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aDepartament de Matemàtica Aplicada III, Control Dynamicsand Applications (CoDAlab), Universitat Politècnica de Catalunya,
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Abstract

Hysteresis is a property of systems that do not instantly follow the forces applied to them, but react slowly, or do
not return completely to their original state. A velocity based active vibration control, along with a special class of
hysteretic models using passive functions are presented inthis paper. This hysteretic modelis based on a modification
of the Bouc–Wen model, where a nonlinear term is replaced by apassive function. The proposed class retains the rate-
independence property of the original Bouc–Wen model, and it is able to reproduce several kinds of hysteretic loops
that cannot be reproduced with the original Bouc–Wen model.Using this class of hysteretic models, a chattering
velocity-based activevibration control scheme is developed to mitigate seismic perturbations on hysteretic base-
isolated structures.Our hysteretic model is used because of its simplicity in proving the stability of the closed-loop
system; i.e., a controller is designed using the proposed model, and its performance is tested on the original hysteretic
system, modeled with Bouc-Wen.Numerical experiments show the robustness and efficiency of the proposed control
algorithm.

Keywords: Hysteresis, modeling, vibration control, passive function.

1. Introduction

The physical property called hysteresis can be defined as a memory-dependent (and also path-dependent) relation
between excitation and response. It is a natural phenomenonencountered in a wide variety of processes like biology,
optics, electronics, ferroelectricity, magnetism, mechanics, and structural systems, among other areas [1, 2]. On struc-
tural systems, hysteresis appears as a natural reaction of materials used to supply restoring forces against movements
to dissipate energy [3]. Models of hysteresis have been reported, for instance, in [4, 5, 6, 7, 8]. Within the fields
of civil and mechanical engineering, the Bouc–Wen model hasbeen extensively employed to describe the hysteresis
behavior of these systems [1, 3].However, this dynamic model is quite complex as it has seven unknown parameters,
which are not completely linearizable; this could represent a problem in the control design. Despite the versatility
of the Bouc–Wen model in describing several hysteresis loops, this model cannot describe, for instance, asymmetric
loops [9, 6], the tendency of change of hysteretic loops [10], pinching-like behavior, initial residual strain [11], orthe
Stribeck effect [12]. Based on Bouc-Wen model, we present a generalization of it that captures these behaviors, not
losing the Bouc-Wen model properties. On the other hand, forthe purpose of maintaining the seismic response of
structures within safety, service and comfort limits, the combination of base isolators and feedback controllers (apply-
ing forces to the base) has been proposed in recent years. Active control, in front of passive or semi-active strategies,
has the advantage of adaption to a wide range operating conditions and structures [13, 14, 15]

Two topics are developed in this paper. First, a class of hysteretic models using passive functions is presented. This
class is based on a modification of the Bouc–Wen model, where the nonlinear term is replaced by a passive function.
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The proposed class maintains the rate-independence property [2] of the original Bouc–Wen model, and it is able to re-
produce several kinds of hysteretic loops that cannot be reproduced with the original Bouc–Wen model. Furthermore,
selecting appropriated parameters, our hysteretic model can accurately capture the hysteretic Bouc–Wen behavior.
That is, different hysteretic behavior can be described by this model.Second, the problem of controlling hysteretic
structural systems is addressed. The control objective is to design anactive vibration controllerthat mitigates seis-
mic disturbances on hysteretic base-isolated structures.Using velocity measurements, a chattering controller witha
simple architecture for implementation is proposed. Lyapunov theory is invoked to validate the proposed controller,
where we used the proposed hysteretic model because of its simplicity in proving the closed-loop stability. Moreover,
numerical experiments applied to a base isolation system under the effect of seismic disturbances, where the original
Bouc–Wen model is used to simulate the hysteretic behavior of the isolation, show the robustness and the efficiency
of the proposed control algorithm.That is, we present a very simple and effective active control strategy that can be
developed for actual hysteretic systems, adequately modeled by the proposed hysteretic model.

