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ABSTRACT 
 
 
 

Nambiar, Shashank M. M.S., Purdue University, August 2014. Differentiation and 
regulation of Ascl1-expressing cells in the maternal liver during pregnancy. Major 
Professor: Guoli Dai. 
 
 
 
To cope with the high metabolic demands of the body during pregnancy, the maternal 

liver adapts by increasing its mass and size. This increase is proportional to the increase 

in total body weight during the course of gestation. The pregnancy-induced maternal liver 

growth is a result of both hepatocyte hypertrophy and hyperplasia. Microarray analysis of 

pregnant maternal livers shows markedly different gene expression profiles when 

compared to a non-pregnant state. Most interesting was the 2,500-fold up-regulation in 

the mRNA expression of Ascl1, a transcription factor responsible for the differentiation 

of neural progenitor cells into various neuronal types, during the second half of 

pregnancy. Our investigation aimed at (1) characterizing the identity of maternal hepatic 

Ascl1-expressing cells and (2) tracing the fate of Ascl1-expressing cells in the maternal 

liver during pregnancy. Timed pregnancies were generated and non-pregnant (NP) and 

pregnant maternal livers were harvested and analysed. To identify the maternal hepatic 

Ascl1-expressing cells we used the Ascl1GFP/+ reporter mouse line. NP and gestation day 

15 (D15) maternal livers were immunostained for green fluorescent protein (GFP). The 

result shows that GFP-positive, Ascl1-expressing cells are hepatocyte-like cells, which 
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are present in D15 maternal livers, but absent in NP livers. The Rosa26floxstopLacZ/ 

floxstopLacZ;Ascl1CreERT2/+ mouse line was used to trace the fate of Ascl1-expressing cells 

during pregnancy. LacZ staining of gestation day 13 (D13) and 18 (D18) maternal livers 

demonstrates that D13 hepatic Ascl1-expressing cells (labeled with LacZ) undergo 

hyperplasia to repopulate a large portion of D18 maternal livers. Furthermore, LacZ and 

HNF4α co-staining of D13 and D18 maternal livers shows the presence of two 

populations of LacZ-expressing cells: HNF4α+ population and HNF4α- population. 

HNF4α+ LacZ-expressing cells represent hepatocyte lineage cells that are derived from 

Ascl1-expressing cells. We observe that, towards the end of pregnancy, a considerable 

portion of the maternal liver is comprised of hepatocytes derived from Ascl1-expressing 

cells. Taken together, our preliminary study suggests that pregnancy induces maternal 

liver turnover via Ascl1-expressing cells. 
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CHAPTER 1 INTRODUCTION 

 
 

1.1 Objectives 

 

The objectives of the study were to characterize and trace the lineage of Ascl1-

expressing cells in the maternal liver during the course of pregnancy.  

 
 

1.2 Liver 

 

The liver is a reddish brown coloured and multi-lobed organ that lies in the 

abdominal cavity, just below the right lung, opposite the stomach. Weighing around 1.4 

to 1.6 kg on average, it is the largest internal organ and the largest gland in the human 

body. The liver performs a myriad of functions. It is responsible for the production and 

secretion of various substances such as plasma proteins, various lipoproteins, bile, 

hormones, etc. It detoxifies most of the metabolic waste products as well as neutralizes 

various xenobiotic substances that the body ingests. It processes the dead red blood cells 

and recycles many of its components. In addition, the liver is a major site for 

carbohydrate and fat metabolism and acts as a silo for storing a number of substances 

such as glycogen, fat, and vitamins. In short, the liver is the pivotal organ for maintaining 

metabolic homeostasis.
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The cells in the liver can be classified into two broad categories: parenchymal 

cells and non-parenchymal cells. Parenchymal cells, also known as hepatocytes, 

represent 60% of the total hepatic cells that make-up around 80% of total liver mass. 

They are responsible for performing most of the above mentioned functions. Non-

parenchymal cells include biliary epithelial cells lining the bile ducts, Kupffer cells 

responsible for phagocytosis of unwanted foreign particles, sinusoidal endothelial cells 

lining the liver sinusoids, various types of lymphocytes, and hepatic stellate cells for 

vitamin A storage (Friedman, 2008). An arrangement of these cells along with the 

afferent and efferent blood vessels and bile ducts form the hepatic lobule. The hepatic 

lobule is the basic structural unit of the liver, which is shaped roughly like a hexagon. It 

is comprised of a centrally located central vein that is surrounded by six portal triads 

representing the vertices of the hexagonal lobule. The portal triad comprises the bile duct, 

the portal vein, and the hepatic artery grouped together with dense connective tissue. 

Blood from the portal vein and hepatic artery of each portal triad drains into the central 

vein via hepatic sinusoids that converge towards the centre of the hepatic lobule. Rows of 

hepatocytes radiate outwards towards the periphery of the lobule and receive blood 

flowing through the sinusoids into the central vein. The region between the hepatocytes 

and the fenestrated endothelium of the sinusoids is called the space of Disse. This space 

is occupied by resident hepatic stellate cells. Hepatocytes, producing bile, line the bile 

canaliculi. Bile is released into this channel that then flows through a short and narrow 

passage called the canal of Hering and into the bile duct. Biliary epithelial cells line the 

canal of Hering and bile duct. Liver stem cells, also called oval cells, reside in the region 
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around the bile duct and the canal of Hering (Friedman, 2008; Duncan et al., 2009; Mall., 

1906; Michalopoulos, 2013; Miyajima et al., 2014). 

 
 

1.3 Liver progenitor/stem cells 

 

In adult organisms, liver turnover is achieved solely by the division of mature 

hepatocytes and biliary epithelial cells (Ponder, 1996). The robust proliferative ability of 

mature hepatocytes is also sufficient to recover the lost tissue mass after two-thirds 

partial hepatectomy. No involvement of liver progenitor/stem cells has been observed 

during either adult liver turnover or following two-thirds partial hepatectomy. However, 

when the proliferative ability of native hepatocytes and/or biliary epithelial cells is 

attenuated by exposure to chemicals such as dipin (Factor et al., 1994), diethoxycarbonyl-

1, 4-dihydro-collidine (Preisegger et al., 1999), and diethylnitosamine (Schwarze et al., 

1984), the resident liver progenitor/stem cell compartment becomes activated. Currently, 

this native stem cell population is called oval cells. Oval cells are small-sized cells having 

a high cytoplasm-to-nucleus ratio. As the name suggests, they can be identified by their 

characteristic oval shaped cell body. These cells are situated adjacent to the bile ducts and 

the canals of Hering. They are found to express a variety of markers, such as stem cell 

markers, hepatocyte markers, and biliary epithelial cell markers. However, the origins of 

these cells still remain unknown.  

Recent studies have also shown the role of hepatic stellate cells (HSCs) as liver 

progenitor/stem cells (Yang et al., 2008). Hepatic stellate cells are star shaped cells 

located in the space of Disse. They make up 5-8% of the total cells in the liver. They 

perform various functions such as vitamin A storage (Gressner et al., 2006, 2008; 
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Friedman., 2008; Kisseleva et al., 2008), blood flow regulation (Wirz et al., 2008; 

Kisseleva et al., 2008) and produce several growth factors, such as hepatocyte growth 

factor (Tomiya et al., 2002; Schirmacher et al., 1992; Ramadori et al., 1992), insulin 

growth factor (Sanz et al., 2005), and fibroblast growth factor (Evarts et al., 1993). 

