
 

 

 

 

 

ELUCIDATING THE ROLE OF BCL6 IN HELPER T CELL 

ACTIVATION, PROLIFERATION, AND DIFFERENTIATION 

 

 

 

 
 
 

Kristin N. Hollister 

 
 
 
 
 
 
 
 
 
 
 

Submitted to the faculty of the University Graduate School  
in partial fulfillment of the requirements  

for the degree  
Doctor of Philosophy  

in the Department of Microbiology and Immunology, 
Indiana University 

 
June 2014 

 
 
 
 
 
 
 
 



ii 

Accepted by the Graduate Faculty of Indiana University, in partial 
fulfillment of the requirements for the degree of Doctor of Philosophy. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Doctoral Committee 
 
 
 
 
 
 
March 7, 2014 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
________________________________ 

Alexander L. Dent, Ph.D., Chairman 
 
 
 
 
 
 
 
 

________________________________ 
Randy R. Brutkiewicz, Ph.D. 

 
 
 
 
 
 
 

________________________________ 
Maureen A. Harrington, Ph.D. 

 
 
 
 
 
 
 

________________________________ 
Mark H. Kaplan, Ph.D. 

 
 



 iii  
 

ACKNOWLEDGEMENTS 

 

I would like to thank my mentor, Dr. Alexander Dent.  Without his guidance and support 

this work would not have been possible.  He has been a phenomenal mentor, and any 

student would be lucky to have him as such.  Also, I would like to thank my committee 

members, Dr. Randy Brutkiewicz, Dr. Mark Kaplan, and Dr. Maureen Harrington.  I 

always looked forward to our meetings and the constructive criticism and helpful 

encouragement they provided.  Several Dent lab members, past and present, 

contributed greatly to this work and enabled me to complete complex experiments 

resulting in excellent data.  These people include Hao Wu, Arpita Mondal, and Ninah 

Clegg.  Members of the Kaplan lab were also instrumental in assisting with the work 

presented here.  In particular, I would like to acknowledge the contributions of Dr. Duy 

Pham, who provided excellent technical assistance with some of the assays presented 

in this thesis.  Our collaborators at the University of Massachusetts Medical School 

played a pivotal role in ascertaining the data for our HIV-1 vaccine model.  Dr. Shan Lu’s 

group included Dr. Shixia Wang and Yuxin Chen. 

 

I have been fortunate enough to be funded by multiple sources during my graduate 

studies, and I would like to thank Dr. Janice Blum, Dr. Hal Broxmeyer, and Dr. Stanley 

Spinola for providing me with financial support during my studies.  

 

Finally, I would like to thank my family for providing me with the support and 

encouragement needed to make it through graduate school.   

 

 

 

 

 

 

 

 

 

 

 



 iv  
 

Kristin N. Hollister 

 

ELUCIDATING THE ROLE OF BCL6 IN HELPER T CELL ACTIVATION, 

PROLIFERATION, AND DIFFERENTIATION 

 

The transcriptional repressor BCL6 has been shown to be essential for the differentiation 

of germinal center (GC) B cells and follicular T helper (TFH) cells.  The interaction of 

TFH and GC B cells is necessary for the development of high affinity antibodies specific 

for an invading pathogen.  Germline BCL6-deficient mouse models limit our ability to 

study BCL6 function in T cells due to the strong inflammatory responses seen in these 

mice.  To overcome this, our lab has developed a new BCL6 conditional knockout (cKO) 

mouse using the cre/lox system, wherein the zinc finger region of the BCL6 gene is 

flanked by loxP sites.  Mating to a CD4-Cre mouse allowed us to study the effects of 

BCL6 loss specifically in T cells, without the confounding effects seen in germline 

knockout models.  Using this cKO model, we have reaffirmed the necessity of BCL6 for 

TFH differentiation, including its role in sustained CXCR5 surface expression, a 

signature marker for TFH cells.  This model also allowed us to recognize the role of 

BCL6 in promoting the expression of PD-1, another key surface marker for TFH cells.  

Without BCL6, CD4+ T cells cannot express PD-1 at the high levels seen on TFH cells.  

Our discovery of DNMT3b as a target for BCL6 suggests BCL6-deficient T cells have 

increased DNA methyltransferase activity at the PD-1 promoter.  This data establishes a 

novel pathway for explaining how BCL6, a transcriptional repressor, can activate genes.  

Experiments with the BCL6 cKO model have also established a role for BCL6 in naïve 

CD4+ T cell activation.  Furthermore, we did not observe increased differentiation of 

other helper T cell subsets, in contrast to what has been reported elsewhere with 

germline BCL6-deficient models.  Unexpectedly, we found decreased T helper type 2 

(Th2) cells, whereas mouse models with a germline mutation of BCL6 have increased 

Th2 cells.  These results indicate that BCL6 activity in non-T cells is critical for controlling 

T cell differentiation.  Finally, using an HIV-1 gp120 immunization model, we have, for 

the first time, shown BCL6-dependent GCs to be limiting for antibody development and 

affinity maturation in a prime-boost vaccine scheme.  

 

 

Alexander L. Dent, Ph.D., Chairman 
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CHAPTER 1 – A GENERAL INTRODUCTION TO THE IMMUNE RESPONSE 

 

 

Immune System Origins 

 

The immune response of mammals is a system which has been developed and fine-

tuned by evolution over millions of years (1, 2).  It enables higher order beings to survive 

in a world where bacteria and viruses cover nearly every surface.  More than half a 

billion years ago, a genetic mutation took place which enabled jawed vertebrates, of 

which mammals are one type, to enhance their immune response by rearranging the 

genes of their immune cells (1).  From that point forward, all descendants of this 

ancestral animal phylum were better suited to protect themselves from the dangers of 

infection, which is a main objective for any immune response (1).  A second, and equally 

important attribute for immune cells, is to distinguish between self and non-self (2).  Only 

by being able to recognize a foreign pathogen, while limiting damage to self-tissues, can 

an immune response be effective and lifesaving (2).  

 

In humans, and mice (the animal used as a surrogate for humans in research studies), 

the immune response is broken down into two defined, but cooperative, parts: the innate 

and adaptive immune responses.  Cells constituting both arms of the immune system 

develop through a process known as hematopoiesis, wherein self-renewing stem cells 

can give rise to progenitor cells, which, in turn, differentiate into mature immune cells (3-

5).  This process enables patients who must undergo radiation for cancer treatment, to 

have their entire immune system reconstituted from a stem cell transplant. 

 

 

The Innate Immune Response 

 

The first, and most important, layer of defense we have against pathogens is our outer 

anatomical barriers.  Skin and mucosal surfaces are essential for protecting us from 

viruses, bacteria, and other pathogens in the outside world.  In the event that this 

physical defense is compromised, such as from a cut in the skin, pathogens can gain 

entry into the body.  When this occurs, innate immune cells detect the antigen and 

attempt to remove it.  These cells all develop from a common myeloid progenitor cell (3-



 2  
 

5).  Environmental cues will cause these progenitors to become either monocytes, 

neutrophils, basophils, eosinophils, or mast cells.  Working together, these cells can help 

clear the majority of infections faced on a daily basis.  By using their general defense 

mechanisms, these innate cells will eliminate pathogens before a person realizes he or 

she has been infected. 

 

Granulocytes 

 

Eosinophils, neutrophils, basophils, and mast cells are all considered granulocytes and 

differentiate from a precursor of the same name.  These cells are so named because of 

the distinct granules visible when viewed under a microscope.  Granules in eosinophils 

contain cytokines and enzymes, such as peroxidase and neurotoxin (6).  Once they 

receive stimulating factors from the environment, in particular interleukin (IL)-5, these 

cells will release the contents of their granules, a process called degranulation (6).  

Those contents will then facilitate killing of infected cells and tissues or directly affect the 

pathogen.  Dysregulation of these cells has been shown in a number of diseases, 

including asthma (6).   

 

In the case of neutrophils, the cytokines contained within their granules can exacerbate 

the inflammatory response by recruiting additional immune cells to the point of infection 

(7).  Also, release of reactive oxygen species facilitates killing of infected tissue.  Unlike 

eosinophils, these cells also have the ability to phagocytose microorganisms or particles 

which have been marked for removal by other components of the immune response (7).   

 

Mast cells and basophils share similar functions and, historically, basophils have been 

mistaken for a type of mast cell (8).  However, more recent research has shown these 

two cells to be distinct linages of myeloid cells.  While both cell types are rare, basophils 

are relatively short-lived, while mast cells can persist in tissues for weeks to months (8, 

9).  Both cell types play a role in allergy and inflammation.  Among other things, the 

granules in these cells contain histamine, and, upon their release, can both mediate and 

exacerbate allergic responses.  Furthermore, basophils help mediate the T helper type 2 

(Th2) response (8, 9), which will be described further in a later section.   
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Monocytes, macrophages, dendritic cells 

 

Monocytes are a unique type of innate cell in that they exit the bone marrow into 

circulation as a mature cell, but continue to differentiate into additional types of immune 

cells in the periphery.  Once they leave the blood circulation and enter into tissues, such 

as spleen and lymph nodes, environmental cues will trigger these cells to differentiate 

into macrophages (MΦ) or dendritic cells (DC) (10, 11).  These cells are phagocytes 

which present ingested antigen to T and B cells.  The unique ability of these cells to 

present antigen to T helper (Th) cells classifies them as professional antigen presenting 

cells (APC) (12). 

 

Major histocompatibility complex class II molecules 

 

A requisite for professional APCs to present antigen to Th cells is their expression of 

major histocompatibility complex class II (MHC II) molecules on their cell surface.  Unlike 

MHC class I (MHC I) molecules, which are expressed on every nucleated cell, MHC II 

expression is reserved to only professional APCs, of which MΦ and DCs are two types 

(13).  Within the APC, the MHC II molecule is composed of an alpha and beta heavy 

chain and is assembled in the endoplasmic reticulum (ER).  To stabilize the two 

subunits, a protein called invariant chain binds the groove where antigen will be loaded 

(13-15).  This full-length protein is then cleaved, leaving only a small peptide, known as 

CLIP, within the antigen binding groove.  After leaving the ER and trafficking through the 

Golgi apparatus, the MHC II molecule will migrate into the cytoplasm in an endosome.  

Meanwhile, pathogens are taken up from the outside, via phagocytosis, into 

phagosomes (13-15).  Within phagosomes, pathogen is digested into peptide fragments.  

When an endosome containing an assembled MHC II molecule binds with a 

phagosome, another protein, called DM, will bind to MHC II, causing the release of CLIP.  

With the binding groove of the MHC II molecule available, peptide is loaded onto the 

complex and trafficked to the cell surface, where the antigen can then be presented to 

Th cells in the context of the MHC II molecule (13-15).   

 

Natural killer cells 

 

A final cell type imperative for the innate immune response is the natural killer (NK) cell.   
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Unlike APCs and granulocytes, NK cells are derived from a different progenitor cell in 

the bone marrow and, thus, are more closely related to cells of the adaptive response.  

NK cells survey the body, looking for cells which have decreased or no MHC I surface 

expression (16).  This function evolved from the ability of pathogens, particularly viruses, 

to trigger down-regulation of MHC I on the surface of infected cells.  Therefore, this is an 

efficient way for NK cells to detect infected cells, and when this occurs, NK cells release 

granules which contain enzymes that kill the infected cell (16). 

 

 

The Adaptive Immune Response 

 

Professional APCs are essential for the immune response because they serve as a link 

between the innate and the adaptive responses.  Activation of this second layer of 

immunity is required if innate responses cannot clear an antigen.  The acquired 

response is made up of two major cell types: B cells and T cells.  They differentiate, as 

do NK cells, from a common lymphoid progenitor (4).  While B cells develop in the bone 

marrow and further mature in the blood, T cells exit the bone marrow in their precursor 

form and traffic to the thymus, where they will undergo further maturation and selection 

processes.  For a more detailed description of this process, please see the introduction 

of Chapter 3.  T cells are activated by APCs, which acquire antigen from the periphery, 

typically from the site of infection, and travel to the nearest draining lymph node.  

Secondary lymphoid organs, such as the spleen and lymph nodes, are organized into 

different areas important for different aspects of the acquired immune response.  Within 

a lymph node, professional APCs will interact with naïve Th cells, which are also referred 

to as CD4+ T cells due to the expression of this particular co-receptor on their surface, in 

the T cell zone (Figure 1A).  It is here where naïve Th cells are activated and, depending 

on the antigen presented and the cytokine environment, differentiate into one of several 

different Th subsets.  Each Th subset, under the control of a unique master transcription 

factor, will secrete cytokines that facilitate removal of the specific pathogen present 

(Figure 2).  

 

T helper type 1, type 2, type 17, and type 9 cells 

 

During a viral infection, T helper type 1 (Th1) cells differentiate in the presence of IL-12 
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Figure 1.  Germinal center development.  A. Naïve CD4+ Th cells are activated by 
professional APCs, such as DCs, within the T cell zone of secondary lymphoid organs.  
B. Once activated a subset of Th cells will up-regulate the transcriptional repressor 
BCL6 as well as the surface chemokine receptor, CXCR5.  This allows them to follow 
the chemokine gradient of CXCL13, the ligand for CXCR5, toward the B cell follicle.  
Follicular dendritic cells (FDC) and stromal cells (FSC) secrete this chemokine to attract 
Th cells.  C. While naïve Th cells are being activated and migrating toward the T-B cell 
border zone, B cells are also being activated by APCs within the B cell follicle.  Once 
activated, these cells will also migrate to the border zone where they can interact with Th 
cells (D).  E. The surface proteins necessary for these cognate interactions include MHC 
II/TCR, ICOSL/ICOS, CD40/CD40L, and SLAM/SLAM+SAP.  SAP is an intracellular 
protein which signals downstream from the SLAM intracellular tail.  SAP signaling is 
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crucial to maintain prolonged interactions between Th and B cells at this border zone.  
These interactions will license Th and B cells to take part in the germinal center (GC) 
reaction.  F. If cells are not licensed to become part of the GC, the Th cells will down-
regulate BCL6, migrate away from the B cell follicle, and differentiate into another Th 
subset.  B cells not able to become GC B cells can also exit the follicle, where they will 
receive help from other Th cells and become extra-follicular plasma cells, which secrete 
lower affinity antibodies.  G. Th and B cells which are properly licensed will up-regulate 
BCL6 and migrate back into the follicle to form transient structures known as GCs.  H. B 
cells will up-regulate additional surface proteins, such as GL7, Fas, and different 
cytokine receptors.  Th cells, now known as TFH cells, will up-regulate PD-1, IL-21R, as 
well as begin to secrete different cytokines, including their signature cytokine, IL-21, to 
influence changes in the GC B cells. 
 
 
in response to viral peptides presented by MHC II molecules on APCs (17, 18).  The 

master transcription factor of Th1 cells, Tbet, works with Signal Transducer and Activator 

of Transcription (STAT) 4 to clear the infection by secretion of Interferon gamma (IFNγ) 

(Figure 2).  Th2 cells will differentiate in the presence of IL-4 during extracellular parasite 

infections (18, 19).  Up-regulation of their master transcription factor, GATA3, in 

conjunction with STAT6 activity leads to secretion of signature cytokines, such as IL-4, 

IL-5, and IL-13 (Figure 2).  Th2 cells have also been shown to play a substantial role in 

allergic responses.  Antifungal and antimicrobial responses require T helper type 17 

(Th17) differentiation, whose master transcription factor is RAR-related orphan receptor 

gamma (RORγt) (17, 18, 20) (Figure 2).  Th17 cells have also been shown to trigger 

inflammation through the cytokines they secrete, including IL-17A and IL-22.  T helper 

type 9 (Th9) cells are a relatively recently studied subset which have been shown to 

clear helminth infections.  Th9 cells secrete their namesake cytokine, IL-9 (17, 20) 

(Figure 2).  For a more detailed description of Th subsets and their functions, please see 

the introduction of Chapter 4.   

 

Th-B cell interactions 

 

Th cell subsets will interact with activated B cells to trigger isotype class switching, via 

cytokine signaling, and the differentiation of B cells into plasma cells.  Plasma cells, 

whose sole job is to secrete antibodies to aid in clearing the infection, are a final 

differentiation state for B cells (21).  The interactions of Th cells and B cells take place in 

the T cell zone and are referred to as extra-follicular antibody responses.  The antibodies 

produced are not highly specific for the infecting antigen.  However, these responses 

can arise quite quickly.  In this way, extra-follicular antibodies can help to control the  
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Figure 2.  Different CD4+ Th cell subsets.  Upon activation by a professional APC, 
naïve Th cells can differentiate into one of several subsets.  The type of antigen being 
presented and cytokine environment will help direct these cells into a specific subset.  
Each subset is controlled by its own master transcription factor, and in some cases, 
specific STAT signaling.  Additionally, each subset secretes its own signature cytokine.  
Only follicular Th cells (TFH) are defined by their location, rather than just their master 
transcription factor and cytokines.  Regulatory T cells (Treg) are also unique in that they 
are responsible for repressing the activity of other Th subsets, rather than helping to 
activate the immune response. 
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infection, while more specific antibodies, which take longer to develop, are induced 

within the GC. 

 

Regulatory Th cells 

 

Regulatory T (Treg) cells play a slightly different role in the immune response.  Natural 

Tregs, or nTreg cells, develop from the thymus and are responsible for maintaining the 

responses of other T cells via suppressive cytokines (17, 19).  This ensures tolerance 

and limits auto-reactive T cell activity.  A second set of Tregs, induced Tregs (iTreg), can 

differentiate from naïve Th cells in the periphery in the presence of polarizing cytokines.  

Induced Tregs cells have the same responsibilities as nTregs.  Both types of Tregs are 

under the control of the same master transcription factor, forkhead box P3 (Foxp3) 

(Figure 2).  Induced Treg cells have been shown to be differentiated in vitro in the 

presence of transforming growth factor beta (TGF-β) (17, 18). 

 

Follicular T helper cells 

 

The final subset of Th cells, follicular T helper (TFH) cells, is quite unique in that it 

performs its functions in a completely different area of the secondary lymphoid organ, 

compared to other Th subsets.  Upon infection, TFH cells will differentiate regardless of 

what the antigen is or what the surrounding cytokine environment is in vivo.  During 

initial activation, a subset of Th cells will up-regulate the transcription factor B cell 

lymphoma 6 (BCL6), as well as the chemokine receptor C-X-C chemokine receptor type 

5 (CXCR5) (Figure 1B) (22, 23).  This enables Th cells to follow the C-X-C motif 

chemokine 13 (CXCL13) chemokine gradient, which is secreted by follicular dendritic 

cells and stromal cells, toward the B cell follicle.  Upon reaching the T/B cell border 

zone, these activated Th cells will have cognate interactions with activated B cells 

(Figure 1C-D) (24, 25).  In addition to MHC II presentation of antigen to the T cell 

receptor (TCR), CD40/CD40Ligand (CD40L), ICOS/ICOSL, and SLAM/SLAM 

interactions are crucial to this process (Figure 1E).  In particular the Slam Associated 

Protein (SAP) is a Th cell intracellular protein which has been shown to be necessary to 

prolong physical contact between the Th and B cells.  These interactions are a licensing 

process in which some of the Th cells will become TFH cells and some B cells will travel 

back into the B cell area to have further interactions with TFH cells (23, 26).  Without 
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SAP, this licensing event cannot take place, and TFH cells will not develop.  Those Th 

cells which do not become TFH cells will down-regulate BCL6 and CXCR5, travel away 

from the border region, and differentiate into another type of Th subset (Figure 1F) (22, 

25).  Additionally, B cells not chosen to further interact with TFH cells can exit the B cell 

follicle and take part in extra-follicular interactions with other Th cells, as described 

above. 

 

 

Germinal Centers 

 

Germinal center development 

 

The Th cells selected to become TFH cells at the border region will further up-regulate 

CXCR5 and the master transcription factor for TFH cells, BCL6.  At this time, it is unclear 

what attributes a Th cell must have to be licensed to become a TFH cell, however one 

study has suggested the affinity of the TCR for the antigen being presented by the 

border region B cells is the deciding factor (27).  TFH cells will then migrate into the B 

cell follicle and begin to form the structures known as germinal centers (GCs) (Figure 

1G).  GCs are transient structures which arise within the B cell area and are composed 

of TFH and B cells (28).  It is here that GC B cells will undergo somatic hypermutation, 

making the antibodies they produce highly specific for the antigen present.  Furthermore, 

isotype class switching takes place within GCs, which is a critical modification process to 

antibodies and is necessary to ensure efficient clearance of the pathogen. 

 

After being licensed, TFH cells will be the first cell type to form the GC (22, 23).  During 

their migration into the B cell follicle, these cells will up-regulate TFH signature surface 

markers, such as ICOS, programmed cell death protein 1 (PD-1), SLAM, CD40L, IL-21 

receptor (IL-21R), and IL-6 receptor (IL-6R) (Figure 1H).  The most commonly used 

markers to identify TFH cells are CXCR5 and PD-1.  One day after TFH cells migrate 

into the B cell follicle, licensed B cells from the T/B border zone will likewise migrate 

back into the B cell area and join the TFH cells (22, 23).  Like TFH cells, GC B cells 

highly express BCL6 (29).  In addition to up-regulating IL-21R, ICOSL, and SLAM, the 

signature surface markers for GC B cells, Fas and GL7 become highly up-regulated 

once these cells have reached the GC (Figure 1H) (28). 
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Figure 3.  Antibody development.  A. Antibodies are comprised of a heavy chain (H) 
and light chain (L), each with a variable region (VH and VL) and constant region (CH and 
CL).  These components are all held together with disulfide bonds.  The variable region 
will bind antigens, while the constant region is recognized by immune cells.  B. The B 
cell receptor (BCR), which will become antibodies in plasma cells, is first formed by 
random gene rearrangement and selection of one variable region allele, one diversity 
allele, and one joining region allele.  This is mediated by the recombination activating 
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gene, or RAG 1 and RAG 2 enzymes.  In order to further diversity the BCR, and future 
antibodies, point mutations are introduced into the selected variable region.  This is 
mediated by activation-induced deaminase, or AID, and is referred to as somatic 
hypermutation.  C. The constant region of the BCR can be one of eight isotypes in mice.  
They are IgM (Cμ), IgD (Cδ), IgG3 (Cγ3), IgG1 (Cγ1), IgG2b (Cγ2b), IgG2a (Cγ2a), IgE 
(Cε), and IgA (Cα).  The genes for the isotypes are arrayed along the Ig heavy chain 
locus, as shown in the diagram.  Naïve B cells will express both IgM and IgD on their 
surface.  Upon activation, cells will undergo isotype class switching, in which AID will 
recombine out intermediate constant genes, leaving the desired isotype gene directly 
following the VDJ segments.  Once a particular constant gene is removed, the cell can 
no longer express that isotype.   
 
 
Somatic hypermutation and isotype class switching of B cells  

 

Within the GC, the antibody genes of B cells will undergo two very important maturation 

steps that lead to efficient clearance of a pathogen: somatic hypermutation and isotype 

class switching (28).  Somatic hypermutation is the process by which small mutations 

are introduced into the variable region of the B cell receptor (BCR) (Figure 3 A-B).  

These genetic changes will alter the affinity the BCR has for a given epitope.   

 

Isotype class switching refers to the process by which B cells, under the instruction of 

cytokine signals, change their BCR to the form which will best suit the antibody-mediated 

clearance of a pathogen.  Naïve B cells will initially express two BCR immunoglobulin 

(Ig) isotypes: IgD and IgM (Figure 3C).  Upon activation, naïve B cells will lose the ability 

to express IgD, thus making them only IgM positive (30).  From there, B cells can 

undergo additional switching to other isotypes.  These isotypes are IgM, IgG3, IgG1, 

IgG2b, IgG2a, IgE, and IgA (31).  It is important to realize that, while a B cell can 

undergo additional isotype switching, it can never return to an earlier form, as that part of 

the gene has been permanently recombined out (30).  For example, if an activated B cell 

mutates from IgM to IgG1, it can never again become IgM or IgG3 positive (Figure 3C).  

Additional changes will only lead to isotypes further down the Ig heavy chain locus, such 

as IgG2a or IgE.  Cytokine signaling from the environment, and particularly from Th 

cells, can trigger further isotype class switching (31).  Because certain antibodies are 

required for clearance of particular antigens, this is how Th cells are responsible for 

clearance of particular pathogens, albeit indirectly.  For example, Th1 cells are cited as 

being responsible for clearance of certain bacteria.  In the presence of IFNγ, which is 

secreted by Th1 cells, B cells will switch to an IgG2a isotype.  However, in the presence 
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of Th2 cells, which secrete IL-4 in the presence of some parasites, B cells will adopt an 

IgG1 isotype.  TFH cells have the unique ability to secrete the signature cytokines of all 

Th subsets, enabling them to direct GC B cell isotype switching, regardless of what 

antigen is being presented.   

 

Germinal center structure 

 

The GC itself is organized into two distinct areas: the dark zone and light zone (Figure 

4).  Within the dark zone, activated GC B cells will undergo clonal expansion and 

somatic hypermutation, which leads to increased numbers of B cells with enhanced 

affinity for the antigen (28, 32).  TFH cells reside within the light zone where they interact 

with GC B cells, providing survival signals and secreting cytokines to direct isotype class 

switching of the BCR.  GC B cells will continue to cycle back and forth between the light 

and dark zones, acquiring further affinity maturation and additional isotype switching, if 

necessary (28, 33).  At some point, the GC B cells will cease cycling and exit the GC, as 

either memory B cells or plasma cells secreting the high affinity antibody that was 

developed during the GC process (28).  The intracellular steps necessary to halt the 

cycling process and exit the GC are not well defined at this time.  What is known is both 

memory B cells and plasma cells must down-regulate BCL6 in order to differentiate from 

a GC B cell state (33).  This entire process, of GC formation, light/dark zone cycling, and 

development of memory B cells and plasma cells, takes several days to weeks.  

Typically, the peak of the GC response occurs between seven to ten days after infection 

or immunization.  Once the antigen is cleared, the GC will dissipate, with its cells 

becoming either memory cells or dying by apoptosis (28).  There is currently some 

evidence that TFH cells can become long-lived memory T cells in circulation (34). 

 

Regulating the germinal center response 

 

Regulation of the GC cycling process is crucial, as GC B cells which somatically mutate 

away from affinity for the presented antigen can be a hindrance to the immune response.  

If lower affinity B cells were allowed to survive and proliferate, they would take resources 

away from those cells progressing toward a more specific conformation.  Furthermore, if 

a B cell were to somatically hypermutate and gain affinity for self-antigens, an 

autoimmune response would rapidly develop (28).  For these reasons, the GC response 
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must be tightly controlled.  To do so, the GC has at least two layers of mediation.  First, if 

the somatic hypermutations of the GC B cells leads to lowered affinity for the antigen, 

these cells will not receive survival signals from TFH cells upon their return to the light 

zone, leading to apoptosis of the B cell (28).  Secondly, a special subset of Th cells 

exists to control the TFH reaction.  Follicular regulatory T (TFR) cells are a recently 

described subset which possess traits of both TFH and Treg cells (35, 36).  These Th 

cells, like TFH cells, highly express BCL6 and CXCR5, and can migrate from the T cell 

zone into the GC.  Their job is to regulate TFH responses, by suppressing auto-reactive 

T cells via the same methods as Treg cells.  While TFR cells express BCL6, they also 

express the master transcription factor of Treg cells, Foxp3, at high levels.  At this time,  

 

  

Figure 4.  Germinal center cycling and regulation.  The GC is comprised of a dark 
zone and a light zone.  Within the dark zone, B cells will undergo clonal expansion as 
well as somatic hypermutation.  Cells acquiring increased affinity via the somatic 
hypermutation will continue to receive help and survival signals from TFH cells.  Further 
isotype class switching of the BCR is also done in the light zone, triggered by cytokines 
secreted from TFH cells.  Those cells which decrease their affinity due to somatic 
hypermutation will not receive those signals, and thus are removed from the GC via 
apoptosis.  This cycling from light to dark zone will continue until B cells down-regulate 
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BCL6 and exit the GC to become either memory B cells or plasma cells secreting high 
affinity antibodies.  TFR are responsible for regulating TFH cells. 
research into this subset suggests they are Treg cells which acquire the ability to 

express BCL6 and migrate into the GC (35, 36).   

 
 
Goals of Research 

 

While the role BCL6 plays in B cells, particularly GC B cells, has been extensively 

studied for approximately two decades, it is only in the last few years that researchers 

have begun to appreciate the role of BCL6 in Th cells.  Since the first definitive papers 

describing TFH cells were published (37-40), many groups around the world have 

investigated these cells, what they do, where they migrate to, and how they are 

controlled.  However, many questions remain unexplored.  What are the kinetics of GC 

and TFH development over time?  How do these cells develop?  Does BCL6 play a role 

in other Th cells?  What type of vaccine can enhance GC outcomes?  This thesis seeks 

to address these questions and provide insights into how BCL6 controls gene 

expression, both in TFH and non-TFH Th cells. 
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CHAPTER 2 – DEVELOPMENT OF A NEW BCL6 CONDITIONAL KNOCKOUT 

MOUSE MODEL 

 

 

INTRODUCTION 

 

The transcriptional repressor BCL6 is made up of three major domains (Figure 5).  First, 

the N-terminal Poz (Pox virus and zinc finger) domain binds specific corepressor 

proteins, including SMRT (silencing mediator of retinoid and thyroid receptor), N-CoR 

(nuclear receptor co-repressor), and BCoR (BCL-6 interacting corepressor) (41-44).  

These corepressors facilitate BCL6 repression, in part, by recruiting histone 

deacetylases (HDAC) to chromatin (45, 46).  The BCL6 Poz domain can also directly 

bind HDAC1 (47).  The central region of BCL6, known as repression domain 2 (RD 2), 

has been shown to directly bind MTA3, which is a subunit of the nucleosome remodeling 

and deacetylase (NuRD) complex (48, 49), as well as SIN3A, which, in combination with 

SMRT and HDACs, is part of a deacetylation complex (44, 47).  Association with these 

corepressors and complexes allows BCL6 to effectively repress gene expression 

through chromatin remodeling.  The RD 2 region also has sites for phosphorylation and 

acetylation, thus making this region responsible, in part, for turnover of BCL6 (44, 50).  

Finally, the C-terminal portion of BCL6 is composed of a zinc finger region, with six zinc 

fingers (51-53).  Binding of the zinc fingers to DNA is sequence-specific and mediates 

transcriptional repression of BCL6 target genes (54-58).   

 

Currently, there is no data demonstrating that BCL6 can activate genes directly.  

Therefore, the prevailing theory of how BCL6 can activate genes, particularly in the case 

of TFH and GC B cells, is by repressing other transcriptional repressors or by binding 

these suppressors and sequestering them away from their targets (46, 50).  The exact 

mechanisms by which this is accomplished are not known, however this is one goal of 

my work.  In order to better understand which genes BCL6 represses in a cell, germline 

knockout (GL KO) models have been employed to determine which genes were up-

regulated in the absence of BCL6.  Until now, these GL KO mice were the only models 

available to explore how BCL6 can up-regulate gene expression in primary T cells.   

 

The problem with the BCL6 GL KO approach is the sickly nature of mice lacking both 
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Figure 5.  BCL6 protein.  BCL6 contains a Poz domain which can bind protein, such as 
corepressors including SMRT, N-CoR, and BCoR, as well as directly bind HDAC1.  The 
middle region is referred to as repression domain 2 (RD 2).  It can also bind repression 
complexes via SIN3A and MTA3.  The C-terminus contains six zinc fingers (ZF) and can 
bind DNA. 
 
 
BCL6 alleles in all cell types (29, 59).  To begin with, GL KO mice are too sick to breed 

(60), and, therefore, heterozygous mice must be used for mating purposes.  Based on 

Mendelian probabilities, one quarter of the offspring of these mice should be 

homozygous for the deletion, however, in our hands, usually less than twenty five 

percent of mice born are KOs.  Whether the mice homozygous for deletion die in utero 

or do not survive past birth remains unknown.  In either case, mice lacking both alleles 

are difficult to acquire, and if they do survive, they are extremely sick, suffer from growth 

retardation, and rarely survive past eight weeks (29, 59).  Additionally, they suffer from 

myocarditis and pulmonary vasculitis, which is characterized by an influx of eosinophils 

(29, 59).  Furthermore, this type of inflammation has been described as Th2-mediated, 

as the Th cells from these mice have been shown to produce large amounts of Th2 

cytokines (29, 59).  Therefore, it is not practical to use these mice as in vivo models of 

BCL6 deletion.   

 

To overcome these obstacles, most researchers have utilized different cell transfer 

models to investigate the role of BCL6 in Th cells.  Transfer of mature, but naïve, Th 

cells into healthy recipient mice is a widely used and accepted method for studying loss 

of BCL6 in T cells, however, this strategy brings with it its own set of complications.  For 

instance, it is highly likely the cytokine environment, resulting from Th2 inflammation, in 

GL KO mice has already conditioned the transferred cells to skew toward a Th2 

phenotype (59, 61).  Bone marrow transfers from GL KO mice to healthy irradiated 

recipients also run the risk of cells being preconditioned by the rampant inflammatory 
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disease seen in the GL KO mice and, furthermore, the bone marrow itself still contains 

the hyper-inflammatory myeloid cells which will produce the skewing cytokines in 

recipient mice.  Additionally, these bone marrow chimera models are costly and time 

consuming, thus limiting their practicality.  Therefore, it was necessary to develop a 

conditional KO (cKO) mouse model, in which BCL6 can be functionally deleted in 

specific subsets of cells, rather than globally, to investigate the role of BCL6 in different 

cell subsets. 

 

 

MATERIALS AND METHODS 

 

Mice and immunization 

 

BCL6Neofl/Neofl mice on a mixed C57BL/6-129Sv background were generated at the 

Indiana University School of Medicine Transgenic and Knockout facility.  LoxP sites were 

inserted into the BCL6 gene locus, flanking exons 7-9 encoding the zinc finger domain of 

BCL6, using standard molecular cloning and embryonic stem cell techniques.  CreEIIa 

mice, obtained from Jackson Labs, were used to remove the floxed Neomycin gene from 

the germline of knock-in mice.  The following primer pairs were used to genotype 

different locations and versions of the mutant BCL6 allele as well as CD4 Cre-

recombinase:  

 

Neo-floxed: 

5’ loxP forward (5’ –TGAAGACGTGAAATCTAGATAGGC– 3’)  

5’ loxP reverse (5’ –ACCCATAGAAACACACTATACATC– 3’) 

3’ loxP + Neo gene forward (5’ –GAGGCCACTTGTGTAGCGCCAAGT– 3’)  

3’ loxP + Neo gene reverse (5’ –CTACTCCTAAGCTTCCTTTAACAC– 3’)  

 

Floxed: 

5’ loxP forward (5’ –TGAAGACGTGAAATCTAGATAGGC– 3’)  

5’ loxP reverse (5’ –ACCCATAGAAACACACTATACATC– 3’) 

3’ loxP forward (5’ –TCACCA ATCCCAGGTCTCAGTGTG– 3’)  

3’ loxP reverse (5’ –CTTTGTCATATTTCTCTGGTTGCT– 3’) 
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∆ZF: 

Deletion forward (5’ –TGAAGACGTGAAATCTAGATAGGC– 3’) 

Deletion reverse (5’ –CTACTCCTAAGCTTCCTTTAACAC– 3’)  

 Also ensure mice are negative for “Floxed” genotyping bands 

 

Cre-CD4 

Forward (5’ –ATCGCCATCTTCCAGCAGGCGCACT– 3’) 

Reverse (5’ –ATTTCCGTCTCTGGTGTAGCTGAT– 3’) 

 

Mice were immunized i.p. with 1 x 109 sheep red blood cells (SRBC; Rockland 

Immunochemicals Inc., Gilbertsville, PA) in PBS.  