This paper is structured as follows. The proposed class of hysteretic models based on passive functions is presented
in Section 2. Some particular cases, illustrating a set of hysteretic loops and its relation with some hysteretic loops
observed experimentally, are presented. Moreover, numerical validation of the congruence of our model compared
with the Bouc–Wen model is showed. In Section 3, a chatteringcontroller is designed, based on velocity measure-
ments only. Section 4 presents numerical simulations of a controlled base-isolated structure to give an overview of
the controller’s robustness. Finally, our conclusions aredrawn in Section 5.

2. A class of passive hysteretic models

In this section, a class of hysteretic models is studied using a second-order structural hysteretic system given by
[3] (pag. 24) and [16]:

mẍ(t) + cẋ(t) + Φ(x, t) = f (t) + u(t), (1)

Φ(x, t) = αkx(t) + (1− α)Dkz(t), (2)

ż(t) = D−1(Aẋ(t) − β|ẋ(t)||z(t)|n−1z(t) − λẋ(t)|z(t)|n), (3)

wherem andc are the mass and the damping coefficients, respectively;Φ represents the nonlinear restoring force;x
gives thebase displacement position (relative position with respect to foundation); f (t) = −mẍg is the excitation force,
whereẍg is the earthquake ground acceleration andu(t) is the (active) control input. Note that an upper bound exists
for the seismic perturbation, that is, there exists an unknown positive constantF such that:

| f (t)| ≤ F for all t ≥ 0. (4)

Equations (2)-(3) represent the restoring forceΦ(x, t) by superposing an elastic componentαkx and a hysteretic com-
ponent (1− α)Dkz, in whichD > 0 is the yield constant displacement andα ∈ (0, 1) is the post- to pre-yield stiffness
ratio; A, β, n andλ are the non-dimensional Bouc–Wen model parameters. We setβ − λ > 0, which corresponds to
a special case of physical hysteretic behavior [3]. These parameters control the shape and size of the hysteresis loop
[17]. So, the Bouc-Wen model parameters areα, k,D,A, β, n andλ. The variablez(t) is an internal state which is not
accessiblefor measurements. The schematic representation of the system (1)-(3) is given in Figure 1.
To deduce a class of hysteretic models using passive functions, the nonlinear terms in (3) are replaced by a family of
passive functions as follows:

ż(t) = G(ẋ, g(z)) = D−1
(

Aẋ(t) − g(z(t)) |ẋ(t)|
)

, (5)

where the functiong(z) is a passive function satisfying

z(t) · g(z(t)) ≥ 0 and g(0) = 0 for all t ≥ 0. (6)

Proposition 1. The dynamic systeṁz(t) = G(ẋ, g(z))) in equation (5) is rate-independent, with G continuos.
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Figure 1: (a) Base isolation system and (b) schematic modelof structural hysteretic system (1)-(3).

Proof.- The system (5) is a special case of the Duhem model, and therefor it is rate-independent [2, 18]. Note that
the passivity property of the functiong(z(t)) gives a sufficient, but not necessary, condition for the rate-independence.
Let’s see it. Considerτ(t) be a positive time-scale (see [19]). Thenτ(0) = 0 and, thus,zτ(0) = z(τ(0)) = z(0) = z0.
Now, for all t > 0, consider

dzτ(t)
dt
= D−1

(

A
dxτ(t)

dt
− g(zτ(t))

∣
∣
∣
∣
∣

dxτ(t)
dt

∣
∣
∣
∣
∣

)

τ̇
dz(τ)
dτ
= D−1

(

Aτ̇
dx(τ)

dτ
− g(z(τ))

∣
∣
∣
∣
∣
τ̇

dx(τ)
dτ

∣
∣
∣
∣
∣

)

.

Sinceτ is a positive time scale, ˙τ(t) ≥ 0. Hence, it follows that:

τ̇
dz(τ)
dτ
= D−1

(

Aτ̇
dx(τ)

dτ
− τ̇g(z(τ))

∣
∣
∣
∣
∣

dx(τ)
dτ

∣
∣
∣
∣
∣

)

dz(τ)
dτ
= D−1

(

A
dx(τ)

dτ
− g(z(τ))

∣
∣
∣
∣
∣

dx(τ)
dτ

∣
∣
∣
∣
∣

)

,

as required.�

Remark 1.-FunctionG(ẋ, g(z)))) is positively homogeneous with respect to ˙x; that isD−1(Aαẋ−g(z)|αẋ|) = αD−1(Aẋ−
g(z)|ẋ|).