Hepatic stellate cells are shown to express many stem cell markers, such as c-kit (Fujio et 

al., 1994), nestin (Niki et al., 1999), p75 receptors (Trim et al., 2000), and CD133 

(Kordes et al., 2007). The potential of these cells to differentiate into various cells of the 

liver has been demonstrated in vitro (Kordes et al., 2007). 

 
 

1.4 Pregnancy-induced maternal liver growth 

 

During pregnancy, in order to ensure the proper growth and development of the 

fetus, various maternal organs undergo structural and functional adaptations (Shingo et 

al., 2003; Nielsen et al., 1999; Huang et al., 2009; Kim et al., 2010; Audus, Soares, & 

Hunt, 2002; Dai et al., 2011; Rahman & Wendon, 2002). To cope with the increasing 

metabolic and nutritional demands during gestation, the maternal liver undergoes robust 

growth to increase its functional capacity (Dai et al., 2011). Our previous studies have 

shown that the maternal liver almost doubles in size by the end of pregnancy in rats and 

mice. This significant increase in maternal liver tissue mass is achieved by both 

compensatory hyperplasia and hypertrophy of hepatocytes (Bustamante et al., 2010; Dai 

et al., 2011; Milona et al., 2010). Compared to non-pregnant female mice, pregnant mice 

also showed changes in hepatic gene expression profiles (Bustamante et al., 2010). 
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1.5 Ascl1 

 

The basic helix-loop-helix (bHLH) superfamily represents a group of proteins that 

functions as transcription factors in cells. Structurally, all bHLH proteins are comprised 

of two alpha helices which are joined together by a loop. One of the alpha helices 

contains a basic DNA binding region. ASCL1 (Achaete-scute homolog 1 protein) belongs 

to the basic helix-loop-helix (bHLH) family of transcription factors (Garcia-Bellido, 

1979). In order to carry out its function the ASCL1 protein first dimerizes with another 

group of proteins called E-proteins. E-proteins are commonly expressed bHLH proteins 

such as Tcf4, E12, etc. They prime ASCL1 to bind efficiently to DNA (Murre et al., 

1989; Bertrand, Castro, & Guillemot, 2002). Studies have shown that the Ascl1 gene is 

required by neuronal progenitor cells to differentiate into neurons during embryonic 

neurogenesis (Bertrand, Castro, & Guillemot, 2002). ASCL1, along with Neurog1, 

signals neural progenitors to exit cell cycle by triggering the expression of a cyclin-

dependent kinase inhibitor-p27 (Kip1) while simultaneously inducing expression of 

genes responsible for neuronal differentiation such as NeuroM (Farah et al., 2000; Fode 

et al., 2000). Ascl1 plays a role in subtype specification and development of ventral 

neuroendocrine neurons (McNay et al., 2006). In mice, downregulation of Ascl1 results in 

gliogenesis in the central nervous system (Tomita et al., 2000). ASCL1 suppresses the 

expression of genes such as Dlx1 and 2 to facilitate oligodendrogenesis in the cerebral 

cortex (Petriniak et al., 2007). Ascl1 also promotes the differentiation of GABAergic 

neurons (Virolainen et al., 2012), olfactory receptor neurons (Cau et al., 1997), retinal 

neurons (Nelson et al., 2009; Hatakeyama et al., 2001; Tomita et al., 2000), pulmonary 

neuroendocrine cells (Borges et al., 1997), and gastric neuroendocrine cells (Kokubu et 
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al., 2008). In conclusion, Ascl1 plays a critical role in the maintenance and differentiation 

of neuronal progenitor cells in the nervous system. 

 
 

1.6 Hypothesis 

 

We hypothesize that Ascl1-expressing cells are hepatic progenitor/stem cells that 

can commit to a hepatocyte lineage and that, during pregnancy, proliferate and 

differentiate into mature hepatocytes thereby repopulating a significant portion of the 

mouse maternal liver. 
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CHAPTER 2 MATERIALS AND METHODS 

 
 

2.1 Animal care 

 

Protocol for the care and use of animals was sanctioned by the Indiana 

University-Purdue University Indianapolis Animal Care and Use Committee. Animal 

experiments were performed in compliance with the Guide for the Care and Use of 

Laboratory Animals authorized by the National Institute of Health (NIH). Mice were 

housed in plastic cages and provided with food and water ad libitum. Temperature and 

relative humidity in the animal house were maintained at 22±1oC and 40-60%, 

respectively. Animals were placed on a 12-hr light:12-hr dark cycle with lights switched 

on from 06:00 hrs to 18:00 hrs. Colony size was expanded by breeding male and female 

mice having appropriate genotypes. Young mice were weaned, ear tagged, and genotyped 

using genomic DNA extracted from ear tissue samples.  

 
 

2.2 Mouse models 

 
 

2.2.1 Ascl1GFP/+ reporter mice 

 

The Ascl1tm1Reed/J mice (hereafter referred to as Ascl1GFP/+ mice), stock #012881, 

were purchased from Jackson Laboratory, Maine, USA (Table 1). The genotypes of mice 
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were identified by amplifying particular genes of interest using the polymerasechain 

reaction (PCR). PCR instructions were provided by the vendor. The master mix solution 

for the PCR was prepared using the Kapa Taq PCR kit (Kapa Biosystems, Inc., 

Wilmington, MA, USA). All primers used were purchased from Integrated DNA 

Technologies (Coralville, IA, USA). The Ascl1wild type (wt) gene, coding for the 

ASCL1 protein, and its mutant Ascl1GFP allele, coding for the green fluorescent protein 

(GFP), were amplified. Primers 10841 and 10842 (Table 2) were used for the Ascl1 wt 

allele. Primers 10843 and 10844 (Table 2) were used for the mutant allele. A 1.5% 

agarose gel with ethidium bromide was used to resolve the PCR products. DNA bands 

were visualized using a UV transilluminator. Band sizes of Ascl1 wt allele and the 

Ascl1GFP mutant allele were 418bp and ~850bp respectively. 

 
 

2.2.2 Rosa26floxstopLacZ/floxstopLacZ;Ascl1CreERT2/+ mouse line 

 

The mouse line was generated by cross-breeding the following strains of mice 

mentioned below. Heterozygous F1 (first filial) generation was selfed to give rise to 

Rosa26floxstopLacZ/floxstopLacZ;Ascl1CreERT2/+ individuals.  

The B6.129S4-Gt(ROSA)26Sortm1Sor/J mice (hereafter referred as Rosa26floxstopLacZ 

mice), stock #003474, were purchased from Jackson Laboratory, Maine, USA (Table 1). 

The genotypes of mice were identified by amplifying particular genes of interest using 

PCR. PCR instructions were provided by the vendor. The master mix solution for the 

PCR was prepared using the Kapa Taq PCR kit (Kapa Biosystems, Inc., Wilmington, 

MA, USA). All primers used were purchased from Integrated DNA Technologies 
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(Coralville, IA, USA). The Rosa26 (RS26) wt gene and its mutant RS26floxstopLacZ allele, 

coding for the bacterial β-galactosidase enzyme, were amplified. Primers oIMR8545 and 

oIMR8546 (Table 2) were used for the RS26 wt allele. Primers oIMR8545 and 

oIMR8052 (Table 2) were used for the mutant allele. A 1.5% agarose gel with ethidium 

bromide was used to resolve the PCR products. DNA bands were visualized using a UV 

transilluminator. Band sizes of the RS26 wt allele and the RS26floxstopLacZ mutant allele 

were ~650bp and 340bp respectively. 

The Ascl1tm1.1(Cre/ERT2)Jejo/J mice (hereafter referred as Ascl1CreERT2), stock 

#012882, were purchased from Jackson Laboratory, Maine, USA (Table 1). The 

genotypes of mice were identified by amplifying particular genes of interest using PCR. 

PCR was performed by modifying instructions provided by the vendor. The master mix 

solution for the PCR was prepared using the Kapa LongRange HotStart PCR kit 

(#KK3501, Kapa Biosystems, Inc., MA, USA). All primers used were purchased from 

Integrated DNA Technologies (Coralville, IA, USA). The Ascl1 wt gene and its 

transgenic Ascl1CreERT2 allele, coding for the mutant estrogen receptor fused with Cre 

recombinase enzyme, were amplified. Primers 10841 and 10842 (Table 2) were used for 

the Ascl1 wt allele. Primers 10843 and 10653 (Table 2) were used for the transgenic 

allele. A 1.5% agarose gel with ethidium bromide was used to resolve the PCR products. 

DNA bands were visualized using a UV transilluminator. Band sizes of the Ascl1 wt 

allele and the Ascl1CreERT2 mutant allele were 418bp and ~300bp respectively. 
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2.2.3 GFAP-rtTAtg/+;tetO-Cretg/+;Rosa26floxstopEYFP/floxstopEYFP;Ascl1flox/flox mouse line 

 

The mouse line was generated by cross-breeding the following strains of mice 

mentioned below in a strategic fashion, to give rise to GFAP-rtTAtg/+;tetO-

Cretg/+;Rosa26floxstopEYFP/floxstopEYFP;Ascl1flox/flox individuals. Individuals with the genotype 

of GFAP-rtTAtg/+;tetO-Cretg/+;Rosa26floxstopEYFP/floxstopEYFP;Ascl1+/+ were used as genetic 

controls. 

The B6.Cg-Tg(GFAP-rtTA*M2)1Rmra/J mice (hereafter referred to as GFAP-

rtTA tg/+ mice), stock #014098, were purchased from Jackson Laboratory, Maine, USA 

(Table 1). The genotypes of mice were identified by amplifying particular genes of 

interest using PCR. PCR instructions were provided by the vendor. The master mix 

solution for the PCR was prepared using the Kapa Taq PCR kit (Kapa Biosystems, Inc., 

Wilmington, MA, USA). All primers used were purchased from Integrated DNA 

Technologies (Coralville, IA, USA). An internal positive control gene and the GFAP-

rtTAtg transgene, coding for the reverse tetracycline-controlled transactivator protein, 

were amplified. Primers oIMR7338 and oIMR7339 (Table 2) were used for the internal 

positive control gene. Primers 12933 and 12934 were used for the transgene (Table 2). A 

1.5% agarose gel with ethidium bromide was used to resolve the PCR products. DNA 

bands were visualized using a UV transilluminator. Band sizes of the internal positive 

control gene and the GFAP-rtTAtg transgene were 324bp and 200bp respectively. 

The B6.Cg-Tg(tetO-cre)1Jaw/J mice (hereafter referred to as tetO-Cretg/+ mice), 

stock #006234, were purchased from Jackson Laboratory, Maine, USA (Table 1). The 

genotypes of mice were identified by amplifying particular genes of interest using PCR. 
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PCR was performed by modifying instructions provided by the vendor. The master mix 

solution for the PCR was prepared using the Kapa Taq PCR kit (Kapa Biosystems, Inc., 

Wilmington, MA, USA). All primers used were purchased from Integrated DNA 

technologies (Coralville, IA, USA). An internal positive control gene and the tetO-Cretg 

transgene, coding for the Cre-recombinase enzyme, were amplified. Primers oIMR7338 

and oIMR7339 (Table 2) were used for the internal positive control. Primers oIMR1084 

and oIMR1085 (Table 2) were used for the transgene. A 1.5% agarose gel with ethidium 

bromide was used to resolve the PCR products. DNA bands were visualized using a UV 

transilluminator. Band sizes of the internal positive control gene and the tetO-Cretg 

transgene were 324bp and 100bp respectively. 

The Rosa26floxstopEYFP/floxstopEYFP;Ascl1flox/flox mice (Table 1) were donated to us by 

Dr. Guillemot (MRC National Institute for Medical Research, London). The genotypes of 

mice were identified by amplifying particular genes of interest using PCR. PCR protocols 

used were modified from Pacary et al., 2011. The master mix solutions for the PCRs were 

prepared using the Kapa Taq PCR kit (Kapa Biosystems, Inc., Wilmington, MA, USA). 

All primers used were purchased from Integrated DNA Technologies (Coralville, IA, 

USA). Genes amplified were as follows: 1) RS26 wt allele; 2) RS26 floxstopEYFP; 3) Ascl1 

wt allele; and 4) Ascl1flox. Primers RYFP-R1 and RYFP-R3 were used for the RS26 wt 

allele. Primers RYFP-R1 and RYFP-R2 were used for the RS26 floxstopEYFP. Primers MF1 

and VR2 were used for the Ascl1 wt allele. Primers MF1 and MR2 were used for the 

Ascl1flox gene. Primer details are mentioned in Table 2. A 1.5% agarose gel with 

ethidium bromide was used to resolve the PCR products. DNA bands were visualized 



12 
 

using a UV transilluminator. Band sizes of the genes were as follows: 1) RS26 wt allele-

650bp; 2) RS26 floxstopEYFP-340bp; 3) Ascl1 wt allele-~442bp; and 4) Ascl1flox-857bp.  

 
 

2.2.4 Rosa26floxstopLacZ/floxstopLacZ;TtrCreERT2/+ mouse line 

 

The mouse line was generated by cross-breeding the following strains of mice 

mentioned below. Heterozygous F1 (first filial) generation was selfed to give rise to 

Rosa26floxstopLacZ/floxstopLacZ;TtrCreERT2/+ individuals. 

The Tg(Ttr-cre/Esr1*)1Vco mice (hereafter referred to as TtrCreERT2 mice) were 

purchased from Inserm, Paris, France (Table 1). The genotypes of mice were identified 

by amplifying particular genes of interest using PCR. Dr. Mireille Vasseur-Cognet 

provided us the PCR protocol. The master mix solution for the PCR was prepared using 

the Kapa Taq PCR kit (Kapa Biosystems, Inc., Wilmington, MA, USA). All primers used 

were purchased from Integrated DNA technologies (Coralville, IA, USA). An internal 

positive control gene and the TtrCreERT2 transgene, coding for the Cre-ERT2 fusion 

protein, were amplified. Primers Amorce USF int2 and Amorce USF int4 (Table 2) were 

used for the internal positive control gene. Primers Amorce Cre 26 and Amorce Cre 36 

(Table 2) were used for the transgene. A 1.5% agarose gel with ethidium bromide was 

used to resolve the PCR products. DNA bands were visualized using a UV 

transilluminator. Band sizes of the internal positive control gene and the TtrCreERT2 

transgene were 600bp and 400bp respectively. 

The Rosa26floxstopLacZ mice are described are described in section 2.3.2. 
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2.3 Timed pregnancies 

 

Appropriate numbers of breeding cages were setup at noon. Next day onwards, 

the vaginal opening of female mice were visually examined for a copulatory plug. 

Presence of a copulatory plug was considered as gestation day 1. Plug-positive female 

mice were separated from their male partners and housed individually.  

 
 

2.4 Tamoxifen preparation and administration 

 

Required amount of tamoxifen (#T5648-1G, Sigma-Aldrich) was dissolved in a 

vehicle solution of 10% ethanol and sesame oil (#S3547-1L, Sigma-Aldrich) to give a 

24mg/ml working solution. Tamoxifen was dissolved thoroughly by incubating the 

working solution overnight on a shaker at 37oC. Pregnant mice were injected 

intraperitoneally with either tamoxifen (dissolved in vehicle) or vehicle only solutions on 

gestation days 10, 11, and 12. Pregnant mice were administered with a dose of 60mg/kg 

body of tamoxifen once each day between 10 to 11 am. 

 
 

2.5 Tissue collection 

 

Pregnant mice were sacrificed by cervical dislocation and total body weight, total 

maternal liver weight, and litter size of individual mouse was recorded. Maternal livers 

were frozen in optimal cutting temperature (OCT) medium (#4583 Tissue-Tek, Sakura) 
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cooled with heptane on dry ice. Ten micrometer thick sections of maternal livers were 

prepared from various gestation days and stored at -80oC until further use.   

 
 

2.6 Immunofluorescence staining 

 

Frozen maternal liver sections from appropriate gestation days were taken out 

from -80oC and allowed to dry at room temperature for 30 minutes. Using the liquid 

blocker PAP pen (Daido Sangyo Co. Ltd, Tokyo, Japan), boundaries were made around 

the tissue sections to contain the reagents over the tissues. Slides were then transferred 

into humidified chambers and fixed using ice cold 4% paraformaldehyde (#15735-10-S, 

Electron Microscopy Science) at 4oC for 10 minutes. Slides were washed in 1X 

phosphate buffered saline (PBS) twice for 5 minutes each. Maternal livers were then 

quenched using 0.3% hydrogen peroxide solution for 10 minutes. Afterwards, maternal 

liver sections were blocked with 2% rabbit serum, which was diluted in 1X Dulbecco’s 

phosphate buffered saline (DPBS) (#114-059-101, Quality Biological, Inc.) with Ca+ and 

Mg+, for 1 hour at room temperature. Next, slides were incubated overnight with a 

primary antibody against GFP (#ab6673, Abcam). The antibody was diluted in 1X DPBS 

with Ca+ and Mg+ (1:100). The next day, slides were washed two times in 1X PBS for 5 

minutes each. Tissues were then incubated with the rabbit anti-goat fluorescent secondary 

antibody (#305-516-046, DylightTM 594, Jackson Immunoresearch Laboratories, Inc.) for 

1 hour at room temperature. Tissues were washed in 1X PBS twice for 5 minutes each 

and mounted with ProLong Gold Antifade Mountant with DAPI (P36931, Life 
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Technologies). GFP immunolabeled maternal liver sections were visualized using the 

confocal microscope (Olympus FluoView FV1000). 

 
 

2.7 LacZ staining 

 

Frozen maternal liver sections from appropriate gestation days were taken from -

80oC and allowed to dry at room temperature for 30 minutes. Using the liquid blocker 

PAP pen (Daido Sangyo Co. Ltd, Tokyo, Japan), boundaries were made around the tissue 

sections to contain the reagents that they were being incubated in. Tissue sections were 

fixed in freshly prepared LacZ fixative solution for 5 minutes. Slides were then washed 

twice in 1X PBS for 5 minutes each. Maternal liver sections were treated with LacZ 

staining solution for 12 hours. Sections were washed again in 1X PBS to clear the tissue 

of the LacZ staining solution. The LacZ fixative solution and the LacZ staining solution 

were prepared as per kit instructions (#rep-lz-t, InvivoGen). Following this, tissue 

sections were counterstained with hematoxylin (Hematoxylin 560 MX, Leica 

Biosystems) and mounted using the VectamountTM AQ mounting medium (#H-5501, 

Vector Laboratories, Inc.). 

 
 

2.8 LacZ and HNF4α co-staining 

 

LacZ staining was first performed on frozen maternal liver sections from 

appropriate gestation days (refer to LacZ staining described in section 2.7). Tissues were 

washed twice in 1X PBS for 15 minutes each. Slides were then transferred into 
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humidified chambers and fixed using ice cold 4% paraformaldehyde at 4oC for 10 

minutes. Slides were washed in 1X PBS twice for 5 minutes each. Maternal livers were 

then quenched using 0.3% hydrogen peroxide solution for 10 minutes. After this, 

maternal liver sections were blocked with 2% donkey serum, which was diluted in 1X 

DPBS with Ca+ and Mg+, for 1 hour at room temperature. Following this, slides were 

incubated overnight with a primary antibody against HNF4α (#sc-6556, Santa Cruz 

Biotechnology, Inc.). The antibody was diluted in 1X DPBS with Ca+ and Mg+ (1:100). 

The next day, slides were washed two times in 1X PBS for 5 minutes each. Tissues were 

then incubated with the biotinylated donkey anti-goat secondary antibody (#sc-2042, 

Santa Cruz Biotechnology, Inc.) for 1 hour at room temperature. Slides were then washed 

with 1X PBS two times for 5 minutes each and incubated for 30 minutes with the 

VECTASTAIN ABC kit reagent (Vector Laboratories, Inc., Burlingame, CA). 

Afterwards, maternal livers were treated with DAB Peroxidase Substrate Kit reagent 

(#SK-4100, Vector Laboratories, Inc.) and counterstained with hematoxylin. Excess 

hematoxylin was washed away using distilled water and tissues were mounted using the 

VectamountTM AQ mounting medium. (#H-5501, Vector Laboratories, Inc.). 
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CHAPTER 3 RESULTS 

 
 

3.1 Characterization of Ascl1-expressing cells during pregnancy  

using Ascl1GFP/+ reporter mice 

 

To test our hypothesis, the first aim was to identify Ascl1-expressing cells in the 

maternal liver during different days of gestation. We used the Ascl1GFP/+ transgenic 

reporter mouse line. The Ascl1GFP/+ mouse line was generated by deleting the coding 

region of the Ascl1 gene and replacing it with a DNA sequence coding for the green 

fluorescent protein (GFP), which contains a nuclear localization sequence. The deletion 

was made on one allele of the Ascl1 gene, while keeping the endogenous Ascl1 promoter 

intact, resulting in mice heterozygous for Ascl1 (Ascl1GFP/+). All cells with an active 

Ascl1 promoter therefore express GFP that is localized in the nucleus (Figure 1). Timed 

pregnancies were generated and maternal livers were collected on gestation days 11 

(D11), 13 (D13), 15 (D15) and 18 (D18). Non-pregnant (NP) mice livers were used as 

control. 
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3.1.1 Maternal liver growth pattern in Ascl1GFP/+ transgenic mice 

 

Gravimetric measurements of total body weight and total liver weight were 

recorded from NP and pregnant D11, D13, D15, and D18 mice. We observed that during 

the second half of pregnancy the total liver weight almost doubled. The liver-to-body 

weight ratio increased significantly on D13 and D15 (Figure 2). These changes were 

indicative of robust maternal liver growth during pregnancy. The results were similar to 

that observed in our previous studies (Zou et al., 2013 and Dai et al., 2011). Thus, the 

genetic modification in Ascl1GFP/+ mice does not affect maternal liver growth during 

pregnancy. 

 
 

3.1.2 Preliminary identification of Ascl1-expressing cells in the maternal liver 

 

NP and pregnant (D15) frozen maternal liver sections were immunolabeled with a 

GFP antibody and visualized using fluorescence microscopy. We found that Ascl1-

expressing cells were observed in pregnant D15 maternal livers but not in NP livers. 

Ascl1-expressing cells were distributed randomly and uniformly throughout the liver 

parenchyma. Morphologically, Ascl1-expressing cells appeared as hepatocyte-like cells 

(Figure 3). 
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3.2 Lineage tracing of Ascl1-expressing cells in maternal liver during pregnancy 

 

In order to trace the lineage of Ascl1-expressing cells in the maternal liver during 

pregnancy, we generated a mouse strain described in the following section.  

 
 

3.2.1 Generation of Rosa26floxstopLacZ/floxstopLacZ;Ascl1CreERT2/+ mouse line 

 

The mouse strain was generated by crossbreeding Rosa26floxstopLacZ/ floxstopLacZ mice 

with the Ascl1CreERT2/+ mice. 

Rosa26floxstopLacZ/floxstopLacZ mice: this mouse strain contains the gene for β-

galactosidase (LacZ) enzyme, which is regulated by the Rosa26 (RS26) ubiquitous 

promoter. However, the expression of LacZ is prevented due to the presence of a flox 

stop cassette downstream of the RS26 promoter. 

Ascl1CreERT2/+ mice: this mouse strain contains the gene for the CreERT2 fusion 

protein. The Ascl1 protein-coding sequence from one allele of the Ascl1 gene was 

swapped with the CreERT2 coding sequence while preserving the endogenous Ascl1 

promoter. CreERT2 fusion protein is a combination of Cre-recombinase enzyme fused to 

a mutant form of the human estrogen receptor. This mutant form of the human estrogen 

receptor is designed to be unable to bind to its natural ligand, estrogen. Instead, it binds to 

tamoxifen, a synthetic estrogen receptor ligand molecule. Activation of the Ascl1 

promoter, thus, leads to the expression of the CreERT2 fusion protein, which, in its 

inactive state, localizes in the cytoplasm of the cell. When activated by tamoxifen it 

translocates to the nucleus. 
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In the Rosa26floxstopLacZ/floxstopLacZ;Ascl1CreERT2/+ lineage tracing mouse model, 

production of Cre-recombinase enzyme is driven by the Ascl1 promoter while the RS26 

promoter drives the production of LacZ enzyme. In the absence of tamoxifen, the LacZ 

transgene remains unexpressed due to the flox stop cassette. When tamoxifen is injected 

into the mouse, the activated CreERT2 fusion protein is translocated into the nucleus 

where the Cre-recombinase floxes out the flox stop sequence. This results in the 

production of LacZ enzyme in Ascl1-expressing cells (Figure 4). Therefore, LacZ 

permanently labels Ascl1-expressing cells and can be visualized by using X-Gal 

substrate. 

 
 

3.2.2 Standardization of tamoxifen dose to induce LacZ expression in Ascl1-expressing 

cells 

 

In order to induce the expression of LacZ enzyme in Ascl1-expressing cells in the 

maternal liver without compromising pregnancy, it was important to determine the 

optimal dose for tamoxifen. Timed pregnancies were generated and tamoxifen, dissolved 

in sesame oil containing 10% ethanol (vehicle), or vehicle only was administered either 

once or multiple times between gestation days 9 to 12. Gestation day 18 (D18) maternal 

livers were collected and analysed using LacZ staining protocol. We observed that out of 

the three doses of tamoxifen that were tested (30, 45 and 60 mg/kg body weight), 60 mg 

tamoxifen/kg body weight, when injected on gestation days 10, 11, and 12 

(intraperitoneally, once each day), induced robust expression of LacZ enzyme in the 

maternal liver. The other two doses had no effect (Figure 5). Sixty mg/kg dose of 
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tamoxifen however did cause a small percent of abortion in mice. Nonetheless, we used 

this dose for in vivo lineage tracing studies. Additionally, we also observed that the 

volume of sesame oil injected into mice critically affected the outcome of pregnancy. 

Pregnant mice injected with 150 µl of sesame oil (per mouse) caused abortions whereas 

mice injected with 75 µl (per mouse) of sesame oil showed no abortion. Thus, 75 µl (per 

30 gm body weight) of sesame oil was set as the maximum vehicle volume that was 

injected in pregnant mice. We also tested the efficacy of 4-Hydroxytamoxifen (4-OHT), 

an active metabolite of tamoxifen (Reed et al., 2005). We found that 4-OHT at a 

concentration of 50 mg/kg body weight, when injected on gestation days 10, 11 and 12 

(intraperitoneally, once each day), was unable to induce LacZ expression in D18 maternal 

livers (Figure 6).  

Thus, a dose of 60mg/kg body weight of tamoxifen was used henceforth to induce 

the robust expression of LacZ in maternal hepatic Ascl1-expressing cells during 

pregnancy. 

 
 

3.2.3 Lineage tracing of Ascl1-expressing cells 

 

To determine whether Ascl1-expressing cells belong to a population of hepatic 

progenitor/stem cells, which differentiate into mature hepatocytes during the course of 

gestation, we performed the lineage tracing experiment in pregnant 

Rosa26floxstopLacZ/floxstopLacZ;Ascl1CreERT2/+ mice. Timed pregnancies were generated and 

tamoxifen (60 mg/kg body weight), dissolved in vehicle, or vehicle alone was 

administered intraperitoneally once each day on gestation days 10, 11 and 12. Gestation 
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day 13 (D13) and 18 (D18) maternal livers were collected and frozen in OCT cooled with 

heptane on dry ice. Ten micrometer thick frozen maternal liver (D13 and D18) sections 

were prepared and analysed using the LacZ staining protocol. LacZ labeled cells were 

seen in both D13 and D18 maternal livers. These LacZ-expressing cells morphologically 

resembled hepatocytes. There was a drastic increase in the number of LacZ-expressing 

cells from D13 to D18, which were spread throughout the liver parenchyma and the 

periportal regions. On D13, the LacZ-expressing cells were found in small patches across 

the maternal liver. On D18, these cells constituted almost the entire maternal liver 

(Figure 7). Following this, to determine the identity of the LacZ-expressing cells, D13 

and D18 maternal liver sections were subjected to LacZ and HNF4α co-staining. Results 

showed the presence of two distinct populations of LacZ-expressing cells in the maternal 

liver, both on D13 and D18. One population was LacZ+, HNF4α+ and the other was 

LacZ+, HNF4α-. On D13, both populations were small and roughly equal in number. 

Compared to D13, on D18 the two populations were greater in number. Additionally, on 

D18, maternal livers had a greater number of LacZ+, HNF4α+ cells compared to LacZ+, 

HNF4α- cells. We concluded that during the course of gestation, Ascl1-expressing cells 

differentiate along a hepatocyte lineage by undergoing asymmetric stem cell division, 

thereby repopulating the maternal liver. 
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3.3 Generation of hepatic stellate cell-specific Ascl1 conditional knockout (cKO) mouse 

line 

 

Previous studies have shown the ability of hepatic stellate cells (HSCs) to act as 

hepatic progenitor/stem cells during liver injury. Unpublished data from our lab showed 

ASCL1 expression in LX-2 cells (human hepatic stellate cell line) in culture. Therefore, 

we hypothesize that, Ascl1 plays a crucial role in the transdifferentiation of HSCs into 

mature hepatocytes during pregnancy. In order to test our hypothesis we generated the 

GFAP-rtTAtg/+;tetO-Cretg/+;Rosa26floxstopEYFP/floxstopEYFP;Ascl1flox/flox cKO mouse model.  

These mice were generated by the sequential crossbreeding of the following mouse 

strains.  

GFAP-rtTAtg/+ mice: this mouse strain contains the GFAP-rtTA non-allelic 

transgene that is randomly inserted into the mouse genome. The gene contains an 

upstream glial fibrillary acidic protein (GFAP) promoter and a downstream protein-

coding region that translates to reverse tetracycline-controlled transactivator protein 

(rtTA). Therefore, mice carrying the GFAP-rtTA transgene produce rtTA in all cells with 

an active GFAP promoter. The rtTA protein localizes in the cell cytoplasm and is 

activated by doxycycline (Dox). Activated rtTA translocates into the nucleus.  

tetO-Cretg/+ mice: this mouse strain contains the tetO-Cre non-allelic transgene inserted 

randomly into the mouse genome. The transgene contains an upstream tetO promoter 

followed downstream by the region coding for the Cre-recombinase enzyme. The tetO 

promoter is switched on when active rtTA binds to the promoter element. This in turn 

results in expression of Cre-recombinase.  
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Rosa26floxstopEYFP/floxstopEYFP;Ascl1flox/flox mice: this is a bi-transgenic mouse strain. 

Both transgenes are allelic. The RS26floxstopEYFP transgene comprises the RS26 ubiquitous 

promoter that drives the expression EYFP. However, because of a floxed stop cassette 

present after the Rosa26 promoter, EYFP expression is stalled. The Ascl1flox/flox transgene 

comprises the Ascl1 promoter and the downstream Ascl1 protein-coding region, which is 

flanked by a pair of loxP sites.  

In the GFAP-rtTAtg/+;tetO-Cretg/+;Rosa26floxstopEYFP/floxstopEYFP;Ascl1flox/flox cKO 

mouse model, the GFAP promoter drives the expression of rtTA. When mice are exposed 

to Dox, rtTA is activated, translocates to the nucleus, binds to and activates the tetO 

promoter, which in turn drives the production of Cre-recombinase enzyme. Cre-

recombinase floxes out the Ascl1 gene and the stop cassette. The Ascl1 gene is thereby 

conditionally knocked out from all GFAP positive hepatic stellate cells. In addition, these 

cells lacking the Ascl1 gene are simultaneously and permanently labeled for EYFP 

(Figure 9). Mice having the genotype GFAP-rtTAtg/+;tetO-

Cretg/+;Rosa26floxstopEYFP/floxstopEYFP;Ascl1+/+ were used as genetic controls. 

Currently we are expanding the colony size to generate a sufficient number of mice for 

experimentation.   

 
 

3.4 Generation of the hepatocyte fate tracing mouse line 

 

Based on the data generated so far we believe that a significant portion of the 

maternal liver is repopulated by hepatocytes that are differentiated from hepatic 

progenitor/stem cells. The question then arises-what is the fate of the pre-existing 
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hepatocytes in the maternal liver during pregnancy? To answer this question, we are 

presently generating the Rosa26floxstopLacZ/floxstopLacZ;TtrCreERT2/+ mouse model (Figure 10) 

to trace the fate of pre-existing hepatocytes. To generate this mouse model we crossbred 

the following mouse strains. 

Rosa26floxstopLacZ/floxstopLacZ mice: this mouse strain is described in section 3.2.1 

TtrCreERT2/+ mice: this mouse strain contains the transgene that codes for the CreERT2 

fusion protein. The protein-coding region of one allele of the transthyretin (Ttr) gene is 

substituted by the CreERT2 protein-coding sequence. Therefore, mice expressing the 

TtrCreERT2 transgene are thus heterozygous for Ttr. Ttr is a protein that is specifically 

expressed in mature hepatocytes. Hence, all hepatocytes containing this transgene express 

CreERT2 that is localized in the cytoplasm.  

Thus, in the Rosa26floxstopLacZ/floxstopLacZ;TtrCreERT2/+ mouse model, expression of 

CreERT2 fusion protein is driven by the Ttr promoter. This promoter is constantly active 

in mature hepatocytes. When exposed to tamoxifen, nuclear translocation of the activated 

CreERT2 fusion protein occurs. The Cre-recombinase enzyme then floxes out the stop 

cassette present in the RS26floxstopLacZ transgene, thus permanently labeling mature 

hepatocytes with the LacZ enzyme. 

Presently, we are in the process of generating mice that are homozygous for the 

RS26floxstopLacZ gene and heterozygous for the TtrCreERT2. 
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CHAPTER 4 DISCUSSION 

 
 

4.1 Ascl1 expression in the maternal liver during pregnancy 

 

Our current study shows, for the first time, the expression of Ascl1 in the adult 

liver of mice, specifically, in the maternal liver during pregnancy. The phenomenon of 

robust maternal liver growth during pregnancy in CD-1 mice, C57BL/6 mice and rats has 

been reported previously by our group (Zou et al., 2013; Dai et al., 2011; Bustamante et 

al., 2010). In our current study, the maternal liver of the Ascl1GFP/+ mouse strain exhibited 

the same response to pregnancy. Thus, the genetic manipulation of the Ascl1GFP/+ mouse 

line does not affect the progression of pregnancy-induced maternal liver growth. The 

increase in liver weight is accompanied by the simultaneous increase in Ascl1 mRNA 

expression from gestation day 8 to 18. The maximum fold change reached 2,500 fold on 

gestation day 15 (D15) relative to NP state (unpublished data from our laboratory). In a 

gene microarray analysis, among all the genes up-regulated during pregnancy, the Ascl1 

gene showed the highest fold change at mRNA level (unpublished data from our 

laboratory). The results of histological analysis of Ascl1-expressing cells, using the 

Ascl1GFP/+ reporter mouse line, are consistent with the D15 Ascl1 mRNA expression data. 

We observed the presence of GFP positive Ascl1-expressing cells on D15 (Figure 3). 

These Ascl1-expressing cells are randomly distributed throughout the maternal liver 
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parenchyma and morphologically appear as hepatocyte-like cells. To identify the Ascl1-

expressing cell type in the maternal liver during pregnancy, co-immunolabeling studies 

with various cell-specific markers needs to be done. 

Literature study on Ascl1 so far has shown that Ascl1 is associated with the 

development of cells of the nervous system, especially during embryonic neurogenesis 

(Kim et al., 2007). It is known that Ascl1 is expressed by neuronal progenitors, such as 

neuroblasts of the central, peripheral and sympathetic nervous systems (Ma et al., 1996; 

Horton et al., 1999; Guillemot and Joyner., 1993; Gordon et al., 1996; Blaugrund et al., 

1996 and Morikawa et al., 2009) and neural progenitors of olfactory receptor and retinal 

neurons (Krolewski et al., 2012; Nelson et al., 2009 and Hatakeyama et al., 2001). Ascl1 

is also expressed by differentiated cells of the nervous system, such as GABAergic 

neurons (Virolainen et al., 2012). In adult mice, the pituitary gland is shown to express 

ASCL1 (www.BioGPS.org). Here we have identified the liver as an adult organ highly 

expressing Ascl1 during pregnancy. 

 
 

4.2 Maternal liver repopulation by Ascl1-expressing cells 

 

To determine the fate of Ascl1-expressing cells in the maternal liver during 

pregnancy, we generated the Rosa26floxstopLacZ/floxstopLacZ;Ascl1CreERT2/+ lineage tracing 

mouse model. Ascl1-expressing cells were labeled by LacZ enzyme between gestation 

days 10 to12. We found that LacZ positive Ascl1-expressing cells were present in the 

pregnant maternal livers. These LacZ positive cells were distributed in patches 

throughout the maternal liver parenchyma and around the periportal regions. Also, 

http://www.biogps.org/
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compared to gestation day 13 (D13), the number of LacZ positive cells increased 

significantly on gestation day 18 (D18), contributing to more than half the maternal liver 

mass. Additionally, when LacZ-expressing cells were co-labeled with HNF4α, we found 

two distinct populations of LacZ-expressing cells: HNF4α+ and HNF4α-. These two 

populations were seen in both D13 and D18 maternal livers. HNF4α+ LacZ expressing 

cells represent hepatocytes that are derived from Ascl1-expressing cells. These 

observations indicate that Ascl1-expressing cells undergo hyperplasia and differentiate 

into hepatocytes thereby repopulating the maternal liver during pregnancy. This is the 

most exciting finding of the current study. The finding implies that pregnancy induces the 

turnover of the maternal liver and also possibly other organs as well. 

Many studies have shown evidence for the existence of hepatic progenitor/stem 

cells. Liver Progenitor Cells (LPC’s) located in the canals of hering are considered as 

liver stem cells. Current theories suggest that during liver regeneration, biliary epithelial 

cells act as facultative stem cells. These cells give rise to LPC’s in the periportal regions, 

which further differentiate into hepatocytes (Miyagima et al., 2014; Michalopoulos, 

2013). LacZ labeled cells are mostly localized around the periportal regions of the 

maternal liver, suggesting that new hepatocytes may be differentiated from biliary 

epithelial cells. Co-immunolabeling of LacZ positive cells with LPC markers and mature 

hepatocyte markers needs to be done to determine the identity of the LacZ labeled cells. 

Moreover, we need to identify the Ascl1-expressing cells in the maternal liver prior to 

gestation day 13. We predict that the Ascl1-expressing cells are a population of liver 

progenitor cells. By gestation day 13, these Ascl1-expressing cells might have 
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differentiated into the hepatocyte lineage. That may explain why the LacZ-expressing 

cells are hepatocyte-like cells at gestation day 13 and thereafter. 

Reports have implicated the ability of hepatic stellate cells (HSCs) to behave as 

liver progenitor cells. HSCs exhibit protein markers, namely Hes1, Desmin and GFAP 

that are characteristic of the three germ layers, the endoderm, mesoderm and ectoderm, 

respectively (Buchholz et al., 2005; Yokoi et al., 1984; Geerts et al., 1998; Neubauer et 

al., 1996; Buniatian et al., 1996). In vitro studies have described that, depending on 

conditions of the culture media, HSCs can differentiate into cells closely resembling 

hepatocytes, cells of the bile duct and endothelial cells (Kordes et al., 2007; Sicklick et 

al., 2006). HSCs also synthesize morphogens such as epimorphin, hepatocyte growth 

factor and pleitrophin (Yoshino et al., 2006; Hu et al., 1993; Asahina et al., 2002) and 

express stem cell markers such as CD133 and c-kit (Kordes et al., 2007; Fujio et al., 

1994). A recent study, using the in vivo lineage tracing approach, also conclusively 

demonstrated the transdifferentiation of HSCs into mature hepatocytes. This study was 

carried out in transgenic mice that were fed with diets deficient in methionine choline and 

supplemented with ethionine to induce chronic liver injury. The fate of HSCs labeled 

with GFP was traced upon chemical induced chronic liver injury. Co-immunolabeling 

studies proved that GFP-positive HSCs differentiated into GFP-positive hepatocytes 

expressing albumin. These GFP-positive hepatocytes repopulated the injured liver after a 

period of one week post injury (Yang et al., 2008). We also found that Ascl1 is expressed 

by the LX-2 human hepatic stellate cell line in culture (unpublished data from our 

laboratory). Thus, our hypothesis is that Ascl1 regulates the ability of HSCs to 

differentiate into hepatocytes during pregnancy. To test this hypothesis we generated the 
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GFAP-rtTAtg/+;tetO-Cretg/+;Rosa26floxstopEYFP/floxstopEYFP;Ascl1flox/flox cKO mouse model. 

Using this mouse model, we could conditionally delete the Ascl1 gene specifically from 

HSCs and trace the fate of these cells during the course of gestation. We also generated 

the GFAP-rtTAtg/+;tetO-Cretg/+;Rosa26floxstopEYFP/floxstopEYFP;Ascl1+/+ reporter mouse 

model.  Using this mouse line, we could determine the fate of HSCs without ablation of 

the Ascl1 gene. 

In summary, our study has shown that Ascl1 expression is increased in the 

maternal liver during the second half of pregnancy. Morphologically, Ascl1-expressing 

cells look like hepatocytes. These Ascl1-expressing cells are distributed uniformly across 

the maternal liver parenchyma and the periportal regions. During the course of gestation, 

Ascl1-expressing cells proliferate and eventually repopulate a large portion of the 

maternal liver towards the end of pregnancy. However, the origin and identity of the 

Ascl1-expressing cells need to be determined. Our studies strongly suggest a critical role 

for Ascl1 in maternal hepatic adaptations to pregnancy. 
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Table 1. List of mouse strains 

Sr 
No. Mouse Strain Type Mutant Gene Promoter Purpose 

1. Ascl1GFP/+ Allelic Ascl1-GFP Ascl1 
For identifying Ascl1-
expressing cells in 
pregnant maternal livers 

2. Rosa26floxstopLacZ/floxstopLacZ Allelic Rosa26-floxstopLacZ Rosa26 
For labeling specific cell 
types expressing Cre-
recombinase with LacZ  

3. Ascl1CreERT2/+ Allelic Ascl1-CreERT2 Ascl1 
For tracing the lineage of 
Ascl1-expressing cells in 
pregnant maternal livers 

4. GFAP-rtTAtg/+ Transgene GFAP-rtTA GFAP 
For tracing the lineage of 
hepatic stellate cell in 
pregnant maternal livers 

5. tetO-Cretg/+ Transgene tetO-Cre tetO 
For tracing the lineage of 
hepatic stellate cells in 
pregnant maternal livers 

6. Rosa26floxstopEYFP/floxstopEYFP;Ascl1flox/flox Allelic 1) Rosa26-floxstopEYFP 
2) Ascl1-flox 

1) Rosa26 
2) Ascl1 

For tracing the lineage of 
hepatic stellate cell in 
pregnant maternal livers 

7. TtrCreERT2/+ Allelic Ttr-CreERT2 Ttr 
For tracking the fate of 
pre-existing hepatocytes in 
pregnant maternal livers  
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Table 2: List of primers used for polymerase chain reaction 

Sr 
No
. 

Primer Name Primer 
Type Primer Sequence 5’------>3’ 

1 10841 Forward TCCAACGACTTGAACTCTATGG 

2 10842 Reverse CCAGGACTCAATACGCAGGG 

3 10843 Forward AACTTTCCTCCGGGGCTCGTTTC 

4 10844 Reverse TGGCTGTTGTAGTTGTACTCCAGC 

5 oIMR8052 Reverse GCGAAGAGTTTGTCCTCAACC 

6 oIMR8545 Forward AAAGTCGCTCTGAGTTGTTAT 

7 oIMR8546 Reverse GGAGCGGGAGAAATGGATATG 

8 10653 Reverse CGCCTGGCGATCCCTGAACATG 

9 oIMR7338 Forward CTAGGCCACAGAATTGAAAGATCT 

10 oIMR7339 Reverse GTAGGTGGAAATTCTAGCATCATCC 

11 12933 Forward GAAGGCGAGTCATGGCAAG 

12 12934 Reverse CAATACGCAGCCCAGTGTAAA 

13 oIMR1084 Forward GCGGTCTGGCAGTAAAAACTATC 

14 oIMR1085 Reverse GTGAAACAGCATTGCTGTCACTT 

15 RYFP-R1 Forward AAAGTCGCTCTGAGTTGTTAT 

16 RYFP-R2 Reverse AAGACCGCGAAGAGTTTGTC 

17 RYFP-R3 Reverse GGAGCGGGAGAAATGGATATG 

18 MF1 Forward CTACTGTCCAAACGCAAAGTGG 

19 MR1 Reverse TAGACGTTGTGGCTGTTGTAGT 

20 VR2 Reverse GCTCCCACAATCCTCGTAAAGA 

21 Amorce USF int2 Forward CCACCATGAGCCAGCAGTAATAC 

22 Amorce USF int4 Reverse TTGAAGCGTCCAATTATCACCC 

23 Amorce Cre 26 Forward CCTGCAAAATGCTTCTGTCCG 

24 Amorce Cre 36 Reverse CAGGCTATAAGCAATCCC 
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Figure 1: Genotype of Ascl1GFP/+ reporter mouse line. In the Ascl1GFP/+ mouse line, the 

Ascl1 protein-coding region of one of the Ascl1 alleles is substituted with the DNA 

sequence coding for GFP. This results in mice heterozygous for the Ascl1 gene. Cells 

with an active Ascl1 promoter therefore express GFP, which localizes into the nuclei of 

Ascl1-expressing cells due to the presence of a nuclear localization sequence. Non-Ascl1-

expressing cells do not express GFP.  
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Figure 2: Response of maternal liver weight and liver-to-body weight ratios to 

pregnancy. Gravimetric measurements of total liver weights (A) and liver-to-body 

weight ratios (B) during pregnancy. Livers were collected from non-pregnant (NP) and 

pregnant days 2, 11, 13, 15 and 18 mice. Data are expressed as mean ± SEM (n=4). 

Asterisks indicate P < 0.05 in comparison with NP mice.  

 

 

 

 

 

 

 

 



42 
 

 

 

Figure 3: Immunofluorescence staining for green fluorescent protein (GFP). Non-

pregnant and gestation day 15 (D15) maternal livers were harvested and frozen in OCT 

cooled with heptane on dry ice. Ten micrometer thick maternal liver sections were 

prepared and immunolabeled for GFP. NP and D15 maternal liver sections at 20X (A and 

B) and 40X (C and D) magnification. Hepatic Ascl1-expressing cells, while absent in NP 

maternal livers, were abundant in D15 maternal livers. Ascl1-expressing cells were 

randomly scattered throughout the liver parenchyma and around the periportal regions. 

Morphologically, Ascl1-expressing cells appeared as hepatocyte-like cells. Note: GFP-

positive, Ascl1-expressing cells have red coloured nuclei.      
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Figure 4: Generation of Rosa26floxstopLacZ/floxstopLacZ;Ascl1CreERT2/+ mouse model. This 

mouse model was generated by mating Rosa26floxstopLacZ/floxstopLacZ mice with 

Ascl1CreERT2/+ mice. When the Rosa26floxstopLacZ/floxstopLacZ;Ascl1CreERT2/+ mice are treated 

with tamoxifen the CreERT2 fusion protein, expressed in Ascl1-expressing cells, is 

translocated into the nucleus. Inside the nucleus, the Cre recombinase enzyme floxes the 

stop cassette of the Rosa26floxstopLacZ transgene. As a result, all Ascl1-expressing cells are 

perpetually labeled with LacZ enzyme. 
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Figure 5: Standardization of tamoxifen dose to induce LacZ expression. Pregnant 

mice were injected with different doses of tamoxifen (30mg, 45mg, and 60mg/kg body 

weight) on gestation days 10, 11, and 12 (intraperitoneal, once each day). Gestation day 

18 (D18) maternal livers were frozen in OCT cooled with heptane on dry ice. Ten 

micrometer thick maternal liver sections were prepared and stained for LacZ activity. 

While 30mg and 45mg (A and B respectively) of tamoxifen/kg body weight failed to 

induce LacZ expression, a dose of 60mg/kg induced robust LacZ expression in the 

maternal livers (C). Note: LacZ-expressing cells are blue in colour. 
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Figure 6: Efficacy of 4-Hydroxytamoxifen vs tamoxifen to induce LacZ expression. 

Pregnant mice were injected with 4-Hydroxytamoxifen (4-OHT) or tamoxifen on 

gestation days 10, 11, and 12 (intraperitoneal, once each day). Gestation day 18 (D18) 

maternal livers were harvested and frozen in OCT cooled with heptane on dry ice. Ten 

micrometer thick maternal liver sections were prepared and stained for LacZ activity. 

Compared to tamoxifen (A), 4-OHT (B) failed to induce expression of LacZ in pregnant 

maternal livers. Note: LacZ-expressing cells are blue in colour. 
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Figure 7: LacZ staining of maternal livers during pregnancy. Pregnant mice were 

injected with vehicle or tamoxifen (dissolved in vehicle) on gestation days 10, 11, and 12 

(intraperitoneal, once each day). Gestation day 13 (D13) and 18 (D18) maternal livers 

were frozen in OCT cooled with heptane on dry ice. Ten micrometer thick maternal liver 

sections were prepared and stained for LacZ activity. (A) D18 maternal livers of mice 

injected with vehicle only. (B) D13 and (C-D) D18 maternal livers injected with 

tamoxifen. LacZ-expressing cells are distributed uniformly in the liver parenchyma and 

around portal triad and central vein. D13 LacZ-expressing cells undergo hyperplasia to 

repopulate the maternal liver as seen on D18. LacZ-expressing cells were found in the 

maternal liver parenchyma and around periportal regions. Note: LacZ-expressing cells 

are blue in colour.  
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Figure 8: LacZ and HNF4α co-staining of maternal livers in pregnant mice. Pregnant 

mice were injected with tamoxifen on gestation days 10, 11, and 12 (intraperitoneal, once 

each day). Gestation day 13 (D13) and 18 (D18) maternal livers were frozen in OCT 

cooled with heptane on dry ice. Ten micrometer thick maternal liver sections were 

prepared and stained for the LacZ enzyme and HNF4α. Note that both D13 (A) and D18 

(B) maternal livers showed two distinct populations of LacZ-expressing cells: HNF4α-

positive and HNF4α-negative, LacZ-expressing cells. D18 maternal livers showed greater 

numbers of HNF4α-positive LacZ-expressing cells compared to HNF4α-negative, LacZ-

expressing cells. Note: LacZ-expressing cells are blue in colour.  
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Figure 9: Generation of the GFAP-rtTAtg/+;tetO-Cretg/+; 

Rosa26floxstopEYFP/floxstopEYFP ;Ascl1flox/flox conditional knockout (cKO) mouse model. 

This mouse model was generated by serially mating the GFAP-rtTAtg/+, the tetO-Cretg/+, 

and the Rosa26floxstopEYFP/floxstopEYFP ;Ascl1flox/flox mice. When cKO mice are treated with 

doxycycline, nuclear translocation of rtTA occurs in GFAP positive hepatic stellate cells. 

rtTA activates the tetO promoter, which drives expression of Cre recombinase enzyme. 

Cre recombinase enzyme then floxes out the stop cassette and the Ascl1 gene. Thus, 

Ascl1 is conditionally knocked out from hepatic stellate cells while simultaneously 

labeling them with EYFP.   
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Figure 10: Generation of Rosa26floxstopLacZ/floxstopLacZ;TtrCreERT2/+ mouse model. This 

mouse model was generated by mating Rosa26floxstopLacZ/floxstopLacZ mice with TtrCreERT2/+ 

mice. When the Rosa26floxstopLacZ/floxstopLacZ;TtrCreERT2/+ mice are treated with tamoxifen the 

CreERT2 fusion protein, expressed in Ttr-expressing hepatocytes, is translocated into the 

nucleus. Inside the nucleus the Cre recombinase enzyme floxes the stop cassette of the 

Rosa26floxstopLacZ transgene. Hence, all Ascl1-expressing cells are labeled with LacZ 

enzyme permanently. 
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