 

Flow cytometry 

 

Total spleen or thymus cells were incubated with anti-mouse CD16/CD32 (Fcγ receptor) 

for 20 minutes, followed by surface staining for the indicated markers.  A fixable viability 

dye (eFluor 780, eBioscience) was used for all samples; manufacturer’s directions were 

followed.  The following antibodies were used for staining GC B cells: α-mCD19 Alexa 

Fluor 700, clone eBio1D3 (eBioscience); α-mB220 PE, clone RA3-682 (BD Bioscience); 

α-mFas Biotin, cat. # 554256 (BD Bioscience); Streptavidin-PECy7 (Biolegend); α-mGL7 

APC, clone GL7 (BD Bioscience); PNA FITC (Vector Laboratories Inc.).  The following 

antibodies were used to stain TFH cells: α-mCD3 Alexa Fluor 700, clone 500A2 (BD 

Bioscience); α-mCD4 PECy7, clone RM4-5 (BD Bioscience); α-mCXCR5 PerCP-efluor 

710, clone SPRCL5 (eBioscience); α-mPD-1 APC, clone 29F.1A12 (Biolegend); α-

mICOS FITC, clone C398.4A (eBioscience).  Intracellular BCL6 was stained with α-

h/mBCL6 V450, clone K112-9 (BD Horizon) or α-mBCL6 PE, clone mGI191E 

(eBioscience).  Samples were run on a BD LSR II flow cytometer using FACSDiva 

software.  Data was analyzed using FlowJo software. 

 

In vitro stimulation 

 

Total CD4+ T cells or naïve CD4+ T cells were isolated via magnetic bead separation 

(Miltenyi Biotec).  Effector memory cells were isolated via FACS.  Cells were stimulated 

with plate-bound anti-CD3 (5 µg/ml) and anti-CD28 (10 µg/ml) antibodies (BD 
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Biosciences) at 1x106 cells per mL.  Th0 media conditions contain no cytokines or 

blocking antibodies, Th neutral (ThN) conditions contain anti-IFNγ and anti-IL-4 (10 

µg/mL) (BD Biosciences) and TFH conditions contain IL-6 and IL-21 (10 ng/ml each 

(R&D Systems), plus anti-IFNγ, -IL-4 (10 µg/mL) and -TGF-β antibodies (20 µg/mL).    

 

ELISA 

 

Cytokines and antibody titers were measured via ELISA.  Kits from BD Biosciences were 

used to measure cytokines, except IL-17, in which purified and biotin-labeled antibodies 

were used (BD Biosciences).  Unless otherwise stated, both in vitro and ex vivo cells 

were isolated, as described above, and cultured for 5 days; IL-2 was used in all culture 

conditions when expanding cells.  After 5 days, cells were restimulated with anti-CD3 

antibody (5 μg/mL) for 18 – 24 hours, at which time supernatants were collected and 

analyzed. 

 

Histology 

 

Tissues were fixed in formalin and embedded in paraffin.  Standard histological sections 

were cut and stained with hematoxylin and eosin.  Samples were scored blindly on a 1-5 

scale assessment of leukocytic infiltration, with 5 being the most inflamed.  0 = no sign of 

inflammation, 1 = hint of inflammatory cells, 2 = significant but small or rare patches of 

inflammatory cells, 3 = significant foci of inflammatory cells, 4= large foci of inflammatory 

cells taking up more than 50% of tissue, 5 = greater than 80% of tissue is filled with 

inflammatory cells. 

 

Gene expression analysis 

 

Total RNA was prepared using a kit (Qiagen) after lysis of the cells via Trizol (Life 

Technologies); cDNA was prepared with the Transcriptor First Strand cDNA synthesis kit 

(Roche).  Quantitative PCR (qPCR) reactions were run by assaying each sample in 

triplicates using the Fast Start Universal SYBR Green Mix (Roche Applied Science) with 

custom primers or specific Taqman assays (ABI).  Assays were run with a Stratagene 

Mx3000P Real-Time QPCR machine.  Levels of mRNA expression were normalized to 



 20  
 

beta-tubulin mRNA levels, and differences between samples analyzed using the ∆∆CT 

method.  Primers for SYBR Green assays were previously described (14, 19). 

 

Statistical Analysis 

 

Statistical analysis was done using ANOVA with Tukey post hoc analysis on SPSS 

Statistics 20 software.  

 

 

RESULTS 

 

Generation of BCL6Neofl/Neofl mice 

 

To generate a new cKO mouse model for BCL6, a targeting construct containing loxP 

sites and a neomycin (Neo) resistance gene within the zinc finger region was introduced 

into embryonic stem cells (Figure 6 A-B).  Mice initially generated from these embryonic 

stem cells, henceforth referred to as BCL6-Neo-floxed (BCL6Neofl), differ from GL KO 

mice in that they have the entire zinc finger region intact, but flanked by loxP sites 

(“floxed”) with the addition of a Neo gene cassette 3’ of exon 9, whereas the original GL 

KO mice have only exon 9 and part of exon 8 deleted, leading to only partial loss of the 

zinc finger domain (Figure 6 C).  After mating heterozygous floxed mice (BCL6+/Neofl), 

homozygous floxed mice were generated (BCL6Neofl/Neofl).   

 

When heterozygous parents were mated, BCL6Neofl/Neofl mice were born at equivalent 

rates to GL KO mice (−/−), and both mice were born at rates lower than the expected 

Mendelian frequency of twenty five percent (Figure 7 A).  The percent of those 

homozygous mice that survived past weaning to at least eight weeks of age was higher 

for BCL6Neofl/Neofl mice than BCL6−/− mice, with approximately eighty six percent of 

Neofl/Neofl mice and sixty five percent of GL KO mice surviving (Figure 7 B).  When the 

survival rates are taken into consideration along with birth rates, the probability of a GL 

KO mouse being born and surviving to eight weeks significantly drops below twenty five 

percent, while BCL6Neofl/Neofl mice are reduced to an eighteen percent chance (Figure 7 

C).  Phenotypically, BCL6Neofl/Neofl mice also appeared smaller and more hunched than 

littermates, similar to what is seen with GL KO mice.  
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Figure 6.  Germline and targeted BCL6.  A. Schematic of the wild type BCL6 allele 
(BCL6+) and a targeting construct containing BCL6 exons 7 through 9 and a Neomycin 
resistance gene (Neo) which was inserted into the wild type allele.  B. The new BCL6-
floxed allele containing a Neo gene (BCL6Neofl).  C. A schematic of BCL6 in the original 
GL KO mouse model (BCL6−) in which part of exon 8 and all of exon 9 were deleted.  
The zinc finger region encoded by exon 7 is still fully intact. 
 
 
Functional testing of BCL6Neofl/Neofl mice  

 

To verify the functionality of the BCL6 gene before mating to a Cre recombinase mouse, 

BCL6Neofl/Neofl mice were immunized with sheep red blood cells (SRBC) and sacrificed ten 

days later.  SRBC were used as an immunization because of their ability to induce
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Figure 7.  Frequencies of BCL6Neofl/Neofl mice compared to BCL6−/− mice.  The 
frequencies of homozygous BCL6Neofl/Neofl and BCL6−/− mice born to heterozygous 
parents, and their deaths, were tracked over one year.  A. The percent of BCL6Neofl/Neofl 
and BCL6−/− mice born in all litters which survived to weaning (3 weeks) when 
genotyping was done.  B. Percentage of homozygous mice born that survived past 8 
weeks.  C. Percent of homozygous mice born and surviving past eight weeks in each 
litter.  Mean ± SE; n = 15 (Neofl) and 30 (−/−) litters.  **p < 0.01 by one sample t test 
(theoretical mean of 25%). 
 
 
strong GC responses.  Surprisingly, BCL6Neofl/Neofl mice had significantly reduced GC B 

cells and TFH cells as compared to wild type (WT) (BCL6+/+) and heterozygous 

(BCL6+/Neofl) mice  (Figure 8 A-C).  Furthermore, BCL6Neofl/Neofl mice had similar levels of 

GC cells to GL KO (BCL6−/−) and unimmunized WT mice.  Flow cytometry analysis of 

BCL6 in immunized mice showed a step-wise decrease in BCL6 protein expression as 

WT alleles were replaced with Neo-floxed alleles (Figure 9 A).  These data would 

suggest that a functional transcript of BCL6 is not being produced with the presence of 

the neomycin resistance gene in the targeting construct.  RNA analysis of ex vivo Th 

cells from immunized mice revealed a steep drop in full length transcript being produced 

in mice containing the targeting construct (Figure 9 B).  In fact, RNA levels were 

comparable to that of cells from GL KO mice.  This would suggest BCL6Neofl/Neofl mice 

may actually be more phenotypically similar to BCL6−/− mice than to WT mice.  Since GL 

KO mice are much smaller than WT mice, the weights of BCL6Neofl/Neofl mice were 

analyzed and found to more be more similar to the sizes of BCL6−/− mice than BCL6+/+ 

mice (Figure 9 C).  However, the total CD4+ T cell and B cell populations in the spleen 

were found to be closer to the levels seen in WT mice (Figure 9 D). 

 

To further investigate the defect in BCL6 transcription, naïve Th cells were isolated from 

unimmunized mice.  When cells from the spleen and thymus were analyzed directly ex 

vivo, without in vitro stimulation, levels of BCL6 exon 8 transcript increased with the  
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Figure 8.  Loss of GCs in BCL6Neofl/Neofl mice.  Wild type (BCL6+/+), heterozygous 
(BCL6+/Neofl), Neo-floxed (BCL6Neofl/Neofl), and GL KO (BCL6−/−) mice were immunized i.p. 
with SRBC and sacrificed on day 10.  BCL6+/+ mice injected with only PBS were used as 
negative controls.  Spleen cells were analyzed via flow cytometry for GCs.  A. 
Representative flow plots of GC B cell populations; gated on B220+ Fas+.  B. 
Representative flow plots of TFH cell populations; gated on CD4+ CXCR5+.  C. Graphs 
of GC B cells and TFH cells shown in A-B.  Mean ± SE; n = 3 – 6.  **p < 0.01, ***p < 
0.001 by ANOVA; Tukey post hoc. 
 
 
introduction of the floxed allele (Figure 10 A).  Activation with anti-CD3 and anti-CD28 

antibodies in Th0 culture conditions also revealed an increase in BCL6 transcript levels 

(Figure 10 B).  Conversely, culturing cells in conditions which skew them toward a  

G
L7

 

PNA 

BCL6+/+ BCL6+/neofl BCL6neofl/neofl BCL6−/−

ICOS 

P
D

-1
 

A. 

B. 

C. 

+/
+

+/
Neo

fl

Neo
fl/

Neo
fl -/-

+/
+ 

(P
BS)

%
 o

f 
to

ta
l s

p
le

en

+/
+

+/
Neo

fl

Neo
fl/

Neo
fl -/-

+/
+ 

(P
BS)

%
 o

f 
to

ta
l s

p
le

en



 24  
 

 

Figure 9.  Genotypic and phenotypic 
characterization of BCL6Neofl/Neofl mice.  Mice were 
immunized and sacrificed as in Figure 8.  A. Flow 
cytometry analysis of BCL6 expression in total CD4+ Th 
cells.  MFI of BCL6 protein is listed.  B. Total CD4+ T 
cells were isolated via bead separation and lysed 
directly ex vivo for RNA analysis of BCL6 expression.  
Samples normalized to BCL6+/+ levels (dotted line at 
1.0).  C. Weight of mice on day 10 after immunization.  Mean ± SE.  D. CD4+ T cells and 
total B cells as percentage of total spleen.  T cells gated on CD3+ CD4+; B cells gated on 
B220+.  Mean ± SE; n = 3 – 6. 
 
 
TFH phenotype led to a drop in transcript levels compared to WT mice (Figure 10 C). 

 

Any effects of decreased BCL6 transcription on cytokine secretion, after immunization, 

were abrogated in BCL6Neofl/Neofl mice.  Only IL-17A and IFNγ appeared to be slightly 

increased in the BCL6Neofl/Neofl mice compared to BCL6+/+ mice (Figure 11).  Naïve Th 

cells isolated from uninfected mice and activated for five days in Th0 conditions showed 

a similar result with IL-17A being increased over BCL6+/+ mice (Figure 12).  After five 

days, only BCL6−/− mice showed a substantially different cytokine profile from other mice  

 (Figure 12).  This lack of inflammatory cytokines in BCL6Neofl/Neofl mice likely contributed 

to the absence of disease, as these mice had reduced lung vasculitis compared to GL 

KO mice and only a few BCL6Neofl/Neofl mice had marginally increased myocarditis  
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Figure 10.  BCL6 expression CD4+ T cells.  A. 
Total CD4+ T cells were isolated from thymus and 
spleen of unimmunized mice via bead separation.  
Cells were lysed directly ex vivo for RNA analysis 
of BCL6 exon 8 transcript levels.  Levels are 
normalized to BCL6+/+ mice (dotted line at 1.0).  B 
– C. Naïve CD4+ T cells were isolated from 
untreated mice via bead separation and activated 
with anti-CD3 and anti-CD28 antibodies for 4 

days in (B) Th0 or (C) TFH culture conditions.  On day 4, cells were harvested and 
restimulated with anti-CD3 and anti-CD28 for 5 hours in Th0 media, after which they 
were lysed for RNA analysis.  Transcript levels of different BCL6 exons were measured 
via qPCR.  Levels are normalized to BCL6+/+ levels (dotted line at 1.0).  Mean ± SE.  
 
 
compared to BCL6+/Neofl mice (Figure 13).   

 

Because the transcriptional and functional changes seen in BCL6Neofl/Neofl mice appeared 

to be more of a knock-down rather than full knockout phenotype, we decided to further 

investigate the effects of having decreased levels of BCL6 expression, compared to WT 

and GL KO mice.  Total Th cells were isolated from mice immunized with SRBC and 

sacrificed ten days later.  After culturing for five days in vitro under Th0 conditions, cells 

were briefly restimulated with antibodies before being lysed for RNA analysis.  Because 

cytokine data suggested these ex vivo cells could be skewing toward a Th17 phenotype 

(Figure 11-12), cells were analyzed for transcript levels of rorc, the gene which encodes 

the master transcription factor for Th17 cells.  Interestingly, BCL6Neofl/Neofl Th cells 

showed a large increase in rorc expression over WT mice (Figure 14 A).  Furthermore, 

prdm1, the gene coding for Blimp1, was found to only be marginally increased with loss 

of functional BCL6 transcript (Figure 14 A).  This is particularly interesting because 
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previous work by others has demonstrated the reciprocal expression of Blimp1 and 

BCL6 (62). To further investigate the effects of graded BCL6 expression on Th17 cell  

differentiation, naïve CD4+ T cells were isolated, activated with antibodies, and cultured 

for five days in either Th0 or TFH-skewing culture conditions.  After a brief restimulation, 

cells were lysed and RNA expression measured.  Under the non-skewing conditions of 

Th0 culture, rorc levels were substantially increased over WT in all mouse types, 

whereas under TFH conditions, levels remained comparable to BCL6+/+ mice (Figure 14 

B).  Once again, under both culture conditions, prdm1 did not increase with loss of BCL6 

(Figure 14 B).  This lack of increased prdm1 expression, particularly in GL KO mice, is 

again interesting, considering the established dogma.  

 

Analysis of BCL6Neofl/Neofl mice has thus demonstrated a functional defect in full length 

BCL6 expression.  Not only have we found decreased full transcript of BCL6 being 

generated in BCL6Neofl/Neofl mice (Figure 9B), but the ability for GC B cells and TFH cells 

to develop in these mice is severely and significantly reduced as well (Figure 8).   

 

 
Figure 11.  Cytokine production of CD4+ T cells from immunized mice.  Mice were 
immunized as in Figure 8.  Total CD4+ T cells were isolated via bead separation and 
stimulated for 5 days with anti-CD3 and anti-CD28 antibodies in Th0 media.  On day 5, 
cells were harvested and restimulated overnight with anti-CD3 antibody.  Supernatants 
were analyzed for cytokines via ELISA.  Mean ± SE; n = 2 – 3. 
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Figure 12.  Cytokine production of cultured naïve CD4+ T cells.  Naïve CD4+ T cells 
were isolated via bead separation from unimmunized mice.  Cells were activated with 
anti-CD3 and anti-CD28 antibodies in Th0 culture conditions for 5 days.  Cells were then 
restimulated overnight with anti-CD3 antibody.  Supernatants were analyzed for 
cytokines via ELISA.  Mean ± SE; n = 2 – 3. 
 
 
 
 
 
 

 

 

 

 
 
 
 
 
 
Figure 13.  Histology of lung and heart from BCL6Neofl and GL KO mice.  Mice were 
immunized as in Figure 8, and heart and lungs were taken for histological analysis.  
Samples were scored blindly.  Individual scores are shown with the mean. 
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Figure 14.  Changes in rorc and prdm1 expression under different cytokine 
environments.  A. Mice were immunized as in Figure 8.  Total CD4+ T cells were 
isolated via bead separation, activated with anti-CD3 and anti-CD28 antibodies, and 
cultured for 5 days in Th0 culture conditions.  On day 5, cells were restimulated with anti-
CD3 antibody for 5 hours, then lysed for RNA analysis.  Transcript levels of rorc and 
prdm1 are normalized to BCL6+/+ levels (dotted line at 1).  Mean ± SE.  B. Naïve CD4+ T 
cells were isolated and cultured as in Figure 10 B-C.  Transcript levels are normalized to 
BCL6+/+ levels (dotted line at 1.0). 
 
 
Therefore, without modifications to the inserted targeting construct, these mice could not 

be used for further development as a cKO model.   

 

Removal of the neomycin resistance gene 

 

To rectify the defective BCL6 transcription in BCL6Neofl/Neofl mice, it was determined the 

neomycin resistance gene needed to be removed.  To do so, CreEIIa mice were obtained 

from the Jackson Laboratory and mated to BCL6Neofl/Neofl mice.  CreEIIa mice express a 

Cre recombinase under the control of the adenovirus EIIa promoter, which is active early 

in mouse development.  Therefore, the EIIa-Cre recombinase will target and delete 

genomic DNA between two loxP sites in GL lineage cells.  Since our BCL6 Neo-floxed 

construct contains three loxP sites, a total of three different deletions could result.  Either 

the zinc fingers (exons 7 – 9), the Neo gene, or both could be removed (Figure 6 B).  

Two new mouse alleles resulted from this deletion process.  First, a new GL KO mouse 

was generated by deleting the entire zinc finger region and neomycin resistance gene, 

henceforth referred to as BCL6∆ZF/∆ZF mice (Figure 15 A).  Secondly, and more 

importantly, the neomycin resistance gene was successfully deleted, leaving the zinc 

finger region intact, flanked by two loxP sites, creating a floxed-BCL6 (BCL6fl/fl) mouse 

(Figure 15 B). 
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Figure 15.  Alleles of new BCL6 mutant mice.  A. Schematic of new GL KO mouse 
(BCL6∆ZF) developed by mating to a CreEIIa mouse, which resulted in deletion of the 
entire zinc finger region and neomycin resistance gene.  B. Schematic of BCL6 allele in 
new BCL6-floxed mouse (BCL6fl).  The neomycin resistance gene was removed by 
mating to a CreEIIa mouse, which constitutively expresses Cre recombines and will 
remove any segment flanked by two loxP sites.   
 
 

New germline knockout mice – BCL6∆ZF/∆ZF 

 

The novelty of this new GL KO mouse (BCL6∆ZF/∆ZF) is that rather than only having a 

partial deletion of the zinc finger region, as the original GL KO mouse (BCL6−/−) has 

(Figure 6 C), the entire region is now deleted, as well as the neomycin resistance gene 

(Figure 15 A).  To verify this deletion, naïve Th cells were isolated from untreated 

BCL6∆ZF/∆ZF and littermate controls.  Cells were stimulated for two days with anti-CD3 

and anti-CD28 antibodies in Th0 culture conditions, then lysed for RNA analysis.  As 

shown in Figure 16 A, transcript levels of BCL6 exons 2/3 were reduced in BCL6∆ZF/∆ZF 

mice compared to the levels seen in littermate controls; as expected, exon 8 transcripts 

were nonexistent.    

 

Work by several groups, including our own, has consistently shown the original BCL6 GL 

KO mouse (BCL6−/−) to skew toward a Th2-like phenotype and to develop systemic 
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inflammation.  To assess the phenotype of our new GL KO mice, naïve BCL6∆ZF/∆ZF and 

littermate control mice were sacrificed and analyzed.  Like the original GL KOs, 

BCL6∆ZF/∆ZF mice were smaller than littermate controls (Figure 16 B).  Spleen cells were 

then isolated and analyzed.  No differences in T or B cell populations were observed in 

BCL6∆ZF/∆ZF mice compared to controls (Figure 16 C).  When naive Th cells were isolated 

and activated with anti-CD3 and anti-CD28 antibodies for four days in Th0 culture 

conditions, the cytokines produced after an overnight restimulation showed a slightly 

different pattern than expected.  Like traditional GL KO mice, Th cells fromBCL6∆ZF/∆ZF 

mice produced increased levels of IL-17A and IL-10 (Figure 17 A).  Unlike BCL6−/− mice, 

activated naïve Th cells from BCL6∆ZF/∆ZF mice showed a reduction in IFNγ secretion, as 

the GL KO typically has similar levels of this cytokine to WT mice.  Most interestingly, 

however, was the lack of increased IL-4 production; amounts produced by BCL6∆ZF/∆ZF 

mice were equivalent to control mice.  

 

In a separate experiment, effector memory (EM) cells (CD44hi CD62L−) from BCL6+/+, 

BCL6Neofl/Neofl, and BCL6∆ZF/∆ZF mice were isolated via FACS and stimulated for 24 hours 

with anti-CD3 and anti-CD28 antibodies in Th0 culture conditions.  Like the four day 

culture with naïve Th cells, EM cells failed to show increased IL-4 secretion in 

 
 

 

 
Figure 16.  Genotypic and phenotypic characterization of BCL6∆ZF/∆ZF mice.  A. 
Naïve CD4+ T cells were isolated from unimmunized BCL6∆ZF/∆ZF mice and littermate 
controls.  Control mice were a mixture of BLC6+/+ and BCL6+/∆ZF mice.  Cells were 
activated with anti-CD3 and anti-CD28 antibodies in Th0 media for 48 hours, then lysed 
for RNA analysis.  Transcript levels are normalized to littermate control levels (dotted 
line at 1.0).  Mean ± SE.  B. Weights of unimmunized BCL6∆ZF/∆ZF mice and littermate 
controls.  Mean ± SE.  C – D. CD4+ T, CD8+ T, and B cell populations were analyzed via 
flow cytometry from the spleen of unimmunized mice.  T cells gated on CD3+ and CD4+ 
or CD3+ CD8+; B cells gated on B220+ CD19+.  Mean ± SE. 
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Figure 17.  Cytokine skewing of CD4+ T cells 
from BCL6∆ZF/∆ZF mice.  A.  Naïve CD4+ T cells 
were isolated via bead separation from the 
spleens of the BCL6∆ZF/∆ZF and littermate control 
mice in Figure 16.  Cells were activated with anti-
CD3 and anti-CD28 antibodies in Th0 culture 

conditions for 4 days, after which they were restimulated overnight with anti-CD3 and 
anti-CD28 antibodies.  Supernatants were collected and cytokine levels measured via 
ELISA.  Mean ± SE.  B. Effector memory (EM) CD4+ T cells (CD44+ CD62L−) were 
isolated via FACS from the spleens of unimmunized BCL6+/+, BCL6Neofl/Neofl, and 
BCL6∆ZF/∆ZF mice.  EM cells were stimulated for 24 hours via anti-CD3 and anti-CD28 
antibodies in Th0 media.  Supernatant cytokine levels were measured via ELISA.  Mean 
± SE. 
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Figure 18.  Functional analysis of BCL6fl/fl 
mice.  A. BCL6+/+, BCL6fl/fl, BCL6Neofl/Neofl, and 

BCL6−/− mice were immunized i.p. with SRBC and sacrificed on day 9.  Spleen CD4+ T 
cells were analyzed for BCL6 protein expression via flow cytometry MFI of BCL6 protein 
is shown.  B. Representative flow plots of mice immunized in (A).  GC B cells (top) were 
gated on B220+ CD19+ Fas+.  TFH cells (bottom) were gated on CD3+ CD4+ CXCR5+.  C. 
EM CD4+ T cells (CD44+ CD62L−) were isolated via FACS from the spleens of 
unimmunized BCL6+/+, BCL6fl/fl, and BCL6Neofl/Neofl mice.  EM cells were stimulated for 24 
hours via anti-CD3 and anti-CD28 antibodies in Th0 media.  Supernatant cytokine levels 
were measured via ELISA.  Mean ± SE. 
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BCL6∆ZF/∆ZF mice, while IL-10 levels remained increased (Figure 16 B).  IFNγ in EM cells 

was equivalent to BCL6+/+ mice.  Of interest was the seemingly step-wise increase in IL- 

17A levels with the disruption of the zinc finger region (Figure 17 B).  This cytokine data 

would suggest that our new GL KO mouse, with the entire zinc finger removed, does not 

skew toward a Th2 phenotype. 

 
 

BCL6fl/fl mice 

 

After BCL6Neofl/Neofl mice were mated to CreEIIa mice, some offspring were found to have 

only the neomycin resistance gene deleted, leaving the zinc fingers, flanked by two loxP 

sites, intact (Figure 15 B).  These mice, termed BCL6fl/fl, needed to be tested in order to 

assess whether the lack of GCs seen in BCL6Neofl/Neofl was indeed due to the presence of 

the neomycin resistance gene or because of some other factor.  To test the functionality 

of the BCL6 allele in homozygous BCL6fl/fl mice, SRBC were again injected i.p. and mice 

were sacrificed on day nine.  Removal of the neomycin resistance gene successfully 

restored BCL6 protein, as measured by flow cytometry (Figure 18 A).  Functionality of 

the gene was also reestablished, as GC B cell and TFH populations were present at WT 

levels in BCL6fl/fl mice (Figure 18 B).  When EM Th cells were isolated from naïve mice 

and activated for 24 hours with antibodies in Th0 culture conditions, the cytokine profile 

of BCL6fl/fl mice more closely resembled that of WT mice, rather than BCL6Neofl/Neofl mice 

(Figure 18 C).  The increased IL-17A secretion from BCL6Neofl/Neofl effector memory Th 

cells seen here supports the earlier findings which suggest BCL6Neofl/Neofl mice may be 

skewing toward a Th17 phenotype.  With the restoration of BCL6 protein and function, 

these BCL6fl/fl mice are a functional floxed mouse which can be used for conditional 

deletion. 

 

 

DISCUSSION 

 

Due to the complexities associated with using the original BCL6 GL KO mouse (BCL6−/−) 

a cKO mouse model needed to be developed to better understand the role of BCL6 in 

different cell subsets.  Here, using a targeting construct containing loxP sites flanking the 

zinc finger region of the gene, we have created a new mouse model which can do just 
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that.  The first version of these mice, BCL6-Neo-floxed (BCL6Neofl/Neofl) mice proved to be 

unusable for our purposes of cKO.  However, they, in themselves, seem to be a novel 

BCL6 knock-down model.  These mice are perplexing in that they lack BCL6 function in 

vivo, but show increases in transcript expression in ex vivo uncultured cells and in Th0 

cultured cells.  One reason for the increase in exon 8 expression could be due to 

transcription of the neomycin resistance gene.  As shown in Figure 6, the Neo gene 

actually runs in an antisense direction to the rest of the BCL6 gene.  Therefore, 

transcription of this gene could result in exons 8 and 9 being transcribed as well.  Also, 

BCL6 self-represses its own transcription, and if functional protein is not being produced, 

this self-repression cannot take place.  Therefore BCL6Neofl/Neofl T cells may have 

increased BCL6 RNA levels due to lack of self-repression, even at basal levels.  

However, in ex vivo cells from immunized mice and in Th cells cultured in TFH-skewing 

conditions, we show a decrease in BCL6 transcript compared to BCL6+/+ mice.  This may 

have more to do with the ability of WT cells to increase BCL6, rather than a decrease in 

BCL6 transcription in BCL6Neofl/Neofl mice.  In TFH-skewing cultures and in immunized 

mice, Th cells will be pushed to up-regulate BCL6.  Therefore, cells which are impeded 

from doing so, i.e. T cells from BCL6+/Neofl, BCL6Neofl/Neofl, and BCL6−/− mice, will not be 

able to achieve the normal increase seen in BCL6+/+ T cells.  Therefore, the decrease in 

transcript expression in BCL6Neofl/Neofl mice likely has more to do with WT cells raising the 

threshold.   

 

The lack of functional BCL6 expression in BCL6Neofl/Neofl mice, while having a devastating 

effect on GCs, had few effects on Th cell cytokine secretion.  IL-4 was not substantially 

increased, as is typically seen with GL KO mice.  The one cytokine that stood out, 

though, was IL-17A.  It was increased in ex vivo cultured Th cells (Figure 11), in naïve 

Th cells, in vitro cultured cells (Figure 12) and in in vitro stimulated effector memory cells 

(Figure 18 C).  Ex vivo Th cells showed a more than two-fold increase in rorc 

expression, the master transcription factor for Th17 cells.  This increase was also seen 

in Th0 cultured naïve Th cells.  When comparing BCL6−/−, BCL6Neofl/Neofl mice, and 

BCL6+/+ mice, it appeared BCL6Neofl/Neofl mice have an intermediate phenotype, as they 

have reduced body weight, lack of GCs, and reduced BCL6 protein, similar to GL KO 

mice.  However, their Th cell cytokine profile matched more closely to WT mice, and 

their inflammation, as determined by histology, was more of an intermediate level 

(Figure 13).  Based on this, I would propose a model wherein graded BCL6 expression 
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results in the differentiation of different Th subsets.  High BCL6 leads to TFH cells, while 

complete loss of BCL6 protein leads to Th2 cell development, as has been previously 

published (59, 61).  Finally, an intermediate level of BCL6 transcript leads to TH17 

differentiation (Figure 19).  Because TFH cells and Th17 cells have been shown to share 

some characteristics, such as reliance on IL-6 and STAT3 for differentiation, utilization of 

c-maf, and secretion of IL-21(17, 19, 24, 63), this model seems plausible.   

 

One caveat to the graded expression model, though, is the development and analysis of 

a new GL KO mouse (BCL6∆ZF/∆ZF).  These mice failed to show the Th2-type skewing 

seen in the original KO mice (BCL6−/−).  The observations made with BCL6∆ZF/∆ZF mice 

suggests multiple explanations for the phenotype seen in BCL6−/− mice.  First of all, 

having only partial zinc finger deletion, as is the case with BCL6−/− mice, could result in a 

BCL6 protein with partial nucleic acid binding capabilities.  What the binding capabilities 

of this truncated protein are has not been investigated, and thus cannot be ruled out as a 

possible explanation for the Th2 phenotype in these mice.  Secondly, the background of 

the mice may play a larger role in the skewing of Th cells than previously appreciated, as 

the original GL KO mice, while on a mixed background, are slightly different than our 

new mice, which are mixed C57BL/6-129Sv.  Therefore, having 129Sv genes may 

somehow be affecting Th cell cytokine production.  Furthermore, the endogenous 

microbiota/microflora found in these mice likely plays a role in augmenting the immune 

response, and since our new GL KO mice are housed in a somewhat different 

environment (subtle changes in mouse housing and feeding) than the original KO mice, 

this difference may be a contributing factor to the differences seen.  In any case, the 

conclusions about BCL6 function using BCL6−/− mice must be revaluated using the new 

GL KO and, more importantly, with our new cKO mouse, as these cKO mice will be able 

to control for extrinsic effects from other cells on the cells of interest, which is not 

possible in a GL KO of any kind.  This is the major reason we developed these new 

BCL6fl/fl mice.  Now researchers can tightly control which cells have BCL6 deleted and 

know any effects they see are due solely to loss of the gene in those cells. 
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Figure 19.  Proposed model for graded BCL6 expression in different Th subsets.  
Published data has established BCL6 as the master transcription factor for TFH cells.  
These cells also express BCL6 at the highest levels of all the Th subsets.  Conversely, 
reports have shown BCL6 to repress GATA3, the master transcription factor for Th2 
cells.  Thus, little-to-no BCL6 is expressed in these cells.  Data presented here has 
demonstrated BCL6Neofl/Neofl mice to be a BCL6 knock-down model, rather than knockout.  
Based on RNA and cytokine analysis of these mice, showing increased rorc expression 
and IL-17A secretion, both signature markers for TH17 cells, it seems plausible that an 
intermediate level of BCL6 could lead a cell to skew toward a Th17 phenotype. 
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CHAPTER 3 – BCL6 IS NECESSARY FOR EFFICIENT NAÏVE CD4+ T CELL 

ACTIVATION 

 

 

INTRODUCTION 

 

Like all immune cells, CD4+ T cells originate from a process known as hematopoiesis, 

wherein hematopoietic stem cells, which have the ability to self-renew, differentiate into 

multipotent progenitors (MMP) (Figure 20) (64-66).  These cells can then give rise to 

myeloid cells via a common myeloid progenitor (CMP), or to lymphocytes, including B 

cells, by differentiating into a common lymphoid progenitor (CLP) (66-68).  The CLP can 

exit the bone marrow and migrate to the thymus, where terminal T cell development 

commences (64, 66, 67, 69).  First, cells referred to as double negative (DN), because 

they express neither CD4 nor CD8, differentiate from the CLP (69-72).  From there, cells 

are selected for and become double positive (DP), as they begin to express both CD4 

and CD8 on the cell surface (69-72).  Further environmental signals will enable these 

cells to become single positive (SP) for either CD4 or CD8 (69, 70, 72, 73).  At this point, 

T cells are considered mature and can exit the thymus into circulation (69, 70, 72).  

These mature, but naïve, T cells can enter secondary lymphoid organs, such as the 

spleen and lymph nodes, where they sample antigens being presented by APCs (74).  If 

the TCR of a T cell, in this case that of a CD4+ T cell, is specific for the presented 

antigen, it will be activated, begin to proliferate, and carry out effector functions to aid in 

pathogen clearance.   

 

For a CD4+ T cell to be properly activated, a complicated signal cascade must take 

place.  First, the TCR binds the MHC II/antigen complex on an APC (Figure 21) (74-76).  