To illustrate a set of hysteretic loops that can be captured by the proposed model in equation (5), we carry out a few
simulations. For this purpose, consider the system (1)-(2)with m= 1 kg,c = 0 Ns/m, k = 1 N/m, D = 1 m, f (t) = 0
N, α = 0, A = 1, andu(t) = sin((0.03t + 0.2)t) [17]. The following cases are studied (hereafter we omit tospecify
time dependency to simplify writing):

Case 1:g(z) = Az,

Case 2:g(z) = tanh(z),

Case 3:g(z) =

{

sin(1.5z) , |z| < 0.5
0.5z3 , otherwise

,

Case 4:g(z) =






sin(0.75) , z≥ 0.5
sin(1.5z) , z ∈ (0 , 0.5)
z , z ∈ (−0.5 , 0]
0.5z3 , otherwise

,
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Case 5:g(z) = ρ0 sech(za) · tanh(za), whereρ0 = 1 anda = 1.

Using Case 1 and 2, asymmetric hysteretic loops (with respect to the origin) are seen in Figure 2, this behavior can
also be offered in [17]. This hysteretic behavior may be attributed to materials that have aninitial residual strain,
like a building structural frame. This initial residual deformation, which will be permanent and progressive with time,
is due to the multiple cycles (low and high frequency) along the structure life, attributed to earthquakes, wind load-
ing, ultimate loads, service loads, structural degradation, among many others. A subsequent peak of an earthquake
acceleration will catalyze a further displacement of the structure from its origin. In Case 3, shown in Figure 3, the
asymmetric loops resemble a pinching-like behavior in the main loop, as observed in [11]. This may be attributed to
reinforced concrete structures where this type of behavioris common under dynamic loads. Case 4 (Figure 3) shows
a type of behavior often seen in electrical substations [9].Finally, in Case 5 (Figure 4), the passive functiong(z)
captures the Stribeck effect as in [20] and [21]. The above hysteretic loops cannot be reproduced with the original
Bouc–Wen model.
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Figure 2: Hysteretic loops for Cases 1 and 2.
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Figure 3: Hysteretic loops for Cases 3 and 4.

To complete this section a comparison with the Bouc–Wen model is presented. Let the system (5) be as follows:

ż= D−1(Aẋ− (a1z+ a2z
2 + a3z3)|ẋ|), (7)
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that is,g(z) = a1z+ a2z2 + a3z3 in equation (5). First, we consider the Bouc–Wen dynamic (3)with the following
nominal values:D = 1 m, A = 1.2, β = 3, λ = 3 andn = 1.1, as in [3]. For the proposed model (7), we takeD = 1
m, A = 0.9, a1 = 4.15, a2 = 0, anda3 = 0.6. Both models, (7) and (3), have ˙x(t) as their input signal. Selecting
ẋ(t) = sin(t)+sin(3t)+sin(7t)+sin(9t) the simulation results of the system response (z(t)) are shown in Figure 5. This
figure shows that it is feasible to find a passive functiong(z) such that the system (5) can reproduce the Bouc–Wen
hysteresis behavior.
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Figure 5: A Comparison between the proposed (dotted-line) and the Bouc–Wen (solid line) models.

The passivity of the function introduced in equation (5) makes this model appropriate for control design. This control
design is then presented in the next section.

3. Control design

The control objective is to design a static controller that reduces the vibrations produced by the seismic disturbance
by using only velocity measurements. The next theorem states the main contribution with respect to the control design.
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Theorem 1The system in equations (1), (2) and (5) defines a bounded-input bounded-output (BIBO) stable system
with:

u = −ρ sgn(ẋ) , (8)

whereρ is a positive constant design parameter. Moreover, whenρ ≥ F where F is given by (4), a Lyapunov-stable
system is obtained and the controller(8) mitigates the seismic disturbance.

Proof.-Given the Lyapunov function

V(x, ