differences.  

If multiple peptides had the same protein identification, their quantile normalized 

log base 2 intensities were weight-averaged proportionally to their relative peptide ID 

confidences. Then the log base 2 protein intensities were fit by a separate ANOVA 

statistical model for each protein.  Finally, the inverse log base 2 of each sample mean 

was calculated to determine the fold change (FC) between samples. The maximum 
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observed absolute FC was also given for each Priority Level.  Fold Change was 

computed as Mean Regeneration Group/Mean Control Group.  A FC of 1 means no 

change.  

The number of proteins with significant changes for each priority was calculated. 

The threshold for significance was set to control the False Discovery Rate (FDR) for each 

two-group comparison at 5% [230]. The FDR was estimated by the q-value, as stated 

previously.  Thus, protein fold changes with a q-value less than or equal to 0.05 were 

declared to be significant, leaving 5% of the determined changes assumed to be false 

positives.  

We calculated the median percent coefficient of variance (%CV) for each priority 

group.  Percent CV values were derived from the standard deviation divided by the mean 

on a % scale. The % CV was calculated for replicate variation (technical variation) and 

the combined replicate plus sample variation. 

In constructing biological process categories, only proteins having peptide 

confidence levels of 90% and above and with FDR <0.05 were included.  Many proteins 

were identified either by the same sequences or different sequences in priority 1 or 2 or 

both. To avoid redundancy, the fold changes of priority 1 were used if a protein was 

present in both the priorities, and average fold change was calculated if it belonged to the 

same priority. If a protein had conflicting expression patterns (upregulated in one case, 

but downregulated in the other) then it was not considered.  

Bioinformatic Analysis 

Proteins not recognized by the algorithm were manually curated.  NCBI BLASTp 

(basic local alignment search tool for proteins) [231] was used to match the sequences of 

hypothetical/ novel/ unknown/ unnamed proteins against the ‘vertebrata’ category in blast 

(taxid: 7742) to identify their closest neighbors. Only the proteins having 90% peptide ID 

confidence and above and with FDR <0.05 were chosen. Accession numbers, gene names 

and names of the proteins were obtained from Uniprot [232] or NCBI [233] using the 

protein IDs obtained in the raw data. GeneCards [234] and Uniprot were used to 

determine their biological processes. The HPRD [235] was used to determine molecular 

function and primary cellular localization. EVI5 network was generated using 

MetaCore
TM

 analytical suite version 5.3 (GeneGo, St Joseph, MI). All non-redundant 
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peptides having a peptide ID confidence of 90% and above were compared against EST 

contigs from the Ambystoma EST database using tBLASTn.  

Condition-Specific Data Mining 

An innovative methodology was developed to retrieve the condition-specific data 

from published literature. Condition-specific data retrieval refers to the identification of 

relevant or related articles from a large unknown set of articles (which can be derived 

from PubMed) for a given biological condition such as limb regeneration. The overview 

of this methodology is provided in Figure 2.  

 

Figure 2. Overview of the condition-specific data mining methodology 

In the first stage of the protocol an already known set of positive articles (for any 

given biological condition) is used to identify the five most significant ontologies from a 

collection of ontologies in NCBO BioPortal [236].  The ontologies are then used in the 

second stage to generate a CL. The concept list contains a collection of condition-specific 

terms (including but not limited to organism, tissue, cell type, biological function, and 

proteins studied in a given condition).  The CL generated in stage two is then used as an 
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input in stage three of the protocol for document scoring and classification of an 

unknown set of articles (from PubMed) to identify condition-specific articles. These 

articles are further processed in stage four by implementing dictionary-based methods to 

extract proteins which are stored in a CSDB (condition-specific database). These stages 

are discussed in more detail in the following sections. 

Stage 1 

The Recommender web service available from NCBO BioPortal was used to 

programmatically retrieve the top five most significant ontologies relevant for a given 

biological condition. The abstracts of the articles (the known positive set for a given 

condition) were used as an input for the Recommender web service. This service returns 

a ranked list of ontologies for the text provided as an input. The ontology ranking 

function implemented in the Recommender uses three different scoring criteria: the 

number of words in the text that match with the ontologies, the number of mapping words 

in a ontology with other ontologies, and the total number of concepts in the ontologies 

[69]. One of the limitations of programmatically using this web service is that the length 

of each abstract (document) cannot exceed 1700 words. Hence, each document where 

abstract length was greater than 1700 words was split into chunks of 1700 words.  

Following is the pseudocode of the program used for this task. 

Algorithm 3.1. BioPortalRecommenderXML 

Input:  

                               /*     is the set of known condition-specific articles 

in XML (eXtensible Markup Language) format,   is the number of articles in     */ 

Output:  

                  /*   is the list of top 5 ontologies relevant to     */ 

Process:   

Parse XML for     to extract PMIDs and Abstracts for each       /*         , as 

defined in the input, PMID refers to PubMed identifier of an article */ 

for each article             

 if length      > 1700 /*    is the document length */ 

  split the abstract into chunks of 1700 words  

 end if 
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 Call Recommender Web Service 

 Generate a list of top 5 ontologies 

end for 

Calculate frequency to generate the top 5 ontologies   for the entire set     

Stage 2 

We defined the concept list as a collection of terms specific for a given biological 

condition. We hypothesized that this set can be generated by using the ontologies 

identified above to match the words in a set of known articles.  

The Annotator web service available from NCBO BioPortal was used to 

programmatically retrieve the matching terms from a set of known abstracts given the top 

five biological ontologies identified above. The same set of abstracts as used in the 

Recommender was used for this step. This service matches the words/phrases in the text 

input (abstracts for the known documents) with the specified ontologies and returns a list 

of matching terms. Stop words were then removed from the matching terms. Stop words 

were removed using our extensive in-house list of words. These matching terms 

constitute the CL. However, before being used by the stage three program, the CL is 

further cleaned manually to remove the general words used in the biological literature 

(such as genes, cell). Following is the pseudocode of the program used for this task. 

Algorithm 3.2. BioPortalAnnotatorConceptListXML 

Input:  

                              /*     is the set of known condition-specific articles in 

XML format,   is the number of articles in     */ 

                 /*   is the list of top 5 ontologies obtained in Program above */ 

Output:  

                  /*    is the concept list containing terms relevant to     */ 

Process:  

Parse XML for     to extract PMIDs and Abstracts for each       /*         , as 

defined in the input */ 

for each article              

 Call Annotator Web Service 

 Match the words/phrases in        with each of the top five ontologies   



28 

 

 Generate a list of matching words or phrases 

 Remove stop words 

end for 

Generate unique list of terms    for the entire set     

Stage 3 

Condition-specific articles are defined as the articles from the set of PubMed 

articles which are relevant for a given biological condition. An innovative algorithm was 

designed to retrieve such articles from PubMed. This algorithm is outlined in the program 

below. Briefly, this code uses the abstracts and CL terms (from Stage 2) as the input. The 

set of articles used in the input are unknown articles or the articles for which no prior 

knowledge of biological condition is established. Such articles can be obtained by 

searching for more general keywords in PubMed. As an example, PubMed was searched 

for the term “regeneration.” All the articles returned by PubMed were downloaded and 

used as an input for the program. It should be noted that although regeneration related 

articles were queried, it is not the biological condition of interest. The biological 

condition of interest is limb regeneration in this case.  

The goal of this methodology was to classify regeneration articles as positive 

(specific for limb regeneration) or negative. It should be noted that this program can be 

used to run any number of articles; it can also be run on the entire PubMed set! The 

methodology first preprocesses the inputs by stemming and removing stop words. 

Second, it matches the stemmed versions of terms in abstracts with the CL terms. Third, 

for each matched term it generates a weight as defined by the Poisson distribution in 

Eq(2). The terms’ weights are added to generate an overall weight or relevance score per 

article as described by Eq(3).  

Algortihm 3.3. ConceptListMatchAbstractsXLS 

Input:  

                              /*     is the set of unknown articles in XLS format, 

XLS format contains PMID followed by abstract in each row, generated by parsing the 

XML in the program PMIDAbstractsGenerateXLSFromXMLFile,   is the total number 

of articles in     */ 
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                  /*    is the collection of concept list terms relevant to    , obtained 

in the program above,    is the number of terms in     */ 

Output: 

pmid_term_weight.xls, excel sheet containing the PMID, matching term and factors used 

to calculate weight of each term as described by Eq(2) 

overall_pmid_weight.xls, excel sheet containing the weight per PMID, as mentioned in 

Eq(3) 

Process:  

Set the value of         and         /* as standardized in [58] */ 

for each article        /*         , as defined in the input */ 

 Stem the words 

 Remove stop words  

 Generate CleanedAbstract 

end for 

for all words in   , 

 Stem the words 

Get unique list of stemmed words 

Add stemmed words to the list of phrases in CL to generate CleanedCL 

end for 

Initialize a Hashmap for CleanedCL (key =     , value =   ) /*      are the matching 

words/phrases in       from CleanedCL ,     is the number of articles containing     , 

    is set to zero in the beginning,         , as defined in the input */ 

for the CleanedAbstract of each article       

 Calculate the length   and add to the list AbstractLength 

 for each      

  Calculate the frequency   of the matching word. Add to the list Frequency 

  Increment the value    in Hashmap by 1  

 end for 

end for 

for each      

calculate                  /*     is the inverse document frequency */ Eq(1)                                                            
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 calculate the term weight     

                    
 

 
 
   

         
  

      Eq(2) 

end for 

for each       

Calculate the relevance score      of       

       
 
    Eq(3)                                                                                             

end for 

Evaluation Metrics 

The relevance score obtained by Algorithm 3.3 above was used to filter the 

articles and obtain condition-specific articles. The threshold for    was decided based on 

the results generated by running evaluation metrics on a known set of documents 200 

positive and 200 negative articles for limb regeneration. It should be noted that this set of 

articles was different from the set used to construct CL. Several evaluation methods 

mentioned were used to validate the condition-specific data mining methodology. 

Following are the formulas and evaluation methods used in the program 

EvaluationMetric.java.    is the number of true positives,    is the number of true 

negatives,    is the number of false positives, and    is the number of false negatives. 

Mathew’s Correlation Coefficient (MCC) is considered as the most standard evaluation 

metric for information retrieval in data mining. 

            
  

     
 Eq(4) 

                   
  

     
 Eq(5) 
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Stage 4 

The abstracts of the condition-specific articles generated above (by applying the 

thresholds determined by evaluation metrics) were further processed to extract proteins. 

This was implemented by using the exact dictionary chunker from Lingpipe [235]. The 

exact dictionary for proteins was created from three different sources: HPRD [21], 

BioGRID [22], and UniProt [20]. The official symbols, protein names and synonyms for 

human proteins were used in the dictionary. Three different dictionaries were used so as 

to include different versions of the protein names and symbols. 

Condition-Specific Database 

A MySQL database named condition-specific database (CSDB), was created to 

store data for limb regeneration. However, it can be used to store literature-derived and 

expression data of any other condition being investigated. Since, the data generated here 

is enormous and is referred by multiple programs, MySQL provided an effective way to 

store and query the data. Figure 3 shows the database schema with table and column 

names. The database contained a total of 19 tables to store information such as 

proteomics data, literature derived proteins, interactions, KEGG pathways (Kyoto 

Encyclopedia of Genes and Genomes) [237], GO biological processes [61], HPRD [21], 

UniProt[20], and BioGRID data [22]. A detailed description of tables and column names 

is provided in the Appendix (A2). 

 

Figure 3. Condition-specific database (CSDB) schema 
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Differential Subnetworks 

The differential subnetwork algorithm developed in this work consisted of three 

main parts: network construction, subnetwork identification, and differential subnetwork 

comparison. The following sections describe each process in detail. Figure 4 provides an 

overview of this methodology. Overall, in this algorithm protein interaction networks 

were constructed for each biological condition (two conditions to be compared). The 

nodes on these networks were annotated with multiple biological properties such as 

expression values, biological process, etc. as mentioned in the Figure 4. Subnetworks 

were then constructed following a rule based approach based on the end user’s selection 

of molecular class. Multiple subnetworks were generated for each condition and all the 

subnetworks in one condition (for a given molecular class) were compared with all the 

subnetworks in the second condition. The comparison used both biological and 

topological properties to calculate a dissimilarity score between the subnetworks. The 

dissimilarity score was also used to identify the most differential nodes or proteins.  

 

Figure 4. Differential subnetworks methodology overview 

This methodology provides an exhaustive systems level comparison between two 

given conditions, such as normal vs. disease. The network comparison algorithm 



33 

 

developed here considered the direction of the protein-protein interaction on the network. 

Most importantly, the goal of this methodology was to identify the distinguishing 

subnetworks and proteins across two conditions unlike the extraction of common 

subgraphs which has been the main emphasis of current network comparison approaches. 

Network Construction 

The protein interaction networks were constructed with both the proteomics and 

literature derived data. It should be noted that the literature derived data refers to the 

condition-specific data derived from the steps above. The literature and proteomics data 

were stored in the database tables of CSDB (refer to Appendix: A2 for details of the 

tables in database) which were queried in the code to generate networks. The interaction 

data for these proteins was obtained from BioGRID [22]. The program for network 

construction was implemented on limb regeneration –competent axolotl and –deficient 

Xenopus. The two networks were created with the ultimate goal of comparing the 

differences between competent and deficient subnetworks. The algorithm for network 

construction for axolotl is given below; a similar program was used to generate the 

network for Xenopus. 

                was defined as the network for axolotl containing      vertices 

or proteins and      edges or interactions between proteins.                    was 

defined as the network for Xenopus containing       vertices or proteins and       edges 

or interactions between proteins. The vertices and edges were stored in the CSDB. 

Algoithm 3.4 is scalable and can be used for network construction of any biological 

condition given an expression data for that condition.   

All the proteins on the network were annotated with expression values (obtained 

from proteomics data described above), relevance scores of literature-derived proteins 

(the overall weight of PMID from which a given protein was extracted as obtained by 

Algorithm 3.3), gene ontology biological processes [61], and KEGG pathways [238]. 

This information was stored in several database tables of CSDB (refer to A2 in 

Appendix). It should be noted that for those proteins which were associated with more 

than one PMID, the highest relevance score was used for annotation purposes. The 

program works such that expression proteins (which have the highest level of confidence 

since they were measured in a biological experiment) are maximized. Only those 
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literature-derived proteins were added which connected to at least two proteins from the 

proteomics data. Please note that gene and protein are used interchangeably throughout 

the manuscript since proteins are often recognized by gene symbols. 

Algorithm 3.4. NetworkConstructionAxo.java 

Input: 

Database tables: axo_proteomics, biogrid_human_interactions_symbols, 

protein_list_frequency /* Refer A2 in Appendix for the description of database tables */ 

Output: 

Database tables: axo_present, axo_not_present, axo_combined /* Refer A2 in Appendix 

for detailed description */ 

Process: 

for each protein in axo_proteomics 

 if protein present in biogrid_human_interactions_symbols 

  get the official gene symbol 

  get interacting partner 

  if interacting partner also present in biogrid_human_interactions_symbols 

   Add to axo_present database table 

 /* both the proteins are from proteomics data */ 

  else add to axo_not_present 

   Append the gene symbol into not_present_gene column 

   /* at least one protein is from proteomics data */ 

 else ignore that protein 

end for 

for each protein pair in the axo_not_present 

 if the not_present_gene matches with an entry in protein_list_frequency 

  Test if it is paired with at least one more protein from axo_proteomics 

  Keep the protein pair in table 

  /* keep only literature-derived proteins */ 

/* and should pair with at least two proteins from proteomics data */ 

 else delete the row from table 

end for 



35 

 

Subnetwork Identification 

The protein interaction networks constructed for both the competent (axolotl) and 

deficient (Xenopus) systems were split into multiple smaller subnetworks based on a rule 

based methodology. This approach was designed to be user-centric such that subnetworks 

of a molecular class selected by the user were constructed. In biology, it is often the case 

that domain-specific researchers consider specific molecular class/es as important for a 

given domain. As an example, GF, TF, and ECM proteins are considered as most 

significant protein classes in limb regeneration. The molecular class information was 

obtained by parsing the downloadable XML obtained from HPRD. The program for 

identifying subnetworks is described below. 

Algorithm 3.5. Subnetwork Identification.java 

Input: 

The user is asked to choose a molecular class from the list of molecular classes 

Database tables: axo_combined, axo_proteomics, xeno_combined, xeno_proteomics, 

pmid_weight, pmid_protein, hprd, gene_go_bp, gene_kegg  

Output: 

For both axolotl and Xenopus, the following excel files are generated: interaction files for 

multiple subnetworks, enriched gene ontology terms and pathways, seed node files 

containing the seed nodes (or proteins belonging to the user specified molecular class on 

the respective networks) with their expression and literature relevance score.  

Process:  

for the molecular class selected by user 

 identify the proteins as seed nodes in hprd which match in axo_combined 

 if present in axo_proteomics 

get expression values 

else get literature relevance score from pmid_weight and pmid_protein 

for each seed node 

 get the direct interactions from axo_combined 

 get the second level interactions from axo_combined 

 /* second level – interactions of direct interactors of seed nodes */ 

 /* can also be referred as two step path in the network */ 
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 get interactions within the second level nodes 

  if second level nodes connect to greater than 2 nodes 

  Keep them 

  else discard the interactions 

  /* prevents expansion of less connected nodes */ 

 get biological processes from gene_go_bp 

 get pathways from gene_kegg 

end for 

end for 

Repeat the process for Xenopus 

Subnetwork Validation 

To evaluate the significance of subnetworks, hypergeometric p-values were 

calculated for each subnetwork.  

         
                

  
  

 

                        

        
                           Eq(12) 

 

Where, N = total number of unique proteins in the interaction data obtained from 

BioGRID, R = total number of proteins from the proteomics data in the axolotl network, 

n = total number of proteins in the axolotl subnetwork, and r = number of proteins from 

proteomics data in the axolotl subnetwork. Null hypothesis for the p-value was that there 

is no enrichment of expression proteins on the subnetworks. Expression proteins were 

used as a benchmark to evaluate the significance of the subnetworks since they have been 

biologically validated and we hypothesized that subnetworks enriched for such proteins 

should be significant.  

Hypergeometric p-values were also calculated for establishing the significance of 

enrichment in biological processes and pathways for each network (N = total number of 

genes that have associated biological processes/pathways, R = total number of genes that 

have associated biological processes/pathways on the axolotl subnetwork, n = total 

number of genes for a given biological process/pathway, and r = total number of genes 

for a given biological process/pathway in the subnetwork). A description of programs 

written for p-value calculation can be found in the Appendix (A1). The p-values for the 

Xenopus subnetworks were calculated in a similar fashion. 
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Differential Subnetwork Analysis 

The differential subnetwork algorithm used the subnetworks obtained in 

Algorithm 3.5 above to compare each subnetwork from one con dition with all the 

subnetworks from the other condition for a given molecular class. Common nodes were 

first identified between the two conditions (or subnetworks from two conditions) and 

these were evaluated for similarity in expression (if applicable). The algorithm then used 

the direct neighborhood of the common nodes to evaluate differences in both the 

biological and topological properties (interaction, biological processes, and pathways). A 

dissimilarity score (DS) was then assigned to each common node based on the 

differences in the properties described above. This code generated an output file, 

Disco.xls, containing the DS for each common node in each subnetwork comparison. 

Algorithm 3.6. DifferentialSubnetworks.java 

Input: 

Subnetworks for axolotl and Xenopus:                 and                    

Database tables: interaction files for multiple subnetworks, gene ontology terms and 

pathways associated with each protein on the network (for a given molecular class of 

both axolotl and Xenopus) 

Output: 

Dissimilarity score file: Disco.xls 

Process: 

for each subnetwork in axolotl                                    

for each subnetwork in Xenopus                                         

  find common nodes such that                
         

  for each common node         

   calculate the similarity in the pattern of expression 

   /* if        are up/downregulated at all the time points */ 

   construct the k
th

 neighborhood of of   in     ,      
      

and the k
th

 neighborhood of    in      ,       
      /* k =1 */ 

   calculate the number of shared nodes in      
     and        

      

   calculate the similarity in BP in      
     and        
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   calculate the similarity in pathways in      
     and        

      

   /* Similarity for every factor     above is calculated as: 

        
   

 
                                   

     */ 

   Calculate            for each of the steps above 

   /*     is the Dissimilarity for every factor */ 

   calculate overall dissimilarity,         
 
      

   /*   in the equation refers to number of factors with a value, 

   missing values are not included in calculations */ 

  end for   

 end for  

end for 

Programming Specifications and Visualization Software 

JAVA was used as the programming language for the all the programs described  

in this dissertation (Java development kit version 7). The programs used open source .jar 

files. A complete description of all the programs is mentioned in the Appendix (A1), 

including the ones for which algorithms are not described in the Methodology section. 

All the codes were tested and deployed on a computer with 4GB memory.  

The network visualizations were done with Cytoscape [78] and Circos [239]. R 

programming language [240] and gplots software in R [241] were used to construct the 

ROC curve and hierarchical clustering images for the differential subnetworks. Cluster 

3.0 [91] and Java Treeview software [242] available from Stanford University  were used 

to make the heatmaps described in the Conclusion section. 