At the same time, CD4, functioning as a coreceptor, must bind to the MHC II molecule 

presenting the antigen (77, 78).  TCR engagement triggers the mobilization and 

recruitment of the lymphocyte-specific protein tyrosine kinase (Lck) to the CD4 

intracellular tail (71, 75-78).  Lck will then become phosphorylated, converting it to an 

active state (77).  Activated Lck will phosphorylate the zeta chain of the CD3 complex, 

thus recruiting another protein kinase, Zap70 (71, 75-78).  Once relocated to the CD3 

zeta chain, Zap70 becomes phosphorylated, either by Lck or via auto-phosphorylation 

(71, 78).  Now in an active state, Zap70 will trigger a cascade of  
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Figure 20.  Development of CD4+ T cells.  All immune cells originate from 
hematopoietic stem cells (HSC) in the bone marrow (BM).  These self-renewing cells 
can differentiate into mulitpotent progenitors (MPP), which will, in turn, differentiate into 
common myeloid progenitors (CMP).  These cells give rise to monocytes, granulocytes, 
and mast cells.  Alternately, MMPs can differentiate into common lymphoid progenitors 
(CLP), which will become immune cells of the acquired response.  If the CLP does not 
differentiate into the B cell linage within the BM, a CLP can exit the marrow and migrate 
to the thymus, where it will give rise to T cells.  First, a CLP will differentiate into what is 
known as a double negative (DN) T cell, as these cells do not express either of the 
coreceptors, CD4 or CD8.  However, expression of the TCR β chain, along with other 
surface markers, denotes them as T cells.  Environmental signals will next trigger 
surface expression of both CD4 and CD8 on these cells, leading them to become double 
positive (DP) cells.  Finally, further environmental signals and selection events in the 
thymus will cause these cells to cease expressing one of the coreceptors and become 
single positive (SP) for either CD4 or CD8.  These cells are now considered mature 
naïve T cells, and will exit the thymus into the circulation.  Frequent encounters with 
APCs allow T cells the chance to become activated and take part in pathogen clearance.  
For CD4+ T cells, this typically occurs in secondary lymphoid organs, such as the spleen 
or lymph nodes.  These activated T cells can then acquire effector functions to aid in the 
clearance of the pathogen. 



 39  
 

 

Figure 21.  Early signaling events in TCR stimulation.  When an APC presents 
antigen to a CD4+ Th cell in the context of the MHC class II molecule, several cascade 
events must take place for proper signaling and activation of the T cell.  First, the TCR, 
made up of an α and β chain, will bind the antigen and make contact with the MHC class 
II molecule.  Additionally, the CD4 coreceptor must bind the MHC class II molecule on 
the APC for proper signaling.  This leads to recruitment of the intracellular protein kinase 
called lymphocyte-specific protein tyrosine kinase, or Lck.  The intracellular tail of CD4 
will phosphorylate (P) Lck, thus transforming it into its active state.  This kinase can then 
phosphorylate the tail of the CD3 zeta (ζ) chain.  CD3 is a signature surface marker for T 
cells.  It is composed of several different chains and clusters around the TCR.  In the 
context of CD4+ T cells, these chains are typically the epsilon (ε), delta (δ) and zeta (ζ) 
chains.  Phosphorylation of the zeta chain leads to recruitment of the zeta-chain-
associated protein kinase 70 (Zap70).  Once localized to CD3, Zap70 is phosphorylated 
by Lck, thus activating it.  From here, Zap70 will trigger a cascade of downstream 
phosphorylation events, eventually leading to the activation of transcription factors which 
will trigger T cell proliferation and differentiation. 
 
 
sequential phosphorylation events (76-78).  Downstream factors, such as MAP kinases, 

are essential parts of this signal cascade (76, 77), which culminates in the activation of 

critical gene expression pathways, such as NFAT, fos, and jun transcription factors.  

These, in turn, trigger up-regulation of activation markers, such as IL-2, IL-2 receptor 

alpha (IL-2Rα), cytotoxic T-lymphocyte antigen 4 (CTLA4), CXCR5, and CD69 (74, 76, 

77, 79, 80).  These activated CD4+ T cells will then differentiate into one of several 

subsets, depending on the antigen and cytokine environment, to carry out effector 

functions (Figure 2). 

 

At this time, a role for BCL6 in naïve Th cell activation has not been established.   
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Although CXCR5 has been shown to be up-regulated early after activation, research has 

demonstrated this to be independent of BCL6 expression (81).  Recently, two 

publications have shown BCL6 to become up-regulated very early after activation, but do 

not show data that BCL6 is essential for activation (22, 23).  Using our new cKO mouse 

model, we investigated the activation status of CD4+ T cells in multiple in vivo and in 

vitro models. 

 

 

MATERIALS AND METHODS 

 

Mice and immunizations 

 

Bcl6fl/fl mice were mated to CD4-cre mice (82) to generate Bcl6fl/fl CreCD4 mice.  Mice with 

the wild type BCL6 allele were bred to CD4-Cre mice for use as controls (BCL6+/+ CreCD4).  

The floxed allele was genotyped by PCR using the following primers:  

5’ loxP forward (5’ – TGAAGACGTGAAATCTAGATAGGC – 3’)  

5’ loxP reverse (5’ – ACCCATAGAAACACACTATACATC – 3’)  

3’ loxP forward (5’ –TCACCA ATCCCAGGTCTCAGTGTG–3’)  

3’ loxP reverse (5’ – CTTTGTCATATTTCTCTGGTTGCT–3’) 

 

Cre-CD4 transgene was genotyped using the following primers: 

Forward (5’ –ATCGCCATCTTCCAGCAGGCGCACT– 3’) 

Reverse (5’ –ATTTCCGTCTCTGGTGTAGCTGAT– 3’) 

 
Mice were immunized i.p. with 1 x 109 sheep red blood cells (SRBC; Rockland 

Immunochemicals Inc., Gilbertsville, PA) in PBS. 

 

Chimera mice 

 

For mixed bone marrow chimera experiments, RAG-1-deficient mice (83) were sub-

lethally irradiated with 350 rads.  The following day, bone marrow from Bcl6fl/fl CreCD4 

(CD45.2+) and BoyJ (CD45.2−) mice was harvested and cells mixed in equal amounts.  

Irradiated RAG mice received tail vein injections of 5x106 cells.  Mice were rested for 

approximately three months before immunization.  Mice were bred under specific 
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pathogen-free conditions at the laboratory animal facility at IUSM and were handled 

according to protocols approved by the IUSM Animal Use and Care Committee.  

 

Flow cytometry 

 

Total spleen or thymus cells were incubated with anti-mouse CD16/CD32 (Fcγ receptor) 

for 20 minutes, followed by surface staining for the indicated markers.  A fixable viability 

dye (eFluor 780, eBioscience) was used for all samples.  The following antibodies were 

used to stain naïve and memory T cells: α-mCD3 Alexa Fluor 700, clone 500A2 (BD 

Bioscience); α-mCD4 PECy7, clone RM4-5 (BD Bioscience); α-mCD8a APC, clone 53-

6.7 (BD Bioscience); α-mCD44 PE, clone IM7 (eBioscience); α-mCD62L FITC, clone 

MEL-14 (BD Bioscience).  CD25+ cells were stained using α-mCD25 PE CF594, clone 

PC61 (BD Horizon).  CD69+ cells were stained with α-mCD25 PerCPCy 5.5, clone 

H1.2F3 (Biolegend).  The GL3 Ab (Biolegend) was used to detect γδ T cells and NKT 

cells were identified with α-galactosylceramide-loaded CD1d tetramers obtained from the 

NIH tetramer core facility.   

 

For chimera experiments, the following antibodies were used: Bone marrow – α-mCD3 

Alexa Fluor 700, clone 500A2 (BD Bioscience); α-mB220 PE, clone RA3-6B2 (BD 

Bioscience); α-mCD11b Biotin, clone M1/70 (eBioscience) with Streptavidin-PECy7 

(Biolegend); α-mCD45.2 PerCPCy 5.5, clone 104 (BD Bioscience); Thymus –  α-mCD3 

Alexa Fluor 700, clone 500A2 (BD Bioscience); α-mCD4 FITC, clone H129.19 (BD 

Bioscience); α-mCD8a APC, clone 53-6.7 (BD Bioscience), α-mCD45.2 PerCPCy 5.5, 

clone 104 (BD Bioscience); Spleen – α-mCD3 Alexa Fluor 700, clone 500A2 (BD 

Bioscience); α-mCD4 PerCPCy 5.5, cloneRM4-5 (eBioscience); α-mCD8a APC, clone 

53-6.7 (BD Bioscience); α-mCD44 PE, clone IM7 (eBioscience); α-mCD62L FITC, clone 

MEL-14 (BD Bioscience); α-mCD45.2 PECy7, clone 104 (Biolegend).  Samples were run 

on a BD LSR II flow cytometer using FACSDiva software.  Data was analyzed using 

FlowJo software. 

 

In vitro stimulation 

 

Total CD4+ T cells were isolated via magnetic bead separation (Miltenyi Biotec); Cells  
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were stimulated with plate-bound anti-CD3 (5 µg/mL) and anti-CD28 (10 µg/mL) 

antibodies (BD Biosciences) for 24 hours at 1x106 cells/mL in Th0 media conditions, 

which contain no cytokines or blocking antibodies. 

 

Gene expression analysis 

 

Total RNA was prepared using a kit (Qiagen) after lysis of the cells via Trizol (Life 

Technologies); cDNA was prepared with the Transcriptor First Strand cDNA synthesis kit 

(Roche).  Quantitative PCR (qPCR) reactions were run by assaying each sample in 

triplicates using the Fast Start Universal SYBR Green Mix (Roche Applied Science) with 

custom primers or specific Taqman assays (ABI).  Assays were run with a Stratagene 

Mx3000P Real-Time QPCR machine.  Levels of mRNA expression were normalized to 

beta-tubulin mRNA levels, and differences between samples analyzed using the ∆∆CT 

method.  Primers for SYBR Green assays were previously described (14, 19). 

 

Microarrays 

 

Naïve CD4+ T cells were isolated via FACS using the following surface markers: CD3+ 

CD4+ CD62L+ CD44−.  A cell viability gate was also used.  Cells were activated in vitro 

with anti-CD3 and anti-CD28 antibodies, as described above, in Th0 or TFH media 

conditions.  TFH conditions contain IL-6 and IL-21 [10 ng/ml each (R&D Systems)], plus 

anti-IFNγ (10 μg/mL), anti-IL-4 (10 μg/mL), and anti–TGF-β (20 µg/mL) antibodies.  Cells 

were cultured for 20 hours.  Cells were lysed, RNA prepared using an RNeasy kit 

(Qiagen), and cDNA prepared with the Transcriptor First Strand cDNA synthesis kit 

(Roche).  Affymetrix gene expression microarrays were carried out by Center for Medical 

Genomics at the Indiana University School of Medicine. 

  

Statistical analysis 

 

Statistical analysis was done using IBM SPSS Statistics 21 software.  Statistics for 

microarray data was done using GraphPad Prism software.  In all figures, *p < 0.05, **p 

< 0.01, ***p < 0.001. 
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RESULTS 

 

Efficient and complete deletion of BCL6 zinc finger exons in BCL6+/fl CreCD4 mice 

 

After BCL6fl/fl mice were generated and found to be able to form normal GC responses, 

these mice were mated to CD4-Cre mice.  CD4-Cre mice express a Cre recombinase 

enzyme under the control of the CD4 promoter.  This means that the floxed zinc fingers 

of BCL6 (Figure 22 A) will be deleted in all T cells, since CD4 expression is turned on 

during early T cell development in the thymus.  After the first mating, heterozygous 

BCL6+/fl CreCD4 mice were generated.  Spleen cells from these mice were FACS sorted 

for B cells and CD4+ T cells.  PCR analysis revealed efficient deletion of the zinc fingers 

in CD4+ T cells, but not in B cells, of Cre-expressing mice (Figure 22 B).  Heterozygous 

mice were then mated to produce BCL6fl/fl CreCD4 offspring. 

 

Skewed naïve and effector memory CD4+ T cell populations in BCL6fl/fl CreCD4 mice 

 

Eight week old, untreated BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were first analyzed 

for T cell development.  Thymic cells were analyzed for proportions of double positive 

CD4 CD8 cells (Figure 23 A), single positive CD4 and CD8 cells (Figure 23 B), natural 

killer T cells, and gamma delta T cells (Figure 23 C).  The spleens of eight to twelve 

week old untreated mice were also analyzed for Treg populations (Figure 23 D).  In all 

cases, no differences in T cell populations were found between BCL6+/+ CreCD4 and 

BCL6fl/fl CreCD4 mice.  Unimmunized mice were also assessed for naïve and effector 

memory T cell populations in the spleen.  In the case of CD8+ T cells, no differences 

were found between the two mouse strains (Figure 23 E).  However, naïve CD4+ T cells 

were significantly increased in the spleen of BCL6fl/fl CreCD4 mice as compared to 

BCL6+/+ CreCD4 mice.  After immunizing mice i.p. with SRBC and sacrificing nine days 

later, the naïve CD4+ T cell population in BCL6fl/fl CreCD4 mice remained significantly 

increased (Figure 23 G – H), while no differences in total CD4+ or CD8+ T cells were 

found (Figure 23 F).  Furthermore, while CD8+ T cells showed no differences in naïve or 

effector memory cells in either mouse type, the BCL6fl/fl CreCD4 mice now showed a 

significant loss in the CD4+ effector memory cell population (Figure 23 G – H).  These 

data suggest that BCL6, specifically in CD4+ T cells, plays a role in naïve Th cell 

activation.  
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As mice age, they are exposed to more environmental antigens, and thus, trend toward 

having more activated T cells.  To see if the skewing of naïve and effector memory cell 

populations seen in BCL6fl/fl CreCD4 mice decreased with age, BCL6+/+ CreCD4 and 

BCL6fl/fl CreCD4 mice were aged to thirteen months and sacrificed without immunizing.  

Still, at this advanced age, BCL6fl/fl CreCD4 mice continued the trend of having increased 

naïve and decreased effector memory CD4+ T cells (Figure 24). 

 

Skewed naive and effector CD4+ T cell populations confirmed in mixed bone 

marrow chimera model 

 

The finding that naïve and effector memory Th cell populations were skewed in the 

absence of BCL6 was further verified in a mixed bone marrow chimera model.  Bone  

 

 

 

 

 

 

 

 

 
 

 
Figure 22.  Conditional deletion of 
BCL6 in T cells.  A. Schematic of the 
BCL6 floxed construct.  B. BCL6fl/fl mice 
were mated to Cre-CD4 expressing mice 
to create offspring heterozygous for the 
BCL6fl allele, and expressing a Cre 
recombinase driven by the CD4 
promoter.  B cells and CD4+ T cells were 
sorted via FACS and analyzed for BCL6 
expression.  B cells were gated on 
CD19+ B220+ CD3− CD4−.  CD4+ T cells 
were gated on CD19− B220− CD3+ CD4+.  

B cells expressed both a wild type allele (germline) and floxed allele (5’ loxP and 3’ 
loxP), regardless of Cre expression.  CD4+ T cells not expressing a Cre-CD4 
recombinase also expressed both versions of the BCL6 allele.  However, cells from 
those mice mated to CreCD4 mice expressed a wild type allele but not a floxed allele, as 
evidenced by the lack of a band in both the 5’ loxP and 3’ loxP regions.  This 
demonstrates successful conditional knockout of the BCL6 zinc finger region in T cells. 
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Figure 23.  BCL6fl/fl CreCD4 mice have increased naïve and decreased effector 
memory CD4+ T cell populations.  Untreated 8 week old BCL6+/+ CreCD4 and BCL6fl/fl 
CreCD4 mice were sacrificed and analyzed for T cell populations.  A. Double positive T 
cells in thymus.  B. Single positive CD4 and CD8 T cells in thymus.  C. Natural killer T 
cells (NKT) and gamma delta T cells (γδ) in thymus.  D. Treg cells in spleen of 
unimmunized mice.  Shown as percent of total CD3+ CD4+ T cells.  E. Naïve and effector 
memory cell populations in the spleen of unimmunized mice.  CD4+ and CD8+ cells 
gated on CD3+.  Naïve cells gated on CD62L+ CD44−.  Effector memory cells gated on 
CD62L− CD44hi.  N = 3 – 4; mean ± SE.  F – H. Mice were immunized i.p. with SRBC 
and sacrificed on day 9.  F. T cell populations in spleen.  Cells gated on CD3+.  G. Naïve 
and effector memory cells in spleen.  Cells gated as in (E).  N = 4; mean ± SE.  H. 
Representative flow plots of CD4+ cells in (G).  Cells gated on CD3+ CD4+.  **p < 0.01 by 
t test. 
 
 
marrow from BCL6fl/fl CreCD4 and BoyJ mice was harvested, mixed equally, and 

transferred via tail vein injections into irradiated RAG-deficient mice.  After resting the 

mice for approximately three months, mice were immunized i.p. with SRBC and 

sacrificed nine days later.  Both the bone marrow and spleen reconstituted equally with 

A. B. C. 

E. 

D. 

F. G. 

C
D

44
 

CD62L 

BCL6
fl/fl 

Cre
CD4

 BCL6
+/+

 Cre
CD4

  
H. 



 46  
 

 
Figure 24.  Naïve and effector memory cell differences in aged BCL6fl/fl CreCD4 mice 
remain in aged mice.  BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were left untreated and 
aged to 13 months.  Mice were sacrificed and spleen cells analyzed for naïve and 
effector memory CD4+ T cells.  Cells gated as in Figure B.  N = 3; bar = mean. 
 
 
BCL6fl/fl CreCD4 (CD45.2+) and BoyJ (CD45.2−) cells (Figure 25 A).  Only the thymus 

showed slightly, but significantly, more cells coming from the BoyJ donor cells 

(CD45.2−).  Within the bone marrow, the B cells repopulated evenly from both donor 

marrows, however, macrophage and T cell populations were found to be 

disproportionally of CD45.2+ and CD45.2− origins, respectively (Figure 25 B).  Most 

thymus T cells were of equal CD45.2+ and CD45.2− proportions (Figure 25 C).  Only the 

CD4+ T cells in the thymus were shown to be proportionally more of CD45.2− origin.  

However, when the cell populations were calculated as a percent of the total thymus 

cells, any differences were equalized (Figure 25 D), suggesting these differences were 

negligible.  Within the spleen, T cells from BoyJ donor marrow (CD45.2−) made up a 

significantly larger proportion of CD8+ and CD4+ T cells, as well as a significantly higher 

percentage of T cells in the total spleen (Figure 25 E – F).  These data, combined with 

the increase in CD45.2− T cells in the bone marrow (Figure 25 B), suggest BCL6 plays a 

role in the survival of T cells exiting the thymus into circulation. 

 

When CD4+ naïve and effector memory cell populations were analyzed in the spleen, the 

phenotype of the earlier experiment repeated.  Even though the BoyJ cells (CD45.2−) 

made up a significantly larger proportion and percent of the total CD4+ T cells in the 

spleen, BCL6fl/fl CreCD4 (CD45.2+) T cells constituted a significantly larger proportion of 

the naïve cell population, while still lacking the ability to make effector memory cells 

(Figure 25 G).  Because BoyJ cells disproportionally constituted a larger percentage of T 

cells in the spleen, we employed a different gating strategy to eliminate this bias and 
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Figure 25.  BCL6fl/fl CreCD4 have similar naïve/effector 
memory cell phenotype in a competitive chimera 
model.  Bone marrow from BCL6fl/fl CreCD4 (CD45.2+) and 
Boy/J (CD45.2−) mice was harvested, mixed in equal 
proportions, and transferred i.v. to irradiated RAG−/− 
mice.  After resting for 3 months, mice were immunized 
i.p. with SRBC and sacrificed on day 9.  A. Percent 
reconstitution of bone marrow, thymus, and spleen.  B. 
Proportion of each donor cell type found in CD3, B220, and CD11b cell subsets in bone 
marrow.  C. Proportion of each donor cell type constituting double negative (DN) cells, 
double positive (DP), CD4+, and CD8+ cell populations in the thymus.  Cells gated on live 
cells (DN), live cells, CD4+, and CD8+ (DP), live cells and CD4+, or live cells and CD8+, 
respectively.  D. Percent of each cell type of total thymus cells.  Cells gated as in (C).  E. 
Proportion of each donor cell type constituting the spleen CD8+ T cell population (left) 
and percent of each donor CD8+ T cell population in the total spleen (right).  Cells gated 
on CD3+ CD8+.  F. Same populations as (E), except for CD4+ T cells.  Cells gated on 
CD3+ CD4+.  G. Proportion of each donor cell type constituting splenic naïve and effector 
memory CD4+ T cells.  Cells gated for naïve and memory populations as in Figure B.  H. 
Percent of each donor CD4+ T cell population which were naïve or effector memory 
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cells.  Cells gated, in order, on CD3+ CD4+ CD45.2+/−, followed by naïve and memory 
gates used in Figure B.  Shown as percent of CD3+ CD4+ CD45.2− or CD3+ CD4+ 
CD45.2+ cells.  N = 5; mean ± SE. **p< 0.01, ***p < 0.001 by t test.  I. Representative 
flow plots of naïve and effector memory cells in (H). 
 
 
investigate the ability of each donor cell type to remain naïve or become activated 

effector memory cells.  To do this, spleen cells were first gated on total CD3+ CD4+ cells, 

then on CD45.2 expression.  Next, each CD45.2 population was gated on naïve and 

effector memory cells, thus allowing us assess the percentage of these cell types within 

the context of each donor.  When this was done, cells from BCL6fl/fl CreCD4 (CD45.2+) 

mice were still shown to have significantly more naïve cells and fewer effector memory 

cells compared to the proportions found in the BoyJ cell population (Figure 25 H – I).  

This data demonstrates an intrinsic role for BCL6 in the activation of naïve CD4+ T cells.  

 

Naïve/effector memory CD4+ T cell phenotype seen early after immunization and 

only exacerbates over time 

 

Next, we wanted to test the differences in these cell populations early after immunization 

to see if at any time the two cell populations are equivalent in +/+ and fl/fl mice.  BCL6+/+ 

CreCD4 and BCL6fl/fl CreCD4 mice were immunized i.p. with SRBC and sacrificed one, 

three, and five days after.  On all days, the total CD4+ T cell population was the same in 

 

 

 

 

 

 

 
 
 
 
Figure 26.  Effector cell defect is consistent throughout immune response in 
BCL6fl/fl CreCD4 mice.  BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were immunized i.p. with 
SRBC and sacrificed 1, 3 and 5 days after immunization.  Spleen cells were analyzed.  
A. CD4+ T cells in spleen at each time point.  Percent of total spleen.  Cells gated on 
CD3+.  B. Naïve cells at each time point.  Cells gated on CD3+ CD4+ CD62L+ CD44−.  
Shown as percent of Th cells.  C. Effector memory cells at each time point.  Cells gated 
on CD3+ CD4+ CD62L− CD44hi.  Shown as percent of Th cells.  Mean ± SE; n = 3 – 4 per 
group, per time point.  *p < 0.05, **p < 0.01 by t test. 
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both mice (Figure 26 A).  However, like day nine, the naïve Th cells in BCL6fl/fl CreCD4 

were increased at all time points, while the effector memory population was significantly 

decreased on all days tested (Figure 26 B – C).  This data shows that the differences in 

naïve and effector memory cell populations between BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 

mice are seen before immunization and only increase over time after immunization. 

 

Differences in T cell activation markers in BCL6fl/fl CreCD4 mice 

 

To further investigate the activation defect in T cells lacking functional BCL6, 

unimmunized BCL6+/+ CreCD4 mice and BCL6fl/fl CreCD4 mice were analyzed for surface 

markers of activation on CD4+ T cells (Day 0).  While the percentage of total CD4+ and 

CD4+ naïve T cells expressing CD25, also known as IL-2Rα, was not different between 

+/+ and fl/fl mice (Figure 27 A), another activation marker, CD69, decreased among total 

and naïve CD4+ T cells in BCL6fl/fl CreCD4 mice (Figure 27 B).  Therefore, while naïve 

BCL6fl/fl CreCD4 mice do not have decreases in CD25+ Th cells, they do have fewer naïve 

and total CD4+ cells expressing the activation marker CD69.   

 

After immunizing with SRBC, mice were again assessed for activation markers.  On day 

nine after immunization, naïve CD4+ T cells from BCL6fl/fl CreCD4 mice had significantly 

less CD25 expression, as well as significantly fewer Th cells expressing CD69, both total 

CD4+ and naïve CD4+ T cells (Figure 27 A – B).  Therefore, after immunization, BCL6fl/fl 

CreCD4 mice had fewer T cells expressing surface activation markers compared to 

BCL6+/+ CreCD4 mice.  To assess activation markers at the RNA level early after 

immunization, mice were immunized and sacrificed as in Figure 26.  Analysis of total 

CD4+ T cells revealed significant decreases at the RNA level of il2rα (Figure 27 C) and 

ctla4 across several early time points.  Transcripts of il2, however, were not decreased 

until day five (Figure 27 C).  Taken together, this data strengthens the earlier findings 

that BCL6 plays a role in naïve CD4+ T cell activation. 

 

Levels of activation differ between in vitro and in vivo stimulation 

 

In order to better understand the global gene changes in CD4+ T cells in our cKO mice, 

two microarray analyses were done.  Naïve BCL6+/+ CreCD4 mice and BCL6fl/fl CreCD4 

mice were sacrificed and naïve CD4+ T cells isolated from spleen via FACS.  T cells  
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Figure 27.  Decreased activation marker expression in 
BCL6fl/fl CreCD4 mice.  A – B. BCL6+/+ CreCD4 and BCL6fl/fl 
CreCD4 mice were either sacrificed unimmunized (Day 0), 
or 9 days post i.p. immunization with SRBC.  A. CD25 (IL-
2Rα) positive cells in total Th cell (top) and naïve Th cell 
(bottom) populations.  Th cells gated on CD3+ CD4+; naïve 
cells additionally gated on CD44− CD62L+.  B. CD69 
positive cells in total Th cell and naïve Th cell populations.  
Cells gated as in (A).  Mean ± SE; n = 3 – 5   C. Mice were 
immunized i.p. with SRBC and sacrificed 1, 3, and 5 days 
after.  Total CD4+ T cells were isolated via bead separation and lysed for RNA directly ex 
vivo.  All samples normalized to +/+ Day 1 (dotted line at 1.0).  Mean ± SE; n = 3 – 4 per 
group, per time point.  *p < 0.05, **p < 0.01, ***p < 0.001 by t test. 
 
 
were then activated in vitro with anti-CD3 and anti-CD28 antibodies in either Th0 or TFH 

culture conditions.  After an overnight stimulation, cells were lysed for RNA analysis.  As 

shown in Table 1, both culture conditions yielded similar numbers of genes significantly 

changed (p < 0.05) in fl/fl mice, compared to +/+ controls.  Furthermore, the majority of 

those genes were down-regulated in fl/fl mice (< -1.1 fold), with only one quarter to one 

third being increased (> 1.1 fold).  With fewer up-regulated genes in activated naïve 

CD4+ T cells from BCL6-deficient mice, the case for BCL6 having a role in naive cell 

activation is strengthened.  

 

Specific activation markers were analyzed in the microarrays (Figure 28 A).  While il2 

and il2rα were shown to be significantly reduced in BCL6fl/fl CreCD4 mice over time 

A. B. C. 
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Table 1.  Summary of microarray data with BCL6fl/fl CreCD4 T cells  

 Th0 conditions TFH conditions 

# genes changed (p < 0.05) 3255 3502 

# genes increased > 1.1 fold 824 (25%) 1102 (34%) 

# genes decreased < -1.1 fold 1495 (46%) 1476 (42%) 

Using Affymetrix gene expression arrays for total mouse genome, analyzing ~ 35,000 
genes, naïve CD4 T cells were activated for 20 hours with anti-CD3 and anti-CD28 
antibodies under either Th0 culture conditions (no cytokines or blocking antibodies), or 
TFH culture conditions (+IL-6 +IL-21, blocking antibodies to IFNγ, IL-4 and TGFβ).  Fold 
increase/decrease in BCL6fl/fl CreCD4 cells relative to BCL6+/+ CreCD4 cells. 
 
 
(Figure 27 C), the microarray gave mixed results, with il2 being significantly reduced in  

TFH conditions, while il2rα was either unchanged or slightly increased under TFH 

polarizing conditions (Figure 28 A).  CXCR5, a surface marker up-regulated on many Th 

cells after initial activation, was shown to be decreased, specifically under Th0 

conditions.  The transcription factors fos and jun were also shown to be significantly 

reduced under TFH culture conditions.  Lck, the protein kinase responsible for 

downstream signaling of TCR stimulation, was significantly reduced in both culture 

conditions, suggesting efficient TCR signaling is not being achieved.  The gene encoding 

Zap70 kinase, a direct downstream target phosphorylation target of Lck kinase and 

critical for TCR signaling, was also significantly reduced in TFH conditions.  One gene, 

however, atf3, was significantly increased in both in vitro conditions.  Because ATF3 has 

been shown to limit cell proliferation, this further adds credence to the limited activation 

potential of naïve Th cells in BCL6fl/fl CreCD4 mice.  Interestingly, the changes seen 

overnight with antibody stimulation of naïve Th cells was not necessarily replicated in 

vivo in total Th cells.  As already shown, il2rα was significantly decreased 24 hours after 

immunization in total CD4+ T cells (Figure 27 C), but the microarray shows it unchanged 

or slightly increased in certain culture conditions.  Likewise, while atf3 and fos were 

shown to be significantly up and down-regulated, respectively, during the in vitro 

stimulation, total CD4+ T cells analyzed ex vivo 24 hours after mouse immunization show 

this trend not to hold true for T cells of mixed activation states (Figure 28 B).  In fact, atf3 

is shown to be decreased in BCL6fl/fl CreCD4 mice over time, while fos never reaches 

significant differences at any time point after immunization.  Only cxcr5, whose initial 

expression has been shown to be BCL6-independent, but prolonged expression reliant 

on BCL6, is consistent with the microarray data.  Total Th cells had lowered cxcr5  
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Figure 28.  Differences in activation marker expression 
are dependent on type of naive CD4+ T cell stimulation.  
A.  Naïve CD4+ T cells were isolated via FACS from 
unimmunized BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice.  
Cells were activated in vitro under Th0 or TFH culture conditions.  After 20 hours, cells 
were lysed for RNA analysis via microarray.  Bars represent gene expression in BCL6fl/fl 
CreCD4 cells in the different culture conditions compared to BCL6+/+ CreCD4 mice.  
Differences are either greater than 1.0 or less than –1.0.  *p < 0.05, **p < 0.01, ***p < 
0.001.  B. Mice were immunized i.p. with SRBC and sacrificed 1, 3, and 5 days after.  
Total CD4+ T cells were isolated via bead separation and lysed for RNA directly ex vivo.  
All samples normalized to +/+ Day 1 (dotted line at 1).  Mean ± SE; n = 3 – 4 per group, 
per time point.  *p < 0.05, **p < 0.01, by t test. 
 
 
mRNA expression twenty four hours after immunization as well as three days after.  As 

these are both early time points, it is likely CXCR5 gene expression is not reliant on 

BCL6.  While overall, in vitro CD4+ T cells from BCL6fl/fl CreCD4 mice had fewer genes 

activated than BCL6+/+ CreCD4 mice, the status of different activation marker genes 

seems to be dependent on the type and duration of stimulation.   

 

 

DISCUSSION 

 

While BCL6 has been shown to be essential for the differentiation of TFH and GC B 

cells, a role for BCL6 in naïve Th cell activation has not yet been established.  

Experiments using GL BCL6-deficient mice have not shown a lack of naïve cell 

activation.  However, this is most likely because of the ongoing inflammatory responses 

in these mice.  Due to this environment, T cells would be poised for activation, and 

A. B. 
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published reports have shown an increase in the effector memory populations in these 

mice, even when unimmunized.  Here, we demonstrate, for the first time, an intrinsic role 

for BCL6 in naïve CD4+ T cell activation. 

 

Even when mice are not immunized and housed in a pathogen-free environment, 

environmental factors still exist which can trigger an immune response.  Therefore, 

unimmunized mice have a measurable effector T cell population.  In this environment, 

BCL6fl/fl CreCD4 mice have a comparable effector memory cell population to BCL6+/+ 

CreCD4 mice, but have significantly more naïve CD4+ T cells (Figure 23 E).  Even over an 

extended period of time, untreated BCL6fl/fl CreCD4 mice trend toward having more naïve 

cells and fewer activated ones (Figure 24).  This would suggest that at basal levels, 

these mice are able to activate cells to environmental factors to the same degree as 

BCL6+/+ CreCD4 mice, while having an increased pool of naïve cells.  Whether this naïve 

population has more cells of greater TCR diversity or just increased cell numbers of 

similar diversity cannot be determined from these studies, however, it is likely the latter. 

 

Soon after immunization, BCL6fl/fl CreCD4 mice fail to enhance their effector population, 

while retaining their naïve Th cell percentages (Figure 26 C).  This would suggest the 

differences seen in naïve and effector memory populations in these mice is in fact due to 

an activation defect, and not because of loss of activated cells.  If naïve cells were in fact 

being activated, but lost soon after to cell death, the effector cell percentages would be 

comparable between fl/fl and +/+ mice at earlier time points, which they are not (Figure 

26 C). 

 

A mixed bone marrow chimera was done to verify the intrinsic nature of the activation 

defect in CD4+ T cells from BCL6fl/fl CreCD4 mice.  In this experiment, the wild type cells 

(BoyJ; CD45.2−) were able to activate a substantial percentage of their CD4+ T cells into 

an effector state, while cells from BCL6fl/fl CreCD4 mice (CD45.2+) retained a much higher 

percentage of naïve cells (Figure 25 H).  These data, which verify the findings of the 

earlier in vivo experiments, demonstrate an intrinsic role for BCL6 in naïve Th cell 

activation.  Furthermore, while the bone marrow of these mice was reconstituted with 

equivalent percentages of each donor cell type and the donor populations were mostly 

similar in the thymus, CD4 T cells in the periphery (spleen and bone marrow) were 

derived significantly more from BoyJ (CD45.2−) donor cells.  While further analysis must 
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be done to confirm, these data would suggest a role for BCL6 in T cell survival after 

exiting the thymus. 

 

To further verify an activation defect in BCL6fl/fl CreCD4 mice, we assessed activation 

marker expression in a variety of in vivo and in vitro models.  CD25, also known as IL-

2Rα, is an early indicator of CD4+ T cell activation.  Th cells from unimmunized mice 

showed no differences in surface expression.  However, after injection with SRBC, CD4+ 

T cells that were very recently presented with antigen, which is to say they are CD25+ 

but also retain naïve surface markers, had significantly fewer cells expressing CD25 

when they were from BCL6fl/fl CreCD4 mice (Figure 27 A).  This would suggest that Th 

cells from the naïve pool in BCL6fl/fl CreCD4 mice are not able to up-regulate this 

activation marker as well as BCL6+/+ CreCD4 Th cells.  Furthermore, another surface 

marker for activation, CD69, was significantly decreased on all CD4+ T cells from BCL6fl/fl 

CreCD4 mice, both before and after immunization, again supporting the finding of an 

activation defect in these mice (Figure 27 B). 

 

At the RNA level, il2rα and il2, a cytokine up-regulated after activation, were down-

regulated over time in BCL6fl/fl CreCD4 Th cells, although not consistently.  In an in vitro 

activation model assessed by microarray, only il2 expression was found to be 

decreased, while il2rα transcripts were up-regulated (Figure 27 C, G A).  These markers, 

however, are not the only marks of activation.  Others, such as CTLA4, CXCR5, Lck, 

Zap70, Fos, and Jun, were all shown to be significantly down-regulated in the Th cells of 

BCL6fl/fl CreCD4 mice, both in in vivo and in vitro models (Figure 27 C, G).  Further 

indication of an activation defect in BCL6fl/fl CreCD4 mice was exhibited by the overall 

results of the microarray, which showed nearly half of all genes were down-regulated in 

BCL6fl/fl CreCD4 Th cells, as compared to BCL6+/+ CreCD4 cells (Table 1).  Together, this 

surface expression data and RNA analysis demonstrates a reduced activation potential 

of CD4+ T cells in BCL6fl/fl CreCD4 mice. 

 

These data are not without limitations.  The Th cells assessed ex vivo are a mixture of 

activated and unactivated cells.  Therefore, RNA data from the time course experiment 

is not useful for demonstrating small nuances in gene expression changes.  Instead, this 

data represents the overriding gene differences seen in cells, regardless of their 

activation status.  Later time points, such as day five, have more activated cells at this 
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time due to clonal expansion.  During in vitro activation, all cells have equal opportunity 

to achieve an active state, regardless of their TCR affinity.  Therefore, data presented in 

the microarray is more representative of the gene changes seen soon after activation, as 

these cells were assessed less than 24 hours after plating.  Microarray analysis is often 

criticized for not being as sensitive to changes as qPCR analysis is, however, many of 

the genes with significant changes in the microarray were confirmed with qPCR, and in 

most cases the differences were exacerbated with this analysis (data not shown).  Taken 

together, the flow analysis of in vivo immunization models and RNA analysis of in vitro 

activated cells demonstrate an inherent activation defect in the naïve Th cells of BCL6fl/fl 

CreCD4 mice. 
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CHAPTER 4 – ROLE OF BCL6 IN Th CELL SUBSETS 

 

 

INTRODUCTION 

 

Nearly thirty years ago researchers recognized that CD4+ Th cells differentiated into 

distinct subsets which secrete specific cytokine profiles and are dependent on the 

antigen and cytokine environment present (84, 85).  The original paradigm of Th1 and 

Th2 cells, secreting IFNγ and IL-4, respectively, has since been expanded to include 

many Th cell subsets, including Th17 (86, 87), Treg (88, 89), TFH (37, 38), Th9 (90, 91), 

and, in humans, Th22 (92, 93).  Each subset has been classified based on their cytokine 

profile, master transcription factors, and, in the case of Treg and TFH cells, their specific 

activity and location (Figure 2).  Because Th9 and Th22 cells are not yet as well defined 

as the other subsets, my work here will focus primarily on Th1, Th2, Th17, Treg, and 

TFH subsets.    

 

As mentioned previously, Th1 cells are controlled by the master transcription factor Tbet, 

whose gene name is tbx21 (17-19, 26).  These cells will mainly respond to intracellular 

pathogens, such as virus and bacteria, and secrete IFNγ in response.  Recent literature 

has shown a role for BCL6 in Th1 cells.  While one group demonstrated repression of 

BCL6 by Tbet (94), another group demonstrated that the interaction of the two 

transcription factors is necessary for proper regulation of IFNγ secretion, whereby BCL6 

represses Tbet-mediated IFNγ transcription in cells already producing IFNγ (95).  Using 

a mixed bone marrow chimera, another group demonstrated an increase in IFNγ 

production by BCL6 KO Th cells, further supporting the findings that BCL6 is crucial for 

proper regulation of IFNγ secretion (39).  However, these studies evaluated the role of 

BCL6 in Th1 cells from the stand point of Tbet KO mice and by using BCL6 GL KO mice.  

Therefore, as yet, no one has characterized the expression of Tbet and IFNγ in a BCL6-

deficient mouse that lacks the pro-inflammatory environment of mice with a GL mutation.  

Our new cKO mouse model will enable us to address this issue.  

 

Th2 cells were originally thought to be the main B cell helpers, however that role has 

since been attributed to TFH cells (26). Th2 cells will differentiate under the control of the 

master transcription factor, GATA3, and secrete the signature cytokine, IL-4 (17-20, 26).  
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Research by us and others has shown a role for BCL6 in Th2 cells, wherein the 

transcriptional repressor will limit GATA3 expression at the post-transcriptional level 

(61).  Furthermore, in the absence of BCL6, Th2 cytokines are substantially increased, 

while over-expression of BCL6 leads to sharp decreases in IL-4 production (59, 61).  

Research using the original GL KO mice has shown a dramatic skewing of Th cells 

toward a Th2 phenotype.  Secretion of inflammatory Th2 cytokines in these mice leads 

to myocarditis and pulmonary vasculitis, which is largely due to an influx of eosinophils 

(29, 59).  However, again, these studies were done using BCL6 GL KO mice and thus 

carry with them the confounding effects of BCL6-deficiency in other cells.  Therefore, our 

new mouse model will allow us to truly recognize the role of BCL6 in this Th cell subset. 

 

The most recent Th cell subset to be fully described is Th17 cells.  CD4+ T cells will 

differentiate into Th17 cells in the presence of IL-6, IL-23 and TGFβ, and, under the 

control of RORγt (rorc), secrete its namesake cytokine, IL-17 (17, 20, 26, 63, 96).  

Existing literature on the role of BCL6 in Th17 cells is somewhat inconclusive.  In our 

work, BCL6 appears to inhibit Th17 differentiation to some degree, but the gene itself is 

up-regulated in a Th17-inducing cytokine environment in vitro (97).  Others have found 

IL-17 secretion to be enhanced in the absence of BCL6 (39).  Finally, using a retroviral 

over-expression model, researchers have shown BCL6 to repress IL-17A and IL-17F 

production in an in vitro setting, while not affecting RORγt transcription (98).  The 

relationship between BCL6, the master transcription factor for TFH cells, and Th17 cells 

is especially interesting when you consider the similarities between TFH and Th17 cells.  

Both cell types require IL-6 for their differentiation, both have been shown to secrete IL-

21, both necessitate the phosphorylation of STAT3 for their differentiation, and both rely 

on c-maf, IRF4, and BATF for down-stream signaling (17, 24, 63, 96, 99, 100).  We hope 

to better understand the relationship between BCL6 and Th17 differentiation with our 

new model. 

 

An interesting dichotomy between the Th1, Th2, and Th17 subsets versus TFH cells is 

the reciprocal expression of BCL6 and Blimp-1.  While BCL6 is highly up-regulated in 

TFH cells, Blimp-1 is repressed.  Furthermore, while in Th1, Th2, and Th17 cells BCL6 is 

only present at low levels, if at all, Blimp-1 is more highly expressed (62, 99).  Extensive 

studies have been done to investigate the role of Blimp-1, encoded by the gene prdm1, 

in Th cell subsets.  For instance, researchers have found Blimp-1 to play a crucial role, 
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in conjunction with BCL6, in regulating the balance between Th1 and Th2 differentiation.  

While BCL6 has been shown to be important in Th1 cells, as mentioned above, Blimp-1 

is not expressed in this subset (101).  Conversely, BCL6 is repressed in Th2 cells by 

Blimp-1, thus allowing GATA3 expression and Th2 differentiation (101).  Using Blimp-1 

KO and cKO models, researchers have found that BCL6 expression is markedly 

enhanced in the absence of Blimp-1, also a transcriptional repressor (101-103).  

Furthermore, using a retroviral vector for over-expressing Blimp-1 in vitro, researchers 

have shown it can severely reduce BCL6 protein levels (62).  Interestingly, most of the 

work regarding BCL6-Blimp-1 interactions has focused around the latter, using Blimp-1 

KO mice and over-expression of Blimp-1.  Once again, our mouse model, wherein BCL6 

is specifically deleted in T cells, enables us to revisit the question of the relationship of 

these two transcriptional repressors and assess how much control BCL6 has over Blimp-

1. 

 

The final non-TFH cell subset to be discussed in this section is Treg cells.  These cells, 

whether they be iTreg or nTreg cells, are dependent on the expression of Foxp3 (19, 

104).  As their name suggests, regulatory Th cells work to limit the immune response by 

eliminating self-reactive T cells in the periphery.  While the processes by which they 

achieve that objective are still not fully understood, one way in which they repress such 

T cells is by secretion of IL-10 (105, 106).  Although not exclusively produced by Treg 

cells, this anti-inflammatory cytokine limits Th cell activity through paracrine or autocrine 

signaling (107).  With regards to BCL6 expression, recently, two groups have published 

evidence of Treg cells up-regulating the transcription factor, which triggered increased 

surface expression of CXCR5, facilitating the migration of these cells into the GC (35, 

36).  Once there, these follicular regulatory Th (TFR) cells added an additional level of 

regulation to the immune response.  Furthermore, BCL6 has been shown to repress 

GATA3 in Treg cells (108).  Therefore, while studies have demonstrated the dual 

expression of both BCL6 and Foxp3, at this time no one has yet to determine whether 

Foxp3 expression is reliant on BCL6, or vice versa.  

 

With the determination that TFH cells are in fact a unique Th cell subset (37, 38, 109), 

and BCL6 their master transcription factor (39, 98), researchers have since worked to 

determine how Th cells differentiate into this subset and what effects BCL6 has in other 

Th subsets.  The relationship between TFH cells and the other subsets is complicated.  
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The ability of TFH cells to produce the signature cytokines of other Th cells, as well as 

the ability for some subsets to express BCL6, particularly Treg cells, has only added to 

the controversy in the field as to whether TFH cells are a distinct subset or if they are 

merely a Th cell which has adopted an altered genotypic and phenotypic profile to 

migrate into the GC (19, 20, 26).  Further complicating things is the plasticity of Th cells 

and their ability to change into, or adopt, partial characteristics of a different subset (17, 

19).  Therefore, fully understanding the role BCL6 plays in the differentiation and 

proliferation of non-TFH subsets may help to settle some of these disagreements 

concerning the plasticity of TFH cells.  Here, we present data which shows little role for 

BCL6 in suppressing the differentiation of Th1, Th2, and Th17 subsets, while its 

expression seems to be essential for IL-4 secretion and expression of Foxp3 by Th cells. 

 

 

MATERIALS AND METHODS 

 

Mice and immunizations 

 

BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were generated and genotyped as described in 

Chapter 3.  BCL6∆ZF/∆ZF mice were generated and genotyped as described in Chapter 2.  

BCL6fl/fl CreLysM mice were generated by mating BCL6fl/fl mice to B6.129P2-Lyz2tm1(cre)Ifo/J 

mice (LysM-Cre), which were obtained from The Jackson Laboratory (cat. # 004781).  

These mice have a knock-in cre recombinase in the lysosome 2 allele, thus placing cre 

under the control of the Lyz2 promoter.  In this model, BCL6 will be deleted in all myeloid 

cells.  Because the LysM-Cre recombinase is a knock-in allele, only mice heterozygous 

for cre will be functional conditional knockout mice.  Therefore, two different genotypings 

must be done for cre recombinase: one for the wild type allele, and one for the knock-in.   

 

The following primer sets were used for LysM cre typing: 

WT forward (5’ –TTACAGTCGGCCAGGCTGAC– 3’)  

WT reverse (5’ –CTTGGGCTGCCAGAATTTCTC– 3’)  

Knock-in forward (5’ –ATCGCCATCTTCCAGCAGGCGCAC– 3’)  

Knock-in reverse (5’ –ATTTCCGTCTCTGGTGTAGCTGAT– 3’)  

 

The following primer sets were used to detect the BCL6 floxed allele: 
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5’ loxP forward (5’ –TGAAGACGTGAAATCTAGATAGGC– 3’)  

5’ loxP reverse (5’ –ACCCATAGAAACACACTATACATC– 3’) 

3’ loxP forward (5’ –TCACCA ATCCCAGGTCTCAGTGTG– 3’)  

3’ loxP reverse (5’ –CTTTGTCATATTTCTCTGGTTGCT– 3’) 

 

Mice were immunized i.p. with 1 x 109 sheep red blood cells (SRBC; Rockland 

Immunochemicals Inc., Gilbertsville, PA) in PBS. 

 

Flow cytometry 

 

Total spleen or thymus cells were incubated with anti-mouse CD16/CD32 (Fcγ receptor) 

for 20 minutes, followed by surface staining for the indicated markers.  A fixable viability 

dye (eFluor 780, eBioscience) was used for all samples.  The following antibodies were 

used to stain naïve and memory T cells: α-mCD3 Alexa Fluor 700, clone 500A2 (BD 

Bioscience); α-mCD4 PECy7, clone RM4-5 (BD Bioscience); α-mCD8a APC, clone 53-

6.7 (BD Bioscience); α-mCD44 PE, clone IM7 (eBioscience); α-mCD62L FITC, clone 

MEL-14 (BD Bioscience).  For Tbet staining, cells were fixed and permeabilized using 

the Foxp3 / Transcription Factor Staining Buffer Set (eBioscience) according to 

manufacturer guidelines.  Intracellular cytokine staining (ICS) was done as follows: cells 

were stained for surface markers, followed by a fixable viability dye (eBioscience).  Cells 

were fixed for 10 minutes in the dark at room temperature in 2% formaldehyde.  Cells 

were washed 1x with PBS, then 2x in permeabilization buffer (0.1% saponin + 2% BSA 

in PBS).  Cells were then stained for α-mIL-4 APC, clone 11B11 (eBioscience), α-mIL-

17A PE, clone eBio17B7 (eBioscience), α-mIFNγ Alexa Fluor 488 , clone XMG1.2 

(Biolegend), and α-mIL-10 PECy7, clone JES5-16E3 (Biolegend) for 30 minutes at 4 °C 

in permeabilization buffer, washed, and analyzed via flow cytometry.  Samples were run 

on a BD LSR II flow cytometer using FACSDiva software.  Data was analyzed using 

FlowJo software. 

 

Cell isolation and in vitro stimulation 

 

Total CD4+ T cells were isolated via magnetic bead separation (Miltenyi Biotec); effector 

memory cells (EM), central memory cells (CM), and naïve CD4+ T cells were isolated via 

FACS.  EM cells were gated on CD3+ CD4+ CD44hi CD62L−, CM cells gated on CD3+ 
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CD4+ CD44hi CD62L+, and naïve cells gated on CD3+ CD4+ CD44− CD62L+.  Propidium 

iodide was used as a viability gate. 

 

Naïve, EM, and CM cells were stimulated with plate-bound anti-CD3 (5 µg/ml) and anti-

CD28 (10 µg/ml) antibodies (BD Biosciences) for varying times at 1x106 cells/mL.  Total 

spleen cells were stimulated with LPS for 24 hours at 1x107 cells/mL.  Th0 media 

contains no cytokines or blocking antibodies; ThN media contains anti-IFNγ and anti-IL-4 

blocking antibodies (10 μg/mL) (R&D Systems); TFH media contains anti-IFNγ (10 

μg/mL), anti-IL-4 (10 μg/mL) and anti-TGFβ (20 μg/mL) (R&D Systems) blocking 

antibodies, as well as IL-6 and IL-21 cytokines (50 ng/mL each) (PeproTech).  Th1 

media contains anti-IL-4 (10 μg/mL) blocking antibody plus IL-12 (10 ng/mL) 

(PeproTech); Th2 media contains anti-IFNγ (10 ug/mL) blocking antibody plus IL-4 (10 

ng/mL) (PeproTech); Th17 media contains anti-IL-4 and anti-IFNγ (10 ug/mL each) 

blocking antibodies plus IL-6 (10 ng/mL) and TGFβ (1 ng/mL) (PeproTech). 

 

Gene expression analysis 

 

Total RNA was prepared using a kit (Qiagen) after lysis of the cells via Trizol (Life 

Technologies); cDNA was prepared with the Transcriptor First Strand cDNA synthesis kit 

(Roche).  Quantitative PCR (qPCR) reactions were run by assaying each sample in 

triplicates using the Fast Start Universal SYBR Green Mix (Roche Applied Science) with 

custom primers or specific Taqman assays (ABI).  Assays were run with a Stratagene 

Mx3000P Real-Time QPCR machine.  Levels of mRNA expression were normalized to 

beta-tubulin mRNA levels, and differences between samples analyzed using the ∆∆CT 

method.  Total cellular RNA was prepared and analyzed for gene expression as 

described in Chapter 2.  Custom primers used with SYBR Green analysis were prdm1, 

il4, ifnγ, il17a, and il10; primers used with Taqman assays were tbx21, rorc, foxp3, and 

gata3.   

 

Microarrays 

 

Naïve CD4+ T cells were isolated via FACS using the following surface markers: CD3+ 

CD4+ CD62L+ CD44−.  A cell viability gate was also used.  Cells were activated in vitro 

with anti-CD3 and anti-CD28 antibodies, as described above, in Th0 or TFH media 
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conditions.  TFH conditions contain IL-6 and IL-21 [10 ng/ml each (R&D Systems)], plus 

anti-IFNγ (10 μg/mL), anti-IL-4 (10 μg/mL), and anti–TGF-β (20 µg/mL) antibodies.  Cells 

were cultured for 20 hours.  Cells were lysed, RNA prepared using an RNeasy kit 

(Qiagen), and cDNA prepared with the Transcriptor First Strand cDNA synthesis kit 

(Roche).  Affymetrix gene expression microarrays were carried out by Center for Medical 

Genomics at the Indiana University School of Medicine. 

 

Thymidine incorporation assay 

 

Naïve CD4+ T cells were isolated via FACS; cells were gated on CD3+ CD4+ CD62L+ 

CD44−.  Cells were then activated in Th0 media with different concentrations of anti-CD3 

and anti-CD28 antibodies (BD Bioscience) in round bottom, 96-well plates; 20,000 

cells/well in 100 uL media.  Some cells were e plated without antibodies to measure 

baseline proliferations (0x0).  Other concentration combinations include 1 ug/mL anti-

CD3 + 2 ug/mL anti-CD28, 5 ug/mL anti-CD3 + 2 ug/mL anti-CD28, and 10 ug/mL anti-

CD3 + 10 ug/mL anti-CD28.  After 48 hours, tritiated thymidine was added at 1 uCi per 

well.  Eighteen hours later, plates were frozen and later thawed and assessed for 

thymidine incorporation via a scintillation counter.  Incorporation presented as corrected 

counts per minute (CCPM).  Data points for cells activated with antibodies have 

respective baseline counts (0x0) subtracted. 

  

Statistical analysis 

 

Statistical analysis was done using IBM SPSS Statistics 21 software.  Statistics for 

microarray data was done using GraphPad Prism software. In all figures, *p < 0.05, **p < 

0.01, ***p < 0.001. 

 

 

RESULTS 

 

Transcription levels of BCL6 vary with in vitro and in vivo stimulation 

 

During in vivo immunization, BCL6 is up-regulated in Th cells, particularly in those which 

will become TFH cells.  In BCL6+/+ CreCD4 mice, without immunization (i.e. PBS given as 
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a control injection) we see BCL6 expressed at basal levels in total CD4+ T cells (Figure 

29 A).  Nine days after immunization with SRBC, these T cells, without ex vivo 

stimulation, have a significant increase in BCL6 transcript levels (Figure 29 A).  

Therefore, in vivo immunization with SRBC is a reliable method for inducing BCL6 in 

CD4+ T cells.   

 

In order to assess the effects of stimulating T cells ex vivo after immunization, a time 

course experiment was done to study increases in BCL6 expression over the duration of 

the immune response.  BCL6+/+ CreCD4 mice were immunized with SRBC and sacrificed 

one, three, and five days after the injections.  Total CD4+ T cells were isolated from 

spleen and either lysed directly ex vivo or stimulated in vitro with antibodies for 24 hours 

before being lysed for RNA analysis.  RNA from cells lysed directly ex vivo show levels 

of BCL6 significantly increasing by day five after immunization (Figure 29 B).  However, 

when the same T cells were stimulated overnight, the amount of BCL6 RNA was 

significantly decreased at all time points (Figure 29 B).  This demonstrates the 

detrimental effect in vitro stimulation has on already high levels of BCL6 transcript.  In 

 

 

 

Figure 29.  Induction of BCL6 following immunization.  A. BCL6+/+ CreCD4 mice were 
immunized i.p. with SRBC or PBS as a control.  Mice were sacrificed 9 days after and 
total CD4+ T cells were isolated from spleen via bead separation.  Cells were lysed 
directly ex vivo for RNA analysis.  Samples were analyzed for BCL6 exon 2/3 and exon 
8 expression via qPCR.  Samples normalized to PBS samples for each exon.  Mean ± 
SE; **p < 0.01 by t test.  B. BCL6+/+ CreCD4 mice were immunized i.p. with SRBC and 
sacrificed 1, 3, and 5 days after.  Total CD4+ T cells were isolated from spleen via bead 
separation.  Half the isolated cells were lysed directly ex vivo for RNA analysis and half 
were stimulated for 24 hours with anti-CD3 and anti-CD28 antibodies in Th0 media 
before being lysed for RNA analysis.  Samples were analyzed via qPCR for BCL6 exon 
8 expression.  All samples are normalized to Day 1 ex vivo lysed cells (dotted line at 
1.0).  Mean ± SE; *p < 0.05, **p < 0.01, ***p < 0.001 by 2-way ANOVA; Tukey post hoc. 
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fact, the higher the transcript levels were in the ex vivo samples, the lower the levels 

seem to be in the stimulated samples.  Therefore, this data serves as a caution for the 

interpretation of in vitro stimulated results.  While we expect BCL6 levels to be notably 

high in the Th cells of immunized mice, as is shown in Figure 29 A, in vitro stimulation 

significantly abrogates these levels, and thus could be changing any downstream effects 

of high BCL6 expression.  Therefore, whenever possible, we present data from cells 

harvested directly ex vivo without in vitro stimulation, as this is shown to alter BCL6 

expression in WT Th cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30.  Tbet transcript levels in the absence of BCL6 in vivo.  A. RNA 
expression of tbx21 in total CD4+ T cells from unimmunized BCL6+/+ CreCD4 and BCL6fl/fl 
CreCD4 mice.  Total CD4+ T cells isolated via bead separation and lysed for RNA analysis 
directly ex vivo.  B. RNA expression of tbx21 in mice immunized i.p. with SRBC and 
sacrificed on day 9.  Total CD4+ T cells isolated via bead separation and lysed for RNA 
analysis directly ex vivo.  C. BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were immunized 
i.p. with SRBC and sacrificed 1, 3, and 5 days after.  Total CD4+ T cells were isolated via 
bead separation.  RNA expression of tbx21 in cells directly ex vivo (top) or after 24 
stimulation with anti-CD3 and anti-CD28 antibodies in Th0 media (bottom).  Samples 
normalized to Day 1 +/+ (dotted line at 1.0).  D. Mice were immunized and sacrificed as 
in (C).  CD4+ T cells were stained for expression of Tbet.  Cells gated on CD3+ CD4+.  E. 
Percent of effector memory (EM) cells expressing Tbet in mice from (D).  Mean ± SE; *p 
< 0.05, **p < 0.01, ***p < 0.001 by t test. 
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The role of BCL6 in Th1 cells 

 

BCL6 has been shown to interact with Tbet in multiple models.  Here, using our new 

cKO mouse model, we show minimal effects of BCL6 loss on Th1 differentiation.  When 

total CD4+ T cells were isolated from unimmunized BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 

mice and analyzed for Tbet transcript directly ex vivo, BCL6fl/fl CreCD4 mice showed only 

marginally increases in tbx21 levels (Figure 30 A).  The same was seen in Th cells from 

mice immunized with SRBC and sacrificed on day nine (Figure 30 B).  

 

To investigate whether tbx21 transcript levels were significantly increased earlier in the 

immune response, a time course experiment was done in which mice were immunized 

with SRBC and sacrificed one, three, and five days after immunization.  In cells lysed 

directly ex vivo for RNA, tbx21 levels were similar, with cells from BCL6fl/fl CreCD4 mice 

showing slightly decreased levels at earlier time points (Figure 30 C).  When cells were 

stimulated ex vivo for 24 hours, still no differences were seen over five days.   

Interestingly, while cells analyzed ex vivo show a slight increase in tbx21 levels over 

time, those stimulated overnight seemed to have decreased tbx21 transcript over time. 

However, the levels of tbx21 transcript seen in total CD4+ T cells did not replicate at the 

protein level.  When total Th cells were analyzed for Tbet via flow cytometry, BCL6fl/fl 

CreCD4 mice significantly increased protein levels over BCL6+/+ CreCD4 cells beginning on 

day three (Figure 30 D).  When the effector memory (EM) population, which are highly 

activated Th cells, was specifically analyzed, we saw increases in Tbet at all time points 

(Figure 30 E).  Therefore, while tbx21 transcript levels were minimally affected by loss of 

BCL6 in BCL6fl/fl CreCD4 mice, Tbet protein levels were significantly elevated in the 

absence of BCL6.  

 

To fully understand if there is skewing of Th cells toward a Th1 type in BCL6fl/fl CreCD4 

mice, CD4+ T cells were analyzed for IFNγ expression and secretion.  After 

immunization with SRBC, BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were sacrificed on 

day nine.  Total CD4+ T cells were isolated and stimulated with antibodies overnight or 

with PMA and ionomycin for five hours and cytokines analyzed via flow cytometry.  

Analysis of overnight supernatants from +/+ and fl/fl Th cells showed no difference in 

IFNγ concentrations, as was also the case for CD4+ T cells analyzed via flow cytometry 

for intracellular cytokine staining (ICS) (Figure 31 A-C).  When transcript levels of ifnγ  
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Figure 31.  IFNγ expression in the absence of BCL6.  A. BCL6+/+ CreCD4 and BCL6fl/fl 
CreCD4 mice were immunized i.p. with SRBC and sacrificed on day 9.  Total CD4+ T cells 
were isolated from spleen via bead separation and stimulated in vitro with anti-CD3 and 
anti-CD28 antibodies in Th0 media for 24 hours.  Supernatants were analyzed for IFNγ 
via ELISA.  B. Mice were immunized and sacrificed as in (A).  Total CD4+ T cells were 
isolated from spleen via bead separation and stimulated for 5 hours in vitro with PMA 
and ionomycin.  IFNγ levels were assessed via ICS.  Cells gated on CD3+ CD4+.  C. 
Representative flow plots of ICS in (B).  D. Mice were immunized, sacrificed, and CD4+ 
T cells isolated as in (A).  T cells were lysed directly ex vivo for RNA analysis.  IFNγ 
transcript levels assessed via qPCR; normalized to +/+.  E. BCL6+/+ CreCD4 and BCL6fl/fl 
CreCD4 mice were immunized i.p. with SRBC and sacrificed 1, 3, 5, and 7 days afterward.  
Total CD4+ T cells were isolated via bead separation and stimulated for 24 hours with 
anti-CD3 and anti-CD28 antibodies in Th0 media.  Supernatants were assessed for IFNγ 
via ELISA.  F. BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were aged to 13 months and 
sacrificed without immunization.  Total CD4+ T cells were isolated via bead separation 
and stimulated for 24 hours with anti-CD3 and anti-CD28 antibodies in Th0 media.  IFNγ 
levels in supernatants were measured via ELISA.  Mean ± SE. 
 
 
were assessed in total CD4+ cells taken directly ex vivo from the spleen, BCL6fl/fl CreCD4 

T cells showed only a marginal decrease in RNA levels (Figure 31 D).  Therefore, there 

is little difference in IFNγ expression and secretion in the Th cells of BCL6fl/fl CreCD4 mice 

nine days after immunization, as compared to BCL6+/+ CreCD4 mice. 

 

Conversely, to assess changes in IFNγ at earlier time points after immunization, mice 

were injected with SRBC and sacrificed one, three, five, and seven days afterward.  
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While BCL6fl/fl CreCD4 mice did not have significantly higher levels of IFNγ at any time 

point, the CD4+ T cells did trend toward more IFNγ on day seven (Figure 31 E).  

 

To investigate whether Th1 skewing occurs later in the life of BCL6fl/fl CreCD4 mice, both 

cKO and control mice were aged for thirteen months.  Without immunization, total CD4+ 

T cells were isolated from spleen and stimulated overnight with antibodies.  While IFNγ 

levels in the supernatant of BCL6fl/fl CreCD4 mice was slightly increased compared to 

control mice, the difference was not significant (Figure 31 F). 

 

While in vivo modeling is important to understand changes of physiological relevance, 

we also wanted to investigate whether Th1 skewing of BCL6fl/fl CreCD4 naïve Th cells 

occurs in vitro under a variety of culture conditions.  When naïve CD4+ T cells were 

isolated from cKO and control mice, then activated under Th0, ThN, or TFH culture 

conditions overnight, tbx21 transcript levels were found to be significantly increased in 

BCL6fl/fl CreCD4 cells in non-skewing Th0 conditions, while these mice had significantly 

less tbx21 expression under TFH culture conditions (Figure 32 A).  To examine whether 

the increase in tbx21 levels in Th0 culture conditions was due to increased IFNγ 

secretion working in an autocrine fashion, naïve CD4+ T cells were activated with 

antibodies for 24 hours in Th0 media.  No differences in IFNγ secretion from +/+ and fl/fl 

Th cells were found (Figure 32 B).  Therefore, the increase in tbx21 transcript in naïve 

Th cells under non-skewing culture conditions is likely due to intrinsic factors.  When 

naïve Th cells were activated in vitro for five days, a significant decrease in IFNγ 

production was found in the absence of BCL6 (Figure 32 C).  Therefore, while the 

cytokine levels of total CD4+ T cells from in vivo immunized mice were unchanged over 

several time points, it appears IFNγ secretion in in vitro activated cells requires 

expression of BCL6 to sustain its levels over time.  Interestingly, EM cells, which are Th 

cells that have been activated in vivo, from unimmunized mice showed no difference in 

IFNγ levels after overnight in vitro stimulation (Figure 32 B).  Therefore, differences in 

IFNγ secretion by activated Th cells may be altered by the in vitro stimulation itself. 

 

Under neutral culture conditions, i.e. blocking IFNγ and IL-4, Tbet transcript levels 

increased significantly over time in BCL6fl/fl CreCD4 cells compared to BCL6+/+ CreCD4 cells 

(Figure 32 D).  Therefore, in the absence of IFNγ signaling, BCL6 may be working to 

limit tbx21 expression over time.  Finally, when naïve CD4+ T cells were isolated from  
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Figure 32.  Tbet, but not IFNγ, is increased in the absence of BCL6 in in vitro 
cultures.  A.  Naïve CD4+ T cells were isolated from BCL6+/+ CreCD4 or BCL6fl/fl CreCD4 
mice via FACS and stimulated with anti-CD3 and anti-CD28 antibodies in Th0, ThN, or 
TFH culture conditions for approximately 20 hours.  RNA expression of tbx21 was 
assessed by microarray (Th0) or qPCR (ThN and TFH) analysis.  B. Naïve and effector 
memory (EM) cells were isolated from unimmunized mice via FACS.  Cells were 
stimulated with anti-CD3 and anti-CD28 antibodies in Th0 culture conditions for 24 
hours.  IFNγ concentrations in supernatants measured via ELSA.  C. Total CD4+ T cells 
were isolated from unimmunized mice via bead separation and activated as in (B) in Th0 
media for 5 days.  After a 6 hour restimulation with anti-CD3 and anti-CD28, 
supernatants were collected and tested for IFNγ secretion via ELISA.  D. Naïve CD4+ T 
cells were isolated via FACS and stimulated with anti-CD3 and anti-CD28 antibodies in 
ThN culture conditions.  Cells were harvested and analyzed 1, 3, and 5 days after 
stimulation for tbx21 RNA expression via qPCR.  E. Naïve CD4+ T cells were isolated via 
FACS and activated with anti-CD3 and anti-CD28 antibodies under Th1 polarizing 
culture conditions for 3 days, then restimulated in Th0 conditions for 6 hours.  RNA 
levels of tbx21 were assessed via qPCR.  F. Cells from (E) were also restimulated in 
Th0 conditions for 18 hours and supernatant collected for analysis via ELISA.  Mean ± 
SE; **p < 0.01 via t test. 
 
 
BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice and activated under Th1 skewing conditions for 

three days, no differences in tbx21 transcript levels or IFNγ secretion was seen (Figure 

32 E – F). 
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The role of BCL6 in Th2 cells 

 

Published literature has shown that BCL6 can limit Th2 differentiation.  However those 

studies were done using GL KO mice.  Here, we are able to assess BCL6’s role in these 

Th cells without the confounding effects of the inflammatory environment seen in the 

original GL KO mice.  

 

When total CD4+ T cells were tested for GATA3 transcript in BCL6+/+ CreCD4 and BCL6fl/fl 

CreCD4 mice both before and after immunization, no differences in RNA levels were 

seen.  Naïve mice had no significant differences in gata3 expression; however fl/fl mice 

trended toward slightly higher levels (Figure 33 A).  After immunization, on day nine 

(Figure 33 B), as well as earlier in the immune response (Figure 33 C-top), no significant 

differences were seen in gata3 transcript levels.  Stimulating cells overnight with 

antibodies only further equalized the levels between +/+ and fl/fl Th cells (Figure 33 C-

bottom).    

 

 

 

 

 

 

 

 

 
 

Figure 33.  GATA3 transcript levels are unchanged 
in the absence of BCL6 in vivo.  A. RNA expression 
of gata3 in total CD4+ T cells from unimmunized 
BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice.  Total CD4+ T 
cells isolated via bead separation and lysed for RNA 
analysis directly ex vivo.  B. RNA expression of gata3 
in mice immunized i.p. with SRBC and sacrificed on 
day 9.  Total CD4+ T cells isolated via bead separation 
and lysed for RNA analysis directly ex vivo.  C. BCL6+/+ 
CreCD4 and BCL6fl/fl CreCD4 mice were immunized i.p. 
with SRBC and sacrificed 1, 3, and 5 days after.  Total CD4+ T cells were isolated via 
bead separation.  RNA expression of gata3 in cells lysed directly ex vivo (top) or after 24 
stimulation with anti-CD3 and anti-CD28 antibodies (bottom) in Th0 media.  Samples 
normalized to Day 1 +/+ (dotted line at 1.0).  Mean ± SE. 
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Figure 34.  IL-4 is decreased in BCL6-deficient CD4+ T cells.  A. BCL6+/+ CreCD4 and 
BCL6fl/fl CreCD4 mice were immunized i.p. with SRBC and sacrificed on day 9.  Total 
CD4+ T cells were isolated from spleen via bead separation and stimulated in vitro with 
anti-CD3 and anti-CD28 antibodies in Th0 media for 24 hours.  Supernatants were 
analyzed for IL-4 via ELISA.  B. Mice were immunized and sacrificed as in (A).  Total 
CD4+ T cells were isolated from spleen via bead separation and stimulated for 5 hours in 
vitro with PMA and ionomycin.  IL-4 levels were assessed via ICS.  Cells gated on CD3+ 
CD4+.  C. Representative flow plots of ICS in (B).  D. Mice were immunized, sacrificed, 
and CD4+ T cells isolated as in (A).  T cells were lysed directly ex vivo for RNA analysis.  
IL-4 transcript levels assessed via qPCR; normalized to +/+.  E. BCL6+/+ CreCD4 and 
BCL6fl/fl CreCD4 mice were immunized i.p. with SRBC and sacrificed 1, 3, 5, and 7 days 
afterward.  Total CD4+ T cells were isolated via bead separation and stimulated for 24 
hours with anti-CD3 and anti-CD28 antibodies in Th0 media.  Supernatants were 
assessed for IL-4 via ELISA.  F. Mice were immunized and sacrificed as in (E).  Total 
CD4+ T cells were isolated via bead separation.  RNA expression of il4 in cells lysed 
directly ex vivo (left) or after 24 stimulation with anti-CD3 and anti-CD28 antibodies in 
Th0 media (right).  Samples normalized to Day 1 +/+ (dotted line at 1.0).  G. BCL6+/+ 
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CreCD4 and BCL6fl/fl CreCD4 mice were aged to 13 months and sacrificed without 
immunization.  Total CD4+ T cells were isolated via bead separation and stimulated for 
24 hours with anti-CD3 and anti-CD28 antibodies in Th0 media.  IL-4 levels in 
supernatants were measured via ELISA.  Mean ± SE.  *p < 0.05, **p < 0.01, ***p < 0.001 
by t test. 
 
 
Immunized mice were also analyzed for IL-4 secretion, as this is the signature cytokine 

for Th2 cells.  Interestingly, total CD4+ T cells from immunized mice showed significant 

decreases in IL-4 production when stimulated either overnight with antibodies (Figure 34 

A) or for several hours with PMA and ionomycin and assessed via ICS (Figure 34 B-C).  

When Th cells from these mice were tested for il4 transcript ex vivo, without stimulation, 

il4 RNA was significantly reduced in the absence of BCL6 (Figure 34 D).  To see if this 

defect in IL-4 production occurs early after immune activation, mice were immunized 

with SRBC and sacrificed one, three, five, and seven days later.  Total CD4+ T cells 

were stimulated overnight with antibodies and supernatants analyzed.  Five days after 

immunization, BCL6fl/fl CreCD4 cells showed increased IL-4, but IL-4 concentrations 

decreased by day seven (Figure 34 E).  Therefore, the decrease on day nine is likely 

due to a continued decrease in production by fl/fl Th cells.  Transcript levels of il4, 

however, did not match the trend seen in protein levels.  While cells from both types of 

mice consistently increased il4 transcript over time, BCL6-deficient Th cells had 

significantly less transcript compared to WT cells (Figure 34 F-left) when assessed 

directly ex vivo.  When cells were stimulated overnight with antibodies, il4 RNA was not 

different between the two groups (Figure 34 F-right), and seemed to match the trends 

seen in IL-4 secretion (Figure 34 E).  Therefore, determining the effects of BCL6 on IL-4 

expression and secretion can be complicated by the type of stimulation used. 

 

Older mice are more prone to disease and have increased numbers of activated T cells.  

Therefore, we wished to assess IL-4 levels in these mice to see if their CD4+ T cells 

would skew toward a Th2 type later in life.  At thirteen months, unimmunized mice were 

sacrificed and total CD4+ T cells isolated.  After an overnight stimulation with antibodies, 

supernatants were tested for IL-4.  While no significant difference was found, BCL6fl/fl 

CreCD4 cells trended toward higher IL-4 secretion (Figure 34 G). 

 

Because we observed altered il4 and gata3 transcript levels with in vitro stimulation, we 

wanted to assess the ability of CD4+ T cells to adopt a Th2-like phenotype in different in 
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vitro culture conditions.  When naïve Th cells were isolated from mice and activated with  

antibodies in Th0, ThN, and TFH culture conditions overnight, gata3 expression was 

increased in fl/fl cells under all conditions, and significantly so in Th0 and ThN media 

(Figure 35 A).  When cells were cultured for up to five days in ThN media, however, fl/fl 

cells had only marginally increased gata3 expression on days one and three after 

activation, and approached a statistical increase by day five (Figure 35 B).  Under non- 

skewing, Th0 conditions, naïve fl/fl cells secreted only slightly increased levels of IL-4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 35.  GATA3 is marginally increased in BCL6-deficient CD4+ T cells in in 
vitro cultures.  A.  Naïve CD4+ T cells were isolated from BCL6+/+ CreCD4 or BCL6fl/fl 
CreCD4 mice via FACS and stimulated with anti-CD3 and anti-CD28 antibodies in Th0, 
ThN, or TFH culture conditions for approximately 20 hours.  RNA expression of gata3 
was assessed by microarray (Th0 and TFH) or qPCR (ThN) analysis.  B. Naïve and 
effector memory (EM) cells were isolated from unimmunized mice via FACS.  Cells were 
stimulated with anti-CD3 and anti-CD28 antibodies in Th0 culture conditions for 24 
hours.  IL-4 concentrations in supernatants measured via ELISA.  C. Total CD4+ T cells 
were isolated from unimmunized mice via bead separation and activated as in (B) in Th0 
media for 5 days.  After a 6 hour restimulation with anti-CD3 and anti-CD28, 
supernatants were collected and tested for IL-4 secretion via ELISA.  D. Naïve CD4+ T 
cells were isolated via FACS and stimulated with anti-CD3 and anti-CD28 antibodies in 
ThN culture conditions.  Cells were harvested and analyzed 1, 3, and 5 days after 
stimulation for gata3 RNA expression via qPCR.  E. Naïve CD4+ T cells were isolated via 
FACS and activated with anti-CD3 and anti-CD28 antibodies under Th2 polarizing 
culture conditions for 3 days, then restimulated in Th0 conditions for 6 hours.  RNA 
levels of gata3 were assessed via qPCR.  F. Cells from (E) were also restimulated in 
Th0 conditions for 18 hours and supernatant collected for analysis via ELISA.  Mean ±  
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SE; **p < 0.01 via t test. 
 
 
compared to +/+ after twenty four hours, however EM cells from the same mice, 

stimulated for the same amount of time, in the same manner, showed a further increase 

in IL-4 production (Figure 35 D).  However, when naïve cells were activated in Th0 

media for five days, followed by an overnight restimulation, IL-4 secretion from fl/fl cells 

was shown to be significantly reduced (Figure 35 C).  In the presence of Th2-skewing 

cytokines, neither GATA3 transcript, nor IL-4 production, was significantly changed.  

Therefore, while GL KO mice have typically shown an overwhelming skewing of Th cells 

toward a Th2 phenotype, here we do not see evidence of that skewing.  GATA3 

transcript levels are only marginally increased overall, depending on the stimulation 

method, and IL-4 is actually reduced, both in vivo and in vitro during longer-term 

cultures. 

 

The role of BCL6 in Th17 cells 

 

Previous work by our lab has shown BCL6 to have a role in promoting Th17 

differentiation through suppression of Th2 differentiation (97).  However, that work was 

done using a BCL6 GL KO model.  Here we are able to better understand the role of 

BCL6 in Th17 cells in the absence of inflammatory cytokines in vivo.  In our new model, 

BCL6-deficient CD4+ T cells show only marginal increases in rorc expression, the gene 

that encodes RORγt, both before and nine days after immunization (Figure 36 A-B).  At 

earlier time points in the immune response, CD4+ T cells from fl/fl mice show an increase 

in rorc transcription, and significantly so on day five after injection (Figure 36 C-top).  

However, when these T cells are stimulated ex vivo with antibodies for 24 hours, fl/fl Th 

cells drastically reduce their rorc expression compared to +/+ cells (Figure 36 C-bottom). 

 

Next, we evaluated the expression and secretion of IL-17A, the signature cytokine of 

Th17 cells.  Nine days after immunizing mice with SRBC, no differences were seen in IL-

17A secretion, either by ELISA (Figure 37 A) or by ICS (Figure 37 B-C).  Transcript 

levels of il17a assessed in total CD4+ T cells lysed directly ex vivo showed no difference 

in RNA levels either (Figure 37 D).  In a time course experiment, where mice were 

sacrificed one, three, five, and seven days after immunization, total CD4+ T cells 

stimulated with antibodies overnight showed significantly more IL-17A secretion by 
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Figure 36.  RORγt RNA levels are marginally 
increased in the absence of BCL6 in vivo.  A. RNA 
expression of rorc (RORγt) in total CD4+ T cells from 
unimmunized BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice.  
Total CD4+ T cells isolated via bead separation and 
lysed for RNA analysis directly ex vivo.  B. RNA 
expression of rorc in mice immunized i.p. with SRBC 
and sacrificed on day 9.  Total CD4+ T cells isolated via 
bead separation and lysed for RNA analysis directly ex 
vivo.  C. BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were 
immunized i.p. with SRBC and sacrificed 1, 3, and 5 days after.  Total CD4+ T cells were 
isolated via bead separation.  RNA expression of rorc in cells lysed directly ex vivo (top) 
or after 24 stimulation with anti-CD3 and anti-CD28 antibodies (bottom) in Th0 media.  
Samples normalized to Day 1 +/+ (dotted line at 1.0).  Mean ± SE; *p < 0.05, **p < 0.01 
by t test. 
 
 
BCL6-deficient T cells only on day five; all other time points showed no difference in  

cytokine production (Figure 37 E).  Finally, aged mice were assessed for any T cell 

skewing associated with aging, and no difference was seen between +/+ and fl/fl Th 

cells, although BCL6fl/fl CreCD4 mice trended toward more IL-17A production (Figure 37 

F).  In in vitro cultures of naïve Th cells, levels of rorc and IL-17A depended on the 

media environment.  Naïve CD4+ T cells isolated from BCL6+/+ CreCD4 and BCL6fl/fl 

CreCD4 mice activated with antibodies in Th0, ThN, or TFH media showed increases in 

rorc transcription only with the presence of TFH-skewing cytokines (Figure 38 A).  

Furthermore, naïve Th cells from fl/fl mice in Th0 media did not secrete more IL-17A; 

neither did EM cells, which have been previously activated in vivo, after 24 hours in Th0 

media (Figure 38 B).  When naïve cells were cultured in vitro in Th0 media for five days, 

IL-17A production was significantly reduced in BCL6-deficient mice (Figure 38 C).  In the 

limiting environment of ThN media, fl/fl naïve CD4+ T cells showed significantly reduced 

levels of rorc three days after activation (Figure 38).  By day five, however, no difference 

was seen between the two cell types, as +/+ Th cells had reduced their rorc levels to that 

of the fl/fl cells.  Conversely, in the presence of Th17-skewing cytokines, after three days  

A. B. C. 
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Figure 37.  IL-17A secretion is not altered in the absence of BCL6.  A. BCL6+/+ 
CreCD4 and BCL6fl/fl CreCD4 mice were immunized i.p. with SRBC and sacrificed on day 9.  
Total CD4+ T cells were isolated from spleen via bead separation and stimulated in vitro 
with anti-CD3 and anti-CD28 antibodies in Th0 media for 24 hours.  Supernatants were 
analyzed for IL-17A via ELISA.  B. Mice were immunized and sacrificed as in (A).  Total 
CD4+ T cells were isolated from spleen via bead separation and stimulated for 5 hours in 
vitro with PMA and ionomycin.  IL-17A levels were assessed via ICS.  Cells gated on 
CD3+ CD4+.  C. Representative flow plots of ICS in (B).  D. Mice were immunized, 
sacrificed, and CD4+ T cells isolated as in (A).  T cells were lysed directly ex vivo for 
RNA analysis.  IL-17A transcript levels assessed via qPCR; normalized to +/+.  E. 
BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were immunized i.p. with SRBC and sacrificed 
1, 3, 5, and 7 days afterward.  Total CD4+ T cells were isolated via bead separation and 
stimulated for 24 hours with anti-CD3 and anti-CD28 antibodies in Th0 media.  
Supernatants were assessed for IL-17A via ELISA.  F. BCL6+/+ CreCD4 and BCL6fl/fl 
CreCD4 mice were aged to 13 months and sacrificed without immunization.  Total CD4+ T 
cells were isolated via bead separation and stimulated for 24 hours with anti-CD3 and 
anti-CD28 antibodies in Th0 media.  IL-17A levels in supernatants were measured via 
ELISA.  Mean ± SE; *p < 0.05 by t test. 
 
 
rorc was increased in BCL6-deficient T cells (Figure 38 E), while IL-17A production was 

only marginally increased (Figure 38 F).  

 

BCL6 influences Foxp3 expression in CD4+ T cells  

 

Work by our lab has shown BCL6 to play a role in Treg cells, wherein BCL6 suppresses  

GATA3 and Th2 cytokine secretion by the regulatory cells, thus facilitating their 
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Figure 38.  RORγt expression is reliant on BCL6 and exogenous cytokines for 
sustained expression.  A.  Naïve CD4+ T cells were isolated from BCL6+/+ CreCD4 or 
BCL6fl/fl CreCD4 mice via FACS and stimulated with anti-CD3 and anti-CD28 antibodies in 
Th0, ThN, or TFH culture conditions for approximately 20 hours.  RNA expression of rorc 
was assessed by microarray (Th0 and TFH) or qPCR (ThN) analysis.  B. Naïve and 
effector memory (EM) cells were isolated from unimmunized mice via FACS.  Cells were 
stimulated with anti-CD3 and anti-CD28 antibodies in Th0 culture conditions for 24 
hours.  IL-17A concentrations in supernatants measured via ELSA.  C. Total CD4+ T 
cells were isolated from unimmunized mice via bead separation and activated as in (B) 
in Th0 media for 5 days.  After a 6 hour restimulation with anti-CD3 and anti-CD28, 
supernatants were collected and tested for IL-17A secretion via ELISA.  D. Naïve CD4+ 
T cells were isolated via FACS and stimulated with anti-CD3 and anti-CD28 antibodies in 
ThN culture conditions.  Cells were harvested and analyzed 1, 3, and 5 days after 
stimulation for rorc RNA expression via qPCR.  E. Naïve CD4+ T cells were isolated via 
FACS and activated with anti-CD3 and anti-CD28 antibodies under Th17 polarizing 
culture conditions for 3 days, then restimulated in Th0 conditions for 6 hours.  RNA 
levels of rorc were assessed via qPCR.  F. Cells from (E) were also restimulated in Th0 
conditions for 18 hours and supernatant collected for analysis via ELISA.  Mean ± SE; *p 
< 0.05, **p < 0.01 via t test. 
 
 
suppressive nature and not promoting further inflammation (108).  However, once again, 

these experiments were done using GL KO mice.  Also, recent work by others has 

identified a specific subset of Treg cells which can traffic into the GC and contribute an 

additional layer of regulation to the cell activity there (35, 36).  These studies show BCL6 

and Foxp3 being co-expressed in these cells, with BCL6 facilitating the migration of the 

Treg cells into the GC.  Therefore, it has been established that these two master  
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Figure 39.  Foxp3 transcript levels are significantly reduced in BCL6-deficient  
CD4+ T cells.  A. Naïve CD4+ T cells were isolated from BCL6+/+ CreCD4 and BCL6fl/fl 
CreCD4 mice via FACS.  Cells were activated with anti-CD3 and anti-CD28 antibodies in 
Th0 or TFH media for 20 hours before lysing for RNA.  Transcript levels of Foxp3 were 
assessed via microarray.  BCL6fl/fl CreCD4 transcript levels are shown relative to +/+ 
(dotted line at -1.0) in each culture condition.  Mean shown; **p < 0.01.  B. Mice were 
immunized i.p. with SRBC and sacrificed 1, 3, and 5 days after.  Total CD4+ T cells were 
isolated via bead separation.  RNA expression of foxp3 in cells lysed directly ex vivo 
(left) or after 24 stimulation with anti-CD3 and anti-CD28 antibodies (right) in Th0 media.  
Samples normalized to Day 1 +/+ (dotted line at 1.0).  Mean ± SE; *p < 0.05, **p < 0.01 
by t test. 
 
 
transcription factors can be co-expressed, but what effects BCL6 has specifically on 

Foxp3 expression has not been explored in a non-GL KO mouse model.   

 

As shown in Figure 23 D in Chapter 3 of this thesis, no differences in Foxp3+ CD4+ T 

cells in the spleen of unimmunized mice were found between BCL6+/+ CreCD4 and 

BCL6fl/fl CreCD4 mice.  To investigate what role BCL6 may have on Foxp3 expression 

early after activation, naïve CD4+ T cells were isolated via FACS and activated with 

antibodies in Th0 or TFH media overnight.  Cells were then harvested and analyzed for 

RNA expression via microarray.  In both media conditions, significant reductions in foxp3 

RNA transcript were found in fl/fl T cells (Figure 39 A).  This was confirmed in an in vivo 

time course experiment.  When mice were sacrificed one, three, and five days after 

immunization with SRBC and cells lysed for RNA directly ex vivo, foxp3 was found to be 

significantly reduced both at the three and five day time points in fl/fl mice (Figure 39 B-

left).  Ex vivo stimulation with antibodies for 24 hours only exacerbated this difference 

(Figure 39-right).  Therefore, unlike the inconsistencies seen with other master 

transcription factors after in vitro stimulation, Foxp3 appears to be down-regulated in the 

absence of BCL6, regardless of stimulation method. 

 

A. B. 
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Blimp-1 is not increased in the absence of BCL6 

 

Many researchers have established a reciprocal expression model for Blimp-1 and BCL6 

(62).  However, this work has been primarily done with BCL6 GL KO mice and Blimp-1 

cKO mice.  Therefore, no one has examined the changes in Blimp-1 expression in the 

absence of BCL6 in a non-inflammatory prone model.  Using our new conditional mouse 

model we were able address this issue, and found the repression of prdm1, the gene for 

Blimp-1, by BCL6 is not as clear as previously thought. 

 

Total CD4+ T cells from fl/fl mice showed no increase in prdm1 expression either before 

(Figure 40 A) or nine days after immunization with SRBC (Figure 40 B).  In a time course 

experiment, in which mice were sacrificed one, three, and five days after immunization, 

cells assessed directly ex vivo showed a significant decrease in prdm1 expression in the 

absence of BCL6 early after immunization (Figure 40 C-top).  This was also seen when 

cells were stimulated with antibodies for 24 hours (Figure 40 C-bottom).  Interestingly, 

while cells analyzed ex vivo showed a decrease in prdm1 expression over time in +/+ 

cells, the gene seemed to increase on day five when those cells were stimulated with 

antibody.  However, that increase was never able to match the levels seen in ex vivo 

analyzed +/+ cells, even at their lowest levels (Figure 40 D). 

 

When naïve Th cells were isolated and activated in vitro under different culture 

conditions, Th0 media resulted in no differences between +/+ and fl/fl cells, ThN 

conditions seemed to facilitate reduced prdm1 transcript in fl/fl cells, while TFH- 

polarizing conditions were able to trigger a significant increase in prdm1 in the absence 

of BCL6 (Figure 40 E).  When cells were cultured for longer periods in ThN media, 

prdm1 remained low in fl/fl cells until day five, at which point they seemed to equal that 

of the unchanged levels in +/+ cells (Figure 40 F).  Together this data demonstrates 

while BCL6 may be up-regulated in the absence of Blimp-1, as has been reported, the 

opposite is not necessarily true.  In fact, Blimp-1 appears to be somewhat reliant on 

BCL6 for its own transcription, and is only able to overcome the absence of BCL6 in the 

presence of TFH-polarizing cytokines. 
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Figure 40.  Blimp-1 is decreased in CD4+ T cells lacking BCL6.  A. RNA expression 
of prdm1 (Blimp-1) in total CD4+ T cells from unimmunized BCL6+/+ CreCD4 and BCL6fl/fl 
CreCD4 mice.  Total CD4+ T cells isolated via bead separation and lysed for RNA analysis 
directly ex vivo via qPCR.  B. RNA expression of prdm1 in mice immunized i.p. with 
SRBC and sacrificed on day 9.  Total CD4+ T cells isolated via bead separation and 
lysed for RNA analysis directly ex vivo via qPCR.  C. BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 
mice were immunized i.p. with SRBC and sacrificed 1, 3, and 5 days after.  Total CD4+ T 
cells were isolated via bead separation.  RNA expression of prdm1 in cells lysed directly 
ex vivo (top) or after 24 stimulation with anti-CD3 and anti-CD28 antibodies (bottom) in 
Th0 media.  Samples normalized to Day 1 +/+ (dotted line at 1.0).  Mean ± SE; *p < 
0.05, **p < 0.01 by t test.  D. Samples from (C) together normalized to levels in +/+ Day 
1 ex vivo (dotted line at 1.0).  Mean ± SE; *p < 0.05, **p < 0.01, ***p < 0.001 by ANOVA; 
Tukey post hoc.  E. Naïve CD4+ T cells were isolated from BCL6+/+ CreCD4 or BCL6fl/fl 
CreCD4 mice via FACS and stimulated with anti-CD3 and anti-CD28 antibodies in Th0, 
ThN, or TFH culture conditions for approximately 20 hours.  RNA expression of gata3 
was assessed by microarray (Th0) or qPCR (ThN & TFH) analysis.  Mean ± SE; *p < 
0.05 by t test.  F. Naïve CD4+ T cells were isolated via FACS and stimulated with anti-
CD3 and anti-CD28 antibodies in ThN culture conditions.  Cells were harvested and 
analyzed 1, 3, and 5 days after stimulation for prdm1 RNA expression via qPCR.  Mean 
± SE 
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Figure 41.  IL-10 is increased, in an intrinsic manner, in BCL6fl/fl CreCD4 CD4+ T 
cells.  A. Unimmunized BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were sacrificed and 
total CD4+ T cells isolated from spleen.  Cells were activated with anti-CD3 and anti- 
CD28 antibodies in Th0 media for 24 hours.  Supernatants were tested for IL-10 via 
ELISA.  B - F. BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were immunized with SRBC and 
sacrificed 9 days later.  Total CD4+ T cells were isolated via bead separation.  B. Cells 
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were stimulated with anti-CD3 and anti-CD28 antibodies in Th0 media for 24 hours and 
supernatants assessed for IL-10 via ELISA.  C. Cells were stimulated as in (B) then 
lysed for RNA analysis.  Transcript levels of il10 were assessed via qPCR; levels 
normalized to +/+.  D. Isolated T cells were stimulated with PMA and ionomycin in Th0 
media for 5 hours then cytokines assessed via ICS.  IL-10+ cells are shown as percent of 
CD3+ CD4+.  E. Representative flow plots of cells in (B).  Gated on CD3+ CD4+.  F. MFI 
of IL-10+ cells in (D).  G. Percent of IFNγ+ cells that are IL-10+ cells.  Gated on CD3+ 
CD4+ IFNγ+.  H. Representative flow plots of cells in (G).  Gated on CD3+ CD4+.  I. 
BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were immunized with SRBC and sacrificed 1, 3, 
5, and 7 days after.  Total CD4+ T cells were isolated and stimulated as in (A).  IL-10 
levels in supernatant were measured via ELISA.  Mean ± SE; *p < 0.05, **p < 0.01, ***p 
< 0.001 via t test.  J. Mice were aged to 13 months and sacrificed without immunization.  
Total CD4+ T cells were isolated and stimulated as in (A).  IL-10 levels in supernatants 
were measured via ELISA.  Mean ± SE.  K. Spleen cells were isolated from 
unimmunized BCL6+/+ CreCD4, BCL6fl/fl CreCD4, BCL6∆ZF/ ∆ZF, and BCL6fl/fl CreLysM mice.  
Effector memory (EM) and central memory (CM) cells were isolated via FACS and 
stimulated 24 hours with anti-CD3 and anti-CD28 antibodies in Th0 media.  Total spleen 
cells were stimulated with LPS for 24 hours in Th0 media.  Supernatants were assessed 
for IL-10 via ELISA.  Mean ± SE; *p < 0.05, **p < 0.01 by ANOVA; Tukey post hoc. 
 
 
IL-10 is suppressed by BCL6 

 

During evaluation of our new mutant cKO mouse model, one cytokine, IL-10, which is 

not traditionally a signature cytokine of any of the Th subsets, was shown to be 

consistently increased in a variety of experimental conditions.  When total CD4+ T cells 

from unimmunized mice were isolated and stimulated overnight with antibodies, BCL6fl/fl 

CreCD4 cells showed a significant increase in IL-10 secretion (Figure 41 A).  Nine days 

after immunization with SRBC, both protein and transcript levels of IL-10 were 

significantly increased in BCL6-deficient CD4+ T cells (Figure 41 B-C).  When IL-10 

production was assessed in immunized mice via ICS, no difference in the percentage of 

IL-10+ CD4+ T cells was found between the two mouse strains (Figure 41 D-E).  

However, the MFI of IL-10 in fl/fl T cells was significantly higher than +/+ cells (Figure 41 

F).  Therefore, although the same percentage of cells are making IL-10, those lacking 

BCL6 make more.  

 

We next wished to determine if the cytokine secretion profile of the CD4 T cells in fl/fl 

mice was altered.  Using ICS of CD4+ T cells from immunized mice, we saw no 

differences in IL-4/IL-10 dual positive cells, nor were there differences in IL-17A 

producing cells which also made IL-10 (data not shown).  However, we did find an 

interesting result when analyzing IFNγ producing cells.  As shown in Figure 30 C, no 
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differences in percent of IFNγ+ Th cells were found between BCL6+/+ CreCD4 and BCL6fl/fl 

CreCD4 mice.  However, the percent of IFNγ+ cells which also produce IL-10 was 

significantly higher in the fl/fl CD4+ T cells (Figure 41 G-H), suggesting in the absence of 

BCL6, more Th cells which make IFNγ are also producing IL-10. 

 

Using a time course experiment, CD4+ T cells from fl/fl mice were shown to secrete more 

IL-10 at all time points checked after immunization, peaking on day five (Figure 41 I).  

Even the CD4+ T cells from mice aged to thirteen months trended toward secreting more 

IL-10 in the absence of BCL6 (Figure 41 J).   

 

However, the IL-10 produced by fl/fl Th cells was not as high as the level seen in GL KO 

mice.  Using FACS, we sorted effector memory (EM) and central memory (EM) cells 

from BCL6+/+ CreCD4, BCL6fl/fl CreCD4 and BCL6∆ZF/∆ZF mice and stimulated those cells, 

along with total spleen cells, overnight in Th0 media.  While cells from +/+ mice 

produced very little IL-10, EM cells from fl/fl and ∆ZF/∆ZF mice produced significantly 

more IL-10, although fl/fl cells did not produce as much IL-10 as ∆ZF/∆ZF cells.  When 

CM supernatants were evaluated, ∆ZF/∆ZF cells were the only group to secrete 

measurable amounts of the cytokine.  Finally, while total spleen cells from all three mice 

were able to produce IL-10 after stimulation with LPS, the levels appeared in a step-wise 

fashion, with +/+ making the least, fl/fl cells producing intermediate amounts, and 

∆ZF/∆ZF Th cells secreting the most.    

 

To demonstrate that the propensity to secrete more IL-10 is due to Th cell intrinsic 

factors in BCL6fl/fl CreCD4 mice, EM and CM cells were also sorted from BCL6fl/fl CreLysM 

mice.  These LysM mice express the cre recombinase enzyme specifically in myeloid 

cells, thus inducing the inflammatory nature of myeloid cells seen in GL KO mice.  T 

cells sorted from these mice, as well as total spleen cells, produced levels of IL-10 

similar to that seen in BCL6+/+ CreCD4 mice.  Therefore, increased IL-10 production of 

BCL6-deficient CD4+ T cells is due to loss of BCL6 specifically in CD4+ T cells and not to 

extrinsic stimulating factors.  

 

Finally, we evaluated the expression and secretion of IL-10 in several in vitro culture 

conditions (Figure 42).  Naïve CD4+ T cells were isolated from BCL6+/+ CreCD4 and 

BCL6fl/fl CreCD4 mice and activated in different polarizing media conditions with  
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Figure 42.  IL-10 is increased in different skewing culture conditions.  A. Naïve 
CD4+ T cells were isolated from BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice via FACS and 
activated with anti-CD3 and anti-CD28 antibodies in Th0, ThN, or TFH media.  After 24 
hours, cells were lysed for RNA analysis.  IL-10 transcript levels in Th0 and TFH cultures 
analyzed via microarray; ThN cultured cells analyzed via qPCR.  B. Naïve CD4+ cells 
were isolated from spleen via FACS and activated with anti-CD3 and anti-CD28 
antibodies in Th1, Th2, and Th17 polarizing media for 3 days.  After a 6 hour 
restimulation with the same antibodies, cells were lysed for RNA analysis via qPCR.  
Samples normalized to +/+ for each culture condition (dotted line at 1).  C. Cells in (B) 
were restimulated for 24 hours with antibodies and supernatants assessed for IL-10 via 
ELISA.  D. Same samples as in (B) except all are normalized to Th1 +/+ cells (dotted 
line at 1).  Mean ± SE; *p < 0.05 by t test. 
 
 
antibodies.  When naïve cells were activated overnight in Th0, ThN, and TFH culture 

conditions, il10 transcript levels were increased in Th0 culture conditions and 

significantly increased in TFH conditions (Figure 42 A).  Blocking IFNγ and IL-4 in ThN 

conditions led to a drop in il10 RNA.  When naïve cells were activated under Th1, Th2, 

and Th17 polarizing conditions for three days, il10 transcript levels were elevated in fl/fl 

Th cells, and significantly so under Th17 conditions (Figure 42 B).  This increase in RNA, 

however, did not necessarily translate to increases in cytokine secretion.  Under Th1-

polarizing culture conditions, fl/fl Th cells seemed to secrete more IL-10; however the 

sample size was too small to determine statistical significance (Figure 42 C).  Th2-

polarized cells showed no difference in IL-10 production between the two cell types.  

Finally, while Th17-polarizing conditions yielded the highest fold increase of il10 

transcript over +/+, these cells secreted the least IL-10 of all culture conditions.  When 
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transcript levels were reanalyzed and all samples normalized to Th1 +/+ samples (Figure 

42 D), the il10 transcript profile seemed to match the IL-10 secretion by these cells.  

Therefore, while Th2 culture conditions facilitated the most IL-10 secretion of the three 

Th cell polarizing conditions, no difference in IL-10 was seen in BCL6-deficient cells.  

Therefore, the cytokine conditioning of the media must be abrogating any effects loss of  

BCL6 may have on the production of IL-10 by these cells. 

 

BCL6 limits the proliferation of activated Th cells 

 

As demonstrated in Chapter 3 of this thesis, BCL6fl/fl CreCD4 mice appear to have a 

defect in Th cell activation.  However there are effector Th cells in these mice.  

Therefore, we wished to analyze whether the proliferation of Th cells is affected by the 

absence of BCL6, once the cells are activated. 

 

As was done previously, a time course experiment was performed, wherein mice were 

immunized i.p. with SRBC and sacrificed one, three, and five days after.  Total spleen 

cells were assessed for Ki67, a proliferation marker, via flow cytometry.  As shown in 

Figure 43 A, total CD4+ T cells from BCL6fl/fl CreCD4 mice had decreased Ki67 staining 

compared to BCL6+/+ CreCD4 mice.  However, this could likely be due to fewer activated 

cells, as seen in Chapter 3.  Therefore, cells were further gated on CXCR5, a surface 

marker which is up-regulated on many Th cells soon after activation.  One day after 

immunization, BCL6fl/fl CreCD4 mice showed a decrease in Ki67 in this population, 

however by days three and five, there were no differences between the two mouse 

strains (Figure 43 B).  Th cells were also gated on an effector cell phenotype, which 

should include most activated cells.  When this was done, no difference was seen 

between BCL6-deficient and WT Th cells one and three days after immunization.  

Furthermore, BCL6-deficient Th cells had significantly more Ki67 staining five days after 

immunization (Figure 43 C), suggesting BCL6 may actually be repressing proliferation 

starting at intermediate time points after immunization.   

 

When mice were analyzed nine days after immunization, significantly more effector Th 

cells from fl/fl mice were expressing CD25, an activation marker, as compared to +/+ 

mice (Figure 43 D-left).  Also, the amount of CD25 expressed on CD25+ cells trended 

toward being higher in fl/fl cells, although the MFI levels were not statistically significant 
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Figure 43.  BCL6 limits proliferation of activated CD4+ T cells.  A – C. BCL6+/+ 
CreCD4 and BCL6fl/fl CreCD4 mice were immunized i.p. with SRBC and sacrificed 1, 3, and 
5 days after.  Total spleen cells were stained for CD3, CD4, and assessed for Ki67 
expression via flow cytometry.  A. Ki67+ cells in total Th cell population.  B. Ki67+ cells 
that are CD3+ CD4+ CXCR5+.  C. Ki67+ cells that are CD3+ CD4+ CD44hi.  D. Mice were 
immunized i.p. with SRBC and sacrificed on day 9.  Total spleen cells stained for CD3+ 
CD4+ CD44hi CD25+.  Percent of CD25+ cells in CD44hi Th cell population (left).  MFI of 
CD25 in CD25+ population shown at left.  E. Naïve CD4+ T cells were isolated via FACS 
and activated in vitro with different concentrations of anti-CD3 and anti-CD28 antibodies 
in Th0 media for 48 hours.  Cells were then pulsed with tritiated thymidine for 18 hours.  
Incorporation shown as corrected counts per minute (CCPM). Mean ± SE; *p < 0.05, **p 
< 0.01 by t test. 
 
 
(Figure 43 D-right).  Therefore, it appears BCL6 limits the expression of activation 

markers on already activated Th cells.  

 

To investigate the difference in cell activation markers in vitro, naïve Th cells were 

isolated via FACS and activated in vitro with different concentrations of anti-CD3 and 

anti-CD28 antibodies.  After 48 hours in Th0 media, cells were pulsed with tritiated 

thymidine (3H) for 18 hours.  Scintillation counting of the incorporated thymidine revealed 

no differences in baseline proliferation (cultured without antibodies) (0x0) or at lower 

levels of activating antibodies (1 ug/mL anti-CD3 + 2 ug/mL anti-CD28 (1x2) and 5 

ug/mL anti-CD3 + 2 ug/mL anti-CD28 (5x2)) (Figure 43 E).  However, at the highest 
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concentrations of antibodies (10 ug/mL anti-CD3 and anti-CD28 (10x10)), which would 

activate the most Th cells and do so with strong stimulation, cells from fl/fl mice showed 

significantly more thymidine incorporation.  This demonstrates a higher proliferative 

capability for Th cells lacking BCL6 in the presence of strong stimulation.  

  

DISCUSSION 

 

Overall, there appeared to be no overwhelming effects on Th subset cell differentiation in 

the absence of BCL6, contrary to what has been seen previously with GL KO mouse 

models.  However, the mode of cellular activation (in vitro vs. in vivo) and the cell culture 

environment seemed to greatly affect the regulation of master transcription factors and 

cytokine secretion.  In the case of Th1 cells, IFNγ production did not seem to be altered 

in the absence of BCL6 in vivo.  However, when naïve fl/fl cells were activated in vitro for 

several days in Th0 media, which contains no skewing agents of any kind, the signature 

cytokine was reduced, as compared to +/+ cells.  This would suggest that IFNγ 

production is at least somewhat facilitated by BCL6.  These findings seem to contradict 

the findings of recent research in which BCL6 is necessary to limit excessive IFNγ 

production which is initiated by Tbet (39, 95).  This finding is especially perplexing since 

Tbet protein levels were significantly elevated in vivo in the absence of BCL6.  Our data 

demonstrates a role for BCL6 regulating Tbet at the post-transcriptional level in an in 

vivo immunization model.  When fl/fl naïve cells were activated in vitro, we saw 

significant increases in tbx21 transcript after 24 hours in Th0 media and after 3 days in 

ThN media.  However, when cells were cultured in TFH-skewing conditions, tbx21 

mRNA was significantly reduced in the absence of BCL6.  Therefore, it seems that BCL6 

can limit tbx21 transcription when no additional cytokines are present or when they are 

blocked, but in the presence of a cytokine rich environment, such as is found in vivo or in 

TFH in vitro conditions, tbx21 transcription is abrogated.  At the post-transcriptional level, 

though, it seems that BCL6 will limit Tbet production in vivo.  However, most of these 

findings are quite nuanced and IFNγ production was not significantly altered in our cKO 

mice.  Therefore, it appears that loss of BCL6 has very little effect on Th1 cell 

differentiation.  

 

The one subset we expected to see overwhelming increases in in the BCL6fl/fl CreCD4 

mice was Th2 cells.  This, however, did not prove to be true.  In fact, we saw significant 
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reductions in IL-4 secretion and transcription, both in vitro and in vivo.  Therefore, BCL6 

clearly plays a role in the production of this cytokine.  Overall, we saw few differences in 

gata3 transcription in the absence of BCL6.  Th cells activated in vivo had no difference 

in GATA3 mRNA without BCL6, while naïve cells activated in vitro showed increases in 

transcription in certain circumstances, particularly very early after activation (i.e. within 

24 hours).  Therefore, unlike the published findings using the BCL6 GL KO mouse 

model, we do not have evidence for increased Th2 differentiation in our cKO mice, and 

in fact, they appear to have a defect in IL-4 production. 

 

Like Th1 and Th2 cell analysis, the differentiation of Th17 cells did not appear to be 

consistently affected by loss of BCL6.  However, upon closer inspection, we detected a 

phenotype which adds further support for our model of graded expression, as set forth in 

Chapter 2.  In that model, Th17 cells require low levels of BCL6 for differentiation.  We 

can see evidence for this in the data presented in Figure 37.  When +/+ cells were 

assessed ex vivo for rorc mRNA, levels did not change much over the first five days of 

the immune response (Figure 36 C-top).  However, when WT total CD4+ T cells were 

stimulated with antibodies overnight, the levels of rorc increased.  Most interestingly, if 

you consider the transcript levels of BCL6 after in vitro stimulation (Figure 29 B), with 

day five having the lowest levels, we can see an inverse correlation between rorc 

transcripts and BCL6 RNA in WT mice.  Furthermore, when WT naïve cells are activated 

in vitro for several days, we saw a time-dependent decrease in rorc transcript levels 

(Figure 38 D).  However, that decrease was much slower than what was seen in fl/fl 

cells.  BCL6 is up-regulated upon initial activation of naive Th cells (22, 23), thus, it 

appears that the low levels of BCL6 in recently activated cells reinforces the expression 

of RORγt for a few days, longer than when BCL6 is completely absent.  Together, this 

analysis of BCL6 and RORγt in WT cells suggests that low levels of BCL6 are necessary 

for continued expression of RORγt.    

 

Analysis of our fl/fl mice provides evidence that an enhanced cytokine environment can 

overcome any necessity for BCL6 in RORγt expression, and, in some cases, facilitate 

even higher expression.  For example, cells assessed ex vivo show increases in rorc 

transcript levels one, three, and five days after immunization in the absence of BCL6.  

Therefore, when subjected to an in vivo environment, likely to be rich in cytokines, BCL6 

appears to inhibit RORγt expression.  In vitro, when naïve cells are activated in TFH 
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media, rorc mRNA is significantly increased in the absence of BCL6, while it is 

marginally increased in Th17-skewing media.  When the contents of these two media 

types are compared, it appears that IL-6 may be facilitating the increase in RORγt 

expression.   

 

To summarize our findings for Th17 cells, we propose that low levels of BCL6 are 

necessary to sustain RORγt expression, both in vitro and in vivo.  However, BCL6 

appears to limit RORγt expression, particularly in an environment that is rich in IL-6, 

such as the case in vivo, and in Th17 and TFH cultures in vitro.  Without BCL6 or IL-6, 

rorc transcription is not sustained.  Therefore, a careful balance between BCL6 

expression levels and IL-6 stimulation from the surrounding environment is necessary to 

regulate Th17 differentiation (Figure 44).   

 

While recent research has shown BCL6 and Foxp3 to be dually expressed in TFR cells, 

little work has been done to investigate the specific effect BCL6 may have on Foxp3 

expression.  Using our new cKO mouse model, we were able to establish that BCL6 

contributes to foxp3 expression, both in vitro and in vivo.  While TFR cells do express 

both transcription factors, they are thought to be derived from Treg cells and not TFH 

cells (35, 36).  Therefore these cells would express Foxp3 first, before up-regulating 

BCL6.  However, it is possible that even low levels of BCL6 are necessary for Th cells to 

express Foxp3.  What this means for nTreg cell development in the thymus cannot be 

determined here.  However, our data does suggest that low levels of BCL6 would be 

necessary for iTreg development in vivo. 

 

The balance between BCL6 expression and Blimp-1 is one which has been extensively 

studied, particularly in B cells and CD8+ T cells.  Current dogma states, in the absence 

of Blimp-1, BCL6 is up-regulated, and vice versa.  However, work recently published by 

our lab shows prdm1 transcript to only be significantly increased in the absence of BCL6 

in TFH media conditions (110).  Here, we present a more in-depth analysis of the 

expression of Blimp-1 in BCL6-deficient Th cells.    

 

When mice are immunized with SRBC, a strong GC reaction is induced, and, thus, many 

Th cells will be expressing high levels of BCL6 in +/+ mice.  It should follow then, that 

Blimp-1 levels would be particularly low in Th cells in this type of immune response.  
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Therefore, when transcript levels of prdm1 are assessed in cKO mice and normalized to 

+/+ levels, any increases in the absence of BCL6 should be strongly evident, due to the 

assumed low levels in WT mice.  However, when this was done, no differences in prdm1 

expression were found between the two types of cells.  When WT cells were analyzed 

for prdm1 transcript early after immunization, levels decreased over time, as expected.  

However, mRNA from fl/fl Th cells was low one day after immunization and remained 

low thereafter.  This experiment showed that in WT Th cells, Blimp-1 levels increase just 

after immunization, but decrease over time, down to the levels seen in cKO Th cells by 

day nine.  Interestingly, when those same Th cells are stimulated overnight with 

antibodies, the levels of prdm1 transcript does increase, however, not to the levels seen 

in WT mice assessed ex vivo.  Therefore, like BCL6, Blimp-1 transcription is severely 

abrogated with in vitro stimulation. 

 

As we have previously published (110), when naïve cells are activated for 24 hours in 

different media conditions, Blimp-1 was increased only in the TFH culture.  Furthermore, 

when naïve cells were cultured for several days in ThN media, Blimp-1 was severely 

decreased in the absence of BCL6 twenty four hours after activation.  However over 

time, those cells were able to transcribe prdm1 to the levels of +/+ cells.  This would 

suggest BCL6 restricts Blimp-1 expression in TFH conditions, but facilitates its 

transcription in the limiting environment of ThN culture conditions. 

 

Taken together, the data presented here demonstrate a much more complicated 

relationship between BCL6 and Blimp-1 than previously thought.  While it seems clear 

that BCL6 is up-regulated in Blimp-1 KO cells, the converse is not necessarily true.  Only 

in particular stimulatory and cytokine conditions is Blimp-1 increased in the absence of 

BCL6.  In fact, it seems more probable from this data that BCL6 is necessary for Blimp-1 

expression, particularly in vivo.  Clearly more work needs to be done to fully analyze the 

effects of BCL6 loss on Blimp-1 expression, but the data presented here should at least 

trigger a reassessment of the current understanding of the relationship between these 

two transcriptional repressors.  

 

The one cytokine in our extensive analysis of BCL6fl/fl CreCD4 mice which was 

consistently increased in the absence of BCL6 was IL-10.  We saw statistically 

significant increases in this cytokine at the transcriptional and protein levels in BCL6-
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deficient CD4+ cells from unimmunized mice, at various time points after immunization, 

and in aged mice.  Because IL-10 is a suppressive cytokine, this would suggest that the 

immune response is trying to function in a limiting environment in cKO mice.  It is 

possible that secretion of IL-10 by activated Th cells in BCL6fl/fl CreCD4 mice is 

contributing to the decreased activation seen in these mice, as discussed in Chapter 3.  

However, BCL6 GL KO mice are known to have large proportions of activated Th cells 

that secrete IL-10 (61), yet there appears to be no activation defect in these mice.  In 

fact, GL KO mice typically have increases in activated Th cells and decreases in naive 

Th cells.  The role IL-10 is playing in BCL6fl/fl CreCD4 mice cannot be determined from the 

data presented.  However, it is clear that BCL6 works to repress IL-10 in WT Th cells.  

 

We can also deduce from our data that IFNγ may be playing a role in the increased 

secretion of IL-10 by BCL6-deficient cells.  Firstly, using ICS, we determined that only 

IFNγ+ cells from immunized mice, and not IL-4+ or IL-17A+ cells, had a larger percentage 

of cells also producing IL-10.  Secondly, analyses using in vitro assays showed a 

reduction in IL-10 secretion in a ThN environment, which blocks IFNγ and IL-4.  This 

suggests that IFNγ or IL-4 may be facilitating IL-10 secretion.  When cells were cultured 

in Th1- and Th2-skewing environments, IL-10 production was only increased in the 

presence of IFNγ, and not IL-4.  This would suggest that IFNγ facilitates increased IL-10 

production by Th cells in the absence of BCL6. 

 

Finally, we utilized our new cKO mouse model to determine if BCL6 has any role in the 

proliferation of already activated cells.  Analysis using Ki67 staining and tritiated 

thymidine incorporation provided data which suggests BCL6 limits the proliferation of 

activated cells.  Therefore, while BCL6 is necessary for proper Th cell activation, as was 

presented in Chapter 3, here we show that once activated, the transcriptional repressor 

will actually limit cellular proliferative capabilities.  
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Figure 44.  Th17 differentiation and BCL6.  In the presence of high BCL6 and high IL-
6 expression, TFH cells will differentiate.  Proper differentiation of Th17 cells is 
dependent on moderate levels of IL-6 and low levels of BCL6.  When BCL6 is absent 
and IL-6 is present at high levels, excessive Th17 skewing occurs.  In the absence of 
both BCL6 and IL-6 no Th17 differentiation will occur. 
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CHAPTER 5 – ROLE OF BCL6 IN TFH CELL SURFACE MARKER EXPRESSION 

 

 

INTRODUCTION 

 

Follicular T helper (TFH) cells are an important CD4+ T cell subset responsible for 

facilitating the production of high affinity antibodies from B cells (24).  Historically, this 

task was associated with Th2 cells, and only recently have TFH cells emerged as the 

primary T cell responsible for assisting B cells (26).  While TFH cells have been shown 

to migrate into the B cell follicle for some time, only in the last five years has their master 

transcription factor, BCL6, been identified (37-39, 62).  Under the control of this 

transcriptional repressor, TFH cells up-regulate CXCR5, ICOS, PD-1, and several other 

surface markers.  However, the majority of studies focus on CXCR5, ICOS, and PD-1 

when identifying these cells (24).  While expression of these markers is not exclusive to 

TFH cells, their combination and high level expression is.    

 

Upon activation of naïve CD4+ T cells, BCL6 becomes up-regulated at low levels (22, 

23).  During this time, the chemokine receptor CXCR5 also becomes up-regulated, 

although this increase in surface expression has been shown to be independent of BCL6 

(81).  Expression of CXCR5 enables CD4+ T cells to follow a CXCL13 chemokine 

gradient toward the B cell follicle.  Once these cells reach the T/B cell border region, 

interactions with B cells will determine whether they will become TFH cells or not (24, 

26).  During the peak of the immune response, the vast majority of CXCR5+ Th cells are 

TFH cells (26).  Furthermore, prolonged expression of this surface marker has been 

shown to be dependent on BCL6 expression (81).  CXCR5 is widely used to identify TFH 

cells, however, how BCL6 controls its expression has yet to be fully understood.   

 

ICOS is a CD28-like costimulatory molecule which is expressed on several Th subsets, 

but is particularly highly expressed on TFH cells (111, 112).  Its up-regulation occurs 

early after cell activation and is crucial for sustaining cell-cell contact with B cells (26).  

Furthermore, it has been shown that ICOS signaling can program Th cells to become 

TFH very early in the immune response (113).  Continued ICOS-ICOSL interactions 

between TFH and APCs, has been shown to be vital for continued TFH differentiation 

(113).  
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Programmed death-1, or PD-1, is encoded by the gene pdcd1 and plays a crucial role in 

controlling T cell proliferation (114, 115).  While expressed on many different T cell 

subsets, including CD8+ T cells, this inhibitory marker is highly expressed on TFH cells 

(116).  PD-1 has been shown to block TCR activation signals through the recruitment of 

two phosphatases: Src homology region 2 domain-containing phosphatase-1 (SHP-1) 

and SHP-2 (114, 117-119).  These phosphatases can then, in turn, abrogate 

downstream activity of PI3K, which is necessary for Th cell activation and cytokine 

secretion (117, 120).  Furthermore, PD-1 signaling can inhibit TCR signals facilitating 

ongoing interactions with APCs (121).  An additional study demonstrated a role for PD-1 

signaling in blocking CD4+ T cell entry into S phase of the cell cycle (122).   It is believed 

that high expression of PD-1 on TFH cells limits the proliferation of these cells (24, 114), 

and blockade of PD-1 signaling leads to increased TFH populations (123).   

 

Like the above mentioned TFH markers, PD-1 has been shown to be up-regulated soon 

after cell activation (114, 117).  Recent publications have demonstrated a role for 

epigenetics in the regulation of PD-1 expression in CD8+ T cells.  One study in particular 

demonstrated a loss of methylation at the PD-1 promoter upon T cell activation, while 

remethylation of the region allowed cells to become long-lived memory cells (124).  

Additionally, exhausted CD8+ T cells had complete demethylation of the PD-1 promoter.  

While epigenetic modifications to the PD-1 promoter have been well studied, what 

controls those epigenetic changes has not been identified.  Furthermore, although it has 

been suggested that PD-1 signaling controls TFH cell proliferation, by what means this is 

done has not yet been discussed.  Here, we present data which attempts to elucidate 

these issues.   

 

The fact that PD-1 expression has been shown to be controlled, to some extent, by 

methylation is important, as DNA methylation is one of the only epigenetic modifications 

which can be passed on to daughter cells efficiently (125).  Methylating DNA, typically 

cytosines at CpG dinucleotides, is one way of remodeling chromatin into a less 

accessible state, leading to silencing of genes (125, 126).  This activity is carried out by 

DNA-methyltransferases (Dnmt).  Initial methylation patterns, or de novo methylation, in 

unactivated cells, is thought to be carried out by Dnmt3a and Dnmt3b, while maintaining 

the established methylation pattern of DNA during cell division is the job of Dnmt1 (126-

128).  When a cell divides, the daughter DNA is hemi-methylated, and Dnmt1 recognizes 
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and targets this pattern for full methylation to maintain the epigenetic modifications 

(127).  Conversely, the Ten-Eleven-Translocation, or TET, proteins can also recognize 

these hemi-methylated regions and further reduce the methyl groups at those sites (127, 

129).  This makes it less likely Dnmt1 will recognize the region and target it for templated 

methylation.  Therefore, TET proteins play a critical role in the demethylation of gene 

promoters over successive cell differentiations (127, 129).  

  

How de novo methylation patterns are established has not been well studied in vivo, 

however, cell line experiments have provided several hypothesizes.  Two potential ways 

in which Dnmt3a and Dnmt3b are targeted to genes for silencing are 1) by recognition of 

specific domains directly by the Dnmts, or 2) via recruitment to gene regions by 

transcriptional repressors (128).  Once localized to a promoter region, Dnmts can block 

transcription either by physically interfering with the binding of transcriptional machinery 

or through methylation modifications to the chromatin structure.  Furthermore, Dnmts 

can also associate with histone deacetylases (HDACs), and this association, combined 

with targeting to a specific gene, will lead to remodeling of the chromatin and silencing of 

gene transcription (128).   

 

At this time, no data has shown that BCL6 can activate genes directly.  Therefore, in 

order to activate genes that define the TFH phenotype, BCL6 must activate transcription 

indirectly, such as by repressing other transcriptional repressors or by binding these 

suppressors and sequestering them away from their targets (46, 50).  The exact 

mechanisms by which this is accomplished are not known at this time.  Multiple models 

for how TFH cells differentiate have been proposed (17, 24, 99).  One model postulates 

that activated Th cells differentiate into another subset first, before up-regulating BCL6 

and becoming a TFH cell (94, 130).  The thought behind this model is that by down-

regulating the master transcription factors of other Th subsets, any repression these 

factors held over TFH genes will be consequently lifted, thus allowing activation of TFH-

related genes.  Research using GL KO mice has shown that BCL6 can directly repress 

GATA3 and RORγt, the master transcription factors for Th2 and Th17 cells respectively 

(61, 97).   

 

A second theory for how TFH cells develop is by directly differentiating from activated 

naïve Th cells (131).  Multiple studies have shown this, using both in vivo and in vitro 
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methods (24).  The interplay between BCL6 and other Th subsets proved even more 

complex when several groups published data showing a subset of Treg cells which were 

able to acquire TFH-like characteristics, such as up-regulated BCL6 and CXCR5 

expression, and traffic into the GC, where they helped to regulate the GC reaction (35, 

36).  Therefore, the role BCL6 plays in Th cells is complicated and not well understood.  

However, here we provide evidence for how BCL6 may be regulating the expression of 

some TFH cell markers and what role this master transcription factor plays in TFH cell 

survival. 

 

 

METHODS AND MATERIALS 

 

Mice and immunizations 

 

Bcl6fl/fl mice were mated to CD4-cre mice (82) to generate Bcl6fl/fl CreCD4 mice.  Mice with 

the wild type BCL6 allele were bred to CD4-Cre mice for use as controls (BCL6+/+ 

CreCD4).  C57BL/6 mice were obtained from Jackson Laboratories.  

The floxed allele was genotyped by PCR using the following primers:  

5’ loxP forward (5’ – TGAAGACGTGAAATCTAGATAGGC – 3’)  

5’ loxP reverse (5’ – ACCCATAGAAACACACTATACATC – 3’)  

3’ loxP forward (5’ –TCACCA ATCCCAGGTCTCAGTGTG–3’)  

3’ loxP reverse (5’ – CTTTGTCATATTTCTCTGGTTGCT–3’) 

 

Cre-CD4 transgene was genotyped using the following primers: 

Forward (5’ –ATCGCCATCTTCCAGCAGGCGCACT– 3’) 

Reverse (5’ –ATTTCCGTCTCTGGTGTAGCTGAT– 3’) 

 

Mice were immunized i.p. with 1 x 109 sheep red blood cells (SRBC; Rockland 

Immunochemicals Inc., Gilbertsville, PA) in PBS. 

 

Serum antibody analysis 

 

Blood was collected from sacrificed mice.  After clotting, blood was centrifuged for 10 

minutes at 10,000 RPM and serum collected.  For total IgG, capture antibody was anti-
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mouse kappa chain antibody (Sigma Cat. # SAB3701212) and an anti-mouse IgG-

Peroxidase detection antibody used was used (Sigma Cat. # A9044).  SRBC-specific Ig 

was measured as previously described (132).  Briefly, wells were coated with SRBC 

membrane extract (prepared as described (132)) overnight at 4˚C.  Wells were blocked 

with 10% FCS and diluted serum was incubated in wells for 2 hours at RT.  A peroxidase 

labeled Fc-specific anti-mouse Ig detection antibody was used for each isotype (Sigma).  

Titration method was used to determine concentration.  For total IgM, IgG1, IgG2b, 

IgG3, and IgA, capture antibodies were isotype-specific (Sigma Cat. # ISO2) and an 

anti-mouse Ig-Peroxidase detection antibody was used.  Concentrations determined 

according to a standard curve.  Standards were purchased from Southern Biotech (IgM 

Cat. # 0101-01; IgG1 Cat. # 0102-01; IgG2b Cat. # 0104-01; IgG3 Cat. # 0105-01; IgA 

Cat. # 0106-01).  

 

Flow cytometry 

 

Total spleen or thymus cells were incubated with anti-mouse CD16/CD32 (Fcγ receptor) 

for 20 minutes, followed by surface staining for the indicated markers.  A fixable viability 

dye (eFluor 780, eBioscience) was used for all samples.  The following antibodies were 

used for staining GC B cells: α-mCD19 Alexa Fluor 700, clone eBio1D3 (eBioscience); 

α-mB220 PE, clone RA3-682 (BD Bioscience); α-mFas Biotin, cat. # 554256 (BD 

Bioscience); Streptavidin-PECy7 (Biolegend); α-mGL7 APC, clone GL7 (BD Bioscience); 

PNA FITC (Vector Laboratories Inc.).  The following antibodies were used to stain TFH 

cells: α-mCD3 Alexa Fluor 700, clone 500A2 (BD Bioscience); α-mCD4 PECy7, clone 

RM4-5 (BD Bioscience); α-mCXCR5 PerCP-efluor 710, clone SPRCL5 (eBioscience); α-

mPD-1 APC, clone 29F.1A12 (Biolegend); α-mICOS FITC, clone C398.4A 

(eBioscience).  Samples were run on a BD LSR II flow cytometer using FACSDiva 

software.  Data was analyzed using FlowJo software. 

 

Cell isolation 

 

Total CD4+ T cells were isolated via magnetic bead separation (Miltenyi Biotec); naïve 

CD4+ T cells were isolated via FACS and gated on CD3+ CD4+ CD44− CD62L+.  

Propidium iodide was used as a viability gate. 
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Gene expression analysis 

 

Total RNA was prepared using a kit (Qiagen) after lysis of the cells via Trizol (Life 

Technologies); cDNA was prepared with the Transcriptor First Strand cDNA synthesis kit 

(Roche).  Quantitative PCR (qPCR) reactions were run by assaying each sample in 

triplicates using the Fast Start Universal SYBR Green Mix (Roche Applied Science) with 

custom primers or specific Taqman assays (ABI).  Assays were run with a Stratagene 

Mx3000P Real-Time QPCR machine.  Levels of mRNA expression were normalized to 

beta-tubulin mRNA levels, and differences between samples analyzed using the ∆∆CT 

method.  Primers for SYBR Green assays were previously described (14, 19). 

 

Microarrays 

 

Naïve CD4+ T cells were isolated via FACS using the following surface markers: CD3+ 

CD4+ CD62L+ CD44−.  A cell viability gate was also used.  Cells were activated in vitro 

with anti-CD3 and anti-CD28 antibodies, as described above, in Th0 or TFH media 

conditions.  TFH conditions contain IL-6 and IL-21 [10 ng/ml each (R&D Systems)], plus 

anti-IFNγ (10 μg/mL), anti-IL-4 (10 μg/mL), and anti–TGF-β (20 µg/mL) antibodies.  Cells 

were cultured for 20 hours.  Cells were lysed, RNA prepared using an RNeasy kit 

(Qiagen), and cDNA prepared with the Transcriptor First Strand cDNA synthesis kit 

(Roche).  Affymetrix gene expression microarrays were carried out by Center for Medical 

Genomics at the Indiana University School of Medicine. 

  

Chromatin immunoprecipitation assay  

 

BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were sacrificed either unimmunized or five days 

after immunization with SRBC.  Total CD4+ T cells were isolated from spleen via bead 

separation (Miltenyi Biotech).  ChIP assay was performed as previously described (133).  

Briefly, cells were cross-linked for 10 min with 1% formaldehyde and lysed by sonication.  

After pre-clearing with salmon sperm DNA, bovine serum albumin, and protein agarose 

bead slurry (50%), cell extracts were incubated with either Dnmt3a antibody (IMG-268A; 

IMGENEX), Dnmt3b antibody (804-233-c100; Alexis), H3ac antibody (Millipore), H4ac 

antibody (06-866; Millipore), or normal rabbit IgG (Millipore) overnight at 4 °C.  The 

immunocomplexes were precipitated with protein agarose beads at 4 °C for 2 h, washed, 
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eluted, and cross-links were reversed at 65 °C overnight.  DNA was purified, 

resuspended in H2O, and analyzed by quantitative PCR with SYBR primers as 

described previously (134).  Additional primers were as follows:  

 

PD-1 CRB forward (5’ –CTCTGACTAGCTGTCCTTGCCTC– 3’) 

PD-1 CRB reverse (5’ –CTCGACACCCACCCTCCAAAG– 3’) 

PD-1 CRC forward (5’ –CCTCACCTCCTGCTTGTCTCTC– 3’) 

PD-1 CRC reverse (5’ –GTGAGACCCACACATCTCATTGC– 3’) 

CXCR5 forward (5’ –CAGTGCTTCGTCAGCTCCAGAC– 3’) 

CXCR5 reverse (5’ –CTCAGGTAGTCATGTTTGATGGC– 3’) 

 

Statistical analysis 

 

Statistical analysis was done using IBM SPSS Statistics 21 software.  Statistics for 

microarray data was done using GraphPad Prism software. In all figures, *p < 0.05, **p < 

0.01, ***p < 0.001. 

 

 

RESULTS 

 

Germinal center cells fail to develop at any time after immunization in BCL6fl/fl 

CreCD4 mice 

 

Using our new cKO mice, we wanted to verify that GCs fail to develop in the absence of 

BCL6 in Th cells.  Nine days after immunization with SRBC, BCL6fl/fl CreCD4 mice failed 

to generate GC B cells or TFH cells, while BCL6+/+ CreCD4 mice had robust populations 

of these cells (Figure 45 A-B).  Next, we wondered whether these cell populations are 

able to differentiate early in the immune response, but are not sustained when Th cells 

are BCL6-deficient.  When mice were sacrificed one, three, and five days after 

immunization and analyzed for GC cell populations, we found no evidence of TFH cell 

development in fl/fl mice (Figure 45 C-D).  This experiment also demonstrated the 

exponential expansion of GC B cells and TFH cells in +/+ mice between days three and 

five.  
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Figure 45.  BCL6fl/fl CreCD4 mice fail to generate germinal centers.  A – B. Mice were 
immunized i.p. with SRBC and sacrificed on day 9.  Spleen cells were analyzed via flow 
cytometry.  A. GC B cells, shown as percent of total spleen, with representative flow 
plots.  Cells gated on B220+ CD19+ Fas+ PNA+ GL7+.  B. TFH cells, shown as percent of 
total spleen, with representative flow plots.  Cells gated on CD3+ CD4+ CXCR5+ ICOS+ 
PD-1hi.  C – D. Mice were immunized i.p. with SRBC and sacrificed 1, 3, and 5 days 
after.  Spleen cells were analyzed via flow cytometry.  C. GC B cells, gated as in (A).  D. 
TFH cells, gated as in (B).  Mean ± SE; *p < 0.05, **p < 0.01, ***p < 0.001 by t test. 
 
 
To determine the functional effects of loss of GCs in fl/fl mice, serum from unimmunized 

mice and mice sacrificed nine days after immunizing with SRBC was analyzed for 

antibody concentrations.  When total IgG was assessed, we found the titer in both +/+ 

and fl/fl to increase with immunization and no significant difference in titer levels were 

found between the two mouse strains either before or after immunization (Figure 46 A).   
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Figure 46.  Antibody titers in BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice.  Mice were 
immunized with either SRBC or PBS (control) and sacrificed on day 9, when serum was 
harvested.  Antibody titers assessed via ELISA.  A. Total IgG (top) and SRBC-specific 
IgG (bottom) determined using titration method.  B. Total IgM (top) determined using 
standard curve and SRBC-specific IgM (bottom) determined via titration method.  *p < 
0.05 via t test.  C. Total IgG1 (top) and SRBC-specific IgG1 (bottom) determined as in 
(B).  D. Total IgG2b (top) and SRBC-specific IgG2b (bottom) determined as in (B).  E. 
Total IgG3 (top) and SRBC-specific IgG3 (bottom) determined as in (B).  F. Total IgA 
determined as in (B).  Mean ± SE.  For all analysis except (B): *p < 0.05, **p < 0.01, ***p 
< 0.01 by two-way ANOVA; Tukey post hoc analysis. 

A. B. C. 

D. E. F. 
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However, when antigen-specific IgG was measured, fl/fl mice were found to have a 

significant reduction in these antibodies, compared to serum from +/+ mice.  Total IgM, 

while increasing with immunization, was not found to be different between the two types 

of mice, but again, SRBC-specific IgM was reduced, approximately three-fold, in fl/fl 

mice (Figure 46 B).  When total IgG1 and IgG2b were analyzed, +/+ mice were found to 

have significantly higher levels after immunization (Figure 46 C-D).  Also, fl/fl mice were 

shown to have almost no production of antigen-specific antibodies of these isotypes 

(Figure 46 C-D).  Finally, while no differences in total IgG3 and IgA were found, after 

immunization, +/+ mice had a slightly higher SRBC-specific IgG3 titer compared to fl/fl 

mice, although it was not significant (Figure 46 E-F). 

 

TFH surface marker expression in BCL6-deficient Th cells 

 

Because TFH cells are so often identified by their surface marker expression via flow 

cytometry, we did further analysis on the expression of frequently used TFH markers to 

determine what effects loss of BCL6 has on their expression.  First, the canonical marker 

for TFH, CXCR5, was found to be expressed at fairly similar levels between +/+ and fl/fl 

mice before immunization, however, nine days after immunization, the percentage of 

CD4+ T cells expressing CXCR5 significantly increased in +/+ mice, but remained fairly 

stagnant in fl/fl mice (Figure 47 A).  While significantly more Th cells in +/+ mice were 

expressing the surface marker after immunization, the relative surface expression per 

CXCR5+ cell remained unchanged between WT and BCL6-deficient Th cells (Figure 47 

A).  To assess how early the difference in CXCR5+ cell percentages takes place, mice 

were immunized with SRBC and sacrificed one, three, and five days later.  When total 

spleen cells were analyzed for CXCR5+ Th cells, no significant differences in 

percentages were seen until day five, when the +/+ cells had more (Figure 47 B).  This 

increase also correlated with mRNA analysis of cxcr5 transcript in ex vivo Th cells 

(Figure 47 C).  But again, while the percentage of CXCR5+ cells significantly increased 

in +/+ mice, compared to fl/fl mice, no differences in the relative expression of CXCR5 

per cell were found (Figure 47 B).  Therefore, while BCL6fl/fl CreCD4 mice appear to have 

significantly fewer Th cells expressing CXCR5 by day five, the amount of CXCR5 on 

each cell is not changed compared to BCL6+/+ CreCD4 mice.   
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Figure 47.  CXCR5 expression in BCL6-deficient CD4+ T cells.  A. CXCR5 surface 
expression on Th cells from spleen was evaluated in unimmunized (+PBS) mice and 
mice immunized with SRBC and sacrificed on day 9 via flow cytometry.  The percent of 
CXCR5+ cells is shown as a percentage of CD4+ cells (top) and the MFI of CXCR5 in the 
CXCR5+ population is shown (bottom).  Cells gated on CD3+ CD4+ CXCR5+.  Mean ± 
SE.  *p < 0.05 by two-way ANOVA; Tukey post hoc.  B. Mice were immunized with 
SRBC and sacrificed 1, 3, and 5 days after.  Spleen cells were assessed for CXCR5 
expression as in (A).  Mean ± SE. **p < 0.01 by t test.  C. Total CD4+ T cells were 
isolated via bead separation from spleen of mice immunized in (B) and lysed for RNA 
analysis.  Transcript levels of cxcr5 were assessed and normalized to Day 1 +/+ 
samples (dotted line at 1).  Mean ± SE. *p < 0.05, **p < 0.01 by t test. 
 
 
The next marker we analyzed was ICOS.  By first gating cells on CXCR5 expression, we 

were able to evaluate the potential for ICOS expression on TFH and non-TFH cells in 

+/+ mice.  Because fl/fl mice are unable to produce TFH cells, in this way we can 

equalize any bias in ICOS expression on TFH cells in +/+ mice.  First, when ICOS+ cells 

were evaluated in CXCR5+ cells, those which are poised to become TFH cells, we saw a 

significant increase in ICOS+ cells after immunization in +/+ mice, which was expected 

as these mice have TFH cells (Figure 48 A).  Like CXCR5, we saw no significant 

difference in ICOS MFI on ICOS+ cells within this CXCR5+ gate (Figure 48 A).  Next, we 

evaluated ICOS expression on CXCR5− Th cells.  While the percentage of ICOS+ cells 

significantly increased in both BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice after 

immunization, +/+ Th cells still had a significantly larger proportion expressing the 

surface marker (Figure 48 B).  However, once again, there was no difference in the 
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Figure 48.  ICOS expression in BCL6-deficient 
CD4+ T cells.  A. ICOS surface expression on Th 
cells from spleen was evaluated in unimmunized 
(+PBS) mice and mice immunized with SRBC and 
sacrificed on day 9 via flow cytometry.  The percent 
of CXCR5+ ICOS+ cells is shown as a percentage of 
CXCR5+ cells (top) and the MFI of ICOS in the 
ICOS+ CXCR5+ population is shown (bottom).  Cells 
gated on CD3+ CD4+ CXCR5+ ICOS+.  Mean ± SE.  
**p < 0.01, ***p < 0.001 by two-way ANOVA; Tukey 

post hoc.  B. Cells assessed as in (A) but for CXCR5− 
ICOS+ cells.  Cells gated on CD3+ CD4+ CXCR5− 
ICOS+.  Mean ± SE.  **p < 0.01, ***p < 0.001 by two-
way ANOVA; Tukey post hoc.  C. Mice were 
immunized with SRBC and sacrificed 1, 3, and 5 days 
after.  Spleen cells assessed and gated as in (A).  
Mean ± SE.  **p < 0.01 by t test.  D. Mice were 
immunized as in (C) and cells assessed and gated as 
in (B).  Mean ± SE.  *p < 0.05, ***p < 0.001 by t test.   
 

 
amount of ICOS expressed per cell when comparing +/+ and fl/fl Th cells (Figure 48 B).    

 

To evaluate any differences early in the immune response, the same time course 

experiment was done and ICOS was evaluated on CXCR5+ and CXCR5− cells one, 

three, and five days after immunization.  Th cells from fl/fl mice had significantly fewer 

CXCR5+ cells expressing ICOS five days after immunization (Figure 48 C).  Like CXCR5 

expression, this was expected, as +/+ mice have TFH cells which significantly increased 
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Figure 49.  PD-1 expression is altered in the absence of BCL6.  A. PD-1 surface 
expression on Th cells from spleen was evaluated in unimmunized (+PBS) mice and 
mice immunized with SRBC and sacrificed on day 9 via flow cytometry.  The percent of 
CXCR5+ PD-1+ cells is shown as a percentage of CXCR5+ cells (top) and the MFI of PD-
1 in the PD-1+ CXCR5+ population is shown (bottom).  Cells gated on CD3+ CD4+ 
CXCR5+ PD-1+.  Mean ± SE.  *p < 0.05, **p < 0.01, ***p < 0.001 by two-way ANOVA; 
Tukey post hoc.  B. Cells assessed as in (A) but for CXCR5− PD-1+ cells. Cells gated on 
CD3+ CD4+ CXCR5− PD-1+.  Mean ± SE.  *p < 0.05, **p < 0.01, ***p < 0.001 by two-way 
ANOVA; Tukey post hoc.  C. Mice were immunized with SRBC and sacrificed 1, 3, and 5 
days after.  Total CD4+ T cells were assessed for PD-1 expression.  Cells gated on CD3+ 
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CD4+ PD-1+; shown as percent of CD4+ (top) and MFI of PD-1 in total CD4+ T cells 
shown (bottom).  Mean ± SE.  **p < 0.01, ***p < 0.001 by t test.  D. PD-1 MFI of PD-1+ 
cells in (C).  Mean ± SE.  **p < 0.01, ***p < 0.001 by t test.  E. Total CD4+ T cells were 
isolated from mice in (B) and lysed for RNA analysis.  Transcript levels of pdcd1 (PD-1) 
were normalized to Day 1 +/+ samples.  Mean ± SE.  ***p < 0.001 by t test.  F. Cells 
from (C) were further gated on CXCR5+ cells, then assessed for PD-1 expression.  Cells 
gated on CD3+ CD4+ CXCR5+ PD-1+; shown as percent of CXCR5+ (top) and MFI of PD-
1 in CXCR5+ PD-1+ population (bottom).  Mean ± SE.  *p < 0.05, **p < 0.01, ***p < 0.001 
by t test.  G. Cells assessed the same as in (F) except in the CXCR5− population.  Mean 
± SE.  *p < 0.05, **p < 0.01, ***p < 0.001 by t test.  
 
 
on day five (Figure 45 D).  However, ICOS MFI was not changed between +/+ and fl/fl 

mice in this CXCR5+ gate (Figure 48 C).  When ICOS expression was evaluated on non-

TFH, or CXCR5− cells, fl/fl mice had significantly fewer Th cells expressing the marker 

one and five days after immunization (Figure 48 D).  Interestingly, while the MFI of ICOS 

on those days was unchanged between the two types on mice, on day three, when the 

percentages of ICOS+ cells were equivalent, fl/fl ICOS+ cells had a higher MFI (Figure 48 

D).  These data demonstrate that while fewer Th cells in BCL6fl/fl CreCD4 mice are 

expressing ICOS on their surface, their potential to do so is not changed, as is indicated 

by ICOS MFI levels.   

 

PD-1 expression is altered in BCL6-deficient Th cells  

 

When PD-1, another key marker for TFH cells, was assessed in unimmunized mice, 

irrespective of CXCR5 expression, the percentage of PD-1-expressing Th cells was 

reduced, significantly so in CXCR5− cells (Figure 49 A-B).  Nine days after immunization, 

the difference in PD-1+ cells between +/+ and fl/fl mice was even more significant, 

regardless of the CXCR5 expression status of the cells (Figure 49 A-B).  What was most 

interesting, though, was, unlike CXCR5 and ICOS expression, the MFI of PD-1 was 

significantly reduced, both before and after immunization, and on both CXCR5+ and 

CXCR5− cell subsets (Figure 49 A-B).  In fact, the amount of PD-1 expressed on fl/fl PD-

1+ cells after immunization was still significantly less than the amount of PD-1 seen on 

+/+ cells from unimmunized mice. 

 

Using our time course experiment, we saw that the percent of PD-1+ cells in total CD4+ T 

cells was significantly reduced on day one after immunization and the difference is only 

exacerbated over time (Figure 49 C).  This is not surprising, as +/+ mice are generating  
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Figure 50.  BCL6 limits apoptosis of 
PD-1high TFH cells.  Mice were 
immunized with SRBC and sacrificed on 
day 10.  Spleen cells were analyzed.  A. 
Representative flow plots of gating 
strategy.  Gated on CD3+ CD4+ 
CXCR5+.  Gates for different levels of 
PD-1 expression are shown.  B. 
Percentage of Caspase-3+ cells in 
different populations of PD-1 subsets 
are shown.  “Non TFH” cells are gated 
on CD3+ CD4+ CXCR5− ICOS− PD-1−.  
C. Percentage of Annexin V+ cells in different populations of PD-1 subsets.  Same gating 
as in (B).  Mean ± SE. * p < 0.05, *** p < 0.001 by t test.  
 
 
TFH cells, and they are likely contributing to the overall increase in PD-1+ cells in +/+ 

mice.  The MFI of PD-1 in total Th cells also mirrored these differences (Figure 49 C), as 

did the mRNA levels of PD-1 (as expressed by the gene pdcd1) in total Th cells (Figure 

49 E).  When PD-1 expression in PD-1+ cells was assessed over time, saw see 

significantly lower levels of PD-1 surface expression in fl/fl mice (Figure 49 D).  Since 

these assessments are likely skewed by the development of TFH cells in +/+ mice, we 

further gated Th cells on CXCR5+ (TFH) and CXCR5− (non-TFH) cells.  In the TFH gate, 

+/+ mice had significantly more cells expressing PD-1 one and five days after 

immunization (Figure 49 F).  However, the amount of PD-1 on the surface of these PD-

1+ cells was significantly reduced in fl/fl cells at all time points (Figure 49 F).  When non-

TFH cells were assessed, significantly fewer fl/fl Th cells were expressing PD-1 at all 

time points, and the MFI of PD-1 on PD-1+ cells was also significantly reduced (Figure 

49 G).  Therefore, taken together, this data demonstrates not only a lowered potential for 

Th cells from fl/fl mice to express PD-1, but those cells expressing this marker, unlike 

CXCR5 and ICOS, do so at significantly lower levels than +/+ Th cells.  This would  
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suggest a role for BCL6 in promoting the elevated expression of PD-1 in CD4+ T cells.  

 

BCL6 limits apoptosis in PD-1high Th cells  

 

Because PD-1 has been shown to limit T cell proliferation, and, in some cases, facilitate 

apoptosis, we wanted to evaluate the fate of Th cells expressing high levels of PD-1 in 

the absence of BCL6.  To do this, we immunized mice and sacrificed them ten days 

later.  Spleen cells were assessed for PD-1 expression on Th cells via flow cytometry.  

CD4+ T cells were subdivided into “non TFH” cells (CD4+ CXCR5− ICOS− PD-1−), PD-1 

negative (“neg”: CD4+ CXCR5+ ICOS− PD-1−), PD-1 low-expressing (“low”: CD4+ 

CXCR5+ ICOS+/− PD-1low), PD-1 mid-level-expressing (“mid”: CD4+ CXCR5+ ICOS+/− PD-

1mid), and TFH, or PD-1 high-expressing (“TFH”: CD4+ CXCR5+ ICOS+ PD-1hi) cells.  An 

example of these gates for both +/+ and fl/fl mice is shown in Figure 50 A.  Cells within 

each gate were then assessed for active Caspase-3 staining (Figure 50 B) or Annexin V 

staining (Figure 50 C).  Our results show a striking correlation between PD-1 expression 

and positive staining for apoptosis markers.  In both +/+ and fl/l mice, as PD-1 MFI 

increased, so did the percentage of cells which were Caspase-3+ or Annexin V+.  

Interestingly, at lower levels of PD-1 expression, BCL6-deficient cells had less Annexin 

V staining than +/+ cells (Figure 50 C).  At higher levels of PD-1 though (PD-1 mid and  

TFH), +/+ cells seemed to be protected from apoptosis, while almost 100 percent of the 

few BCL6-deficient cells to be included in the TFH gate were Annexin V+, and, to a 

lesser extent, Caspase-3+.  This data suggests that at low levels of PD-1 surface 

expression, BCL6 seems to facilitate apoptosis, while at the highest levels of PD-1, 

BCL6 limits apoptosis of TFH cells. 

 

Methylation and deacetylation machinery is increased in the absence of BCL6  

 

To investigate what may be restricting the expression of PD-1 in our BCL6-deficient Th 

cells, we revisited the data produced from our microarray experiment (See Table 1 in 

Chapter 3).  Upon closer inspection, we observed significant increases in the chromatin 

remodeling enzymes responsible for adopting a more closed conformation.  In the case 

of our results, Dnmt1, which is responsible for maintaining the methylation profile of 

replicated DNA, was not changed in fl/fl mice (Figure 51 A).  However, one Dnmt which 

is responsible for de novo methylation of DNA, Dnmt3b, was significantly increased in  
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           Figure 51.  Expression of methylation and 
deacetylation enzymes is increased in absence 
of BCL6.  A. Naïve CD4+ T cells were isolated via 
FACS and activated in vitro with anti-CD3 and anti-
CD28 antibodies in Th0 or TFH media for 20 hours 
before cells were lysed for RNA analysis via 
microarray.  Values shown for fl/fl T cells and are 
normalized to +/+ values (-1 and 1).  Dnmt1 is 
responsible for maintenance methylation; Dnmt3a 
and Dnmt3b are responsible for de novo 
methylation.  HDAC1 and HDAC2 are responsible 
for deacetylation of histones.  Naïve cells gated on  

CD3+ CD4+ CD44− CD62L+.  B-D.  Mice were immunized with SRBC and sacrificed 1, 3, 
and 5 days after.  Total CD4+ T cells were isolated from spleen via bead separation and 
lysed ex vivo for RNA analysis via qPCR.  Transcript levels for B. dnmt3b, C. hdac1, and 
D. hdac2 are normalized to Day 1 +/+ (dotted line at 1.0).  Mean ± SE.  *p < 0.05, **p < 
0.01, ***p < 0.001 by t test. 
 
 
both culture conditions.  Furthermore, the HDAC which Dnmt3b has been shown to 

associate with, HDAC1, was significantly increased in a similar fashion (Figure 51 A).  

 

To verify these changes, we tested the RNA from our time course experiment (Figure 45 

C) for expression of these enzymes.  Transcript levels of dnmt3b were increased in the 

Th cells from fl/fl mice at all time points after immunization (Figure 51 B).  Unlike the 

microarray data, hdac1 expression was not increased in an in vivo model (Figure 51 C), 

however hdac2 was (Figure 51 D).  It is important to note, though, that this RNA analysis 

was done on Th cells with mixed statuses of activation, while the microarray was used to 

analyze naïve Th cells which were all, presumably, activated in the in vitro culture.  

Therefore, taken together, these data show that Dnmt3b is significantly increased in all 

Th cells, regardless of activation status, while expression of HDAC enzymes may be 

affected more by the in vitro culture conditions and level of cellular activation.  But 

overall, these data provide evidence that epigenetically, the DNA structure of Th cells in 
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fl/fl mice may be altered and in a more closed confirmation, thus blocking access to 

transcriptional machinery. 

 

The promoter region of PD-1 has increased binding of DNA-methyltransferases  

 

To test if PD-1 is being repressed by epigenetic modifications to the gene in vivo, we 

performed a chromatin immunoprecipitation (ChIP) assay.  First, total CD4+ T cells were 

isolated from unimmunized BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice, or from mice 

immunized with SRBC and sacrificed on day five.  We chose to evaluate T cells from five 

day immunized mice because this is the time point at which we saw the most significant 

differences in PD-1 and Dnmt3b expression.  For ChIP analysis, isolated chromatin was 

immunoprecipitated (IP) for Dnmt3a (as a control) or Dnmt3b.  The DNA pulled down 

with these proteins was then assessed for the presence of the PD-1 (pdcd1) promoter 

region.  Before immunization (Day 0), no differences in Dnmt3a binding to either of the 

two PD-1 promoter sites checked were found between +/+ and fl/fl cells (Figure 52 A-B).  

Five days after immunization, fl/fl samples were shown to have significantly more 

Dnmt3a present at one region of the PD-1 promoter (Figure 52 A).  When cells were IP 

for Dnmt3b, fl/fl samples had more of the methyltransferase present at the PD-1 

promoter, both before and after immunization (Figure 52 C-D).  Interestingly, +/+ cells 

had no detectable presence of Dnmt3b at the PD-1 promoter before immunization 

(Figure 52 C-D). 

 

Next, using a ChIP assay, we investigated the acetylation status of the PD-1 promoter.  

When samples were IP for acetylated histone 3 (H3AC), then assessed for the presence 

of the PD-1 promoter, +/+ cells were found to have more acetylated histone at both 

regions of the PD-1 promoter checked (Figure 53 A-B).  The same was found when 

samples were IP for H4AC (Figure 53 C-D).  These data show fl/fl Th cells have less 

acetylation of their H3 and H4 histones at the PD-1 promoter.  Therefore, it is likely the 

PD-1 promoter in fl/fl Th cells has a less open conformation than the PD-1 promoter 

region in +/+ Th cells. 

 

Another crucial TFH marker, CXCR5, has been shown to be dependent on BCL6 

expression later in the immune response.  As shown in Figure 47, expression of CXCR5  
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Figure 52.  Dnmt3a and Dnmt3b bind to the pdcd1 
promoter region.  Total CD4+ T cells were isolated from 
the spleen of unimmunized BCL6+/+ CreCD4 and BCL6fl/fl 
CreCD4 mice or from mice immunized with SRBC and 
sacrificed on day 5.  A ChIP assay was done on isolated 
chromatin.  A-B.  Samples were IP for Dnmt3a and 
assessed for binding to two places in the pdcd1 
promoter; either A. the CRB region or B. the CRC 
region.  C-D.  Samples were IP for Dnmt3b and 
assessed for binding to two places in the pdcd1 

promoter; either C. the CRB region or D. the CRC region.  Shown as percent of input.  
ND = none detected. Mean ± SE.  *p < 0.05 by t test. Done in collaboration with Dr. Duy 
Pham. 
 
 
 

 

 

 

 

 

 

 

 

Figure 53.  The promoter region of pdcd1 in BCL6fl/fl 
CreCD4 mice is less acetylated than in BCL6+/+ CreCD4 
mice.  Total CD4+ T cells were isolated as in Figure G 
and ChIP analysis done.  A-B.  Samples were IP for 
H3AC and assessed for the presence of two regions of 
the pdcd1 promoter; either A. the CRB region or B. the 
CRC region.  C-D.  Samples were IP for H4AC and 
assessed for the presence of two regions of the pdcd1 
promoter; either C. the CRB region or D. the CRC 
region.  Shown as percent of input.  Mean ± SE.  *p < 

0.05 by t test.  Done in collaboration with Dr. Duy Pham. 
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was significantly decreased on fl/fl cells beginning five days after immunization.  When 

the promoter region of CXCR5 was assessed for the presence of Dnmt3a and Dnm3b 

binding via ChIP analysis, we saw no differences between +/+ and fl/fl samples either 

before or five days after immunization (Figure 54 A-B).  However, the acetylation status 

of the H3 and H4 histones was significantly altered.  While there was significantly less 

acetylated H3 histone at the cxcr5 promoter of fl/fl cells after immunization (Figure 54 C), 

H4 was significantly less acetylated both before and after immunization (Figure 54 D).  

Because the CXCR5 promoter in fl/fl mice did not have altered Dnmt binding, but did 

have decreased acetylation, it would appear that increased methylation via Dnmt3b is a 

mechanism for repression of PD-1 in fl/fl Th cells, while this method does not repress 

CXCR5. 

 

Blocking methylation increases PD-1 expression, but not CXCR5 expression  

 

To test the hypothesis that PD-1 expression is controlled by the methylation status of its 

promoter, we carried out in vitro experiments in which we block methylation.  Total CD4+ 

T cells were isolated from C57BL/6 mice and activated in vitro with anti-CD3 and anti- 

 

 
 
 

 

 

 

 

 

 

Figure 54.  The promoter region of cxcr5 in BCL6fl/fl 
CreCD4 mice is less acetylated than in BCL6+/+ CreCD4 
mice.  Total CD4+ T cells were isolated as in Figure G and 
ChIP analysis done.  A. Samples were IP for Dnmt3a and 
assessed for binding to the cxcr5 promoter.  B. Samples 
were IP for Dnmt3b and assessed for binding to the cxcr5 
promoter.  C. Samples were IP for H3AC and assessed 
for the presence of the cxcr5 promoter.  D. Samples were 
IP for H4AC and assessed for the presence of the cxcr5 
promoter.  ND = none detected.  Mean ± SE.  *p < 0.05, 

**p < 0.01 by t test.  Done in collaboration with Dr. Duy Pham. 
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Figure 55.  Blocking methylation increases PD-1 expression, but not CXCR5 
expression.  A. Total CD4+ T cells were isolated from C57BL/6 mice via bead 
separation.  Cells were activated in vitro with anti-CD3 and anti-CD28 antibodies in Th0 
media.  On day 0, cells were checked for surface expression of PD-1 via flow cytometry. 
On day 3, cells were again assessed for PD-1 expression, and half of the remaining cells 
were treated with 5-Aza-2′-deoxycytidine (+AZA-D3).  On day 5, all cells were assessed 
for PD-1 expression.  Half of the remaining untreated cells (media only) then had 5-Aza-
2′-deoxycytidine added to their media (+AZA-D5).  On day 8, all cells were harvested 
and assessed for PD-1 expression.  Shown as percent of total cells.  Gated on CD4+. 
Mean ± SE; n = 4.  *p < 0.05, ***p < 0.001 by ANOVA, Tukey post hoc.  B-C.  Total 
CD4+ T cells were isolated from unimmunized BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice 
via bead separation and activated in vitro with anit-CD3 and anti-CD28 antibodies in Th0 
media.  On day 5 of the culture, cells were checked for surface marker expression via 
flow cytometry.  Also, half of the cells were treated with 5-Aza-2′-deoxycytidine.  On day 
8, all cells were harvested and checked for surface marker expression via flow 
cytometry.  B. Surface expression of PD-1.  C. Surface expression of CXCR5.  
 
 
CD28 antibodies in Th0 media.  Three days later, samples were assessed for PD-1 

expression.  At this time, approximately 85% of cells were PD-1+ (Figure 55 A).  The 

remaining cells were then split; half continued to be culture in media and half were 

treated with 5-Aza-2′-deoxycytidine (Azacytidine), a methylation inhibitor.  On day five, 

all cells were assessed for PD-1 expression.  Cells which received Azacytidine on day 

three (+Aza–D3) had significantly more cells expressing PD-1 on the surface compared 

to untreated cells (Figure 55 A).  The remaining untreated cells were again split in half, 
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leaving one group in media only and the other group treated with Azacytidine (+Aza–

D5).  Eight days after the initial activation, all cells were harvested and assessed for PD-

1 expression via flow cytometry.  As shown in Figure 55 A, cells treated with Azacytidine 

on day three (+Aza–D3) were significantly increased in the percentage of cells 

expressing PD-1 on the surface compared to untreated cells.  While treatment with 

Azacytidine on day 5 did increase the percent of cells expressing PD-1, it was not 

significantly more than what untreated cells expressed (Figure 55 A). 

 

Using this approach, we next wanted to test if treatment with Azacytidine could restore 

PD-1 surface expression levels on fl/fl cells to those seen on +/+ cells.  As before, total 

CD4+ T cells from mice were isolated and activated in vitro.  Five days later, cells were 

treated with Azacytidine.  At this time point, untreated cells from +/+ and fl/fl mice had 

fairly low percentages of PD-1+ cells, although +/+ mice had more (Figure 55 B).  On day 

eight, when all samples were checked, treatment of +/+ Th cells with Azacytidine 

increased the percent of PD-1+ cells above what was seen on day five (Figure 55 B).  

While treatment of fl/fl Th cells was able to increase the percent of cells expressing PD-

1, it was only able to raise the level to that of untreated +/+ cells (Figure 55 B).  To verify 

that the increases seen with Azacytidine treatment were specific to PD-1 and not a 

genome-wide increase in expression, cells were also assessed for CXCR5 surface 

expression.  As shown in Figure 55, Azacytidine treatment did not increase the percent 

of CXCR5+ cells for either mouse group (Figure 55 C).  Therefore, it appears that PD-1, 

to some extent, is controlled by methylation of its promoter.  

 

 

DISCUSSION 

 

Using our new mouse model, we were able to verify the necessity of BCL6 in Th cells for 

the development of TFH cells and GCs.  Without this transcription factor, mice were 

unable to establish GCs at any time after immunization.  The functional effects of GC 

loss were observed by sharp reductions in antigen-specific antibody production, and, in 

some cases, decreases in total isotype production.  Therefore, these results 

demonstrate an inherent necessity for BCL6 expression in Th cells for not only the 

development of GCs, but also for high titers of antigen-specific antibodies.   
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These findings can be applied to human therapeutics in two distinct ways.  First, patients 

suffering from autoimmune disorders associated with increased TFH differentiation could 

benefit from protein inhibitors which target BCL6 in T cells.  As demonstrated in Chapter 

4, deletion of BCL6 in CD4+ T cells has little effect on the differentiation of other Th cell 

subsets.  Additionally, the antibody data presented here suggests that by inhibiting the 

development of TFH cells, antigen-specific antibody titers can be drastically reduced as 

well.  Therefore, a BCL6 protein inhibitor could provide a therapeutic alternative to those 

immune modulating drugs already on the market for autoimmune disease patients.   

 

Secondly, because the ultimate goal of vaccines is to trigger the development of B cells 

which secrete high affinity, antigen-specific antibodies, and survive long term, if said 

vaccines could be programmed to facilitate increased TFH differentiation upon 

immunization, more robust GCs could develop, and, theoretically, higher affinity 

antibodies would result.  Data presented in Chapter 6 concerning a prime/boost vaccine 

scheme would suggest that increased GCs may actually limit antibody quality in that 

type of approach.  However, whether increased GC development is beneficial when only 

one immunization is necessary has yet to be investigated.    

 

When evaluating TFH surface marker expression, we found evidence that CXCR5 can, 

in fact, be expressed in a BCL6-independent fashion, up to five days post-immunization.  

After that time point, it appears the BCL6-deficient Th cells cannot sustain surface 

expression and decrease the amount of CXCR5 expressed, as demonstrated by qPCR 

and flow cytometry analysis.  Furthermore, by day five, while BCL6fl/fl CreCD4 Th cells are 

still expressing CXCR5 above background levels, they cannot up-regulate the 

chemokine receptor to the levels seen in +/+ mice.  Evaluation of ICOS showed a similar 

trend, wherein Th cells from fl/fl mice can in fact up-regulate the marker in both TFH-like 

and non-TFH cells (CXCR5+ and CXCR5− subsets, respectively), but not as many cells 

are able to do so by day five.  However, in the case of both CXCR5 and ICOS, those 

cells which do express the markers in fl/fl mice are able to do so with the same potential 

as +/+ mice, as evidenced by similar MFI levels of CXCR5+ and ICOS+ cells.  

 

When PD-1 was assessed for surface expression, we found that while the percentage of 

PD-1+ cells was significantly reduced in fl/fl mice, unlike ICOS and CXCR5, the MFI of 

this TFH marker was also significantly reduced in BCL6-deficient Th cells.  This 
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difference was seen irrespective of whether a Th cell was CXCR5+ (TFH-like) or 

CXCR5− (non-TFH).  Therefore, the expression of PD-1 on Th cells is affected by loss of 

BCL6 even in non-TFH cells.  Also of interest was the observation that CXCR5 and 

ICOS deficiencies in fl/fl mice were only really seen as of day five after immunization.  

However, with PD-1 expression, a truly significant loss of positive cells and the amount 

of PD-1 expressed by those cells was seen in unimmunized mice.  After immunization, 

the difference in PD-1 expression was significantly lower in fl/fl mice and this difference 

only exacerbated over time.  It appears, though, that these differences are mainly due to 

the increased expression by +/+ Th cells, while CD4+ T cells in fl/fl mice fail to increase 

the percentage of PD-1+ cells and the existing PD-1+ cells are unable to increase their 

surface expression, as shown by decreases in MFI.  Therefore, the mechanism 

controlling PD-1 expression in TFH and non-TFH cells is affected even before 

immunization in BCL6-deficient Th cells and cannot be overcome with immunization. 

 

Data provided by our microarray analysis demonstrate a potential role for chromatin 

remodeling enzymes in the repression of PD-1 in the Th cells of BCL6fl/fl CreCD4 mice.  

After identifying Dnmt3b as a potential inhibitor of PD-1 expression, ChIP analysis 

confirmed that this DNA-methyltransferase does in fact bind to the promoter region of 

PD-1 in fl/fl Th cells before immunization, while it is not present in +/+ cells.  Because 

Dnmt3b is responsible for de novo methylation of DNA, this data would suggest that 

Dnmt3b is actively methylating the PD-1 promoter of unactivated Th cells in the absence 

of BCL6.  After immunization, significantly more Dnmt3a was found at one PD-1 

promoter site in fl/fl cells.  Because both Dnmt3a and 3b can silence genes by physically 

binding to the promoter and blocking the transcriptional machinery, this may be an 

additional way in which Dnmt activity is limiting PD-1 expression in fl/fl Th cells.  

Therefore, not only is it probable that the promoter region of PD-1 is hyper-methylated 

before cell activation, after immunization, binding of Dnmt3a to the promoter is likely 

inhibiting access of RNA polymerase to the region.  Furthermore, the consistent and 

significant decrease in acetylation of the H3 and H4 histones at the PD-1 promoter 

regions suggests an even more closed conformation of this gene.   

 

To verify that this activity is unique to PD-1, we assessed the presence of these 

enzymes at a promoter site of CXCR5.  We found no evidence of differential Dnmt3a or 

Dnmt3b binding at the CXCR5 promoter in +/+ and fl/fl mice.  However, when the 
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acetylation levels of H3 and H4 were examined, it was found that the CXCR5 promoter 

in fl/fl Th cells has significantly less acetylation, both before and after immunization.  

Therefore, expression of CXCR5 may be somewhat controlled by acetylation of its 

promoter, but Dnmts do not appear to be affecting its expression exclusively in BCL6-

deficient mice.   

 

Finally, to further investigate a potential role for methylation in PD-1 repression, 

activated CD4+ T cells were treated with 5-Aza-2′-deoxycytidine (Azacytidine).  This 

methylation inhibitor was able to increase PD-1 levels in C57BL/6 and BCL6+/+ CreCD4 

cells.  However, while the percent of PD-1+ cells did increase when BCL6fl/fl CreCD4 cells 

were treated, the levels were only increased to that of untreated +/+ cells.  Therefore, 

blocking methylation is able to partially overcome the decrease in PD-1 expression in the 

absence of BCL6.  Whether prolonged exposure to Azacytidine can further increase the 

levels seen in fl/fl Th cells needs to be investigated.   

 

In addition to describing how BCL6 may control PD-1 expression, we also found that 

BCL6 may be limiting the intracellular signals of PD-1 in TFH cells.  When CD4+ T cells 

were subdivided by PD-1 expression levels, we found that in the absence of BCL6, more 

PD-1-high Th cells were marked for apoptosis than their WT counterparts.  Because 

high levels of PD-1 are typically associated with exhausted T cells, researchers have 

wondered how TFH cells are able to remain functionally active while expressing this 

marker.  Here we demonstrate that the high expression levels of BCL6 found in TFH 

cells may be somehow limiting the quiescence or death signals coming from PD-1 

engagement, thus allowing for continued activity by these cells.   

 

Data presented in this chapter has established a new method for how BCL6 can activate 

gene expression: by repressing methylation.  Previous data (Chapter 2, Figure 9 A) has 

demonstrated a correlation between BCL6 and PD-1 expression.  Therefore, when we 

observed not only a reduction in the percent of Th cells expressing PD-1 in fl/fl mice, but 

a drop in the MFI of PD-1+ cells as well, we hypothesized that BCL6 controls PD-1 

expression through an as-yet identified mechanism.  Microarray and ChIP analysis 

enabled us to identify epigenetic modifiers which were increased in the absence of 

BCL6, and they were found to bind specifically to the PD-1 promoter, and not to other 

TFH markers, like CXCR5.  Identification of Dnmt3b as a BCL6 target is a unique finding 
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and the first of its kind as a way to describe how BCL6 controls TFH gene expression.  

Further work needs to be done to verify the specific nature of the relationship between 

BCL6 and Dnmt3b, but we are confident that we have, for the first time, described a 

method for BCL6-mediated gene activation. 
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CHAPTER 6 – GERMINAL CENTER DYNAMICS IN AN HIV-1-gp120 DNA 
PRIME/PROTEIN BOOST VACCINE SCHEME 

 
 

INTRODUCTION 

 

The Human Immunodeficiency Virus-1 (HIV-1) has affected hundreds of millions of 

people worldwide since its discovery in the early 1980s (135).  In 1996, hope was given 

to millions of infected patients with the release of the Highly Active Anti-Retroviral 

Therapy, or HAART (136).  This combination drug therapy meant people with HIV were 

no longer sentenced to die, but instead could manage their infection and extend their 

life.  The quality of that life, however, was not as high as their pre-infection standards.  

Side effects, including, but not limited to, nausea, vomiting, mental health issues, renal 

and liver failure, and heart attacks were common (136, 137).  Furthermore, the cost of 

these treatments meant life-extension remained out of reach for the vast majority of HIV+ 

patients (138).  While drug development over the last two decades has decreased the 

number and severity of these side effects, as well as substantially lowered the cost of 

anti-retroviral drugs, millions of people are still infected each year.  To date, six different 

human vaccine trials have taken place (139-142), with one ending early due to 

unexplained increases in HIV-1 susceptibility (143), and one showing modest protection 

of approximately thirty percent (144).  Therefore, the challenge remains to create an 

effective HIV-1 vaccine which prevents the transmission of all clades and, ultimately, 

eradicates this virus from the human population. 

 

HIV is a lentivirus which packages two identical single strand RNA transcripts into its 

capsid, along with several viral enzymes (Figure 56) (138, 145).  The surface 

glycoprotein (gp) 160 is composed of a transmembrane section, termed gp41, and a 

surface section, called gp120 (Figure 56) (138, 145, 146).  After gp120 attaches to its 

main receptor, CD4, on a host cell, a conformational change in the structure of the 

surface glycoprotein facilitates binding to a coreceptor, either CCR5 or CXCR4 (Figure 

57 A-B) (146).  Coreceptor binding then triggers an additional conformational change, 

allowing a section of gp41, called HR1, which is typically covered to become exposed 

and bind to the host cell surface (Figure 57 C) (146).  Once two gp160 glycoproteins 

have bound to the host cell surface, the viral capsid can then be deposited into the host 

cell (Figure 57 D) (145, 146).  Release of the capsid contents into the cytoplasm of the 
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Figure 56.  Structure of HIV virion.  HIV is a single strand RNA virus which carries two 
identical copies of its genome.  The RNA is surrounded by a capsid made from protein 
24 (p24).  Accessory proteins and enzymes are also packaged within the capsid with the 
RNA, including integrase (p31), reverse transcriptase (p51), and protease (p11).  The 
nuclear capsid is surrounded by a matrix made from p17.  The surface of the virus is 
covered in glycoproteins.  The surface portion is termed gp120, while the 
transmembrane section is gp41.  Together, these glycoproteins make gp160. 
 
 
host cell allows the viral reverse transcriptase enzymes to transcribe DNA from the viral 

RNA genome (Figure 57 E) (145, 147).  That DNA can then be transported into the host 

nucleus and integrated into the host genome via the viral integrase enzyme (Figure 57 

F) (147, 148).  Once integrated, the virus is now referred to as a provirus and can lay 

dormant for years, even decades, before beginning to replicate uncontrollably, leading to 

the decimation of the helper T cell response, and the patient to develop AIDS-related 

diseases (135, 147, 148).  Because genomic integration cannot be undone, an effective 

vaccine must produce antibodies which block viral entry into its host cell. 

 

The challenge for the immune system to produce such antibodies during an active 

infection is two-fold.  First, the virus infects and kills the cells (Th cells) which are 

responsible for helping B cells mutate and produce high affinity antibody.  Furthermore, 

the Th cells which are responsible for triggering the highest affinity antibodies, TFH cells, 

have recently been shown to contain the highest reservoir of virus of all the Th cell 

subsets.  Therefore, HIV-1 targets and removes the cells which could most effectively 

contribute to eliminating the virus.  Secondly, HIV-1 mutates at such a high rate the 

regions of gp120 and gp41 targeted by antibodies change just enough to facilitate viral 

escape from existing antibodies.  However, there are a few select regions on these  
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Figure 57.  Attachment and 
fusion of HIV to host cell.  A. 
HIV will first bind to a host cell via 
its main receptor, CD4, at a 
conserved binding site on gp120.  
B. Binding of CD4 to its site on 
the surface glycoprotein causes a 
conformational change in gp120 
that exposes the binding site for 
the coreceptor.  The coreceptor, 
either CCR5 or CXCR4, then 
binds its conserved site on 
gp120, called the V3 loop.  C. 

Binding of the coreceptor triggers a conformational change in the surface glycoproteins, 
revealing a portion of gp41 normally not exposed.  This domain of gp41 is called HR1.  
D. When two gp160 proteins have bound a host cell, fusion of gp41 to the cell surface 
allows transport of the viral capsid from the virion into the host cell.  E. Once the capsid 
enters the host cell, it releases its RNA and enzymes into the host cytoplasm.  Next, the 
reverse transcriptase (RT) will synthesize complementary DNA strands of the viral RNA 
using host cell nucleotides.  F. Finally, the viral DNA will traffic into the host cell nucleus 
along with the viral integrase enzymes.  Integrase will selectively splice viral DNA into 
the host genome.  Once this occurs, the virus is referred to as a provirus.  
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Figure 58.  Binding sites of broadly neutralizing antibodies to HIV.  Many anti-HIV 
antibodies have been isolated from the serum of infected patients which possess 
neutralizing capabilities.  The breadth of these antibodies is quite variable, but most can 
neutralize at least 30% of viruses.  The binding sites which these antibodies are directed 
to are not only crucial for virus attachment and fusion with host cells, but they are highly 
conserved among viruses as well, allowing these viruses to efficiently neutralize most 
virus they bind to.  Unfortunately, many of these binding sites are hidden and are not 
revealed until the virus begins to bind a host cell and the surface glycoproteins undergo 
conformational changes.  The antibodies b12, HJ16, VRC01, VRC02, VRC03, and 
CH103 have been shown to bind the CD4 binding site on gp120.  The V1 and V2 loops 
have been shown to be targeted by the PG9 and PG16 antibodies.  The V3 loop, which 
binds the viral coreceptor, has several characterized antibodies targeting it, including 
2G12, PGT121 – PGT123, and PGT125 – PGT128.  Finally, a conserved region on 
gp41 near the viral envelope has also been shown to be targeted by neutralizing 
antibodies.  The three with the highest affinity are 2F5, 4E10, and 10E8.  Figure adapted 
from Clapham PR and Lu S, Nature medicine, 2012. 
 
 
surface glycoproteins which are conserved.  These regions include the binding sites for 

CD4 and the coreceptors (Figure 58).  The difficulty with targeting these regions is due 

to their physical inaccessibility.  These areas are mainly shielded until the virus begins 

binding to a target cell, at which time the surface glycoproteins undergo conformational 

changes to facilitate infection (Figure 57).  It is then when the conserved regions are 

exposed and vulnerable to antibody binding.   

 

While the majority of HIV-1-infected individuals lack the ability to target these areas, a 

number of antibodies with known neutralizing capabilities have been characterized in a 

subset of infected patients (149-153).  These individuals’ immune systems have 

developed antibodies which target the CD4 binding site, the V3 loop (which binds 
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coreceptors), as well as a few conserved regions on gp41 (Figure 58) (149-153).  

Unfortunately, these antibodies usually take years to develop, and, by that point, an 

infected individual likely has millions of established proviruses.  Furthermore, the B cells 

from these patients have typically undergone five- to tenfold higher affinity maturation 

rates than cells from patients lacking these neutralizing antibodies (154).  This level of 

mutation is rarely seen in non-HIV+ people, and thus difficult to characterize (154).  

However, it seems indisputable that the GC must be involved in this affinity maturation, 

and, consequently, TFH cells likely play a pivotal role in aiding the development of 

neutralizing antibodies.  Therefore, any effective vaccine which is to elicit broadly 

neutralizing antibodies must not only target and stimulate B cell activity, but activate 

highly specific TFH cells as well.  

 

Because CD4+ T cells are the primary target for the virus, these cells have been largely 

ignored in the search for an effective vaccine.  While the importance of TFH cells in the 

humoral immune response has become clear in recent years, the role of TFH cells in an 

HIV vaccine strategy remains uncertain.  Furthermore, while much focus has been 

placed on serum antibody analysis in the development of HIV vaccines, little research 

has been done on evaluating the robustness of GC development with different 

vaccination approaches.  The GC has been shown to peak earlier in a secondary 

response than after a primary immunization (155), but nothing is known about the 

kinetics of the TFH response and the GC reaction with vaccines that require repeated 

immunizations. Therefore, it is critical to study the development of TFH cells and GCs to 

gain insights into effective HIV vaccine strategies.   

 

Currently, heterologous prime-boost vaccination strategies employing a DNA priming 

component are making headways in different disease fields, such as HIV, influenza, 

malaria and tuberculosis (156-159).  Previously, our collaborators have shown mice 

immunized with a DNA vector encoding gp120, followed by injection of recombinant 

gp120 protein, yield antibodies with higher specificity and avidity than either vaccine 

alone, and, more importantly, develop improved neutralizing antibodies against primary 

viral isolates (160-162).  Because TFH cells are crucial for the development of plasma 

cells secreting mutated high affinity antibodies from the GC, we hypothesized DNA 

priming causes more TFH cell differentiation, thereby triggering a more robust GC 

response. 
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MATERIALS AND METHODS 

 

Mice and immunizations 

 

Eight to ten week old C57BL/6 mice were obtained commercially from The Jackson 

Laboratory.  BCL6fl/fl mice were generated as described in Chapter 2 and mated to Cre-

ERT2 mice, which were also acquired from The Jackson Laboratory (stock # 007001).  

Mice were bred under specific pathogen-free conditions at the laboratory animal facility 

at the Indiana University School of Medicine (IUSM) and were handled according to 

protocols approved by the IUSM Animal Use and Care Committee. 

 

Pilot study mice were immunized i.m. with 1 x 109 sheep red blood cells (SRBC; 

Rockland Immunochemicals Inc., Gilbertsville, PA) in 100 uL of PBS.  A codon optimized 

JR-FL gp120 DNA vaccine construct in the pJW4303 vector was used for all DNA-based 

immunizations, as previously reported (161).  DNA vaccine plasmid was produced in 

HB101 bacterial cells then isolated and purified using the Qiagen Plasmid Mega Kit.   

 

Recombinant HIV-1 gp120 proteins were produced from Chinese Hamster Ovary (CHO) 

cells, as previously reported (161).  Mice were immunized i.m. with either 100 ug of DNA 

or 10 ug gp120 protein in ALUM (Sigma-Aldrich Corp., St. Louis, MO, USA).  A total of 

100 uL was injected, 50 uL per hind leg. 

 

Tamoxifen 

 

Mice were given i.p. injections of 4 mg Tamoxifen (Sigma-Aldrich Corp., cat. # T5648) in 

sunflower seed oil. 

 

Flow cytometry 

 

Total spleen or thymus cells were incubated with anti-mouse CD16/CD32 (Fcγ receptor) 

for 20 minutes, followed by surface staining for the indicated markers.  A fixable viability 

dye (eFluor 780, eBioscience) was used for all samples.  The following antibodies were 

used for staining GC B cells: α-mCD19 Alexa Fluor 700, clone eBio1D3 (eBioscience); 

α-mB220 PE, clone RA3-682 (BD Bioscience); α-mFas Biotin, cat. # 554256 (BD 
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Bioscience); Streptavidin-PECy7 (Biolegned); α-mGL7 APC, clone GL7 (BD Bioscience); 

PNA FITC (Vector Laboratories Inc.).  The following antibodies were used to stain 

memory B cells: α-mCD19 Alexa Fluor 700, clone eBio1D3 (eBioscience); α-mB220 

PerCP, clone RA3-6B2 (Biolegend); α-mIgD FITC, clone 11-26C (eBioscience); α-mGL7 

APC, clone GL7 (BD Bioscience); α-mCD38 PE, clone 90 (eBioscience); α-mCD73 

PECy7, clone TY/11.8 (eBioscience).  The following antibodies were used to stain naïve 

and memory T cells: α-mCD3 Alexa Fluor 700, clone 500A2 (BD Bioscience); α-mCD4 

PECy7, clone RM4-5 (BD Bioscience); α-mCD8a APC, clone 53-6.7 (BD Bioscience), α-

mCD44 PE, clone IM7 (eBioscience); α-mCD62L FITC, clone MEL-14 (BD Bioscience).  

The following antibodies were used to stain TFH cells: α-mCD3 Alexa Fluor 700, clone 

500A2 (BD Bioscience); α-mCD4 PECy7, clone RM4-5 (BD Bioscience); α-mCXCR5 

PerCP-efluor 710, clone SPRCL5 (eBioscience); α-mPD-1 APC, clone 29F.1A12 

(Biolegend); α-mICOS FITC, clone C398.4A (eBioscience).   

 

Antibody analysis   

 

Antibody titers of gp120-specific IgG were measured by ELISA as previously reported 

(160).  Antibody avidity was measured via the NaSCN displacement method, as 

previously described (160).  This work was done by Dr. Shan Lu’s laboratory at the 

University of Massachusetts Medical School. 

 

RNA analysis   

 

Total spleen cells from Cre-ERT2 mice were lysed using Trizol three days after final 

immunizations.  Total RNA was isolated using an RNeasy mini kit (Qiagen).  cDNA was 

constructed using a Transcriptor First Strand cDNA synthesis kit (Roche).  Expression of 

BCL6 mRNA was quantified using SYBR Green analysis (Roche) with the following 

primers: 

 

BCL6 exon 2/3 forward (5’ – GCACTGGGCAAACACAACAT – 3’) 

BCL6 exon 2/3 reverse (5’ – AGCGTGCCGGGTAAACTG – 3’) 

BCL6 exon 8 forward (5’ – GAAGACCCACACTCGAATTCACT – 3’) 

BCL6 exon 8 reverse (5’ – CCCCACAGGTTTCACATTTGT – 3’) 
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Statistical Analysis   

 

All data analysis was done using SPSS Statistics 20 software.  Unless otherwise stated, 

ANOVA with Tukey post hoc analysis was used. 

 

 

RESULTS 

 

Immunization with gp120-encoding DNA yields a stronger GC response than 

gp120 protein 

 

To test the hypothesis that gp120-encoding DNA triggers stronger GC responses than 

gp120 protein alone, C57BL/6 mice were injected i.m. with either gp120-encoding DNA, 

gp120 protein, or empty vector DNA, three times, two weeks apart (Figure 59).  In our 

collaborators’ previous HIV-1 gp120 immunogenicity studies, the priming phase included 

three immunizations.  Traditionally, GC responses tend to peak between days seven and 

ten of the immune response.  In our initial experiments with this gp120 immunization 

scheme, we looked at these time points, only to find little evidence of an active GC (data 

not shown).  Also, to our knowledge, no data has been published demonstrating the  

 

 

 

Figure 59.  Experimental design for testing DNA vs. protein priming.  C57BL/6 mice 
were primed i.m. with either gp120-encoding DNA, gp120 protein, or empty vector, 3 
times, 2 weeks apart.  Some mice were sacrificed 3 and 7 days after final priming 
injections.  The remaining mice were rested for 4 weeks, then all groups were given 2 
booster shots of gp120 protein, 2 weeks apart.  Mice were then sacrificed 3 and 7 days 
after the final boosters. 
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Figure 60.  Germinal centers appear earlier 
with repeated immunizations.  C57BL/6 mice 
were immunized 3 times, 2 weeks apart, i.m. 
with SRBC or control mice were given PBS.  
Mice were sacrificed 3 and 7 days after final 
injections and analyzed for TFH and GC B 
populations.  PBS mice were sacrificed with 
day 3 mice.  TFH cells gated on CD3+ CD4+ 
CXCR5+ ICOS+ PD-1hi.  GC B cells gated on 
B220+ CD19+ Fas+ PNA+ GL7+.  Percent of 
total spleen; mean ± SE.  

 
 
kinetics of TFH cell differentiation with repeated immunizations.  Therefore, to determine 

the optimal time to analyze mice given multiple injections, we immunized C57BL/6 mice 

i.m. with SRBC three times, two weeks apart and sacrificed them at different times 

afterward.  Our data showed GC B cells and TFH cells peaking earlier, on day three, 

after final injections (Figure 60).  Therefore, we chose to analyze mice for the following 

experiments on days three and seven after final injections. 

 

With this information in mind, we then examined TFH cells and GC B cells after just the 

priming phase of the immunization scheme (Figure 61).  Mice which received gp120-

encoding DNA had increased TFH cells and significantly more GC B cells in the spleen 

three days after the last priming injections (Figure 61 A-B).  However, by day seven after 

the last priming injections, these amounts equaled that of mice primed with gp120 

protein.  Antibody analysis revealed priming with gp120 DNA induced significantly higher 

antigen-specific IgG titers, both three and seven days after final injections (day 28; 

Figure 61 C).  The avidity of these antibodies was somewhat higher on day three with 

gp120 DNA priming (Figure 61 D).  This data demonstrates priming with gp120 DNA 

alone, without booster injections, already triggered more robust GC responses and 

antigen-specific IgG production than does gp120 protein. 

 
 
Priming with gp120-encoding DNA enhances GCs and the proportion of TFH cells 

in spleen 

 

After initially priming with gp120-encoding DNA, gp120 protein, or empty vector DNA, all 

groups were rested for four weeks, then received two gp120 protein booster 

immunizations, two weeks apart (Figure 59).  TFH cells from spleen were elevated in  
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Figure 61.  Increased GC activity after gp120 DNA priming.  Mice were immunized 
according to Figure 59 and sacrificed 3 and 7 days after final priming injections 
immunizations.  A. TFH and GC B cell populations after priming only.  TFH cells gated 
on CD4+ CXCR5+ ICOS+ PD-1hi.  GC B cells gated on B220+ Fas+ PNA+ GL7+.  Percent 
of total spleen; mean ± SE.  B. Representative flow plots of TFH cells and GC B cells in 
(A) from day 3 after final immunization.  C. Serum anti-gp120-specific IgG titers after 
prime only; mean ± SE.  D. Anti-gp120-specific IgG affinity after prime only; mean ± SE.  
n = 3; *p < 0.05, **p < 0.01, ***p < 0.001.  C & D done in collaboration with Dr. Shan Lu. 
 
 
mice receiving gp120 DNA three days after the final injections, but tapered off by day 

seven (Figure 62 A-B).  GC B cell populations, however, remained significantly higher in 

mice primed with gp120 DNA on both day three and seven after final immunizations 

(Figure 62 A-B).  This data demonstrated the advantage of priming with gp120 DNA  
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Figure 62.  Enhanced GC B cells and TFH cell populations with gp120 DNA 
priming.  Mice were immunized as in Figure 59 and sacrificed 3 and 7 days after final 
gp120 protein booster injections.  A. TFH and GC B cell populations after prime-boost 
regimen.  Cells gated as in Figure 61.  Percent of total spleen; n = 3-5; mean ± SE. **p < 
0.01, ***p < 0.001  B. Representative flow plots of TFH cells and GC B cells in (A) from 
day 3 after final protein booster. 
 
 
 

 

 

 

 

 

 

 

 

 
Figure 63.  Proportion of TFH cells increased with gp120 DNA priming.  Mice were 
immunized as in Figure 59 and sacrificed 3 and 7 days after final gp120 protein booster 
injections.  A. Percent EM T cells (CD3+ CD4+ CD44hi CD62L−) in gp120 DNA and 
protein primed mice after protein boosters.  Percent of total spleen; n = 5-6; mean ± SE.  
B. Ratio of TFH to EM cells.  n = 5-6; mean ± SE. **p < 0.01 by t test. 
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rather than protein, as GC cell populations were increased and arose earlier in the 

immune response. 

 

When EM CD4+ T cells were analyzed in the spleen of these mice, no significant 

differences were seen on either day three or seven after final immunization (Figure 63 

A).  Because TFH cells are activated Th cells, phenotypically they are included in the EM 

population of CD44+ CD62L− cells.  Therefore, we analyzed the proportion of TFH cells 

within this EM population.  On day three, the proportion of TFH cells within the EM 

population was significantly higher with gp120 DNA priming than with protein alone 

(Figure 63 B).  By day seven, however, the proportion of TFH cells from gp120 protein 

priming caught up to the levels from gp120 DNA priming.  Therefore, after boosting with 

gp120 protein, mice primed with DNA showed a clear advantage in TFH and GC B cell 

development.  

 

Priming with gp120 DNA improves GC activity 

 

Like EM T cells, neither priming method yielded significantly higher percentages of 

splenic memory B cells (Figure 64 A).  Therefore, we were interested in what percentage 

of these memory cells were of GC origin.  Recent literature has shown CD73 to be an 

accurate marker for defining former GC B cells (163).  When the fraction of memory B 

cells of GC origin was examined, we saw significantly higher percentages with gp120 

DNA priming both three and seven days after final immunization (Figure 64 B).  Titers of 

anti-gp120 IgG with DNA priming were significantly higher three days after final 

immunizations, as was the avidity (Figure 64 C-D).  It was not until day seven that the 

antibodies of mice primed with gp120 protein equaled the levels seen in gp120 DNA 

mice.  Not only was the functionality of these B cells increased with gp120 DNA priming, 

but, again, the increase in antibody secretion occurred earlier.   

 

While analyzing memory B cell populations, we observed a decrease in this cell 

population from day three to day seven, even though the memory cells of GC origin 

expanded during the same period with both immunization methods.  Therefore, we 

utilized the surface markers CD38 and GL7 to differentiate memory B cells (MB: CD38+ 

GL7−) from transitional B cells (TB: CD38+ GL7+) (Figure 65 A-B).  ln terms of B cell 

kinetics, it was interesting to observe that regardless of which priming method was used,  
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Figure 64.  Priming with gp120-encoding DNA improves GC activity.  Mice were 
immunized and sacrificed as in Figure 59.  A. Memory B cells (gated as CD19+ IgD− 
GL7− CD38+) in mice primed with gp120-encoding DNA or gp120 protein.  Percent of 
total spleen; mean ± SE.  B. Memory B cells originating from the GC.  Gated as CD19+ 
IgD− GL7− CD38+ CD73+.  Percent of memory B cells; n = 4-6; mean ± SE.  *p < 0.05, 
**p < 0.01 by t test.  C. Serum anti-gp120-specific IgG titers after boosting.  Mean ± SE.  
D. Avidity of serum anti-gp120-specific antibodies after boosting.  Mean ± SE. n = 4-6; *p 
< 0.05, ***p < 0.001  
 
 
 
 

 

 

 

 

 

 

 
Figure 65.  Dynamics of transitional B cells during repeated immunizations.  Mice 
were immunized and sacrificed as in Figure 59.  A. Transitional B cells (gated on CD19+ 
IgD− GL7+ CD38+); percent of total spleen; mean ± SE.  B. Representative flow plots of 
day 3 and day 7 from mice primed with gp120 DNA.  Quadrants show memory B cells 
(MB) (top left) and transitional B cells (TB) (top right).  
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B cells seem to be differentiating out of a memory B cell phenotype into a transitional cell 

state between days three and seven, while memory cells of GC origin retain their 

phenotype and proliferate.  Thus, while not increasing overall memory B cell numbers, 

priming with gp120 DNA significantly increased the percentage of memory cells of GC 

origin.  Furthermore, in the context of repeated immunizations, between days three and 

seven, memory B cells in all mice decreased, while those with a transitional cell 

phenotype increased, demonstrating a transition from a memory to a more active cell 

state.  

 

Deletion of BCL6 results in a significant increase of gp120-specific IgG 

 

Previously, we have generated a mouse wherein exons 7 – 9 of the BCL6 gene are 

flanked with loxP recombination sites (BCL6fl/fl) (See Chapter 2).  In this study we 

created a new cKO mouse model in which BCL6fl/fl mice were mated to mice expressing 

a Cre recombinase fused to a human estrogen receptor (Cre-ERT2).  Under control of 

the estrogen receptor, we can functionally delete BCL6 by administering tamoxifen to 

these mice.  Unlike our earlier cKO mouse, in which Cre was under the control of the 

CD4 promoter, BCL6fl/fl CreERT2 mice will have BCL6 functionally deleted in all cells once 

 
 

 
  
Figure 66.  Experimental design for deletion of BCL6.  ERT2-Cre BCL6fl/fl mice were 
primed with either gp120-encoding DNA or gp120 protein, followed by 2 booster shots of 
gp120 protein.  Some ERT2-Cre BCL6fl/fl mice also received 5 i.p. injections of tamoxifen 
(T) (4 mg in sunflower seed oil) between the prime and boost injections to delete BCL6.  
Mice were sacrificed 3 days after final injections. 
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Figure 67.  Deletion of BCL6 in 
tamoxifen treated mice.  Total 
spleen cells from ERT2-Cre BCL6fl/fl 
mice were analyzed for deletion of 
BCL6.  RNA from total spleen was 
analyzed via qPCR for BCL6 
transcripts.  Transcript levels were 
normalized to mice not given 
tamoxifen (dotted line at 1.0).  Exons 
2-3 and Exon 8 are shown.   
 

 
tamoxifen is administered.  As in the initial experiments, mice were primed with either 

gp120-encoding DNA or gp120 protein, three times, two weeks apart (Figure 66).   

 
 
During the four week rest period, half of the mice received i.p. injections of tamoxifen 

every day, for five days.  Twelve days after the final tamoxifen injection, mice were given 

the first of two gp120 protein booster injections.  Administration of tamoxifen effectively 

and functionally deleted BCL6 from mice (Figure 67).  Since the most drastic changes in 

GC dynamics were seen three days after final immunizations in our earlier studies, we 

chose this time point to analyze these mice.  Once again, gp120 DNA triggered 

significantly higher TFH and GC B cell populations in the spleen of mice not treated with 

tamoxifen (Figure 68 A-B).  As expected, deletion of BCL6 severely and significantly 

reduced the TFH and GC B cell populations (Figure 68 A-B).  Surprisingly, deletion of 

GCs led to an increase in gp120-specific IgG, (Figure 68 C).  Priming with gp120 DNA, 

followed by functional deletion of BCL6 significantly enhanced antigen-specific IgG titers 

compared to all other groups.  Furthermore, the avidity of these antibodies was 

increased as well (Figure 68 D).  This data verifies the necessity of BCL6 for GC 

development, while demonstrating the dispensability of these structures for antibody 

secretion and affinity maturation in the context of repeated immunizations. 

 

 

DISCUSSION 

 

While a number of research publications have shown the protective advantage of 

incorporating a DNA priming step into heterologous prime-boost vaccination strategies, 

few studies have looked into the mechanism by which DNA priming affords this 

advantage.  Furthermore, almost nothing is known about the role of the TFH cell and the  
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Figure 68.  GCs are lost with deletion of BCL6.  Cre-ER BCL6fl/fl mice were 
immunized as in Figure 66 and sacrificed 3 days after final protein booster injections.  
Some mice were given tamoxifen injections between prime and boost injections to delete 
BCL6.  A. TFH cells (gated as in Figure 61) in spleen of mice either untreated or given 
i.p. tamoxifen injections before boosting.  Representative flow plots of each treatment 
condition.  B. GC B cells (gated as in Figure 61) in spleen after prime-boost regimen with 
representative flow plots of each treatment condition.  Percent of total spleen; n = 3-4; 
mean ± SE.  C. Serum anti-gp120-specific IgG titers after boosting.  D. Avidity of anti-
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gp120-specific antibodies after boosting.  Mean ± SE. n = 3-4; *p < 0.05, **p < 0.01, ***p 
< 0.001  
 
 
GC response in prime-boost vaccinations.  Here, we demonstrate, using an HIV gp120 

vaccine scheme, priming with gp120-encoding DNA yields increased TFH and GC B cell 

populations compared to priming with gp120 protein.  Furthermore, this increase occurs 

at an earlier time-point after immunization.  The early antibody response induced by 

DNA priming was seen after the priming phase, as well as following the boost injections.  

While literature exists explaining the possible different mechanisms of antigen 

processing and presentation with plasmid vector vaccines (159, 164), it is not yet clear 

how the protein from these plasmids affords an advantage.   

 

Human trials of HIV-1 DNA vaccines consisting only of injections of HIV-1-encoding DNA 

(i.e. not prime-boost approaches) have been disappointing for eliciting the production of 

antibodies (165, 166).  More recently, several prime-boost HIV-1 vaccines have been 

tested in humans that use a pure DNA component, as well as protein, and these 

systems have succeeded in provoking a significant antibody response (167-169).  

Studies with cancer vaccines in humans have also supported the utility of DNA priming 

in a prime-boost system (170).  Thus, understanding how DNA priming can augment 

immunity in a prime-boost vaccination system is warranted. 

 

Memory cell development is considered critical for an effective vaccine.  We found no 

apparent increase in memory T cell populations after DNA priming.  However, when 

looking at the proportion of effector Th cells which are TFH cells, we saw that gp120 

DNA priming lead to more activated CD4+ T cells becoming TFH cells, rather than other 

Th cell subsets.  For B cells, priming with DNA effectively enhanced GC memory B cell 

outcomes, in this case by triggering the development of more CD73+ memory B cells, 

which are derived from the GC.  This data, combined with the earlier peak in antigen-

specific IgG, would suggest that priming with gp120 DNA not only triggers more memory 

B cell development from GCs, but that those memory cells underwent affinity maturation 

and differentiated into plasma cells more quickly than with protein priming.  The 

decrease in memory B cell populations between days three and seven, and the 

concurrent increase in transitional cells (Figure 65), shows an interesting trend in terms 

of B cell kinetics.  It would be worthwhile to investigate how repeated immunizations 
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affect the timing of this cell transition; perhaps the increased number of immunizations is 

decreasing the time necessary to make this transition. 

 

To investigate the necessity of GCs in the context of repeated immunizations, our 

inducible Cre mouse model allowed us to delete BCL6, the master transcription factor for 

GCs, after priming the mice.  Our data suggests that once memory B cells are formed in 

the priming stage, further formation of GCs actually limits the antibody production of 

antigen-specific IgG-secreting B cells.  Since we observed more memory B cells of GC 

origin developing with gp120 DNA priming (Figure 64 B), we reasoned that during 

protein booster injections, forming GCs limits the antibody-secreting potential of these 

memory cells, as they appear to be better able to differentiate into antibody-secreting 

plasma cells independent of the constrains of the GC.  How these memory cells 

underwent additional affinity maturation, as evident by their increased avidity, outside the 

GC is not understood at this time.  It is possible these B cells are interacting with Th cells 

outside the B cell follicle.   

 

These results have highly significant implications for the field of B cell immunology, HIV-

1 vaccine development, and AIDS therapy.  When and where B cells can undergo 

affinity maturation needs to be fully understood to design an optimal immunization 

schedule that elicits high-affinity, broadly neutralizing antibodies by a prophylactic HIV-1 

vaccine.  Further studies are warranted to determine how much of a role repeated 

immunizations play in extra-follicular antibody development.  At what point GCs are no 

longer needed to develop antigen-specific antibodies with high avidity is of great 

importance to the vaccine field.  Our findings also have potential impact for the design of 

immune therapy strategies for HIV-1 infected people.  Published works have 

demonstrated TFH cells as being a major target and reservoir for HIV-1 (171-173).  

Therefore, it is undesirable to stimulate these cells when treating infected patients.  

However, if there is a way to trigger high-affinity antibody production without involving 

TFH cells, patients could increase their antibody-mediated protection without activating 

the production of new virus from TFH cells. 

 

In conclusion, the key goal of this study was to provide insight into how DNA priming 

provides an advantage in the antibody response, and here we have pinpointed, for the 

first time, the ability of DNA priming to augment the GC reaction, as well as to transiently 
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increase TFH cells.  Thus, the improved antibody response in a heterologous prime-

boost vaccination system with DNA priming can be explained by increased TFH and GC 

function.  At the same time, we have found that the GC reaction appears to limit antibody 

production in the boost phase.  These results should prompt a reevaluation of HIV 

vaccine design.  
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FUTURE DIRECTIONS 

 

Part I – Elucidating the role of BCL6 in repressing DNA methylation 

 

Determining the methylation status of BCL6-deficient naive CD4+ T cells 

 

Using our new cKO mouse model, we were able to determine a relationship between 

BCL6 and Dnmt3b, which is responsible for de novo methylation of DNA.  While we were 

able to establish the presence of Dnmt3b at the PD-1 promoter before immunization, it 

remains undetermined what the genome-wide methylation status is of naïve Th cells in 

BCL6fl/fl CreCD4 mice is.   

 

To investigate this aim, naïve CD4+ T cells should be isolated from naïve BCL6+/+ CreCD4 

and BCL6fl/fl CreCD4 mice via FACS.  Unstimulated naïve cells can then be lysed and 

assessed for DNA methylation via MeDIP analysis.  Briefly, methylated DNA 

immunoprecipitation works by targeting methylated DNA with a methyl cytosine (5-mC)–

specific antibody.  Following this immunoprecipitation, captured DNA can be assessed 

for total quantity, via Nanodrop technology, or sequenced to identify specific genes being 

modified, also known as MeDIP-seq. 

 

In addition to naïve unactivated cells being analyzed, sorted naïve Th cells can also be 

activated in vitro with anti-CD3 and anti-CD28 antibody stimulation.  These cells can be 

harvested over time, such as days three and seven, to track changes in methylation 

overtime using the same analysis tools stated above.  In this way, we can analyze the 

role BCL6 has in suppressing methylation machinery in the cell at different points after 

activation. 

 

To model this experiment in vivo, our cKO mice should first be bred onto an OT-II 

background.  This will cause all the TCRs of CD4+ cells in the mouse to be specific for 

OVA, and, thus, after immunization, have equal opportunities to become activated.  After 

sorting naïve CD4+ T cells from mice to use as a baseline for methylation status, an 

additional set of mice should be immunized and sacrificed at various time points after.  

Naïve (CD44− CD62L+) and effector (CD44+ CD62L−) cells should be isolated from these 

mice.  Analysis of effector cells can shed light on the changing methylation status of cells 
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over time, while analyzing naïve Th cells may provide interesting insights into changes in 

DNA methylation due to environmental cues without cellular activation. 

 

Determine the types of methylation modifications in BCL6-deficient Th cells 

 

While several types of methylation modifications exist, one of the most frequent is 5-

methylcytosine (5mC) (129).  This modification is associated with closed chromatin, and, 

thus, gene repression.  After DNA has been methylated de novo, how it becomes 

demethylated is currently a controversial topic in the field of epigenetics.  The first way in 

which this occurs, which is not contested, is via passive demethylation.  When a cell 

divides and the DNA replicates, the 5mC areas become hemimethylated because the 

new complementary DNA strand is without modifications.  Dnmt1 identifies these areas 

and methylates the new DNA strand in daughter strands, thus returning it to a fully 

methylated state.  If Dnmt1 fails to recognize a hemimethylated area of DNA, that 

segment will become passively demethylated with subsequent cell divisions. 

 

What is controversial is the current proposal that certain enzymes can actively target and 

demethylate 5mC (129).  In this model, TET enzymes can oxidize 5-methylcytosine 

(5mC) to 5-hydroxymethylcytosine (5hmC).  This modified cytosine has been shown to 

be a crucial intermediate in demethylation activity.  Additionally, TET can further oxidize 

5hmC into 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC).  These modified bases 

are then targeted for removal by thymine DNA glycosylase (TDG).  TDG, which plays a 

critical role in base excision repair, will remove the methylated cytosine, generating an 

abasic site.  This is followed by replacement with an unmethylated cytosine by DNA 

polymerase.    

 

One reason the type of methylation present in cKO Th cells should be assessed is 

because TET1 and TDG are significantly up-regulated in microarray analysis (Figure 69 

A).  Therefore, not only is DNMT3b increased in the absence of BCL6, but the 

machinery which modifies those methylation modifications put in place by Dnmt3b are 

increased also.  Furthermore, TET1 transcript levels were also found to be increased in 

total Th cells in our time course experiment (Figure 69 B).  For these reasons, not only 

should the total methylation status of DNA in cKO Th cells be assessed, but the type of 

methylation should be addressed as well. 
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Figure 69.  Tet1 and Tdg are up-regulated in the absence of BCL6.  A. Naïve Th 
cells from BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice, cultured, and assessed via 
microarray as described in Chapter 3.  B. BCL6+/+ CreCD4 and BCL6fl/fl CreCD4 mice were 
immunized with SRBC and sacrificed 1, 3, and 5 days after.  Total Th cells were lysed ex 
vivo and analyzed for tet1 transcript.  Levels normalized to Day 1 +/+ (dotted line at 1.0).  
**p < 0.01 by t test. 
  
 
To determine whether the methylation modifications are 5mC, 5hmC, 5fC, or 5caC, a 

ChIP analysis can be performed, as antibodies against these methylation forms are 

available for commercial purchase.  After IP, the captured DNA can be quantified for 

total concentration (Nanodrop) or analyzed for the presence of gene promoters, via 

qPCR or genome wide sequencing (ChIP-seq).  This data can help shed light on the 

current controversy surrounding active DNA demethylation. 

 

An additional reason why the increased expression of TET1 and TDG is interesting is 

the finding that once activated, BCL6-deficient Th cells proved to be more proliferative 

than their WT counterparts.  Perhaps the increased activity of TET1 and TDG in these 

cells is leading to more gene activity via demethylation once the cells are activated. 

 

Determine the physical relationship between BCL6 and Dnmt3b 

 

At this point, we know that Dnmt3b is up-regulated in the absence of BCL6, but how 

BCL6 represses the methyltransferase has not been determined.  Therefore, using 

several different analyses, we can determine at what level BCL6 is repressing Dnmt3b.  

First, by immunoprecipitating for BCL6, using ChIP analysis, we can determine whether 

BCL6 directly binds the Dnmt3b promoter.  To do this, mice should be immunized with 

SRBC and TFH cells sorted to ensure the highest expression of BCL6.  Also, qPCR 

promoters will need to be designed to span the entire Dnmt3b promoter. 

A. B.
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Through its zinc fingers, BCL6 also has the capability to bind RNA.  Therefore, BCL6 

may be repressing translation of Dnmt3b by bindings its transcripts.  To test this, RNA 

immunoprecipitation (RIP) can be employed (174).  Like ChIP analysis, samples are IP 

for a protein of interest and the RNA it associates with is isolated and analyzed.  In this 

way, we can test if BCL6 binds to Dnmt3b mRNA. 

 

Finally, to determine if BCL6 is repressing Dnmt3b by direct protein-protein interactions, 

TFH cells can also be co-IP for BCL6, followed by Dnmt3b.  This standard procedure will 

reveal if these repressors interact on the protein level.  

 

While data using mouse Th cells is crucial for establishing targets of interest, it is also 

important to test these theories in human models.  Using human tonsil samples, we can 

sort TFH cells and test BCL6-Dnmt3b interactions in these cells using the above 

techniques.  If we can identify this association in human T cells, our data could have 

great contributions for the study of human T cell activation. 

 

Effects of BCL6 on the cell cycle 

 

When a naïve Th cell is activated, in addition to up-regulating surface markers and 

secreting cytokines, it will enter the G1 phase of the cell cycle and, ultimately, divide.  

Because we saw decreased activation of naïve Th cells and increased proliferation of 

already activated cells in fl/fl mice, it remains to be investigated what affects BCL6 has 

on the cell cycle.  As discussed in Chapter 5 of this thesis, the chromatin in BCL6-

deficient Th cells appears to be more methylated than its WT counterpart.  Therefore, 

this increased epigenetic modification may be affecting a cell’s ability to enter the cell 

cycle and replicate. 

 

In addition to our methylation findings, further analysis of our microarray data revealed 

significant increases in the expression of genes which play a role in cell cycle 

progression (Figure 70 A).  Nek6 becomes activated during M phase and its inhibition 

will trigger apoptosis.  It associates with Kif11, which plays a role in organizing spindles 

prior to cell division.  Jub was also significantly increased and, in addition to playing roles 

in cell activation and proliferation, it activates Aurora A (aurka) which facilitates mitosis.   
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Figure 70.  Cell cycle genes are up regulated in the absence of BCL6.  A. 
Microarray analysis was done as in Chapter 3.  B. Time course experiment as described 
in Figure 69 B.  C. Naïve CD4+ T cells were isolated via bead separation and activated in 
vitro with anti-CD3 and anti-CD28 antibodies in Th0 media for 24 hours.  Cells were then 
lysed for RNA analysis.  Mean ± SE.  *p < 0.05, **p < 0.01, ***p < 0.001 by t test. 
 
 
Finally, cyclin D2 (ccnd2) plays a role in the transition from G1 to S phase.  When Th 

cells from our time course experiment were analyzed for jub and nek6 transcription, 

increased levels were found in the absence of BCL6 as well (Figure 70 B).  Also, when 

naïve Th cells were activated in vitro with antibodies for 24 hours, transcript levels of 

cyclin D2 were significantly decreased in the absence of BCL6 (Figure 70 C).  Therefore, 

it seems apparent that BCL6 is in some way, repressing cell cycle genes.   

 

This idea seems reasonable when you consider the role of BCL6 in B cells.  BCL6 is 

most highly expressed in the B cells of the GC.  Once there, it is beneficial to control the 

differentiation of these cells and limit it to those with the highest affinity.  Therefore, while 

cell machinery responsible for isotype class switching and somatic hypermutation is 

highly active in these cells, rampant cell differentiation would not be beneficial.  Only 

once these cells have been selected to become plasma cells, secreting the developed 

and mutated antibodies, is BCL6 down-regulated.  The same idea can be applied to TFH 

cells.  Patients with certain autoimmune diseases have been shown to have significantly 

more TFH cells in circulation than healthy controls.  Therefore, massive cell division of 
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TFH cells would be detrimental for human health and makes it possible that BCL6 works 

to limit the cell cycle in TFH cells. 

 

To test the ability for a cell to enter and complete cell cycling, a propidium iodide (PI) 

analysis can be done.  Once naïve Th cells from +/+ and fl/fl mice are activated in vitro 

with antibodies for twenty four hours, they can be fixed and stained with PI to check what 

part of the cell cycle they are currently in.  Using flow cytometry, this assay can 

differentiate cells which are in G0/G1 phase, S phase, and G2/metaphase.  Based on 

the genes which are up-regulated in the microarray, it is possible that BCL6-deficient 

cells are more likely to be going through mitosis than WT cells. 

 

Another way to test a cell’s ability to divide is via BrdU incorporation in vivo.  By injecting 

mice with BrdU before immunizing, we can assess a Th cell’s ability to divide with and 

without BCL6 using our cKO mouse model. 

 

 

Part II – Further investigate the limiting nature of GCs in a prime/boost vaccine 

scheme 

 

Reevaluate our vaccine strategy in a BCL6fl/fl CreCD4-ER model 

 

A noticeable caveat to our gp120 DNA-prime/protein boost vaccine scheme (Chapter 6) 

is that we deleted BCL6 in all cells in our animals, not just in T and B cells which make 

up GCs.  Therefore, deletion in other cells could be affecting antibody development via 

extrinsic factors.  Considering the extrinsic factors at play in BCL6 GL KO mice, which I 

have revealed in this thesis, this is a realistic concern.  Therefore, this vaccine 

experiment should be repeated with BCL6fl/fl CreCD4-ER mice (B6(129X1)-Tg(Cd4-

cre/ERT2)11 Gnri/J) (JAX cat. 022356).  Using this inducible cre model, we can restrict 

BCL6 deletion to T cells.  This will enable us to determine whether the altered antibody 

secretion we observed is due to the lack of GCs, deletion of BCL6 in B cells, or some 

other unidentified extrinsic factor. 

 

Evaluate somatic hypermutation rates in gp120 DNA-prime versus protein-prime B 

cells 
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While our analysis of antibodies using an HIV gp120 DNA prime versus gp120 protein 

prime demonstrated an advantage when the former was used, we did not test the 

mutation rate of immunoglobulin (Ig) genes in B cells.  Therefore, I propose isolating GC 

B cells and non-GC B cells from mice receiving either DNA or protein priming, and after 

they all receive protein boosts.  These cells can be lysed and their Ig genes cloned and 

sequenced. 

 

The complementary determining region of the Ig gene is the site most targeted for 

somatic hypermutation (175).  It undergoes mutation at the approximate rate of 0.05 – 1 

x 10-3 changes per base pair per cell division (175).  Using a database for germline 

sequences in mice (www.vbase2.org) we can determine the rate at which somatic 

hypermutation is taking place in B cells primed with gp120 DNA versus B cells primed 

with gp120 protein. 

 

Determine why GCs are limiting for antibodies resulting from a prime/boost 

vaccine scheme.   

 

As demonstrated in Chapter 6, once GCs were inhibited by injecting mice with tamoxifen 

(and thus deleting BCL6), antibody titers and affinity actually increased without the 

reassembly of these structures.  One way to determine the reason for this is to evaluate 

the somatic hypermutation rates with and without deletion of BCL6.  This can be done 

utilizing methods stated above.  Identifying whether B cells outside the GC undergo 

additional somatic hypermutation can shed light on why these cells seem to secrete 

higher quality antibodies.  If they cannot undergo additional mutations, then it is possible 

that additional booster shots may only be impeding the antibody response. 
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