Biological Validation 

Immunostaining and Image Analysis 

For validation of LC/MS/MS data, immunostaining was carried out for control 

and regenerating limb tissues collected at 1 and 7dpa in axolotl and 5 and 12 dpa in 

Xenopus. The samples were fixed overnight in 2% paraformaldehyde in 0.8X PBS 

(phosphate buffered saline), rinsed with 1.0X PBS and decalcified for 30 min using 

immunoclear decalcifying agent (Calci-Clear Rapid, National Diagnostics, Atlanta, GA).  

After decalcification, the samples were cryoprotected by sequential overnight incubation 
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in 10%, 20% and 30% sucrose in 1X PBS, then embedded in a 50:50 mixture of 30% 

sucrose and neg 50 frozen section medium (ThermoScientific, Waltham, MA).  Sections 

were cut at 10 m on a Leica CM1900 cryostat (Leica, Wetzlar, Germany) and incubated 

in 1X PBS to remove excess embedding medium, then blocked for 30 min in a solution 

of 0.01% Tween-20 and 5% milk in Tris buffered saline.  For axolotl validation, sections 

were then incubated over night with polyclonal anti-rabbit NOS1  (Biomol International 

LP, Plymouth Meeting, PA)  at 1:70 dilution,  polyclonal anti-human fibronectin  (Sigma, 

St. Louis, MO)  at 1:400 dilution or monoclonal anti--actinin (Sigma) at 1:200 dilution, 

washed with blocking solution, incubated in the appropriate secondary antibody (goat 

anti-mouse AF488 or goat anti rabbit AF568, Invitrogen, Carlsbad, CA) for 40 min, 

washed with 1X PBS and mounted with Vectashield mounting medium containing DAPI 

(Vector Laboratories, Burlingame, CA).  The same procedure was repeated for 1 

integrin, vimentin and dystroglycan in Xenopus sections. 

Immunostained sections were observed using the 20X objective lens on a Zeiss 

Axiovert 200M microscope equipped with an Apotome for optical sectioning, and images 

were captured with an Axiocam high-resolution camera.  Sections were obtained from 

two hindlimbs of three animals for each time point.  Six images were collected for each 

section, from regions located at the tip of the amputated limb to just proximal to the plane 

of amputation and across the putative amputation plane in control sections.  Mean pixel 

intensities were calculated for each image by sampling 20 randomly distributed regions 

of each image using the measurement package of the Axiovision software (Carl Zeiss 

Microimaging Inc, Thornwood, NY). Statistical comparisons were performed using 

ANOVA.  A p value <0.05 was considered statistically significant. 

Segment Defect Regeneration 

Multiple bone morphogenetic proteins (BMPs) have been implicated in skeletal 

development and regeneration [243].  We used an in-house literature-mining tool, 

BioMap [244], to mine the literature on fracture repair, cartilage regeneration, and bone 

regeneration to identify GFs in addition to BMPs that might be used to stimulate 

regeneration across segment defects.  Keywords (similar to CL terms) related to the 

process of cartilage differentiation were identified and submitted to BioMap. The 



40 

 

information extracted by BioMap was normalized using the protein and gene names from 

the UniProt database [20].  

The HPRD was then used to identify GFs  and TFs from this gene/protein list 

[21]. These growth factors and transcription factors were used to determine the 

predominant pathways and networks of protein interaction in cartilage regeneration, 

using MetaCore
TM

  (GeneGO Inc) [13]. These were further analyzed using four 

topological parameters of the CytoHUBBA plugin [79] in Cytoscape [78] to select the 

proteins most commonly identified as significant. The topological properties evaluated 

were: bottleneck nodes, maximal cliques, eccentricity, and maximum connected 

component. 

Eleven growth factors emerged from this analysis: FGF-2, PDGF-A, PDGF-B, 

PDGF-D, EGF, HGF, TGF-2, TGF-3, Follistatin, VEGF-A, and Lefty-2. Seven of 

these growth factors, in addition to BMPs, were commercially available:  VEGF-A, HGF, 

FGF-2, TGF-3, PDGF-AA, PDGF-BB, and EGF.  All of these, except EGF and PDGF-

BB, had an amino acid sequence homology to the corresponding Xenopus growth factors 

(the closest amphibian to the axolotl for which such data were available) of 64% or 

greater. EGF and PDGF-BB were eliminated from consideration because of their low 

homologies (41% and 39%, respectively). Six different combinations of BMP-4 and the 

remaining five growth factors were tested for their ability to promote regeneration across 

a 50% segment defect, which exceeds the critical size defect (CSD). All growth factors 

were purchased from PeproTech (Rocky Hill, NJ) and stock solutions of each prepared 

according to instructions provided by the company.  

Defects of 50% were used to test growth factor combinations. GF or tissue 

extract-loaded scaffolds were inserted into 50% defects and the wound was closed with 

two sutures of #6 silk thread (Fine Science Tools, Inc., Foster City, CA). Controls 

consisted of limbs in which the fibular defect received no treatment. All of the fixed 

limbs for each time point were first imaged by X-ray (PIXARRAY 100, Bioptics, San 

Jose, Costa Rica) and then by microcomputed tomography (micro-CT), using a high-

resolution desktop imaging system (SkyScan 1172, Allentown, PA). Fluorochrome 

imaging was also carried out to measure early bone regeneration in untreated 10% vs. 

50% defects. More details of the methodology can be found in Chen et al [245]. 



41 

 

CHAPTER FOUR: RESULTS 

Proteomics 

Axolotl Proteomics 

A total of 1624 peptides were separated in the axolotl samples. Overall summary 

of the proteomics data is mentioned in Table 1. Two hundred and fourteen from Priority 1 

and 301 peptides from Priority 2 significantly changed between the control and axolotl 

samples at 1dpa, 4dpa or 7dpa.  The significance threshold is set to control the FDR at 

less than 5%. A False Discovery is a protein declared significant when it is not. The 

sample median %CV for the priority 1 proteins was 12.15%. The %CV is the Standard 

Deviation divided by the Mean on a % scale.  

Protein 

Priority 

Peptide ID 

Confidence 

Multiple 

Sequences 

Number 

of 

Proteins 

Number 

Significant 

Changes 

Max 

Absolute 

Fold Change 

Median 

%CV replicate 

+ sample 

1 High Yes 281 214 3.38 12.15 

2 High No 521 301 6.94 20.99 

3 Low Yes 24 13 2.55 20.71 

4 Low No 798 469 9.88 26.35 

Overall 
  

1624 997 9.88 20.88 

Table 1. Summary for axolotl proteomics data 

Of these one hundred thirty-eight from Priority 1 and 285 peptides from Priority 2 

were found to be statistically significant. Among these 423 statistically significant 

peptides, 114 peptides were not analyzed further for the reasons outlined in Methods.  A 

total of 309 proteins were analyzed for their role in biological processes.  A comparison 

of non-redundant peptide sequences (N=405) with the axolotl EST database identified 

149 perfect-match peptides (36.8%) that were 100% identical to a translated EST contig 

from either A. mexicanum or the closely related A. tigrinum. 

Figure 5 stratifies the proteins according to biological process (BP), and 

molecular functions (MF). These categories were derived from HPRD. Proteins with 

different biological processes and molecular functions were identified in the proteomic 

analysis. A detailed description of their roles and possible functions in limb regeneration 

can be found in our publication [7] . 
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Figure 5. Biological process (a), and molecular function (b) categories for axolotl data 

Xenopus Proteomics 

A total of 2500 Xenopus peptides were separated in the samples. Table 2 provides 

a summary of the results. The columns in the Table 2 can be interpreted similarly to those 

in axolotl. There were 601 priority 1 peptides and 613 priority 2 peptides with significant 

change, for a total of 1214.  The meaning of significant changes in proteins and %CV is 

the same as that described for axolotl. The sample median %CV for the priority 1 

peptides was 15.97% and 31.10% for the priority 2 peptides. These were filtered as 

outlined in Methods to give 1014 identifiable peptides.  Collapsing duplicates and 

discarding peptides with no known function yielded 830 proteins for analysis.  

Protein 

Priority 

Peptide ID 

Confidence 

Multiple 

Sequences 

Number 

of  

Proteins 

Number 

Significant 

Changes 

Max  

Absolute 

Fold 

change 

Median  

%CV 

rep + sample 

1 High Yes 681 601 8.59 15.97 

2 High No 782 613 32.77 31.10 

3 Moderate Yes 94 70 11.53 28.38 

4 Moderate No 943 740 21.50 35.50 

Overall     2500 2024 32.77 27.88 

Table 2. Summary for Xenopus proteomics data 

Figure 6 provides the comparison of axolotl and proteomics data and 

interrelationships between the function, expression, and interactions within the same data. 
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This figure was constructed using the Circos software [239]. The outermost circle in the 

figure represents the functional categories for the proteins identified by the proteomics 

data. The second circle is divided into proteins identified in the data under each 

functional category. In other words, longer length of an arc for a given function implies 

more proteins were identified for that function in the proteomics data. As an example, the 

highest number of proteins were identified for the cytoskeleton category in axolotl 

(represented by blue arc) and for the metabolism category (dark red arc) in Xenopus. The 

third circle highlights the proteins with greater than 2 fold change (blue dashes) and 

greater than 4 fold change (pink dashes). The next circles represent the fold change 

(green – upregulation and red – downregulation) at 1dpa, 4dpa, and 7dpa in axolotl and at 

1dpa, 5dpa, 7dpa, and 12dpa in Xenopus. Innermost web represents the direct protein 

interactions among the proteins derived in proteomics analysis. More details about the 

functional categories of proteins can be found in our publication [226]. 

 

Figure 6. Circos representation of proteomics data in the axolotl and Xenopus 

Condition-Specific Data Mining 

Identification of correct and specific information from the biomedical literature is 

of utmost importance. PubMed is the most widely used information retrieval engine for 

the published biomedical literature. However, the information in PubMed is retrieved by 

querying for specific keywords related to the domain and is often non-specific. Moreover, 
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the amount of articles retrieved by PubMed for any given domain is huge and makes it 

difficult to manually identify the correct information. Although the advancement in high 

throughout technologies in the recent years has generated a vast amount of data, these 

technologies often fail to identify low abundant proteins that are biologically crucial. We 

hypothesized that by developing a condition-specific data mining method, low abundant 

proteins can be retrieved from the published biomedical literature and can be used to 

augment the findings of high throughput biological experiments.  

In the following sections, first the results from the preliminary work that showed 

the significance of extracting literature-derived knowledge are discussed followed by the 

results from the algorithms implemented for condition-specific data mining. 

Proof of Concept 

To establish the significance of extracting the data from biomedical literature, we 

used our in-house literature-mining tool, BioMAP [244]. Four different terms related to 

limb regeneration were used to query BioMAP. These terms ranged from being very 

specific to the biological system to being unspecific in the following order: “urodele limb 

regeneration,” “limb regeneration,” “stem cell progenitor,” and “regeneration.” BioMAP 

parsed the relevant articles for each term to extract a list of proteins. The proteins in each 

of the four sets were then queried against the DAVID database [246] to obtain the 

enriched gene ontology categories. Similar gene ontology terms were found to be 

enriched in each set (Figure 7). 

The top ten gene ontology terms were plotted for each term, proteomics data and 

literature mined data, and the proteomics data alone in Figure 7. Most of the top ten terms 

obtained were related to the processes of development and cell cycle. These processes are 

closely associated with the limb regeneration system. As a validation, these findings were 

compared to the GO terms enriched in the proteomics data of the regeneration-competent 

system. Six of the top ten proteomics terms (star marked in the figure) were also obtained 

using BioMAP derived knowledge. A list of 1000 randomly generated proteins was also 

prepared to compare the findings and none of the top 10 gene ontology terms was the 

same as in the bibliomics or proteomics data. These results showed that the use of terms 

specific to a domain, in a bibliomics study, can result in condition-specific data extraction 

and an enrichment of relevant functions which can be used to discover novel elements. 
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This helped formulate our hypothesis to develop condition-specific data mining systems. 

However, it should be noted that processing of these terms required several manual 

interventions to ensure that correct data was being processed by the system since 

traditional text mining is prone to generate spurious results. These manual interventions 

motivated us to create a self-sustained, efficient, and condition-specific data mining 

system to extract relevant information from the published literature. The results obtained 

from the condition-specific data mining system are discussed below. 

 

Figure 7. Significance of bibliomics knowledge 

Concept List Generation 

The generation of concept list was the most fundamental part of the condition-

specific data mining system. The CL generated is specific for every biological condition 

since it requires a set of known articles from that condition to identify relevant terms. The 

methodology developed in this work used the biomedical ontologies made available by 

NCBO BioPortal [64] to create a domain-specific CL. Domain-specific refers to a 

biological condition of interest such as limb regeneration. The Recommender services 

were first used to programmatically retrieve the five most significant ontologies related to 

limb regeneration. For this purpose, a set of 300 articles was manually identified as a 

positive set of articles for limb regeneration. These articles were obtained from PubMed 
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by querying with the keyword “limb regeneration.” Domain experts used their knowledge 

to identify limb regeneration specific articles from this set. Of these 300 articles, 283 

were finally used to query the Recommender web service since the remaining either did 

not have abstracts or were written in a different language. These articles were 

downloaded in the XML format and Algorithm 3.1 described in the methods was used to 

parse the XML to extract abstracts and PMIDs. 

NCIT, SNOMEDCT, NIFSTD, MESH, and EHDA were identified as the most 

significant ontologies for the limb regeneration domain. The National Cancer Institute 

Thesaurus (NCIT) contains terms relevant for clinical care, translational and basic 

research, and public information and administrative activities. This ontology contains 

110,375 classes with 173 properties [247]. The Systematized Nomenclature of Medicine 

– Clinical Terms (SNOMEDCT) contains clinical terms with 3,000,542 classes. The 

Neuroscience Information Framework Standard Ontology (NIFSTD) comprehensively 

describes neuroscience data and resources. A total of 108,426 classes and 627 properties 

are present in this ontology. The Medical Subject Headings (MeSH/MESH) consists of 

terms that describe the content of an article (keywords associated with articles). A set of 

245,887 classes comprise MESH. The Human Developmental Anatomy Ontology 

(EHDA) contains 8,340 classes describing the stage-specific human anatomical 

structures.  

Of the ontologies identified as most significant, SNOMEDCT and MESH are 

common to most of the biological domain because of their wide coverage. However, 

NCIT, NIFSTD, and EHDA were more specific to the limb regeneration domain since a 

lot of terms present in limb regeneration literature matched with these ontologies. 

Although a manual selection of ontologies related to a biological domain is possible, such 

a methodology is not scalable and since ontologies are rapidly being updated, 

programmatic retrieval is the most efficient method. It can also be argued that less or 

more than five ontologies can be used, our research indicated that five ontologies were 

the most optimum as they cover most of the important terms in the text as determined by 

the domain expert. However, if for a given biological domain there is a need to change 

the number of retrieved ontologies, it can be easily specified in the program. 
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The ontologies identified by the Recommender were then used to query the 

Annotator web service, as described in Algorithm 3.2, with the same set of articles to 

identify the terms in the abstracts that match the ontologies. This collection of terms was 

termed as the CL for the given domain. Table 3 provides an example of terms in the CL 

for limb regeneration. It should be noted that the CL is comprised of terms in the second 

column of Table 3, the first column represents the categories of the terms. As can be 

noticed in Table 3, the terms represent different aspects of the biological system such as 

organisms used in the studies, tissues, cell types, and even the biological functions and 

proteins studied by researchers in the domain of limb regeneration. 

Category Terms in Concept List 

Cell Type Adult Stem Cells 

Organism Xenopus laevis 

Organism Class Urodela 

Biological Function/Process Mesenchymal Cell Proliferation 

Biological Function/Process Dedifferentiation 

Tissue Blastema 

Genes/Proteins Hox 

Table 3: An example of concept list terms in limb regeneration 

A total of 2,798 unique terms were present in the CL for limb regeneration. This 

CL contained similar terms (wound, wounds) since stemmer was not used at this step to 

preprocess the abstracts. The articles were preprocessed for removing stop words but 

stemmer was not used since the stemmed terms cannot be matched with the ontology. 

However, the stemmer was used later in the mining to overcome this problem. 

The CL derived by using the annotator functionality had some limitations such as 

the presence of general science words (gene, cell, DNA) and some other English words 

(variable, value, symmetric) which were not present in the stop word list. These words 

were identified since some of the ontologies, especially SNOMEDCT contain a wide 

range of words. This problem can be dealt with by either getting rid of such ontologies or 

by adding these words to the stop word list. In our opinion, these were not good solutions 

because of the following two important reasons: a lot of important domain-specific terms 

which match with such ontologies will be lost, addition of terms to the stop word list will 

defeat the purpose of domain-specific mining since some of the general science terms can 

be important in other domains. As an example, the word DNA can be important if DNA 
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repair is being studied. TF-IDF was also explored as a method to clean the CL but it got 

rid of many important words such as regeneration, amphibian. TF-IDF was not a good 

choice to clean this list since the CL is built from a positive set and some of the important 

terms are overrepresented in these articles. Hence, we preferred manual curation by the 

domain expert to get a filtered and more specific CL. Since, the original CL for limb 

regeneration (2,798 words) was not huge, manual curation was not a time consuming 

task. The final CL (after manual curation) consisted of 687 terms. 

Identification of Condition-Specific Articles 

To identify condition-specific articles for limb regeneration, a large set of 

unknown articles was downloaded from PubMed in the XML format. The XML format 

was parsed to extract the abstracts and PMIDs (refer to A1 in the Appendix for a 

description of the codes) into the XLS format. Before this step, the abstracts and PMIDs 

were stored in cache but in this step since the number of articles was huge, it was 

important to convert the format and use it as an input file. This greatly increased the 

efficiency of running the program and reduced the computational time. PubMed was 

queried for the keyword “regeneration” and a total of 218,249 articles were downloaded. 

Of these, 172,986 articles were further processed (remaining articles did not have an 

abstract or were written in another language and hence were ignored).  

The program ConceptListMatchAbstracts.java was used to match the CL terms 

with the words/phrases in the articles. Each term in the CL (after stemming CL contained 

652 unique terms) that was found in a given PMID was assigned a weight as described in 

the Methodology section (an example of the results is described in Table 4). The columns 

containing the values k (frequency of the word in article), l (length of the article), idf 

(inverse document frequency of a term) were used as factors to calculate the weight for 

each term (described in the Algorithm 3.3 in the Methodology section in detail). 

The Poisson distribution assigned term weights such that the terms specific for 

limb regeneration were given higher term weights (such as “stump” from Table 4 has 

       ) as compared to terms which were more general (as an example, 

“regeneration” from Table 4 has        ). All the term weights were averaged to 

assign an overall weight or relevance score (RS) for a given PMID (Table 5 provides an 



49 

 

example). Therefore, if a given PMID has terms that are more specific then it is assigned 

a higher RS. 

PMID 
Word/Phrase from 

Concept List 
Stemmed Word k l idf 

Weight 

(  ) 

1292570 regeneration regener 3 154 0.32 0.24 

1292570 limb, limbs limb 4 154 0.33 0.31 

1292570 amputation amput 1 154 0.61 0.16 

1292570 growth growth 2 154 0.74 0.26 

1292570 amphibian, amphibians amphibian 1 154 0.82 0.18 

1292570 
proliferating, 

proliferation 
prolifer 3 154 1.10 0.44 

1292570 developmental development 1 154 1.32 0.23 

1292570 cell proliferation cell proliferation 2 154 1.56 0.37 

1292570 leg, legs leg 1 154 1.90 0.28 

1319553 regeneration regener 1 97 0.32 0.17 

1319553 amputation amput 2 97 0.61 0.32 

1319553 newt, newts newt 2 97 0.64 0.33 

1319553 forelimb, forelimbs forelimb 2 97 0.98 0.41 

1319553 stump stump 6 97 1.03 0.87 

1319553 denervation denerv 4 97 1.19 0.73 

1319553 dedifferentiation dedifferenti 1 97 1.28 0.33 

1319553 innervation innerv 3 97 1.32 0.63 

Table 4. Output file example from ConceptListMatchAbstracts.java 

PMID Relevance Score 

3665773 10.95 

7813787 10.19 

8877452 9.98 

6474177 9.67 

9389454 9.12 

3698099 9.05 

8150219 9.02 

9527876 8.97 

1569412 8.59 

3183582 8.45 

2471654 8.14 

2005423 7.93 

3464959 7.80 

2092016 7.65 

2552324 7.63 

Table 5. Overall PMID weight 

Poisson distribution is a very well established and effective method for estimating 

term frequencies in information retrieval. Two of the previous methods such as the bm25 
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and PMRA model (as described in the Background section) are known to outperform the 

other methods for information retrieval in the biomedical domain. Both these methods 

use similar Poisson distributions to estimate term frequency. However, a few things set 

our work apart from these already existing methods. First, CL was used to gather 

information from several different ontologies and is specific to a given biological 

condition such as limb regeneration in this case. The methodology described here starts 

with a collection of CL terms from a known set of articles and hence is more specific to a 

given condition. The existing methods on the other hand utilize general keywords (query 

term, MeSH, article title) to generate a list of related articles. Often times, these articles 

are not specific to the domain. Secondly, the related articles displayed in PubMed (uses 

the PMRA model) are a very small number and cannot be used in an automated way to 

extract information such as protein names. There are some other methods described in the 

Background section which allow automated retrieval of articles for a given condition. 

However, these methods are often limited to approximately 10,000 related articles for a 

given domain. The method developed here can be used to query a much larger number of 

domain-specific articles. 

The articles were classified as positive for limb regeneration by setting a threshold 

value of 2.5 for the overall PMID weight (RS). A total of 64,417 articles were classified 

as limb regeneration specific articles from a set of 172,986 articles. The range of overall 

PMID weight (or RS) for the entire set of 172,986 articles varied from zero (no terms for 

limb regeneration in a given PMID) to 14.96. Figure 8 depicts the graph for the number 

of articles or PMIDs in a given RS range.  

 

Figure 8. PMID weight vs. number of articles 
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The number on the x-axis in Figure 8 represents the upper value of the range for 

every bar. It is evident from the figure that most of the articles in the set were in the range 

of zero to two (90,529) which were negative (unspecific) for limb regeneration. Note that 

the articles in the range 2-2.5 were also classified as negative (18,040). There were 488 

articles with a score greater than or equal to 10, and only 9 articles with a score of 14 or 

above. This showed that very few articles contained a very high number of terms from 

the CL. 

Data Validation 

The results generated above were validated by testing this methodology on a set 

of 200 positive (different from the set used to construct CL) and 200 negative articles for 

limb regeneration. The PMID weights obtained for this set of 400 articles were evaluated 

by different metrics: sensitivity, specificity, precision, f-score, accuracy, and Mathew’s 

Correlation Coefficient (MCC). In the field of IR, MCC is considered as the most 

standard measure to evaluate the validity of the data. The best MCC value of 0.916 was 

found for the PMID cutoff weight of 2.5 (highlighted in Table 6 and Table 7). Hence, this 

was used as a threshold for classification of condition-specific articles for limb 

regeneration. A very high MCC value also proves the validity of the model. Table 6 

shows the values for the evaluation metrics.  

Threshold Specificity Sensitivity Precision F-Score Accuracy MCC 

0.25 0.50 1.00 0.67 0.80 0.75 0.58 

0.5 0.64 1.00 0.73 0.85 0.82 0.68 

0.75 0.75 0.99 0.80 0.88 0.87 0.76 

1.0 0.80 0.99 0.83 0.90 0.89 0.79 

1.25 0.86 0.98 0.88 0.92 0.92 0.85 

1.5 0.89 0.98 0.89 0.94 0.93 0.87 

1.75 0.93 0.98 0.93 0.96 0.96 0.91 

2.0 0.94 0.97 0.94 0.95 0.95 0.91 

2.25 0.97 0.95 0.96 0.96 0.96 0.92 

2.5 0.98 0.94 0.97 0.96 0.96 0.92 

2.75 0.98 0.92 0.98 0.95 0.95 0.90 

3.0 0.98 0.90 0.98 0.93 0.94 0.88 

3.25 0.99 0.87 0.98 0.92 0.93 0.86 

3.5 0.99 0.82 0.99 0.90 0.91 0.82 

3.75 0.99 0.78 0.99 0.87 0.89 0.79 

4.0 1.00 0.74 0.99 0.84 0.87 0.76 

Table 6. Evaluation metric results 
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Table 7 depicts the True positive (TP), False Positive (FP), True Negative (TN), 

and False Negative (FN) values for the different thresholds. The values for the threshold 

of 2.5 are highlighted in Table 7.  

Threshold TP FP TN FN 

0.25 200 100 100 0 

0.5 199 72 128 1 

0.75 198 51 149 2 

1.0 197 41 159 3 

1.25 196 28 172 4 

1.5 196 23 177 4 

1.75 196 14 186 4 

2.0 193 12 188 7 

2.25 190 7 193 10 

2.5 188 5 195 12 

2.75 184 4 196 16 

3.0 179 4 196 21 

3.25 174 3 197 26 

3.5 164 2 198 36 

3.75 156 2 198 44 

4 147 1 199 53 

Table 7. Contingency values for evaluation metrics 

A Receiver Operating Characteristic (ROC) curve is often used to visualize the 

performance of a binary classifier by plotting the false positive rate (FPR) on the x-axis 

and the true positive rate (TPR) on the y-axis. This data is plotted for FPR and TPR 

values at different thresholds. Figure 9 depicts the ROC curve for this data with the 

interval of 0.25 from the lower range to higher range of the PMID weights. 

 

Figure 9. ROC curve for the validation data 
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Protein Extraction 

Once the condition-specific articles were identified (64,417 articles greater than 

overall PMID weight of 2.5), they were further processed with the program 

ExtractProteinsFromAbstracts.java. The program used the exact dictionary chunker 

available from lingpipe [235]. The dictionary created for this purpose was derived from 

the protein names, official gene symbols and their synonyms from three different 

resources: HPRD, BioGRID, and UniProt. These resources to our knowledge provide the 

most comprehensive coverage of proteins. The gene symbols and full names of proteins 

were processed only if they exactly matched the dictionary, partly matching names were 

not used to avoid discrepancies. The official gene symbol of all the proteins and the 

PMIDs (and the associated weight from condition-specific data mining) from which the 

proteins were derived were stored in the condition-specific database (refer to A2 in the 

Appendix for a description of the database tables). Of the 64, 417 condition-specific 

articles, 31,751 articles were identified as containing one or more protein. A total of 

5,273 unique proteins were extracted from these articles. We will refer to this set as the 

literature-derived limb regeneration proteins. 

Network Analysis 

The major goal of any bioinformatics study has been to compare the disease (or 

any other biological condition) sample with the normal sample, mainly on the basis of 

differential gene expression, so as to identify significant genes associated with the disease 

phenotype. However as mentioned before, such approaches suffer from several 

limitations. The subsections below first highlight our previously published work which 

helped establish the significance of network analysis. The later subsections describe the 

detailed results of the differential subnetwork analysis approach as implemented in this 

dissertation.  

Proof of Concept 

In our previous work, the proteomics data of regenerating axolotl limbs was 

analyzed using the commercial tool, MetaCore
TM

.  The expression of proteins at three 

different time points, 1, 4 and 7 dpa was monitored and several significant proteins were 

identified based on their differential expression. We particularly focused on a protein, 

EVI5, and proposed its importance in the process of limb regeneration based on its 
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interacting partners. The interaction profile of EVI5 confirmed its role in the process of 

cell cycle that is very critical for regeneration to occur [7]. Figure 10 shows the network 

of EVI5. 

 

Figure 10. EVI5 network 

In another study on axolotl limb regeneration, TFs that might be responsible for 

regulating the process of regeneration in axolotl limbs were identified. The main 

emphasis of this study was to show the importance of adding literature knowledge along 

with the high throughput data. The five most connected factors, c-Myc, SP1, HNF4A, 

ESR1 and p53 were found to regulate ~50% of the proteins from proteomics data. 

Among these, c-Myc and SP1 regulated 36.2% of the proteins. c-Myc was the most 

highly connected TF (71 targets). Figure 11 shows the network of these TFs. All the 

green colored circles on the network were nodes or proteins from the proteomics data. 

The circles representing the TFs were sized based on their connectivity to the proteomics 

proteins (larger size implies higher connections) and connections were visualized by 

white lines connecting the TFs with the proteomics proteins. Transcription factor network 

analysis showed that TGF-β1 and fibronectin (FN) lead to the activation of these TFs. We 

also found that other TFs known to be involved in epigenetic reprogramming, such as 

Klf4, Oct4, and Lin28 were also connected to c-Myc and SP1. Figure 12 highlights the 

connections between these proteins. The TFs identified here were not present in the 

proteomics data but were found to be connected to several differentially expressed 

proteins. This demonstrated the advantage of incorporating the bibliomics data. In this 
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study, a possible link between stem cell factors and the proposed TFs for limb 

regeneration was also established [6].  

 

Figure 11. Transcription factor network with the proteomics derived data 

 

Figure 12. Transcription factor and stem cell factor network in limb regeneration 

A small network comparison study was also carried out to establish proof of 

concept for differential subnetwork analysis. It was implemented to identify the 

differences between limb regeneration-competent and –deficient model systems. The 

proteomics data was used in combination with the literature data to draw these two 
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networks (Figure 13). Networks were drawn using the visualization software, Cytoscape 

[78, 248].  

 

Figure 13. Networks of Axolotl (13a) and Xenopus (13b) 

 

Figure 14. Targets of c-Myc in the proteomics data 

Interestingly, it was found that even though many important nodes were same in 

both the networks, their interacting partners were vastly different. As an example, for c-

Myc 67 and 109 unique targets were found in axolotl and Xenopus networks respectively. 

Only 32 targets were common to both the networks and these targets could be further 

differentiated with respect to expression (Figure 14). Only nine (marked in red in Figure 

14) common targets showed a similar expression in both the systems. We defined similar 

expression as either up or downregulation. This indicated a major change in the 
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connectivity of the same protein in the deficient system leading to completely different 

biological processes. This further lead us to believe that network comparisons can reveal 

the underlying patterns which distinguish biological systems. Note that this comparison 

was manually performed to understand the difference in the interaction profile of 

important nodes between the regeneration-competent and –deficient systems. 

To understand the significance of assigning a biologically relevant score to the 

proteins, a pilot experiment with breast cancer data was carried out. Differentially 

expressed, 100 random genes were selected from one of the hallmark studies in breast 

cancer [249]. A protein interaction network was constructed by overlaying the expression 

data of these genes. The proteins identified from the literature which connected to 

expression data proteins were also included in the network. Cancer specific pathway 

information from NetPath (an in-built feature of HPRD) [21], expression information, 

functions, and degree (topological parameter) were used as parameters for the biological 

scoring of the nodes. For topological scoring, only the degree parameter was used. These 

methods were compared for the identification of the top 10 nodes. Among the top 10 

nodes (colored red in Figure 15, the size of the nodes reflects significance, larger size 

entails significance), only two nodes were common to these scoring methods. A further 

analysis showed that biological scoring (Figure 15a) identified nodes other than hub 

nodes while topological analysis (Figure 15b) identified mainly hub nodes on the 

network. Four of the top 10 nodes identified by biological scoring belonged to the Wnt 

pathway,  known to play a very important role in breast cancer [250]. This helped 

establish the significance of using biological knowledge along with topological 

knowledge. 

 

Figure 15. Biological scoring vs. topological scoring for breast cancer proteins 

15a 15b 
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The work discussed so far in network analysis helped establish the significance of 

network analysis and the use of biological and topological properties for scoring of the 

nodes. However, as emphasized earlier most of this work was done manually or using 

commercial software. The commercial software did not have the ability to do differential 

subnetwork analysis. This motivated us to develop an approach for differential 

subnetwork analysis and the results from this approach are discussed below. The 

differential subnetwork analysis involved three main steps: network construction, 

subnetwork identification, and differential subnetwork analysis. The results from each of 

this step are discussed below. 

Condition-Specific Network Construction 

The goal of network construction was to create protein interaction networks with 

both proteomics and literature derived proteins such that the proteomics (or any 

expression data) proteins are maximized on the network. Two networks, one each for 

axolotl (limb regeneration competent network) and Xenopus (limb regeneration deficient 

network) were constructed using the Algorithm 3.4. As described in condition-specific 

data mining, a total of 5,273 unique proteins were obtained by mining articles specific for 

limb regeneration. 

 The proteomics data of axolotl contained 309 proteins of which only 263 had 

associated interactions reported in the BioGRID data and so the rest of the proteins were 

not included in any further analysis. To construct the axolotl network, interactions for the 

263 proteins from the proteomics data were obtained by using BioGRID [22]. As 

mentioned in the proteomics Methodology section, the axolotl and Xenopus proteins were 

converted to human orthologs. So, the interactions in the BioGRID database were filtered 

for Homo sapiens before using them for the purpose of network construction. Of two 

hundred sixty three proteins from the proteomics data, 168 proteins had 493 direct 

interactions among themselves (as obtained from BioGRID).  

The literature-derived limb regeneration specific proteins were added to the 

network only if they had direct connections with at least two proteins from the 

proteomics data. Hence, the networks were enriched for proteins from the expression 

data. This ensured that only proteins important in limb regeneration from the literature 

were added and so provided more validity to the methodology. Any random protein that 
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could have been extracted by mining (perhaps as the result of false positive detection) 

should have been eliminated at this step since it is highly unlikely that a random protein 

was identified in condition-specific data mining and also connects two proteins from the 

proteomics data. By using this methodology only 984 literature-derived proteins (of 

5,273) with 5,826 interactions were added to the axolotl data. Overall, the axolotl 

network consisted of 1,244 proteins (nodes) and 6,319 interactions (edges).  

The Xenopus network was constructed in a similar fashion to the axolotl network. 

Eight hundred thirty proteins were present in the Xenopus proteomics data of which only 

six hundred and one proteins had associated interactions in the BioGRID database. It 

consisted of 1,634 literature-derived proteins that had 13,745 interactions of with the 

proteomics data proteins. Overall, the Xenopus subnetwork contained 2,235 nodes with 

16, 582 interactions. 

The proteins on the protein interaction networks were further annotated with the 

following feature vectors: expression, literature relevance, biological processes, and 

pathways. Figure 16 below shows the condition-specific networks constructed for axolotl 

and Xenopus. In these networks, pink and blue nodes were derived from literature while 

yellow and red nodes were derived from proteomics data. Overall, 1017 nodes were 

common to both axolotl and Xenopus networks; 227 nodes were unique to axolotl 

network and 1218 nodes were unique to the Xenopus network.  

 

Figure 16. Condition-specific networks in axolotl (a) and Xenopus (b) 
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Subnetwork Identification 

Subnetworks provide more consistent representation of the functional components 

of a biological system. Subnetworks (as mentioned in the Background section) are also 

known to have better prediction power in disease prognosis as opposed to individual 

genes [115]. However, most of the time domain-specific research needs are different and 

specific molecular classes of proteins are of interest to the biologist. As an example, in 

certain disorders such as cancer, the molecular class “kinase” is known to play a major 

role and several kinases are being studied for their potential use as drug targets. On the 

other hand, in the field of limb regeneration, immense importance is given to GFs, TFs, 

and ECM proteins. 

We developed a user-centric molecular class based system for subnetwork 

identification (Algorithm 3.5). The user can specify the molecular class of interest and 

the proteins belonging to that class are then searched on the network. These proteins are 

referred as seed nodes that are used to build subnetworks. Each of the subnetworks is also 

functionally annotated with p-values for enriched biological processes and pathways. 

These subnetworks can then be compared between two biological conditions to identify 

differential subnetworks.  

Growth factor, transcription factor, and extracellular matrix protein subnetworks 

were identified for both the axolotl and Xenopus systems. Table 8 below shows the 

overall summary of GF subnetworks. The second column in the Table 8 shows the GF 

subnetworks in axolotl (A) and Xenopus (X). If a given GF network has an associated 

expression, it is marked by Y (else it is marked by N). Relevance Score (RS) represents 

the overall PMID weight associated with an article from where the protein was derived 

and the last column shows the number of articles in which the protein was present. As 

can be seen from Table 8, two proteins from the proteomics data were also extracted from 

the literature. 

Five GF subnetworks were identified for axolotl: HDGF, TYMP, VEGFA, 

PDGFA, and PDGFB (all of these were literature-derived proteins). Ten GF subnetworks 

were identified for Xenopus: FGF2, GRN, HDGF, NGF, NOV, PDGFA, PDGFB, 

TYMP, VEGFA, and IGF1. Xenopus was found to contain all the growth factors present 
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in the axolotl data. Two of these (GRN and PDGFB) were identified in the proteomics 

data.  

GF 

Subnetwork 

Axo(A)/ 

Xeno(X) 
Expression RS 

No. of 

articles 

p-Value 

(Axo) 

p-Value 

(Xeno) 

FGF2 X N 13.76 1128  0.004341 

GRN X Y (Xeno) 7.37 11  1.95E-76 

HDGF A/X N 5.28 5 2.54E-24 8.54E-69 

NGF X N 10.63 882  0.004341 

NOV X N 8.69 13  5.38E-04 

PDGFA A/X N 6.79 35 8.48E-04 5.38E-04 

PDGFB A/X Y (Xeno) 6.72 17 8.48E-04 2.46E-04 

TYMP A/X N 8.42 16 0.013574 6.05E-07 

VEGFA A/X N 9.80 1410 0.011297 0.003863 

IGF1 X N 9.80 413  0.019281 

Table 8. Growth factor subnetwork summary 

FGF2 and VEGFA were present in 1128 articles and 1410 limb-regeneration 

specific articles respectively were the most commonly associated GFs with limb 

regeneration in the published literature. Both of these proteins are known to play a crucial 

role in limb regeneration. The p-values were calculated to determine the significance of 

subnetworks. In axolotl, HDGF was the most significant subnetwork (determined mainly 

by the number of genes from proteomics data which were present on a subnetwork, see 

Methodology section for calculation details).  

While the role of HDGF or Hepatoma-derived growth factor is not very well-

known in limb regeneration, it is highly expressed in tumor cells and known to play an 

important role in cancer progression. It is also very closely related to hepatocyte growth 

factor (HGF). In gastric carcinoma it has been shown that HGF regulates HDGF which in 

turn induces VEGF [251]. HDGF upregulation is also known to play an important role in 

liver regeneration [252]. Recently, in our segment defect regeneration study HGF was 

found to be of high importance and we showed improved bone regeneration across a 

critical size defect with HGF (results discussed in a later section).  

Growth factor subnetworks were enriched for biological processes and pathways. 

Table 9 and 10 show the top 10 most enriched BPs and pathways respectively for the 

HDGF growth factor subnetwork in axolotl. The BPs and pathways represented below do 

not just represent HDGF but all the proteins in the subnetwork. The biological process 
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category was derived from Gene Ontology (level 3) and pathways were derived from 

KEGG pathways.  

Biological process 

Number of 

overlapping 

proteins 

p-Value 

Regulation of cellular process 65 6.6E-220 

Signal transduction 30 9.4E-145 

Cellular macromolecule 

metabolic process 
75 6.6E-136 

Protein metabolic process 72 2.97E-87 

Cellular nitrogen compound 

metabolic process 
53 4.18E-84 

Cellular biosynthetic process 50 7.06E-83 

Regulation of metabolic 

process 
53 8.42E-81 

Transport 19 7.75E-79 

Regulation of cellular 

metabolic process 
51 1.95E-76 

Nucleobase, nucleoside, 

nucleotide and nucleic acid 

metabolic process 

53 9.48E-74 

Table 9. Biological process enrichment for HDGF subnetwork in axolotl 

Pathways p-Value 

Olfactory transduction 4.38E-41 

Cytokine-cytokine receptor 

interaction 1.17E-27 

Neuroactive ligand-receptor 

interaction 1.67E-24 

Regulation of actin cytoskeleton 8.35E-22 

MAPK signaling pathway 7.68E-21 

Pathways in cancer 4.51E-20 

Chemokine signaling pathway 6.39E-16 

Endocytosis 1.96E-15 

Alzheimer's disease 2.86E-15 

Focal adhesion 8.96E-15 

Table 10. Pathway enrichment for HDGF subnetwork in axolotl 

Seventy TF subnetworks were identified for the axolotl and a total of 158 such 

subnetworks were identified for Xenopus. This showed a very high representation of TFs 

in the limb regeneration data. Overall, 58 TFs were common in both the datasets. Of the 

70 TFs identified from the axolotl network, nine were present in the proteomics data and 

the rest were derived from literature. The nine TFs from proteomics data were: ATF1, 
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E4F1, HR, NFATC4, SOX6, TAF4, AHCTF1, ZNF592, and NEUROD2. Twelve TFs 

were uniquely identified in the axolotl data (AHCTF1, TAF4, ATF1, ZNF592, E4F1, 

HR, TLX1, TAF8, KLF10, NEUROD2, INSM1, and TAL1) and 100 TFs were unique to 

the Xenopus data. Of the 12 TFs unique to axolotl data, seven were from the proteomics 

data. Of the 158 TF subnetworks identified in Xenopus, 13 TFs were identified from the 

proteomics data. 

 Among all the TF subnetworks, 62 and 148 subnetworks contained at least two 

proteins from the proteomics data in axolotl and Xenopus respectively. Fifty-six and 100 

subnetworks had p-value less than 0.05 in axolotl and Xenopus respectively.  Table 11 

(axolotl) and Table 12 (Xenopus) summarize the twenty most significant TF subnetworks. 

The number (No.) of proteins from the proteomics experiment and size of the subnetwork 

determine the significance or p-value. The p-value of the top two subnetworks in the 

Xenopus table is zero since among all the proteins on the subnetwork most of the proteins 

are from expression data or from proteomics experiments. This also indicates the high 

importance of such subnetworks since they contain many proteins from the proteomics 

proteins. 

Among the important TFs identified, Myc is involved in various biological 

processes such as proliferation, growth, apoptosis, energy metabolism and differentiation 

[253, 254]. It has been shown to act with β-catenin to inhibit wound healing by 

interfering with differentiation in chronic ulcers [255] and is expressed in regenerating 

limb and lens of the newt.  In the newt Notophthalmus viridescens, in-situ hybridization 

has shown that Myc is localized in both the epidermis and subjacent blastema cells. This 

expression has been correlated with the maintenance of blastema cell proliferation [256, 

257]. Recently, along with other stem cell factors, Myc expression in Notophthalmus 

viridscens was found to be highest during the dedifferentiation phase of blastema 

formation. Expression then decreased at later stages but still remained higher than the 

control tissue [258]. These studies have related Myc to proliferation as well as stemness 

but the downstream targets of Myc which result in these effects have not been identified. 

The Myc subnetwork identified here is connected to 38 proteins from the axolotl 

proteomics data and 176 proteins from the proteomics data. Our previous analysis had 
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also shown the importance of Myc in the axolotl data [6]. Based on this information, the 

specific roles of Myc in limb regeneration should be explored further. 

TF 

Subnetwork 

No. Of 

Proteins On 

Subnetwork 

No. Of 

Proteomics 

Proteins 

p-Value 

AHCTF1 55 45 1.14E-71 

TAF4 50 32 4.64E-45 

ESR1 235 50 7.72E-41 

ATF1 32 23 1.82E-34 

SOX6 33 23 5.90E-34 

ZNF592 29 21 1.16E-31 

TP53 268 44 7.77E-31 

MYC 207 38 1.52E-28 

SP1 72 21 1.05E-20 

YBX1 91 22 1.13E-19 

ATF2 105 23 1.81E-19 

E4F1 22 12 2.48E-16 

TP63 54 16 3.49E-16 

POU5F1 66 17 5.59E-16 

NOLC1 81 17 2.24E-14 

ERG 67 13 7.69E-11 

RELA 25 9 1.62E-10 

AIRE 52 11 8.52E-10 

TCF3 35 9 4.73E-09 

SMARCA4 42 9 2.66E-08 

Table 11. Significant TF subnetworks in axolotl 

Specificity Factor1 or SP1 is a ubiquitously expressed protein and has varied roles 

in cell growth, differentiation, apoptosis, angiogenesis, tumorigenesis and immune 

response. It is known to interact with cyclins which promote the G1/S phase transition, as 

well as with cyclin-dependent inhibitors that inhibit progression through the cell cycle. 

Similarly, its target genes include both pro- and anti-apoptotic genes and pro- and anti-

angiogenic genes. Specificity factor1 is also linked to chromatin remodeling through its 

interaction with p300 and histone deacetylases. Specificity factor1 is known to interact 

with several TFs including Myc in order to activate several downstream targets. 

However, SP1 action is highly dependent on its interaction with other members of the SP 

family and extracellular signals [259-261]. In this analysis, SP1 connects to 21 proteins 

from the axolotl proteomics data and 40 proteins from the Xenopus proteomics data (data 



65 

 

not shown in the tables here). Our previous network analysis had also found strong 

evidence for the involvement of SP1 in limb regeneration [6]. 

TF 

Subnetwork 

No. Of 

Proteins On 

Subnetwork 

No. Of 

Proteomics 

Proteins 

p-Value 

E2F1 346 278 0 

ILF2 592 336 0 

NCOR1 374 252 2.47E-282 

TFAP2C 198 188 1.47E-263 

BTF3 160 143 7.10E-188 

SALL1 138 133 1.81E-186 

BRD7 149 128 2.01E-162 

TP53 750 205 2.55E-123 

MYC 541 176 9.50E-119 

ESR1 541 170 1.56E-111 

BANP 78 65 8.66E-80 

NOLC1 262 100 1.90E-73 

YBX1 313 103 3.74E-68 

ETV3 54 50 1.04E-66 

ATF2 276 93 1.83E-62 

TP63 129 67 3.64E-60 

POU5F1 120 65 5.65E-60 

ERG 178 70 2.73E-52 

TCF3 111 50 4.72E-41 

NFIA 77 42 3.72E-39 

Table 12. Significant TF subnetworks in Xenopus 

Other TFs such as msx-1, nrad, Klf4, Oct4, Sox2, and Lin28 are associated with 

stemness and are expressed during formation of the accumulation blastema [7, 258, 262-

266]. Among these, this analysis identified Oct4 (POU5F1) Sox2 subnetworks from both 

axolotl and Xenopus networks. Recently, combinations of the TFs Myc, Oct4, Sox2, 

Klf4, Lin28, and Nanog were shown to reprogram adult fibroblasts to iPSCs [267, 268].  

c-Myc has been shown to enhance the ability of Oct4, Sox2 and Klf4 to induce 

pluripotency up to 10-fold [267].  However, high levels of Myc are only transiently 

required and sustained levels were found to lead to tumors [253, 254].  C-myc, Klf4 and 

Sox2 have been shown to be expressed in regenerating newt limb tissue and Lin28 in 

regenerating axolotl limb tissue [7, 256-258]. Figure 12 in the previous section shows the 

network linking these important TFs. These findings suggests that the TFs identified in 

these subnetworks (especially Myc, SP1, Oct-4, Sox2) are central to a network of TFs 
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that regulate mesenchymal stem cell properties of the blastema and that play a role in the 

nuclear reprogramming of differentiated limb cells to blastema cells.  

The subnetworks were also extracted for the ECM protein molecular class. 

Twenty-two ECM protein subnetworks were identified for the axolotl and 31 for 

Xenopus. Interestingly, 11 of the 22 axolotl ECM proteins were identified from the 

proteomics data and 14 among 31 ECM proteins in Xenopus data. This suggested a very 

high enrichment of ECM category in the proteomics data. Among all three molecular 

classes analyzed for limb regeneration, ECM had the highest representation from the 

proteomics data. Seven ECM proteins were unique to the axolotl data while 16 were 

unique to the Xenopus. Table 13 and Table 14 show the most significant ECM 

subnetworks in axolotl and Xenopus respectively. 

ECM 

Subnetwork 

No. Of 

Proteins On 

Subnetwork 

No. Of 

Proteomics 

Proteins 

p-Value 

FN1 605 149 1.66E-143 

COL1A1 45 26 5.01E-35 

LTBP4 16 10 1.23E-14 

VTN 24 7 9.85E-08 

MATN2 8 4 5.33E-06 

DCN 13 4 5.01E-05 

COL6A1 3 2 8.48E-04 

ELN 3 2 8.48E-04 

MATN1 3 2 8.48E-04 

MATN4 3 2 8.48E-04 

NID1 3 2 8.48E-04 

THBS1 3 2 8.48E-04 

AGRN 4 2 0.001668 

EFEMP1 4 2 0.001668 

HSPG2 4 2 0.001668 

LAMB1 4 2 0.001668 

COL7A1 5 2 0.002733 

Table 13. Significant ECM protein subnetwork statistics for axolotl 

Among the subnetworks, FN1 and COL1A1 were the most significant 

subnetworks in axolotl. FN1 was also the most significant subnetwork in Xenopus. 

Fibronectin 1 (FN1) and COL1A1 were both found to be expressed in the proteomics 

data as well. FN1 was also found to be expressed in the Xenopus proteomics data. Among 

all the three molecular classes analyzed, FN1 was found to have the highest coverage or 
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highest number of connections with the proteins from the proteomics data. In axolotl, a 

total of 263 proteins were present on the network and of these 149 were connected to 

FN1 (at most two steps away from FN1 on the subnetwork). In Xenopus, 601 proteins 

from the proteomics data were present on the network and 402 of these were present in 

the FN1 subnetwork. 

ECM 

Subnetwork 

No. Of 

Proteins On 

Subnetwork 

No. Of 

Proteomics 

Proteins 

p-Value 

FN1 1150 402 0 

MFAP1 216 190 8.76E-250 

THBS1 82 63 5.13E-73 

COL1A2 19 14 1.47E-16 

VTN 27 13 4.69E-12 

COL1A1 10 6 6.01E-07 

COL2A1 6 4 3.12E-05 

THBS2 7 4 7.00E-05 

AGRN 4 3 2.24E-04 

HSPG2 4 3 2.24E-04 

COL3A1 10 4 3.73E-04 

COL5A1 5 3 5.38E-04 

CYR61 6 3 0.001035 

MATN2 7 3 0.001742 

TFIP11 17 4 0.003212 

COL6A1 3 2 0.004341 

DCN 3 2 0.004341 

ELN 3 2 0.004341 

NID1 3 2 0.004341 

Table 14. Significant ECM protein subnetwork statistics for Xenopus 

In the axolotl proteomics data, components of collagen 1 were upregulated at all 

or two of the three time points. Components of cartilage matrix (collagen 2) and 

basement membrane (collagen 4) were downregulated at all dpa, as was decorin, which 

interacts with collagen1 fibrils and may affect the rate of their formation.  However, 

MATN 4, a major component of cartilage matrix, was upregulated at 1 and 4dpa, then 

downregulated at 7dpa. FBN1, a large glycoprotein that associates with elastin to provide 

force-bearing support in the ECM, was upregulated at 1 and 7dpa, with no change at 

4dpa. MATN 2, a von Willebrand family member involved in matrix assembly, was 

upregulated at 1 and 4dpa, then returned to control level at 7dpa.  FN1 forms part of the 

provisional wound matrix (clot) and was upregulated at all dpa. 
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The upregulation of FN1 and collagen 1, the downregulation of collagens 2 and 4, 

and the downregulation of EHD4, an endosomal trafficking regulatory protein [269] 

present in the matrix of differentiating cartilage and fibroblastic connective tissue during 

rat limb development [270], is consistent with other observations indicating that the 

differentiated tissue matrix is replaced by an ECM that is more similar to the limb bud 

matrix, and more favorable to the migration of dedifferentiated cells to form the blastema 

under the wound epidermis [271]. The proteomics data obtained for FN1 in axolotl was 

validated by immunostaining method in our previously published study [7]. Based on the 

subnetwork analysis and the analysis reported in the proteomics data, FN1 is a promising 

target for limb regeneration and its role should be further explored. 

Differential Subnetwork Analysis 

The approach developed here (as outlined by the Algorithm 3.6 in the 

Methodology section) compared all the subnetworks across two given conditions instead 

of comparing individual genes. The differential subnetworks were evaluated on both 

topological and biological properties associated with the nodes of the subnetworks. A 

significant outcome of this approach was the ability to identify differences between the 

same protein in two conditions based on its interaction profile, expression pattern, 

function and pathway differences. This approach was designed to include the direct 

neighborhood of the node—not just the node itself—to compare all the features (other 

than expression pattern) for subnetwork comparison. Biologically, this is very important 

since it signifies differential connectivity of the same protein between two conditions. It 

should also be noted that a mathematical comparison of condition 1 with condition 2 is 

different from condition 2 with condition 1. It is important that the research question is 

clearly described before differential comparison. If the interest is to find differences in 

condition 1, then the first case described above is used while if the interest is to find 

differences in condition 2, then the second case is used. In other words, either condition 1 

or 2 are used as the base for evaluating condition-specific differences.   

The differential subnetwork algorithm 3.6 described in the Methodology section 

generates an excel file, Disco.xls (Dissimilarity Score - DS) which contains the DS for all 

the common nodes between the subnetworks being compared. Each subnetwork from one 

condition is compared with all those subnetworks in the second condition which have one 
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or more common nodes. The scores of these individual node comparisons are averaged to 

generate an overall DS for the subnetworks. The range of the DS is from 0 to 1 with 1 

being the highest dissimilarity and zero being no evidence for dissimilarity. However, it 

should be noted that once the differential subnetworks of interest are identified, the DS at 

the node level can be used to identify the most differential nodes or proteins which can be 

used as targets (or key proteins) to influence the subnetwork of choice. In other words, 

these key proteins can be used to design further biological experiments (such as knock-

down). Hence, this strategy not only provides an informed decision about the most 

differential components between the two biological systems, it also helps identify the 

targets which can then be used to stimulate a desired biological response. 

The limb regeneration dataset was compared for all three molecular classes for 

which subnetworks were identified: GFs, TFs, and ECM proteins. The goal of this 

analysis was to identify differential subnetworks that are instrumental in conferring 

regeneration ability in the regeneration-competent axolotl. So, the comparisons were 

performed such that differences in axolotl were highlighted as opposed to Xenopus (first 

case according to the description above, axolotl subnetworks refer to condition 1 and 

Xenopus subnetworks refer to condition 2).  

Growth Factor Subnetwork Comparison 

Each of the five growth factor subnetworks identified for axolotl (described 

above) were compared with each of the ten GF subnetworks for Xenopus. HDGF was the 

most significant GF subnetwork containing 108 total proteins in axolotl and 228 proteins 

in Xenopus. Comparison of HDGF subnetwork in axolotl and Xenopus showed that 

seventy seven proteins were common between these subnetworks. Among these 77 

common proteins, 27 proteins were from the proteomics data, 75 had known gene 

ontology biological processed and 48 proteins were involved in known pathways. An 

overall dissimilarity score for the comparison of HDGF subnetworks was 0.33 indicating 

more similarity between the two subnetworks than dissimilarity. However, eight proteins 

in the HDGF subnetwork comparison had a very high DS as reported in Table 15. 

Column 2-6 in Table 15 reflect the dissimilarity score for each of the factors that were 

evaluated in the differential subnetwork algorithm. N/A: missing values for that factor. 
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The proteins derived from literature (missing expression values) are highlighted in 

yellow. 

Gene 

Symbol 
Interaction 

Dissimilarity 
Expression 

Dissimilarity 
GO 

Dissimilarity 
KEGG 

Dissimilarity 
Total 

Dissimilarity 

HNRNPU 0.8 1 0.77 0.95 0.88 

FBL 0.76 1 0.7 0.75 0.8 

SND1 0.77 1 0.66 0.75 0.79 

TRIM24 0.67 N/A 0.71 1 0.79 

RPL4 0.63 1 0.51 0.8 0.73 

SMARCA4 0.8 N/A 0.31 1 0.7 

IL7R 0.73 1 0.32 0.5 0.64 

SIRT7 0.44 1 0 1 0.61 

Table 15. Proteins with high dissimilarity scores in HDGF subnetwork comparison 

Among the eight proteins with a high DS, two proteins, TRIM24 and SMARCA4 

were derived from literature (also note that HDGF itself was derived from literature). 

Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU) and Fibrillarin (FBL) were the 

most dissimilar proteins in the subnetwork comparison and both these proteins are 

involved in mRNA processing. TRIM 24, SND1 are related to transcriptional control and 

SMARCA4 is involved in chromatin modification which is required for transcriptional 

activation. This siginifies that mRNA processing is a critical level of control for protein 

synthesis in general during limb regeneration. It is also evident that the most significant 

differential components of the HDGF subnetwork are the proteins with a high 

dissimilarity score.  

 

Figure 17. HDGF subnetwork of axolotl highlighting dissimilarity  
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Figure 17 shows the HDGF subnetwork and significant proteins discussed in 

Table 15 are labeled in the figure. Figure 17 also shows the variability in the DS of the 

different nodes on the subnetwork. Please note that diamond shaped nodes (unique to the 

axolotl subnetwork are small since DS was evaluated for the nodes common to both the 

axolotl and Xenopus subnetworks).Node size reflects the dissimilarity score (the bigger 

the node, the higher the dissimilarity score), red and blue node color are indicative of 

dissimilarity in expression values (bright red is highly dissimilar – dissimilar pattern at all 

time point comparisons, blue color – nodes had a similar pattern of expression), yellow 

colored nodes were derived from literature and node shape indicates common (round) or 

unique nodes (diamond) on this subnetwork.  

Transcription Factor Subnetwork Comparison 

Seventy transcription factor subnetworks of axolotl were compared with 158 TF 

subnetworks of Xenopus. Table 16 below shows the overall DS of the highly significant 

TF subnetworks as identified above. Most of these subnetworks are also known to 

influence stemness and hence are crucial to limb regeneration (Myc, POU5F1, SP1, 

SOX2). TF subnetworks were discussed above. Most of these subnetworks were found to 

be huge (high number of nodes) and yet around 50% dissimilar between the axolotl and 

Xenopus, highlighting the potential differences in the subnetworks between these 

conditions. SOX2 was identified as the most dissimilar subnetwork among the 

subnetworks mentioned in Table 16.  

TF 

Subnetwork 

No. of 

common 

proteins 

Total 

Proteins 
DS 

MYC 190 207 0.5 

ESR1 210 235 0.53 

SOX2 19 22 0.58 

POU5F1 65 66 0.42 

SP1 59 72 0.57 

TP53 248 268 0.48 

Table 16. Overall dissimilarity score of the highly significant subnetworks 

TP53 was the subnetwork with the highest number of total nodes (268) followed 

by ESR1 (235) and Myc (207). It is evident from Table 16 that subnetwork size is not 

indicative of the DS. All these subnetworks have a very high number of common nodes 

and are still dissimilar! These results also provide a validation to our initial hypothesis 
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that the nodes between two conditions might be similar but it is the differential 

connectivity between these nodes which is crucial for the given biological condition. 

To identify the most important differentially connected nodes, Figure 18 and 

Figure 19 were constructed to show the subnetwork comparison between the same TF 

subnetworks in axolotl and Xenopus. The common nodes or proteins between the 

subnetworks in axolotl and Xenopus are represented on the y-axis. As an example, the 

first column in Figure 18 represents the common proteins for the Myc subnetwork in 

axolotl and Xenopus. The colors indicate the dissimilarity score (bright yellow color 

indicates zero dissimilarity or similarity and bright red color indicates high dissimilarity) 

for the same node comparison in axolotl and Xenopus. The black color indicates that 

those nodes were not present in that subnetwork. The names of the most dissimilar nodes 

are labeled on the y-axis. Figure 18 shows the hierarchical clustering for the nodes or 

proteins on Myc, ESR1 and TP53 subnetworks.  

 

Figure 18. Hierarchical clustering of the subnetworks with respect to dissimilarity scores  

ESR1 and TP53 were the most closely related subnetworks (clustering on the x-

axis) — this is also because of the high number of shared nodes with a similar DS 

between these subnetworks. It can also be seen in the Figure 18 that although there are 

some nodes which are very similar (yellow color tends to be closer to DS of zero, as 

indicated by the legend image in the figure) between the two conditions, there are a lot of 
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nodes with high dissimilarity (red color). The nodes with the highest DS are indicated on 

the y-axis and these are the most significant differential components of these 

subnetworks. These nodes also can be considered as key proteins responsible for 

conferring limb regeneration ability in axolotl.  

Some of these nodes such as HNRNPU, SND1, are similar to the ones identified 

as important for the HDGF subnetwork comparison—hence, indicating a potential role of 

these proteins in controlling different processes within these systems. Of particular 

interest are ANXA2 and S100A10 which are known to be involved in limb regeneration 

by controlling the immune response [218, 221, 272, 273]. Higher levels of several S100 

family Ca
2+

-binding proteins are observed in the regenerating ear tissue of MRL/MpJ-Fas 

mice vs. non-regenerating ear tissue of C57BL/6J mice, as determined by laser capture 

proteomics [274, 275]. In axolotl proteomics data, ANXA2 was found to be upregulated 

at 1 and 4dpa. ANXA2 is an autocrine factor that promotes osteoclast formation and bone 

resorption.   

Figure 19 shows the hierarchical clustering of nodes in the SOX2, SP1, and 

POU5F1 subnetworks between the axolotl and Xenopus data. It should be noted that 

similar to Figure 18, these are the results for the same subnetwork comparison in both 

conditions (as an example, SOX2 subnetwork in axolotl when compared with SOX2 

subnetwork in Xenopus).  

 

Figure 19. Hierarchical clustering of the subnetworks with respect to dissimilarity scores 
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SOX2 contained the least number of total nodes and POU5F1 subnetwork 

contains nodes with much higher similarity as compared to the other subnetworks. The 

nodes BRCA1 (highly dissimilar in SOX2), HSP90AA1 (highly dissimilar in SP1), and 

RPL4 (highly dissimilar in POU5F1) were the most important key molecules in these 

subnetworks. Of these, HSP90AA1 was also detected in the axolotl and Xenopus 

proteomics data. It was downregulated in the axolotl data while upregulated in the 

Xenopus data. 

Table 17 below shows the most dissimilar TF subnetworks in axolotl as compared 

to Xenopus. Overall, NFATC4 and SAFB were the most dissimilar subnetworks. To 

obtain these results, the subnetworks with less than five proteins were not included in the 

analysis. 

TF 

Subnetwork 

No. of 

common 

proteins 

Total 

Proteins 
DS 

NFATC4 7 8 0.8 

SAFB 12 15 0.74 

NFIA 11 12 0.66 

HIF1A 21 23 0.65 

HR 8 14 0.65 

EPAS1 13 13 0.64 

SSRP1 28 30 0.64 

HSF1 11 15 0.63 

TCF4 8 8 0.63 

BCL6 8 10 0.61 

CEBPA 6 9 0.6 

STAT3 7 7 0.6 

ZNF592 19 29 0.6 

Table 17. Transcription factor subnetworks with high dissimilarity 

Extracellular Matrix Protein Subnetwork Comparison 

The extracellular matrix protein subnetworks were investigated similar to the GF 

and TF subnetworks described above. Table 18 shows the overall dissimilarity for the 

ECM subnetworks. None of the ECM subnetworks with less than a total of 5 proteins 

were included in the table. Among the ECM subnetworks, MATN2 was the subnetwork 

with the highest overall DS. However, it should be noted that the number of total nodes in 

this subnetwork is relatively very low as compared to the other subnetworks and hence 

indicating a low connectivity with other subnetworks.  
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ECM 

Subnetwork 

No. of 

common 

proteins 

Total 

Proteins 
DS 

FN1 507 605 0.4 

COL1A1 36 45 0.49 

VTN 23 24 0.48 

LTBP4 9 16 0.49 

DCN 12 13 0.61 

COL2A1 9 11 0.68 

MATN2 7 8 0.71 

Table 18. Extracellular matrix protein subnetworks with high dissimilarity 

Gene Symbol 
Interaction 

Dissimilarity 
Expression 

Dissimilarity 
GO 

Dissimilarity 
KEGG 

Dissimilarity 
Total 

Dissimilarity 

PCMT1 0.86 1 0.97 1 0.96 

TPM3 0.88 1 0.96 1 0.96 

ACTN4 0.86 1 0.9 1 0.94 

ACACA 0.84 1 0.74 1 0.9 

FUS 0.82 1 0.79 1 0.9 

KHSRP 0.84 1 0.74 1 0.9 

HNRNPU 0.81 1 0.79 0.95 0.89 

PELP1 0.75 N/A 1 N/A 0.88 

HIST2H2BE 0.86 1 0.68 1 0.88 

ANXA2 0.8 1 0.71 0.95 0.86 

SRSF3 0.84 1 0.58 1 0.86 

PSMD2 0.8 1 0.73 0.93 0.86 

C1QA 0.67 N/A 1 N/A 0.84 

SEPT9 0.67 N/A 1 N/A 0.84 

EPPK1 0.67 1 0.7 1 0.84 

PTBP2 0.67 N/A 1 N/A 0.84 

FLNB 0.76 1 0.63 0.92 0.83 

GSTP1 0.81 1 0.83 0.67 0.83 

HSP90AA1 0.86 1 0.55 0.92 0.83 

ETF1 0.75 1 0.75 N/A 0.83 

MME 0.64 1 0.67 1 0.83 

CLTC 0.92 N/A 0.54 1 0.82 

FBL 0.76 1 0.73 0.8 0.82 

SND1 0.78 1 0.7 0.8 0.82 

CACNA1A 0.67 1 0.79 N/A 0.82 

USP39 0.75 N/A 0.67 1 0.81 

FLOT2 0.6 N/A 1 N/A 0.8 

NHP2L1 0.7 1 0.66 0.83 0.8 

RPL4 0.65 1 0.67 0.88 0.8 

Table 19. Proteins with high dissimilarity score (DS) in the FN subnetwork comparison 
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Interestingly, as mentioned earlier, the FN subnetwork was the most connected 

subnetwork with the highest number of nodes among all the subnetworks analyzed in this 

study. So, we compared the FN subnetworks between axolotl and Xenopus to evaluate its 

dissimilarity. Although its overall dissimilarity score is 0.4, there were a lot of very 

highly dissimilar nodes in this subnetwork (mentioned in the Table 19 above). These 

nodes with a high dissimilarity score should be further investigated for their role in limb 

regeneration.   

Of particular interest was HNRNPU as it was identified as one of the most 

dissimilar nodes with multiple subnetwork comparisons between axolotl and Xenopus. It 

was also identified among the subnetworks of all the categories (GF, TF, and ECM) or 

molecular class of proteins that were analyzed. Figure 20 below shows the HNRNPU 

connectivity in both axolotl and Xenopus networks to highlight the presence of 

differential neighborhoods. It should be noted that the coloring of the nodes is similar to 

that described for condition-specific networks, pink and blue nodes were derived from 

literature while yellow and red nodes were derived from proteomics data. Nodes with the 

green boundary are the common nodes between axolotl and Xenopus data. Two important 

observations from this data are: (i) Although the overall axolotl network is significantly 

smaller than Xenopus network (refer Figure 16), HNRNPU neighborhood is far denser in 

axolotl as compared to Xenopus; (ii) Only 10 nodes are common between axolotl and 

Xenopus. 

 

Figure 20. HNRNPU neighborhood in axolotl (a) and Xenopus (b) networks 
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These results signify the differential connectivity of common proteins such as 

HNRNPU. Hence, the role of these proteins in limb regeneration should be further 

evaluated. Importantly, this validates our hypothesis that although the proteins can be 

similar between the two biological conditions, their interacting partners could be different 

leading to physiological differences in between the two conditions. Such differential 

components can serve as important regulators governing a biological system and hence 

their role as potential targets should be further investigated. 

Biological Validation 

Proteomics Validation 

We selected NOS1, fibronectin and -actinin for validation of axolotl proteomics 

data by immunocytochemistry at 1 and 7dpa. The Figure 21 shows longitudinal sections 

of control (a,d,g) vs. 1dpa (b, e, h) and 7dpa (c, f, i) axolotl hindlimbs stained with 

primary antibodies to NOS1 (a-c),  FN1 (fibronectin 1) (d-f), ACTN (-actinin) (g-i).  

 

Figure 21. Immunostained sections of axolotl hind limbs 

Conjugated secondary antibodies were alexa-568 for fibronectin and NOS1, and 

alexa-488 for -actinin.  Nuclei were counterstained with DAPI.  As expected, 

fluorescence intensity of NOS1 and fibronectin staining (red) at 1 and 7dpa showed 

significant increases compared to controls, while -actinin staining intensity (green) 

showed a significant decrease. The fold changes determined by LC/MS/MS were largely 
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congruent with densitometric measurements, indicating that quantitative LC/MS/MS data 

accurately reflected the levels of specific proteins. We similarly validated the proteins 

from proteomics data in Xenopus. More details can be found in our previous publications 

[7, 226]. 

Segment Defect Regeneration 

Fifty percent defects were chosen in order to provide a regenerative challenge 

well beyond the critical size defect (CSD).  We noted that in many cases, the bone at the 

cut ends of the fibula had undergone substantial regression, making the segment defect 

closer to 70%.   

The extent of regeneration fell into two categories, partial and significant.  Partial 

regeneration was defined as bridging less than 25% of the defect, whereas significant 

regeneration was defined as bridging 50% or more of the defect.  The 7-factor 

combination yielded one case of partial regeneration out of 24 limbs, and the BMP-

4/VEGF combination yielded two cases out of 24 limbs. The regenerated skeletal tissue 

consisted of irregular tongues of cartilage. No cases of significant regeneration resulted 

from these combinations. 

 

Figure 22. Two 50% defects treated with BMP4/HGF, three months post-operation   

The BMP-4/HGF combination yielded two cases of partial regeneration and four 

cases of significant regeneration out of 24 limbs. BMP4/HGF induced significant 

regeneration in four out of 24 limbs by two-three months post-implantation. Figure 22A 

illustrates one case where new cartilage surrounded by a shell of bone regenerated the 
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length of the gap, but in parallel with, and adjacent to, the tibia.  The origin of the cells of 

this cartilage was likely the periosteum of the tibia. Figure 22B shows a case where 

regeneration took place over nearly the whole defect from the proximal end of the fibula. 

Figure 22A shows that an irregular secondary length of cartilage (asterisk) was induced 

along the axis of the tibia (T).  Vertical lines indicate the boundaries of the gap in the 

fibula.  No skeletal tissue was regenerated within the defect space itself except for a 

nodule of cartilage. Figure 22B shows cartilage (asterisk) from the distal end of the fibula 

regenerated across 80% of the defect.  

The only combination that promoted significant regeneration of cartilage and 

bone across 50% segment defects with any consistency was BMP-4/HGF. Partial 

regeneration was stimulated in one case of the 7-factor cocktail and two cases of the 

BMP-4/VEGF combination, but none of the other combinations stimulated regeneration.  

There could be multiple explanations for these differential results, such as 

suboptimal GF concentrations and/or concentration ratios. A likely part of the 

explanation, however, is that as in fracture repair, the expression of different GFs needs 

to follow a spatial and temporal cascade initiated by BMPs in order to regenerate across a 

CSD.  The involvement of HGF would be through its ability to induce expression of 

BMP receptors. The release kinetics profile shows that after a peak burst at 2 hr and a 

subsequent 15% decrease by 4 hr, the amount of BMP-4 released is sustained at a 

relatively steady level of about 75% of the 2 hr value over three days. We did not test 

BMP-4 or HGF alone, so the possibility remains that either of these GFs could by 

themselves initiate the molecular cascade leading to cartilage regeneration.   

In BMP-4/HGF-treated 50% defects, as in untreated 10% and 20% defects, the 

regenerating cartilage appears to grow from either or both cut ends of the fibula, 

suggesting either a periosteal or chondrogenic origin. More details can be found in our 

work which will be published soon [245]. We have established that the axolotl (and most 

likely other urodele species) can serve as an inexpensive and surgically amenable model 

to screen different combinations of factors for their ability to promote regeneration of 

cartilage and bone across a CSD.  The model has established that a combination of BMP-

4 and HGF, as well as whole limb issue extract is effective in evoking regeneration across 

gaps of 50% or greater in the axolotl fibula. 
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CHAPTER FIVE: CONCLUSIONS 

Summary 

To address the challenges in the identification of condition-specific differential 

components of a biological system, we developed a novel and innovative systems level 

approach to identify the differential subnetworks and key target molecules. This approach 

provided a strategy to not only prioritize and discover differential components from high 

throughput experiments but also identified condition-specific data from the published 

literature.  

Condition-specific ontologies along with a probabilistic model for prioritization 

of relevant articles were used to mine the published literature. The literature-derived data 

was then combined with the experimentally derived proteomics data to construct 

condition-specific protein interaction networks. These networks were then used to derive 

the molecular class based subnetworks for each condition. These subnetworks were 

further compared by incorporating both the biological and topological properties of the 

nodes (proteins) and edges (interactions) in the model to identify the differential 

subnetworks.  

This approach was implemented to understand the differences between the limb-

regeneration competent system of axolotl and. the limb-regeneration deficient system of 

Xenopus. Limb regeneration specific articles were mined from the published literature 

and assigned a relevance score. Proteins were then extracted from the articles with a 

significant relevance score. The proteins derived from the proteomics data collected at 

different time points after amputation were combined with the literature-derived proteins 

to construct competent and deficient networks. These networks were then used to identify 

growth factor, transcription factor, and extracellular matrix protein subnetworks. The 

subnetworks were then further compared to identify most dissimilar subnetworks and key 

proteins that possibly confer the ability to regrow the limbs in the competent system of 

axolotl. Key growth factors identified for segment defect regeneration were biologically 

validated by loading them onto scaffolds specifically designed to deliver these growth 

factors in the critical size defect models of axolotl. We observed an increased 

regenerative response with this approach as compared to the controls. The biological 
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experiments validated our in-silico model approach to identify significant growth factors 

from literature-mined data and network analysis. 

Limitations and future work 

The approach designed and implemented in this study suffers from some 

limitations which can be improved in the future. One of the limitations of this approach is 

the use of experimental data for analysis (microarray/proteomics). Several different and 

more complicated datasets are being produced by the biological/bioinformatics 

community such as epigenetics, next generation sequencing (NGS) data, etc. At present, 

this methodology does not support integration of these several different datasets for a 

differential comparison. However, we believe that the additional datasets can be easily 

added as another feature in the model to estimate dissimilarity. To demonstrate the easy 

adaptability and working of the differential network analysis with the next generation 

sequencing data, we analyzed the whole genome, sequencing data of 37 Korean 

individuals and applied the differential subnetwork algorithm in order to understand the 

conserved modules among family members.  

Most of the NGS studies have focused on the upstream analysis of the data. In this study, 

we provided a framework for analyzing the WGS data using systems biology approaches 

to identify the significant functional components. The pipeline was built on the single 

nucleotide variants from the Korean Personal Genome Project (KPGP) dataset and 

identified 1.4M low frequency variants and 1.3M novel variants. Function and pathways 

analysis, and significant modules in the KPGP variant gene network showed an 

enrichment of complex diseases like cancer and neurodegenerative disorders. This study 

also identified the highly conserved modules within the family members. Figure 23 

shows the conserved modules identified in this study. Darker color indicates high 

similarity/low dissimilarity while bright yellow color indicates higher dissimilarity. 

An overall trend emerges from Figure 23, dissimilarity in a family is the lowest 

for twins, followed by sibling or parent-child combinations, then cousins and lastly the 

unrelated members of a family (both the parents). The multicultural family comparison 

between the mother (KPGP10) and her children (KPGP11/12) was the most striking in 

terms of a very high DS. This could be due to the more dominant genotype of the father 

(KPGP9) with whom the children share a very high similarity (in accordance with other 
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parent-child pairs of the same family). However, more in-depth analysis is required to 

understand such variability.  The most significant modules among the twins were the 

CHEK2 and COPS7B which are involved in cancer [276] and neurodegeneration [277] 

respectively. The least dissimilar modules overall for all sample comparisons were 

CEP170, CHEK2, MLL3, and PDE4DIP modules. MLL3 possesses histone methylation 

activity and is involved in transcriptional coactivation [278]. MLL3 along with other 

genes in the module are known to be involved in several kinds of cancers, development 

disorders and brain-related malfunctions such as ALS. CEP170 is also involved in similar 

disorders [279]. Please refer to our publication for more details [280]

 

Figure 23. Heatmap for the family comparisons showing conserved modules 

Another limitation of this approach is that the ontologies used to determine the 

CL can be queried through SPARQL to provide a more efficient method for querying. 

Several levels within the ontologies can then be specifically queried to resolve synonyms 

and get rid of more general science words (which were manually removed in the present 

approach). To improve the efficiency of protein extraction from relevant articles, a better 

methodology can be designed to retrieve full names by using partial matching. However, 

the present implementation of partial matching yields a lot of spurious results and so the 

present approach used only exact dictionary matching. Moreover, the protein interaction 

network construction relied on the data present in BioGRID [22]. BioGRID is one of the 

biggest repositories of protein-protein interactions (PPIs) [281]. It holds 696,237 

interactions for 46 organisms which are derived from 40,858 publications. A team of 14 

curators manually curates this vast amount of literature [22]. This and other manually 
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curated databases also store information about protein interaction detection methods 

(PIDMs, such as yeast two hybrid, co-immunoprecipitation, etc.). A simple search on 

PubMed with the term “protein protein interactions” returns about 279,556 articles. So 

far, the number of publications manually curated by all the databases put together is not 

more than 60,000. There is a huge gap between the manually curated articles and those 

contained in PubMed. Such unannotated publications contain valuable information on 

PPIs and PIDMs that can be useful to the scientific community.  

To reduce the knowledge gap between the number of articles in PubMed 

containing PPIs and PIDMs vs. the number of articles in publically available databases, it 

is essential to develop efficient data mining methods. Although BioCreative III tasks 

identified several ways to solve this issue, the performance of these methods was quite 

low as described above. This was mainly because the task was to identify most of the 

known interaction detection methods (almost 115). However, most of these detection 

methods are now obsolete and not considered to be significant. The three methods, co-

immunoprecipitation (anti-bait and anti-tag), pull-down, and yeast two hybrid constitute 

almost half of the methods present in documents made available by BioCreative. These 

are also the methods considered to be most significant in the detection of protein 

interactions by the scientific community in general.  

We developed a methodology for the identification of these three most significant 

methods for protein interaction detection. We argued that instead of treating the PPI and 

PIDM as two different tasks (as defined in the BioCreative challenge), both should be 

used together to identify significant PPIs. This is because many articles in the biomedical 

literature contain PPI sentences (usually referring to already known interactions) but that 

does not necessarily indicate that those PPIs were detected by some biological technique 

in that study. Such studies cannot be treated as a validation of the PPIs. A better approach 

then would be to detect both PIDMs and PPIs in the same article to derive meaningful 

data. We hypothesized that if an article contains the PIDM in its Methodology section, it 

is certain that PPIs were discovered in that study. A regular expressions (RegEx) based 

methodology was developed to classify the PubMed articles into one of the three PIDMs 

and then extract PPIs. This method was able to achieve an overall specificity of 83.6 and 

sensitivity of 78.2 in classification. The details of this method can be obtained from our 
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published work [282]. Although we developed an efficient methodology for extraction of 

PPIs and PIDMs from published literature, it was not implemented into the present 

approach. In future, we plan to extend the current approach to include this work. 

Limb regeneration data (proteomics and literature-derived) was mapped to the 

human orthologs since the genomic data for axolotl was not available. Once the genomic 

data becomes available, the same approach can be used to understand axolotl and 

Xenopus specific subnetworks. However, since the final goal is to identify targets which 

can confer limb regeneration ability in humans so that the soldiers who lose their limbs in 

wars and people who suffer amputations in accidents can be helped, we believe that the 

use of human orthologs will help achieve that objective. 

Significance 

Our study provides an exhaustive systems biology approach to compare 

regeneration competent and deficient subnetworks to show how the same proteins 

differentially inter-connect to confer regeneration-competence in axolotls. This approach 

also provides an in silico methodology to identify proteins that are not detected by 

experimental methods such as proteomics. Systems biology has the potential to map out 

numerous differential subnetworks that are crucial to blastema formation in regeneration-

competent limbs and compare them to the pathways that characterize regeneration-

deficient limbs, and to identify stem cell markers in regeneration. Humans are not able to 

regenerate appendages, nor can we regenerate skin, muscle, bone, or nerve across large 

gaps in these tissues. This approach will be a step forward in helping confer regenerative 

capacity on non-regenerating human tissues in future. The knowledge gained from the 

distinguishing features of limb regeneration at the systems level in amphibians can be 

used to chemically induce regeneration in mammalian systems. We believe that this 

research identified regeneration-promoting molecules which will fuel the research for 

regenerative medicine therapies. 

Although this approach was implemented on limb regeneration, it is scalable and 

adaptable to compare any two given biological conditions. It provides novel intuitions 

that can further the understanding of the pathophysiological processes of the biological 

conditions being investigated and help predict the potential targets that can enhance drug 

discovery.  Our findings show that although the proteins might be common between the 



85 

 

two given biological conditions, they can have a high dissimilarity based on their 

biological and topological properties in the subnetwork. Hence, the discovery of 

differential subnetworks will also benefit the drug-repositioning pipeline since 

differential subnetworks can be easily eliminated as the potential targets for existing 

drugs. 
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Appendix 

A1. Description of programs  

# Program Name Input Output 

1 
BioPortalRecommend

erXML.java 
XML of articles 

Top5 ontologies for the 

articles supplied (printed in 

console) 

2 
BioPortalAnnotatorCo

nceptListXML.java 

XML of articles; list of 

ontologies to use 

(generated in program 1) 

Unique List of Concept List 

Terms (XLS file) 

3 

PMIDAbstractsGenera

teXLSFromXMLFile.j

ava 

XML of articles 

XLS of the articles with 

PMIDs in first column 

followed by abstracts in 

second column 

4 
ConceptListMatchAbs

tractsXLS.java 

XLS sheet of PMIDs and 

abstracts (generated in 

program 3); Concept 

list.xls (generated in 

program 2) 

Two XLS sheets: one with 

weight (and all the factors 

needed to generate weight) 

for each matching term in 

every PMID; overall weight 

for each PMID 

5 EvaluationMetric.java 

XLS sheet containing 

overall PMID weights and 

the file containing known 

results 

XLS file with values for all 

evaluation metrics 

mentioned in the 

methodology section with 

the user specified threshold 

interval 
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6 
ExtractProteinsFromA

bstracts.java 

List of abstracts from 

database table: 

selected_abstracts  

List of proteins stored in 

database table: protein_list 

7 
NetworkConstruction

Axo.java 

Database tables: 

axo_proteomics, 

biogrid_human_interactio

ns_symbols, 

protein_list_frequency 

Database tables: 

axo_present, 

axo_not_present, 

axo_combined 

8 
NetworkConstruction

Xeno.java 

same as above, replace axo 

for xeno in the above table 

names 

same as above, replace axo 

for xeno in the above table 

names 

9 
SubnetworkIdentificati

on.java 

Database tables: 

axo_combined, 

axo_proteomics,  

xeno_combined, 

xeno_proteomics, 

pmid_weight, 

pmid_protein, hprd, 

gene_go_bp, gene_kegg 

XLS files for GO terms for 

the genes on subnetwork, 

subnetwork interactions, 

KEGG pathways for the 

proteins on subnetwork, seed 

nodes : proteins for the 

selected molecular class with 

their expression or literature 

weight wherever applicable 

10 
SubnetworkPValue.ja

va 

uses the XLS files 

generated in program 9 

 P-value associated with 

each subnetwork 
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11 
SubnetworkGoPValue

.java 

uses the XLS files 

generated in program 9 

Adds another column for p-

values in the previously 

generated files containing 

GO terms 

12 
SubnetworkKeggPVal

ue.java 

uses the XLS files 

generated in program 9 

Adds another column for p-

values in the previously 

generated files containing 

KEGG pathways 

13 
DifferentialSubnetwor

ks.java 

uses the XLS files 

generated in program 9 

Compares the axolotl and 

Xenopus subnetworks to 

identify differential 

subnetworks. Disco.xls 

contains the dissimilarity 

score for each common node 

in the subnetwork 

comparison 

14 DiscoReport1.java 
Disco.xls generated in 

program 13 

Generates overall 

dissimilarity score for each 

subnetwork in axolotl 

15 DiscoReport2.java 
Disco.xls generated in 

program 13 

 Generates overall 

dissimilarity score for each 

subnetwork comparison 

 

A2. Description of database tables 

Table Name Column Name Description 

abstract_data 
pmid 

abstract_text 
PMID and text of abstracts 

axo_combined 

gene_a 

gene_b 

status 

Interaction data from proteomics and 

literature. “gene_a” contains the source 

interactor and “gene_b” contains the target 

interactor (gene symbols). “status” contains 
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information about the source of protein. If 

both interacting proteins are derived from 

proteomics, status is “present” else 

“not_present” 

axo_not_present 

not_present_gene, 

gene_a 

gene_b 

Proteins from literature and their 

interactions with proteomics data. 

“not_present_gene” contains the gene 

symbol for the literature-derived protein. 

gene_a and gene_b same as described 

above 

axo_present 
gene_a 

gene_b 

Interactions where both proteins are from 

proteomics data. gene_a and gene_b same 

as described above 

axolotl_proteomics_

data 

gene_name 

1dpa 

4dpa 

7dpa 

Proteomics data for axolotl. gene_name 

contains the gene symbol for the protein 

and 1dpa, 4dpa, and 7dpa contain 

respective fold change values 

biogrid_human_inte

ractions_symbols 

bio_grid_id 

official_symbol_inte

ractor_a 

official_symbol_inte

ractor_b 

synonyms_interactor

_a 

synonyms_interactor

_b 

Interactions and symbols for human data 

derived from BioGRID 

protein_list 
pmid 

protein_list 

PMIDs and proteins extracted from 

literature with threshold of PMID weight > 

2.5.  

gene_go_bp 

go_id  

gene_symbol 

description 

GO BP for all the human proteins. 

“description” column contains the GO term 

description of GO IDs 

gene_kegg kegg_id KEGG pathways for all the human 
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gene_symbol 

description  

proteins. “description” column contains the 

GO term description of GO IDs 

hprd 

title 

alt_title 

gene_symbol 

molecule_class 

molecular_function 

biological_process 

HPRD data extracted from XML file 

pmid_protein 
pmid 

gene_name 

PMID and gene symbol for protein 

extracted from literature 

pmid_weight 
pmid 

weight 

Overall weight of each PMID extracted 

from literature  

protein_list_frequen

cy 

protein 

count 

Number of PMIDs in which a protein is 

present and gene symbol of the protein 

selected_abstracts 
pmid 

abstract_text 
Abstracts for PMIDs with weight >2.5 

uniprot_gene_name

s_human 

entry 

entry_name 

status 

protein_names 

gene_names 

organism 

gene_names_primar

y 

gene_names_synony

m 

UniProt data (human and reviewed) 

extracted from XLS file downloaded from 

uniprot website 

xeno_combined   Xenopus data, similar to axo_combined 

xeno_not_present   Xenopus data, similar to xeno_not_present 

xeno_present   Xenopus data, similar to axo_present 

xenopus_proteomic

s_data 

gene_name, 1dpa, 

5dpa, 7dpa, 12dpa 

Xenopus data, similar to 

axo_proteomics_data 

 

 



91 

 

References 

1. Ideker T, Galitski T, Hood L: A new approach to decoding life: systems 

biology. Annu Rev Genomics Hum Genet 2001, 2:343-372. 

2. Ahn AC, Tewari M, Poon CS, Phillips RS: The limits of reductionism in 

medicine: could systems biology offer an alternative? PLoS Med 2006, 

3(6):e208. 

3. Chuang HY, Hofree M, Ideker T: A decade of systems biology. Annu Rev Cell 

Dev Biol 2010, 26:721-744. 

4. Kitano H: Systems biology: a brief overview. Science 2002, 295(5560):1662-

1664. 

5. Gene Expression Omnibus [http://www.ncbi.nlm.nih.gov/geo/] 

6. Jhamb D, Rao N, Milner DJ, Song F, Cameron JA, Stocum DL, Palakal MJ: 

Network based transcription factor analysis of regenerating axolotl limbs. 

BMC Bioinformatics 2011, 12:80. 

7. Rao N, Jhamb D, Milner DJ, Li B, Song F, Wang M, Voss SR, Palakal M, King 

MW, Saranjami B et al: Proteomic analysis of blastema formation in 

regenerating axolotl limbs. BMC Biol 2009, 7:83. 

8. Boyack KW, Newman D, Duhon RJ, Klavans R, Patek M, Biberstine JR, 

Schijvenaars B, Skupin A, Ma N, Borner K: Clustering more than two million 

biomedical publications: comparing the accuracies of nine text-based 

similarity approaches. PLoS One 2011, 6(3):e18029. 

9. Lu Z: PubMed and beyond: a survey of web tools for searching biomedical 

literature. Database (Oxford) 2011, 2011:baq036. 

10. Medical Subject Headings [http://www.nlm.nih.gov/mesh/meshhome.html] 

11. Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M: 

Genomic analysis of regulatory network dynamics reveals large topological 

changes. Nature 2004, 431(7006):308-312. 

12. IPA: Ingenuity Pathway Analysis [http://www.ingenuity.com/products/ipa] 

13. Ekins S, Nikolsky Y, Bugrim A, Kirillov E, Nikolskaya T: Pathway mapping 

tools for analysis of high content data. Methods Mol Biol 2007, 356:319-350. 

14. What Is Text Mining? [http://people.ischool.berkeley.edu/~hearst/text-

mining.html] 

15. Stevens R, Wroe C, Lord P, Goble C: Ontologies in bioinformatics. In: 

Handbook on Ontologies. Springer; 2003: 635-657. 

16. Schuurman N, Leszczynski A: Ontologies for bioinformatics. Bioinform Biol 

Insights 2008, 2:187-200. 

17. Fact Sheet PubMed®: MEDLINE® Retrieval on the World Wide Web 

[http://www.nlm.nih.gov/pubs/factsheets/pubmed.html] 

18. National Center for Biotechnology Information [http://www.ncbi.nlm.nih.gov/] 

19. European Bioinformatics Institute [http://www.ebi.ac.uk/] 

20. UniProt [http://www.uniprot.org/] 

21. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, 

Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A et al: Human 

Protein Reference Database--2009 update. Nucleic Acids Res 2009, 

37(Database issue):D767-772. 

http://www.ncbi.nlm.nih.gov/geo/
http://www.nlm.nih.gov/mesh/meshhome.html
http://www.ingenuity.com/products/ipa
http://people.ischool.berkeley.edu/~hearst/text-mining.html
http://people.ischool.berkeley.edu/~hearst/text-mining.html
http://www.nlm.nih.gov/pubs/factsheets/pubmed.html
http://www.ncbi.nlm.nih.gov/
http://www.ebi.ac.uk/
http://www.uniprot.org/


92 

 

22. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, 

Nixon J, Ramage L, Kolas N, O'Donnell L et al: The BioGRID interaction 

database: 2013 update. Nucleic Acids Res 2013, 41(Database issue):D816-823. 

23. Islamaj Dogan R, Murray GC, Neveol A, Lu Z: Understanding PubMed user 

search behavior through log analysis. Database (Oxford) 2009, 2009:bap018. 

24. Automatic Term Mapping, PubMed 

[http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_040.html] 

25. Bacchin M, Melucci M: Symbol-Based Query Expansion Experiments at 

TREC 2005 Genomics Track. In: Proceedings of the Fourteenth Text Retrieval 

Conference: 2005. 

26. Hersh W, Price S, Donohoe L: Assessing thesaurus-based query expansion 

using the UMLS Metathesaurus. Proc AMIA Symp 2000:344-348. 

27. Lu Z, Kim W, Wilbur WJ: Evaluation of Query Expansion Using MeSH in 

PubMed. Inf Retr Boston 2009, 12(1):69-80. 

28. Salton G, Buckley C: Term-weighting approaches in automatic text retrieval. 

Information Processing & Management 1988, 24(5):513-523. 

29. Belkin NJ, Kantor P, Fox EA, Shaw JA: Combining the evidence of multiple 

query representations for information retrieval. In: TREC-2 Proceedings of 

the second conference on Text retrieval conference: 1995. 

30. Harman DK, Voorhees EM: TREC: An overview. Annual Review of Information 

Science and Technology 2006, 40(1):113-155. 

31. Hersh W, Voorhees E: TREC genomics special issue overview. Information 

Retrieval 2009, 12(1):1-15. 

32. Robertson SE, Walker S: Some simple effective approximations to the 2-

Poisson model for probabilistic weighted retrieval. In: SIGIR '94 Proceedings 

of the 17th annual international ACM SIGIR conference on Research and 

development in information retrieval: 1994. 232 - 241. 

33. Fontaine JF, Barbosa-Silva A, Schaefer M, Huska MR, Muro EM, Andrade-

Navarro MA: MedlineRanker: flexible ranking of biomedical literature. 

Nucleic Acids Res 2009, 37(Web Server issue):W141-146. 

34. Smalheiser NR, Zhou W, Torvik VI: Anne O'Tate: A tool to support user-

driven summarization, drill-down and browsing of PubMed search results. J 

Biomed Discov Collab 2008, 3:2. 

35. Yamamoto Y, Takagi T: Biomedical knowledge navigation by literature 

clustering. J Biomed Inform 2007, 40(2):114-130. 

36. Doms A, Schroeder M: GoPubMed: exploring PubMed with the Gene 

Ontology. Nucleic Acids Res 2005, 33(Web Server issue):W783-786. 

37. Perez-Iratxeta C, Bork P, Andrade MA: XplorMed: a tool for exploring 

MEDLINE abstracts. Trends Biochem Sci 2001, 26(9):573-575. 

38. Rebholz-Schuhmann D, Kirsch H, Arregui M, Gaudan S, Riethoven M, Stoehr P: 

EBIMed--text crunching to gather facts for proteins from Medline. 

Bioinformatics 2007, 23(2):e237-244. 

39. Fernandez JM, Hoffmann R, Valencia A: iHOP web services. Nucleic Acids Res 

2007, 35(Web Server issue):W21-26. 

http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_040.html


93 

 

40. Tsai RT, Dai HJ, Lai PT, Huang CH: PubMed-EX: a web browser extension to 

enhance PubMed search with text mining features. Bioinformatics 2009, 

25(22):3031-3032. 

41. Plake C, Schiemann T, Pankalla M, Hakenberg J, Leser U: AliBaba: PubMed as 

a graph. Bioinformatics 2006, 22(19):2444-2445. 

42. Douglas SM, Montelione GT, Gerstein M: PubNet: a flexible system for 

visualizing literature derived networks. Genome Biol 2005, 6(9):R80. 

43. Yu H, Kim T, Oh J, Ko I, Kim S, Han WS: Enabling multi-level relevance 

feedback on PubMed by integrating rank learning into DBMS. BMC 

Bioinformatics 2010, 11 Suppl 2:S6. 

44. States DJ, Ade AS, Wright ZC, Bookvich AV, Athey BD: MiSearch adaptive 

pubMed search tool. Bioinformatics 2009, 25(7):974-976. 

45. Yang Y, Pedersen JO: A Comparative Study on Feature Selection in Text 

Categorization. In: ICML '97 Proceedings of the Fourteenth International 

Conference on Machine Learning: 1997. Morgan Kaufmann Publishers Inc.: 412-

420  

46. Tzeras K, Hartmann S: Automatic indexing based on Bayesian inference 

networks. In: SIGIR '93 Proceedings of the 16th annual international ACM 

SIGIR conference on Research and development in information retrieval: 1993. 

22-35. 

47. Wiener E, Pedersen JO, Weigend AS: A Neural Network Approach to Topic 

Spotting. In: Proceedings of the Fourth Annual Symposium on Document 

Analysis and Information Retrieval: 1995. 

48. Yang Y: Expert network: effective and efficient learning from human 

decisions in text categorization and retrieval. In: SIGIR '94 Proceedings of the 

17th annual international ACM SIGIR conference on Research and development 

in information retrieval: 1994. 13-22. 

49. Lewis DD, Ringuette M: A Comparison of Two Learning Algorithms for Text 

Categorization. In: Third Annual Symposium on Document Analysis and 

Information Retrieval: 1994. 

50. Iliopoulos I, Enright AJ, Ouzounis CA: Textquest: document clustering of 

Medline abstracts for concept discovery in molecular biology. Pac Symp 

Biocomput 2001:384-395. 

51. Papanikolaou N, Pavlopoulos GA, Pafilis E, Theodosiou T, Schneider R, 

Satagopam VP, Ouzounis CA, Eliopoulos AG, Promponas VJ, Iliopoulos I: 

BioTextQuest+: a knowledge integration platform for literature mining and 

concept discovery. Bioinformatics 2014. 

52. Papanikolaou N, Pafilis E, Nikolaou S, Ouzounis CA, Iliopoulos I, Promponas 

VJ: BioTextQuest: a web-based biomedical text mining suite for concept 

discovery. Bioinformatics 2011, 27(23):3327-3328. 

53. BioTextQuest+, A Biomedical Text Mining Suite for Concept Discovery 

[http://bioinformatics.med.uoc.gr/cgi-bin/biotextquest/textQuest.cgi] 

54. Yoo I, Hu X, Song IY: A coherent graph-based semantic clustering and 

summarization approach for biomedical literature and a new summarization 

evaluation method. BMC Bioinformatics 2007, 8 Suppl 9:S4. 

http://bioinformatics.med.uoc.gr/cgi-bin/biotextquest/textQuest.cgi


94 

 

55. Yoo I, Hu X, Song IY: Biomedical ontology improves biomedical literature 

clustering performance: a comparison study. Int J Bioinform Res Appl 2007, 

3(3):414-428. 

56. He D, Wu X: Ontology-Based Feature Weighting for Biomedical Literature 

Classification. In: 2006 IEEE International Conference on Information Reuse 

and Integration. IEEE 2006: 280-285. 

57. Hassanpour S, Das AK: Ontology Based Text Mining of Concept Definitions 

in Biomedical Literature. In: Proceedings of the 3rd Canadian Semantic Web 

Symposium (CSWS2011): 2011. 40-45. 

58. Lin J, Wilbur WJ: PubMed related articles: a probabilistic topic-based model 

for content similarity. BMC Bioinformatics 2007, 8:423. 

59. Spärck Jones K, Walker S, Robertson SE: A probabilistic model of information 

retrieval: development and comparative experiments. Information Processing 

& Management 2000, 36(6). 

60. Related Citations - PubMed 

[http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_190.html] 

61. Consortium* TGO: Gene Ontology: tool for the unification of biology. Nature 

Genetics 2000, 25(May). 

62. Unified Medical Language System [http://www.nlm.nih.gov/research/umls/] 

63. Systematized Nomenclature of Medicine--Clinical Terms 

[http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html] 

64. Musen MA, Noy NF, Shah NH, Whetzel PL, Chute CG, Story MA, Smith B: The 

National Center for Biomedical Ontology. J Am Med Inform Assoc 2012, 

19(2):190-195. 

65. Salvadores M, Alexander PR, Musen MA, Noy NF: BioPortal as a Dataset of 

Linked Biomedical Ontologies and Terminologies in RDF. Semant Web 2013, 

4(3):277-284. 

66. Burdett T: Zooma2 - A repository of annotation knowledge and curation API. 

In: International Society for Computational Biology.  2013. 

67. Jonquet C, Musen MA, Shah NH: Building a biomedical ontology 

recommender web service. J Biomed Semantics 2010, 1 Suppl 1:S1. 

68. Shah NH, Bhatia N, Jonquet C, Rubin D, Chiang AP, Musen MA: Comparison 

of concept recognizers for building the Open Biomedical Annotator. BMC 

Bioinformatics 2009, 10 Suppl 9:S14. 

69. Jonquet C, Lependu P, Falconer S, Coulet A, Noy NF, Musen MA, Shah NH: 

NCBO Resource Index: Ontology-Based Search and Mining of Biomedical 

Resources. Web Semant 2011, 9(3):316-324. 

70. Barabasi AL: Scale-free networks: a decade and beyond. Science 2009, 

325(5939):412-413. 

71. Kitano H: Computational systems biology. Nature 2002, 420(6912):206-210. 

72. Barabasi AL: Network medicine--from obesity to the "diseasome". N Engl J 

Med 2007, 357(4):404-407. 

73. Chautard E, Thierry-Mieg N, Ricard-Blum S: Interaction networks: from 

protein functions to drug discovery. A review. Pathol Biol (Paris) 2009, 

57(4):324-333. 

http://www.nlm.nih.gov/bsd/disted/pubmedtutorial/020_190.html
http://www.nlm.nih.gov/research/umls/
http://www.nlm.nih.gov/research/umls/Snomed/snomed_main.html


95 

 

74. Aderem A: Systems biology: its practice and challenges. Cell 2005, 121(4):511-

513. 

75. Hood L, Perlmutter RM: The impact of systems approaches on biological 

problems in drug discovery. Nat Biotechnol 2004, 22(10):1215-1217. 

76. Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional 

organization. Nat Rev Genet 2004, 5(2):101-113. 

77. Barabasi AL, Albert R: Emergence of scaling in random networks. Science 

1999, 286(5439):509-512. 

78. Killcoyne S, Carter GW, Smith J, Boyle J: Cytoscape: a community-based 

framework for network modeling. Methods Mol Biol 2009, 563:219-239. 

79. Cyto-HUBBA [http://hub.iis.sinica.edu.tw/cytoHubba/supplementary/index.htm] 

80. Dezso Z, Nikolsky Y, Nikolskaya T, Miller J, Cherba D, Webb C, Bugrim A: 

Identifying disease-specific genes based on their topological significance in 

protein networks. BMC Syst Biol 2009, 3:36. 

81. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network 

motifs: simple building blocks of complex networks. Science 2002, 

298(5594):824-827. 

82. Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the transcriptional 

regulation network of Escherichia coli. Nat Genet 2002, 31(1):64-68. 

83. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, 

Harbison CT, Thompson CM, Simon I et al: Transcriptional regulatory 

networks in Saccharomyces cerevisiae. Science 2002, 298(5594):799-804. 

84. Setty Y, Mayo AE, Surette MG, Alon U: Detailed map of a cis-regulatory input 

function. Proc Natl Acad Sci U S A 2003, 100(13):7702-7707. 

85. Ratushny AV, Ramsey SA, Roda O, Wan Y, Smith JJ, Aitchison JD: Control of 

transcriptional variability by overlapping feed-forward regulatory motifs. 

Biophys J 2008, 95(8):3715-3723. 

86. Wuchty S, Oltvai ZN, Barabasi AL: Evolutionary conservation of motif 

constituents in the yeast protein interaction network. Nat Genet 2003, 

35(2):176-179. 

87. Conant GC, Wagner A: Convergent evolution of gene circuits. Nat Genet 2003, 

34(3):264-266. 

88. Hinman VF, Nguyen AT, Cameron RA, Davidson EH: Developmental gene 

regulatory network architecture across 500 million years of echinoderm 

evolution. Proc Natl Acad Sci U S A 2003, 100(23):13356-13361. 

89. Shoval O, Alon U: SnapShot: network motifs. Cell 2010, 143(2):326-e321. 

90. Alon U: Network motifs: theory and experimental approaches. Nat Rev Genet 

2007, 8(6):450-461. 

91. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of 

genome-wide expression patterns. Proc Natl Acad Sci U S A 1998, 

95(25):14863-14868. 

92. Ihmels J, Friedlander G, Bergmann S, Sarig O, Ziv Y, Barkai N: Revealing 

modular organization in the yeast transcriptional network. Nat Genet 2002, 

31(4):370-377. 

93. Tanay A, Sharan R, Shamir R: Discovering statistically significant biclusters in 

gene expression data. Bioinformatics 2002, 18 Suppl 1:S136-144. 

http://hub.iis.sinica.edu.tw/cytoHubba/supplementary/index.htm


96 

 

94. Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular 

cell biology. Nature 1999, 402(6761 Suppl):C47-52. 

95. Ulitsky I, Shamir R: Identification of functional modules using network 

topology and high-throughput data. BMC Syst Biol 2007, 1:8. 

96. Maraziotis IA, Dimitrakopoulou K, Bezerianos A: Growing functional modules 

from a seed protein via integration of protein interaction and gene expression 

data. BMC Bioinformatics 2007, 8:408. 

97. Tornow S, Mewes HW: Functional modules by relating protein interaction 

networks and gene expression. Nucleic Acids Res 2003, 31(21):6283-6289. 

98. Dittrich MT, Klau GW, Rosenwald A, Dandekar T, Muller T: Identifying 

functional modules in protein-protein interaction networks: an integrated 

exact approach. Bioinformatics 2008, 24(13):i223-231. 

99. Wu H, Su Z, Mao F, Olman V, Xu Y: Prediction of functional modules based 

on comparative genome analysis and Gene Ontology application. Nucleic 

Acids Res 2005, 33(9):2822-2837. 

100. Wu Z, Zhao X, Chen L: Identifying responsive functional modules from 

protein-protein interaction network. Mol Cells 2009, 27(3):271-277. 

101. Singh R, Xu J, Berger B: Global alignment of multiple protein interaction 

networks with application to functional orthology detection. Proc Natl Acad 

Sci U S A 2008, 105(35):12763-12768. 

102. Kuchaiev O, Przulj N: Integrative network alignment reveals large regions of 

global network similarity in yeast and human. Bioinformatics 2011, 

27(10):1390-1396. 

103. Wang K, Narayanan M, Zhong H, Tompa M, Schadt EE, Zhu J: Meta-analysis of 

inter-species liver co-expression networks elucidates traits associated with 

common human diseases. PLoS Comput Biol 2009, 5(12):e1000616. 

104. Zhang S, Ning XM, Ding C, Zhang XS: Determining modular organization of 

protein interaction networks by maximizing modularity density. BMC Syst 

Biol 2010, 4 Suppl 2:S10. 

105. Skinner J, Kotliarov Y, Varma S, Mine KL, Yambartsev A, Simon R, Huyen Y, 

Morgun A: Construct and Compare Gene Coexpression Networks with 

DAPfinder and DAPview. BMC Bioinformatics 2011, 12:286. 

106. Obayashi T, Nishida K, Kasahara K, Kinoshita K: ATTED-II updates: 

condition-specific gene coexpression to extend coexpression analyses and 

applications to a broad range of flowering plants. Plant Cell Physiol 2011, 

52(2):213-219. 

107. Huang W, Cao X, Zhong S: Network-based comparison of temporal gene 

expression patterns. Bioinformatics 2010, 26(23):2944-2951. 

108. Diez D, Wheelock AM, Goto S, Haeggstrom JZ, Paulsson-Berne G, Hansson GK, 

Hedin U, Gabrielsen A, Wheelock CE: The use of network analyses for 

elucidating mechanisms in cardiovascular disease. Mol Biosyst 2010, 6(2):289-

304. 

109. Liu CC, Chen WS, Lin CC, Liu HC, Chen HY, Yang PC, Chang PC, Chen JJ: 

Topology-based cancer classification and related pathway mining using 

microarray data. Nucleic Acids Res 2006, 34(14):4069-4080. 



97 

 

110. Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S: Weighted 

gene coexpression network analysis strategies applied to mouse weight. 

Mamm Genome 2007, 18(6-7):463-472. 

111. Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS: Discovering functional 

relationships between RNA expression and chemotherapeutic susceptibility 

using relevance networks. Proc Natl Acad Sci U S A 2000, 97(22):12182-12186. 

112. Steuer R, Kurths J, Fiehn O, Weckwerth W: Observing and interpreting 

correlations in metabolomic networks. Bioinformatics 2003, 19(8):1019-1026. 

113. Carter SL, Brechbuhler CM, Griffin M, Bond AT: Gene co-expression network 

topology provides a framework for molecular characterization of cellular 

state. Bioinformatics 2004, 20(14):2242-2250. 

114. Segal E, Shapira M, Regev A, Pe'er D, Botstein D, Koller D, Friedman N: 

Module networks: identifying regulatory modules and their condition-

specific regulators from gene expression data. Nat Genet 2003, 34(2):166-176. 

115. Chuang HY, Lee E, Liu YT, Lee D, Ideker T: Network-based classification of 

breast cancer metastasis. Mol Syst Biol 2007, 3:140. 

116. Valavanis I, Spyrou G, Nikita K: A similarity network approach for the 

analysis and comparison of protein sequence/structure sets. J Biomed Inform 

2010, 43(2):257-267. 

117. Hase T, Niimura Y, Tanaka H: Difference in gene duplicability may explain the 

difference in overall structure of protein-protein interaction networks among 

eukaryotes. BMC Evol Biol 2010, 10:358. 

118. Bell R, Hubbard A, Chettier R, Chen D, Miller JP, Kapahi P, Tarnopolsky M, 

Sahasrabuhde S, Melov S, Hughes RE: A human protein interaction network 

shows conservation of aging processes between human and invertebrate 

species. PLoS Genet 2009, 5(3):e1000414. 

119. Barrenas F, Chavali S, Holme P, Mobini R, Benson M: Network properties of 

complex human disease genes identified through genome-wide association 

studies. PLoS One 2009, 4(11):e8090. 

120. Ma HW, Zeng AP: The connectivity structure, giant strong component and 

centrality of metabolic networks. Bioinformatics 2003, 19(11):1423-1430. 

121. Guan Y, Myers CL, Lu R, Lemischka IR, Bult CJ, Troyanskaya OG: A 

genomewide functional network for the laboratory mouse. PLoS Comput Biol 

2008, 4(9):e1000165. 

122. Gao J, Li Z: Conserved network properties of helical membrane protein 

structures and its implication for improving membrane protein homology 

modeling at the twilight zone. J Comput Aided Mol Des 2009, 23(11):755-763. 

123. Frenkel ZM, Trifonov EN, Snir S: Structural relatedness via flow networks in 

protein sequence space. J Theor Biol 2009, 260(3):438-444. 

124. Lappe M, Park J, Niggemann O, Holm L: Generating protein interaction maps 

from incomplete data: application to fold assignment. Bioinformatics 2001, 17 

Suppl 1:S149-156. 

125. Almudevar A: A hypothesis test for equality of bayesian network models. 

EURASIP J Bioinform Syst Biol 2010, 2010:947564. 

126. Sharan R, Ideker T: Modeling cellular machinery through biological network 

comparison. Nat Biotechnol 2006, 24(4):427-433. 



98 

 

127. Sharan R, Suthram S, Kelley RM, Kuhn T, McCuine S, Uetz P, Sittler T, Karp 

RM, Ideker T: Conserved patterns of protein interaction in multiple species. 

Proc Natl Acad Sci U S A 2005, 102(6):1974-1979. 

128. Kelley BP, Sharan R, Karp RM, Sittler T, Root DE, Stockwell BR, Ideker T: 

Conserved pathways within bacteria and yeast as revealed by global protein 

network alignment. Proc Natl Acad Sci U S A 2003, 100(20):11394-11399. 

129. Kalaev M, Smoot M, Ideker T, Sharan R: NetworkBLAST: comparative 

analysis of protein networks. Bioinformatics 2008, 24(4):594-596. 

130. Wuchty S, Almaas E: Evolutionary cores of domain co-occurrence networks. 

BMC Evol Biol 2005, 5:24. 

131. Wasserman WW, Palumbo M, Thompson W, Fickett JW, Lawrence CE: Human-

mouse genome comparisons to locate regulatory sites. Nat Genet 2000, 

26(2):225-228. 

132. Wang Y, Cui T, Zhang C, Yang M, Huang Y, Li W, Zhang L, Gao C, He Y, Li Y 

et al: Global protein-protein interaction network in the human pathogen 

Mycobacterium tuberculosis H37Rv. J Proteome Res 2010, 9(12):6665-6677. 

133. van Dijk AD, Morabito G, Fiers M, van Ham RC, Angenent GC, Immink RG: 

Sequence motifs in MADS transcription factors responsible for specificity 

and diversification of protein-protein interaction. PLoS Comput Biol 2010, 

6(11):e1001017. 

134. Song N, Joseph JM, Davis GB, Durand D: Sequence similarity network reveals 

common ancestry of multidomain proteins. PLoS Comput Biol 2008, 

4(4):e1000063. 

135. Plewczynski D, Rychlewski L, Ye Y, Jaroszewski L, Godzik A: Integrated web 

service for improving alignment quality based on segments comparison. BMC 

Bioinformatics 2004, 5:98. 

136. Mitra S, Gilbert JA, Field D, Huson DH: Comparison of multiple metagenomes 

using phylogenetic networks based on ecological indices. ISME J 2010, 

4(10):1236-1242. 

137. Medini D, Covacci A, Donati C: Protein homology network families reveal 

step-wise diversification of Type III and Type IV secretion systems. PLoS 

Comput Biol 2006, 2(12):e173. 

138. Liang Z, Xu M, Teng M, Niu L: Comparison of protein interaction networks 

reveals species conservation and divergence. BMC Bioinformatics 2006, 7:457. 

139. Kuang R, Weston J, Noble WS, Leslie C: Motif-based protein ranking by 

network propagation. Bioinformatics 2005, 21(19):3711-3718. 

140. Fernandes LP, Annibale A, Kleinjung J, Coolen AC, Fraternali F: Protein 

networks reveal detection bias and species consistency when analysed by 

information-theoretic methods. PLoS One 2010, 5(8):e12083. 

141. Erten S, Li X, Bebek G, Li J, Koyuturk M: Phylogenetic analysis of modularity 

in protein interaction networks. BMC Bioinformatics 2009, 10:333. 

142. Croft D, O'Kelly G, Wu G, Haw R, Gillespie M, Matthews L, Caudy M, Garapati 

P, Gopinath G, Jassal B et al: Reactome: a database of reactions, pathways and 

biological processes. Nucleic Acids Res 2011, 39(Database issue):D691-697. 



99 

 

143. Flannick J, Novak A, Srinivasan BS, McAdams HH, Batzoglou S: Graemlin: 

general and robust alignment of multiple large interaction networks. Genome 

Res 2006, 16(9):1169-1181. 

144. Kelley BP, Yuan B, Lewitter F, Sharan R, Stockwell BR, Ideker T: PathBLAST: 

a tool for alignment of protein interaction networks. Nucleic Acids Res 2004, 

32(Web Server issue):W83-88. 

145. Koyuturk M, Kim Y, Topkara U, Subramaniam S, Szpankowski W, Grama A: 

Pairwise alignment of protein interaction networks. J Comput Biol 2006, 

13(2):182-199. 

146. Zhu D, Qin ZS: Structural comparison of metabolic networks in selected 

single cell organisms. BMC Bioinformatics 2005, 6:8. 

147. Mithani A, Preston GM, Hein J: Rahnuma: hypergraph-based tool for 

metabolic pathway prediction and network comparison. Bioinformatics 2009, 

25(14):1831-1832. 

148. Mithani A, Hein J, Preston GM: Comparative analysis of metabolic networks 

provides insight into the evolution of plant pathogenic and nonpathogenic 

lifestyles in Pseudomonas. Mol Biol Evol 2011, 28(1):483-499. 

149. Mazurie A, Bonchev D, Schwikowski B, Buck GA: Evolution of metabolic 

network organization. BMC Syst Biol 2010, 4:59. 

150. Freilich S, Goldovsky L, Ouzounis CA, Thornton JM: Metabolic innovations 

towards the human lineage. BMC Evol Biol 2008, 8:247. 

151. Piovesan D, Martelli PL, Fariselli P, Zauli A, Rossi I, Casadio R: BAR-PLUS: 

the Bologna Annotation Resource Plus for functional and structural 

annotation of protein sequences. Nucleic Acids Res 2011, 39(Web Server 

issue):W197-202. 

152. Pesch R, Lysenko A, Hindle M, Hassani-Pak K, Thiele R, Rawlings C, Kohler J, 

Taubert J: Graph-based sequence annotation using a data integration 

approach. J Integr Bioinform 2008, 5(2). 

153. Janga SC, Diaz-Mejia JJ, Moreno-Hagelsieb G: Network-based function 

prediction and interactomics: the case for metabolic enzymes. Metab Eng 

2011, 13(1):1-10. 

154. Hawkins T, Chitale M, Luban S, Kihara D: PFP: Automated prediction of gene 

ontology functional annotations with confidence scores using protein 

sequence data. Proteins 2009, 74(3):566-582. 

155. Gauthier JP, Legeai F, Zasadzinski A, Rispe C, Tagu D: AphidBase: a database 

for aphid genomic resources. Bioinformatics 2007, 23(6):783-784. 

156. Spallanzani L: Concepts of generation and regeneration. In: A History of 

Regeneration Research Edited by Dinsmore CE; 1991. 

157. Stocum DL, Zupanc GK: Stretching the limits: stem cells in regeneration 

science. Dev Dyn 2008, 237(12):3648-3671. 

158. Stocum DL: Regenerative Biology and Medicine: Elsevier Inc.; 2006. 

159. Goss RJ: Tissue differentiation in regenerating antlers. Biol Deer Production 

1985 22:229-238. 

160. Goss RJ: Problems of antlerogesis. Clin Orthop Relat Res 1970, 69:227-238. 

161. Illingworth CM: Trapped fingers and amputated finger tips in children. J 

Pediatr Surg 1974, 9(6):853-858. 



100 

 

162. Borgens RB: Mice regrow the tips of their foretoes. Science 1982, 

217(4561):747-750. 

163. Han M, Yang X, Farrington JE, Muneoka K: Digit regeneration is regulated by 

Msx1 and BMP4 in fetal mice. Development 2003, 130(21):5123-5132. 

164. Goss RJ, Grimes LN: Tissue interactions in the regeneration of rabbit ear 

holes Am Zool 1975, 12:151-157. 

165. Heber-Katz E, Leferovich JM, Bedelbaeva K, Gourevitch D: Spallanzani's 

mouse: a model of restoration and regeneration. Curr Top Microbiol Immunol 

2004, 280:165-189. 

166. Bryant SV, Endo T, Gardiner DM: Vertebrate limb regeneration and the origin 

of limb stem cells. Int J Dev Biol 2002, 46(7):887-896. 

167. Nye HL, Cameron JA, Chernoff EA, Stocum DL: Regeneration of the urodele 

limb: a review. Dev Dyn 2003, 226(2):280-294. 

168. Morrison JI, Loof S, He P, Simon A: Salamander limb regeneration involves 

the activation of a multipotent skeletal muscle satellite cell population. J Cell 

Biol 2006, 172(3):433-440. 

169. Carlson BM: Principles of Regenerative Biology: Academic Press; 2007. 

170. Iten LE, Bryant SV: Forelimb regeneration from different levels of 

amputation in the newt Notophthalmus viridesces:  Length, rate and stages  

W Roux Archiv 1973  173:263-282. 

171. Stocum DL: Stages of forelimb regeneration in Ambystoma maculatum. J Exp 

Zool 1979, 209(3):395-416. 

172. Mescher AL: The cellular basis of limb regeneration in urodeles. Int J Dev 

Biol 1996, 40(4):785-795. 

173. Chalkley DT: A quantitative histological analysis of forelimb regeneration in 

Triturus viridescens J Morphol 1954, 94:21-70. 

174. Chalkley DT: The cellular basis of limb regeneration In: Regeneration in 

Vertebrates. Edited by Thornton CS. Chicago: University of Chicago Press; 1956: 

pp 34-56. 

175. Hay ED, Fischman DA: Origin of the blastema in regenerating limbs of the 

newt Triturus viridescens. An autoradiographic study using tritiated 

thymidine to follow cell proliferation and migration. Dev Biol 1961, 3:26-59. 

176. Kelly DJ, Tassava RA: Cell division and ribonucleic acid synthesis during the 

initiation of limb regeneration in larval axolotls (Ambystoma mexicanum). J 

Exp Zool 1973, 185(1):45-54. 

177. Loyd RM, Tassava RA: DNA synthesis and mitosis in adult newt limbs 

following amputation and insertion into the body cavity. J Exp Zool 1980, 

214(1):61-69. 

178. McCullough WD, Tassava RA: Determination of the blastema cell cycle in 

regenerating limbs of the larval axolotl, Ambystoma mexicanum. Ohio J Sci 

1976 76:63-65. 

179. Tassava RA, Goldhamer DJ, Tomlinson BL: Cell cycle controls and the role of 

nerves and the regenerate epithelium in urodele forelimb regeneration: 

possible modifications of basic concepts. Biochem Cell Biol 1987, 65(8):739-

749. 



101 

 

180. Kumar A, Godwin JW, Gates PB, Garza-Garcia AA, Brockes JP: Molecular 

basis for the nerve dependence of limb regeneration in an adult vertebrate. 

Science 2007, 318(5851):772-777. 

181. Steen TP: Stability of chondrocyte differentiation and contribution of muscle 

to cartilage during limb regeneration in the axolotl (Siredon mexicanum). J 

Exp Zool 1968, 167(1):49-78. 

182. Cameron JA, Hinterberger TJ: Regional differences in the distribution of of 

myogenic and chondrogenic cells in axolotl limb blastemas J Exp Zool 1984 

232:269-275. 

183. Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH, Tanaka EM: 

Cells keep a memory of their tissue origin during axolotl limb regeneration. 

Nature 2009, 460(7251):60-65. 

184. Sauer U, Heinemann M, Zamboni N: Genetics. Getting closer to the whole 

picture. Science 2007, 316(5824):550-551. 

185. Putta S, Smith JJ, Walker JA, Rondet M, Weisrock DW, Monaghan J, Samuels 

AK, Kump K, King DC, Maness NJ et al: From biomedicine to natural history 

research: EST resources for ambystomatid salamanders. BMC Genomics 

2004, 5(1):54. 

186. Monaghan JR, Epp LG, Putta S, Page RB, Walker JA, Beachy CK, Zhu W, Pao 

GM, Verma IM, Hunter T et al: Microarray and cDNA sequence analysis of 

transcription during nerve-dependent limb regeneration. BMC Biol 2009, 7:1. 

187. Bodemer CW: Distribution of ribonucleic acid in the urodele limb as 

determined by autoradiographic localization of uridine-H3.  . Anat Rec 1962  

142:147-148. 

188. Bodemer CW, Everett NB: Localization of newly synthesized proteins in 

regenerating newt limbs as determined by radioautographic localization of 

injected methinine-S35.   . Dev Biol 1959, 1:327-342. 

189. Urbani E: Proteolytic enzymes in regeneration. In: Regeneration in Animals. 

Edited by Kiortsis V, Trampusch HAL. Amsterdam: North-Holland Pub Co; 

1965: pp 39-55. 

190. Anton HJ: The origin of blastema cells and protein synthesis during forelimb 

regeneration in Triturus. In: Regeneration in Animals. Edited by Kiortsis V, 

Trampusch HAL. Amsterdam: North-Holland Pub Co; 1965: pp 377-395. 

191. Lebowitz P, Singer M: Neurotrophic control of protein synthesis in the 

regenerating limb of the newt, Triturus. Nature 1970, 225(5235):824-827. 

192. Singer M, Ilan J: Nerve-dependent regulation of absolute rates of protein 

synthesis in newt limb regenerates. Measurement of methionine specific 

activity in peptidyl-tRNA of the growing polypeptide chain. Dev Biol 1977, 

57(1):174-187. 

193. Dearlove GE, Stocum DL: Denervation-induced changes in soluble protein 

content during forelimb regeneration in the adult newt, Notophthalmus 

viridescens. J Exp Zool 1974, 190(3):317-328. 

194. Slack JM: Protein synthesis during limb regeneration in the axolotl. J Embryol 

Exp Morphol 1982, 70:241-260. 

195. Tsonis PA: A comparative two-dimensional gel protein database of the intact 

and regenerating newt limbs. Electrophoresis 1993, 14(1-2):148-156. 



102 

 

196. Tsonis PA, Mescher AL, Del Rio-Tsonis K: Protein synthesis in the newt 

regenerating limb. Comparative two-dimensional PAGE, computer analysis 

and protein sequencing. Biochem J 1992, 281 ( Pt 3):665-668. 

197. Stocum DL, Rao N: Mechanisms of Blastema Formation in Regenerating 

Amphibian Limbs. In: Principles of Regenerative Medicine. Edited by Lanza R, 

Thompson J, Nerem R: Elsevier/ Academic Press San Diego; in press. 

198. Dent J: Limb regeneration in larvae and metamorphosing individuals of the 

South African clawed toad. J Morph 1962, 110:61 - 77. 

199. Suzuki M, Yakushiji N, Nakada Y, Satoh A, Ide H, Tamura K: Limb 

regeneration in Xenopus laevis froglet. TSW Develop Embryol 2006, 1(S1):26 - 

37. 

200. Kawasuki A, Sagawa N, Hayashi S, Yokoyama H, Tamura K: Wound healing in 

mammals and amphibians: toward limb regeneration in mammals. Curr 

Topics Microbio Immunol 2013, 367:33 - 74. 

201. Wolfe A, Nye H, Cameron J: Extent of ossification at the amputation plane is 

correlated with the decline of blastema formation and regeneration in 

Xenopus laevis hindlimbs. Dev Dyn 2000, 218:681 - 697. 

202. Sessions S, Bryant S: Evidence that regenerative ability is an intrinsic 

property of limb cells in Xenopus. J Exp Zool 1988, 247:39 - 44. 

203. Filoni S, Velloso C, Bernardini S, Cannata S: Acquisition of nerve dependence 

for the formation of a regeneration blastema in amputated hindlimbs of 

larval Xenopus laevis: the role of limb innervation and that of limb 

differentiation. J Exp Zool 1995, 1995(273):327 - 341. 

204. King MW, Nguyen T, Calley J, Harty MW, Muzinich MC, Mescher AL, Chalfant 

C, N'Cho M, McLeaster K, McEntire J et al: Identification of genes expressed 

during Xenopus laevis limb regeneration by using subtractive hybridization. 

Dev Dyn 2003, 226(2):398-409. 

205. Grow M, Neff AW, Mescher AL, King MW: Global analysis of gene expression 

in Xenopus hindlimbs during stage-dependent complete and incomplete 

regeneration. Dev Dyn 2006, 235(10):2667-2685. 

206. King MW, Neff AW, Mescher AL: Proteomics analysis of regenerating 

amphibian limbs: changes during the onset of regeneration. Int J Dev Biol 

2009, 53(7):955-969. 

207. Skowron S, Komala Z: Limb regeneration in postmetamorphic Xenopus 

laevis. Folia Biol Krakow 1957, 5:53 - 72. 

208. Khan P, Liversage R: Ultrastructural comparison between regenerating and 

developing hindlimbs of Xenopus laevis tadpoles. Growth Develop Aging 1990, 

54:173 - 181. 

209. Goss R, Holt R: Epimorphic vs. tissue regeneration in Xenopus forelimbs. J 

Exp Zool 1992, 261:451 - 457. 

210. Suzuki M, Satoh A, Ide H, Tamura K: Nerve-dependent and -independent 

events in blastema formation during Xenopus froglet limb regeneration. Dev 

Biol 2005, 286:361 - 375. 

211. Suzuki M, Satoh A, Ide H, Tamura K: Transgenic Xenopus with prx1 limb 

enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT 



103 

 

pathways in blastema formation during limb regeneration. Dev Biol 2007, 

2007(304):675 - 686. 

212. Satoh A, James M, Gardiner D: The role of nerve signaling in limb genesis and 

agenesis during axolotl limb regeneration. J Bone Joint Surg 2009, 91(S4):90 - 

98. 

213. Furlong S, Heidemann M, Bromley S: Fine structure of the forelimb 

regenerate of the African clawed toad, Xenopus laevis. Anat Rec 1985, 

1985(211):444 - 449. 

214. Korneluk R, Liversage R: Effects of radius-ulna removal on forelimb 

regeneration in Xenopus laevis froglets. J Embryol Exp Morph 1984, 82:9 - 24. 

215. Komala Z: Poro' wnawcze badania nad przebiegiem ontogenezy I regen eracji 

konczynkon'czyn kijanek Xenopus laevis w ro' znychro' znych okresach 

rozwojowych. Folia Biol Krakow 1957, 5:1 - 52. 

216. Mescher A, Neff A: Limb regeneration in amphibians: immunological 

considerations. TheScientificWorldJOURNAL 2006, 6(Suppl 1):1 - 11. 

217. Mescher A, Neff A: Regenerative capacity and the developing immune 

system. Adv in Biochem Eng/Biotechnol 2005, 93:39 - 66. 

218. Harty M, Neff A, King M, Mescher A: Regeneration or scarring: an 

immunologic perspective. Devel Dynam 2003, 226:268 - 279. 

219. Pearl E, Barker R, Day R, Beck C: Identification of genes associated with 

regenerative success of Xenopus laevis hindlimbs. BMC Dev Biol 2008, 8:66. 

220. King M, Nguyen T, Calley J, Harty M, Muzinich M, Mescher A, Chalfant C, 

N'Cho M, McLeaster K, McEntire J et al: Identification of genes expressed 

during Xenopus laevis limb regeneration by using subtractive hybridization. 

Develop Dyn 2003, 226:398 - 409. 

221. Grow M, Neff A, Mescher A, King M: Global analysis of gene expression in 

Xenopus hindlimbs during stage-dependent complete and incomplete 

regeneration. Dev Dyn 2006, 235:2667 - 2685. 

222. Endo T, Tamura K, Ide H: Analysis of gene expressions during Xenopus 

forelimb regeneration. Dev Biol 2000, 220:296 - 306. 

223. Ohgo S, Itoh A, Suzuki M, Satoh A, Yokoyama H, Tamura K: Analysis of 

hoxa11 and hoxa13 expression during patternless limb regeneration in 

Xenopus. Dev Biol 2010, 338:148 - 157. 

224. Yakushiji N, Suzuki M, Satoh A, Sagai T, Shiroishi T, Kobayashi H, Sasaki H, 

Ide H, Tamura K: Correlation between Shh expression and DNA methylation 

status of the limb-specific Shh enhancer region during limb regeneration in 

amphibians. Dev Biol 2007, 312:171 - 182. 

225. Fitzpatrick DPG, You JS, Bemis KG, Wery JP, Ludwig J, Wang M: Searching 

for potential biomarkers of cisplatin resistance in human ovarian cancer 

using a label-free LC/MS-based protein quantification method. 

PROTEOMICS - Clin Appl 2007, 1:246-263. 

226. Rao N, Song F, Jhamb D, Wang M, Milner D, Price N, Belecky-Adams T, 

Palakal M, Cameron J, Li B et al: Proteomic analysis of fibroblastema 

formation in regenerating hind limbs of Xenopus laevis froglets and 

comparison to axolotl. BMC Developmental Biology 2014, 14(1):32. 



104 

 

227. Higgs RE, Knierman MD, Gelfanova V, Butler JP, Hale JE: Comprehensive 

label-free method for the relative quantification of proteins from biological 

samples. J Proteome Res 2005, 4(4):1442-1450. 

228. Limpert E, Stahel WA, Abbot M: Log-normal distributions across the sciences: 

Keys and clues. Biosci 2001   51:341-352. 

229. Bolstad BM, Irizarry RA, Astrand M, Speed TP: A comparison of normalization 

methods for high density oligonucleotide array data based on variance and 

bias. Bioinformatics 2003, 19(2):185-193. 

230. Reiner A, Yekutieli D, Benjamini Y: Identifying differentially expressed genes 

using false discovery rate controlling procedures. Bioinformatics 2003, 

19(3):368-375. 

231. Hakes L, Pinney JW, Robertson DL, Lovell SC: Protein-protein interaction 

networks and biology--what's the connection? Nat Biotechnol 2008, 26(1):69-

72. 

232. Kerrien S, Orchard S, Montecchi-Palazzi L, Aranda B, Quinn AF, Vinod N, 

Bader GD, Xenarios I, Wojcik J, Sherman D et al: Broadening the horizon--

level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biol 2007, 

5:44. 

233. Krallinger M, Vazquez M, Leitner F, Salgado D, Chatr-Aryamontri A, Winter A, 

Perfetto L, Briganti L, Licata L, Iannuccelli M et al: The Protein-Protein 

Interaction tasks of BioCreative III: classification/ranking of articles and 

linking bio-ontology concepts to full text. BMC Bioinformatics 2011, 12 Suppl 

8:S3. 

234. Smith L, Rindflesch T, Wilbur WJ: MedPost: a part-of-speech tagger for 

bioMedical text. Bioinformatics 2004, 20(14):2320-2321. 

235.  LingPipe 4.1.0. [ http://alias-i.com/lingpipe] 

236. Whetzel PL, Noy NF, Shah NH, Alexander PR, Nyulas C, Tudorache T, Musen 

MA: BioPortal: enhanced functionality via new Web services from the 

National Center for Biomedical Ontology to access and use ontologies in 

software applications. Nucleic Acids Res 2011, 39(Web Server issue):W541-

545. 

237. Kanehisa M, Goto S: KEGG: Kyoto Encyclopedia of Genes and Genomes. 

Nucleic Acids Res 2000, 28(1):27-30. 

238. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG resource 

for deciphering the genome. Nucleic Acids Res 2004, 32(Database issue):D277-

280. 

239. Krzywinski M, Schein J, Birol I, Connors J, Gascoyne R, Horsman D, Jones SJ, 

Marra MA: Circos: an information aesthetic for comparative genomics. 

Genome Res 2009, 19(9):1639-1645. 

240. The R Project for Statistical Computing [http://www.r-project.org/] 

241. Gplots, a R package [http://cran.r-project.org/web/packages/gplots/index.html] 

242. Saldanha AJ: Java Treeview--extensible visualization of microarray data. 

Bioinformatics 2004, 20(17):3246-3248. 

243. Gilbert SF: Developmental Biology, 9 edn: Sinauer Associates Inc, Sunderland, 

MA; 2010. 

http://alias-i.com/lingpipe
http://www.r-project.org/
http://cran.r-project.org/web/packages/gplots/index.html


105 

 

244. Palakal M, Stephens M, Mukhopadhyay S, Raje R, Rhodes S: A multi-level text 

mining method to extract biological relationships. Proc IEEE Comput Soc 

Bioinform Conf 2002, 1:97-108. 

245. Chen X, Song F, Li J, Jhamb D, Alshalchi S, Hicks E, Bottino MC, Palakal MJ, 

Stocum DL: The Axolotl Fibula as a Model to Induce Regeneration Across 

Large Segment Defects in Long Bones  of the Extremities. Tissue Engineering 

A, submitted 2015. 

246. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki 

RA: DAVID: Database for Annotation, Visualization, and Integrated 

Discovery. Genome Biol 2003, 4(5):P3. 

247. NCIT: National Cancer Institute Thesaurus 

[http://bioportal.bioontology.org/ontologies/NCIT] 

248. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, 

Schwikowski B, Ideker T: Cytoscape: a software environment for integrated 

models of biomolecular interaction networks. Genome Res 2003, 13(11):2498-

2504. 

249. van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, 

van der Kooy K, Marton MJ, Witteveen AT et al: Gene expression profiling 

predicts clinical outcome of breast cancer. Nature 2002, 415(6871):530-536. 

250. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim 

J et al: A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast 

cancer cells. Nat Cell Biol 2006, 8(12):1398-1406. 

251. Lee KH, Choi EY, Kim MK, Lee SH, Jang BI, Kim TN, Kim SW, Song SK, Kim 

JR, Jung BC: Hepatoma-derived growth factor regulates the bad-mediated 

apoptotic pathway and induction of vascular endothelial growth factor in 

stomach cancer cells. Oncol Res 2010, 19(2):67-76. 

252. Enomoto H, Nakamura H, Liu W, Yoshida K, Okuda Y, Imanishi H, Saito M, 

Shimomura S, Hada T, Nishiguchi S: Hepatoma-derived growth factor is 

induced in liver regeneration. Hepatol Res 2009, 39(10):988-997. 

253. Knoepfler PS: Why myc? An unexpected ingredient in the stem cell cocktail. 

Cell Stem Cell 2008, 2(1):18-21. 

254. Eilers M, Eisenman RN: Myc's broad reach. Genes Dev 2008, 22(20):2755-

2766. 

255. Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, Merchant A, 

Galiano RD, Tomic-Canic M: Molecular pathogenesis of chronic wounds: the 

role of beta-catenin and c-myc in the inhibition of epithelialization and 

wound healing. Am J Pathol 2005, 167(1):59-69. 

256. Hourdry J, Geraudie J, Singer M, Mechali M: Expression of the c-Myc proto-

oncogene in the ofrelimb regenerate of the newt Notophthalmus Viridescens, 

visualized by in situ hybridization. In: M Singer Symposium.  1988: 307-313. 

257. Geraudie J, Hourdry J, Boehm  K, Singer M, Mechali M: c-Myc proto-oncogene 

expression during newt limb regeneration. In: Recent Trends in Regeneration 

Research. Edited by Kiortsis V, Koussoulallos S, Wallace H, vol. 172. New York: 

Plenum Press; 1989: 27-36. 

http://bioportal.bioontology.org/ontologies/NCIT


106 

 

258. Maki N, Suetsugu-Maki R, Tarui H, Agata K, Del Rio-Tsonis K, Tsonis PA: 

Expression of stem cell pluripotency factors during regeneration in newts. 

Dev Dyn 2009, 238(6):1613-1616. 

259. Wierstra I: Sp1: emerging roles--beyond constitutive activation of TATA-less 

housekeeping genes. Biochem Biophys Res Commun 2008, 372(1):1-13. 

260. Tan NY, Khachigian LM: Sp1 phosphorylation and its regulation of gene 

transcription. Mol Cell Biol 2009, 29(10):2483-2488. 

261. Safe S, Abdelrahim M: Sp transcription factor family and its role in cancer. 

Eur J Cancer 2005, 41(16):2438-2448. 

262. Cadinouche MZ, Liversage RA, Muller W, Tsilfidis C: Molecular cloning of the 

Notophthalmus viridescens radical fringe cDNA and characterization of its 

expression during forelimb development and adult forelimb regeneration. 

Dev Dyn 1999, 214(3):259-268. 

263. Crews L, Gates PB, Brown R, Joliot A, Foley C, Brockes JP, Gann AA: 

Expression and activity of the newt Msx-1 gene in relation to limb 

regeneration. Proc Biol Sci 1995, 259(1355):161-171. 

264. Shimizu-Nishikawa K, Tsuji S, Yoshizato K: Identification and 

characterization of newt rad (ras associated with diabetes), a gene 

specifically expressed in regenerating limb muscle. Dev Dyn 2001, 220(1):74-

86. 

265. Koshiba K, Kuroiwa A, Yamamoto H, Tamura K, Ide H: Expression of Msx 

genes in regenerating and developing limbs of axolotl. J Exp Zool 1998, 

282(6):703-714. 

266. Schnapp E, Tanaka EM: Quantitative evaluation of morpholino-mediated 

protein knockdown of GFP, MSX1, and PAX7 during tail regeneration in 

Ambystoma mexicanum. Dev Dyn 2005, 232(1):162-170. 

267. Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse 

embryonic and adult fibroblast cultures by defined factors. Cell 2006, 

126(4):663-676. 

268. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, 

Nie J, Jonsdottir GA, Ruotti V, Stewart R et al: Induced pluripotent stem cell 

lines derived from human somatic cells. Science 2007, 318(5858):1917-1920. 

269. Sharma M, Naslavsky N, Caplan S: A role for EHD4 in the regulation of early 

endosomal transport. Traffic 2008, 9(6):995-1018. 

270. Kuo HJ, Tran NT, Clary SA, Morris NP, Glanville RW: Characterization of 

EHD4, an EH domain-containing protein expressed in the extracellular 

matrix. J Biol Chem 2001, 276(46):43103-43110. 

271. Stocum DL: Wound Repair, Regeneration and Artificial Tissues. Austin, TX: 

RG Landes Co; 1995   

272. Mescher AL, Neff AW: Regenerative capacity and the developing immune 

system. Adv Biochem Eng Biotechnol 2005, 93:39-66. 

273. Mescher AL, Neff AW: Limb regeneration in amphibians: immunological 

considerations. ScientificWorldJournal 2006, 6 Suppl 1:1-11. 

274. Caldwell RL, Caprioli RM: Tissue profiling by mass spectrometry: a review of 

methodology and applications. Mol Cell Proteomics 2005, 4(4):394-401. 



107 

 

275. Caldwell RL, Opalenik SR, Davidson JM, Caprioli RM, Nanney LB: Tissue 

profiling MALDI mass spectrometry reveals prominent calcium-binding 

proteins in the proteome of regenerative MRL mouse wounds. Wound Repair 

Regen 2008, 16(3):442-449. 

276. Desrichard A, Bidet Y, Uhrhammer N, Bignon YJ: CHEK2 contribution to 

hereditary breast cancer in non-BRCA families. Breast Cancer Res 2011, 

13(6). 

277. Choo YS, Vogler G, Wang DL, Kalvakuri S, Iliuk A, Tao WA, Bodmer R, Zhang 

ZH: Regulation of parkin and PINK1 by neddylation. Human Molecular 

Genetics 2012, 21(11):2514-2523. 

278. Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H, 

Samayoa J, Bettegowda C et al: The genetic landscape of the childhood cancer 

medulloblastoma. Science 2011, 331(6016):435-439. 

279. Nagamani SC, Erez A, Bay C, Pettigrew A, Lalani SR, Herman K, Graham BH, 

Nowaczyk MJ, Proud M, Craigen WJ et al: Delineation of a deletion region 

critical for corpus callosal abnormalities in chromosome 1q43-q44. Eur J 

Hum Genet 2012, 20(2):176-179. 

280. Jhamb D, Pradhan MP, Duraiswamy P, Desai A, Palakal MJ: A systems biology 

framework for the downstream analysis of the whole genome sequencing 

data. In: IEEE International Conference on Computational Advances in Bio and 

Medical Sciences.  2014. 

281. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M: 

BioGRID: a general repository for interaction datasets. Nucleic Acids Res 

2006, 34(Database issue):D535-539. 

282. Jhamb D, Krishnan A, Pandit Y, Duraiswamy P, Palakal M, Palakal MJ: Protein 

interaction detection method to classify the documents from biomedical 

literature and obtain relevant protein-protein interactions. In: IEEE 

International Conference on Computational Advances in Bio and Medical 

Sciences.  2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CURRICULUM VITAE 

 

Deepali Jhamb 

 

 

Education   
Doctor of Philosophy, Informatics, 2015: Indiana University, Indianapolis, IN 

Masters of Science, Life Sciences, 2008: Indiana State University, Terre Haute, IN 

Masters of Science, Medical Biochemistry, 2006: Manipal University, Karnataka, India 

Bachelors of Science, Microbiology (Hons.), 2003: Delhi University, New Delhi, India 

 

Work Experience   

Scientific Investigator, GlaxoSmithKline, King of Prussia, PA , August 2014 to Present 

 Computational biology analysis of clinical and preclinical data for target discovery 

and validation 

 

Research Assistant, IUPUI, IN, May 2008 to July 2014 

 Segment Defect Regeneration: To identify growth factors involved in segment defect 

regeneration across a critical size defect in Axolotl limbs. Nine growth factors were 

identified using text mining, systems biology and statistical analysis. These growth 

factors were further tested in these animals using scaffolds and have been shown to 

regenerate muscle and cartilage in the previously non-regenerating defects.  

 Whole Genome Sequencing Project: Korean Personal Genome Project data provided 

by CAMDA, 2013 (as a part of the ISMB conference) was used to study the SNP 

profile. This data was compared with the 1000 genome data using systems biology 

approaches to identify significant variants. Overall, we found substantial evidence for 

the high number of variants related to the neurodegenerative disorders and tumors in 

the KPGP dataset. 

 Proteomics Data Analysis: LC/MS/MS datasets at different time points were analyzed 

for two different biological models – limb regeneration-competent Axolotl and limb 

regeneration-deficient Xenopus. These datasets were analyzed using differential 

network analysis to identify previously unknown key targets in limb regeneration.  

 Algorithm Design and Development: Text Mining algorithms were developed for 

condition-specific data extraction from biomedical literature. Systems biology 

methods were designed and applied to identify differential subnetworks and key 

targets between two given biological systems.  

 Database Design and Development: Limb regeneration database was created to help   

biology scientists with easy access to the data and discover new patterns. 

 Designed and mentored the bioinformatics research projects of undergraduate 

students and SEED high school students. 

 

Research Assistant, IUSM, Terre Haute, IN, August 2006 - May 2008 

 Generation of transgenic Xenopus laevis expressing the limb regeneration-competent 

gene, SALL4. This involved the use of several molecular biology techniques. 

 Proteomic data analysis of limb regeneration-competent vs. deficient Xenopus laevis. 

 



 

 

Grants 

Designed and wrote the bioinformatics strategy for the following grants: 

 "Regenerative medicine for battlefield injuries". Dept. of Defense (DoD) Grant, 2011. 

 "Decoding the code of limb regeneration - a systems biology approach”. W.M Keck 

Foundation grant, 2010. 

 "Systems analysis of epimorphic and segment defect regeneration". MURI grant, 

2008 (Was not approved but received good reviews). 

 “Generate transgenic Xenopus expressing SALL4”. Graduate student research grant, 

ISU, 2007. 

 

Computational Skills   

 Operating System - UNIX, Windows-Vista/XP/7 

 Languages - JAVA, PERL, Python 

 Database - MySQL  

 Statistical software/packages - R 

 

Bioinformatics Skills    

 NGS Analysis - SAMtools, BWA, Bowtie, vcftools, GATK, GALAXY, Picard, 

ANNOVAR, SnpEff, SIFT, PolyPhen-2, Ingenuity Variant Analysis, IGV, NCBI 

Genome Browser 

 Microarray Analysis - GEO, Array express, Gene expression atlas, GSEA, SAM, 

EXPANDER 

 Network Analysis - MetaCore, Ingenuity, NetworkBLAST, PathBLAST, SANDY, 

Netgrep, Motifsearch 

 Network Visualization - Cytoscape, Circos, Gephi, NAViGaTOR 

 Databases - GO, KEGG, HPRD, BioGRID, UniProt, GeneCards 

 Others - UCSC genome browser, Connectivity Map, GenePattern, Experimental 

Factor Ontology 
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Stocum, D.: The Axolotl Fibula as a Model to Induce Regeneration Across Large 

Segment Defects in Long Bones of the Extremities (submitted) 

 Jhamb, D., Stocum, D., Palakal, M.: Condition-specific data mining and differential 

subnetwork analysis for limb regeneration. (in preparation) 

 

Poster Presentations 

 Awonusi, D., Jhamb, D., Palakal, M. (2011) "Assigning biological relevance to the 

signaling networks", Research Day, IUPUI. 
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(2010). "Systems biology approach to elucidate limb regeneration", Research Day, 

IUPUI. 
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King, M., Saranjami, B., Nye, H., Cameron, J., Stocum, D. et al. (2009). "Proteomic 

analysis of blastema formation in limb regeneration", Research Showcase, Institute 

for genomic biology, UIUC. 

 Sanders, P., Jhamb, D., Palakal, M. (2009). "Computational analysis of biological 

networks", Research Day, IUPUI. 

 Jhamb, D., King, M. (2008). "Proteomic analysis of changes during the onset of 

amphibian limb regeneration”, Research Showcase, ISU. 

 

Awards   

 Indiana University Graduate School 2015 IUPUI Chancellor’s Scholar 

 Best Presentation Award – CAMDA, ISMB, 2013 

 Best Poster Award - 2008, 2009, 2010 

 Best Lecturer Award - Lecture Competition, Manipal University, 2005 

 Best Student Award - Manipal University, 2004 

 

Extracurricular Activities   

 Member, Women in Technology, IUPUI, 2009 – Present 

 Executive Member, Indian Student Advisory Council, IUPUI, 2009-2010 

 


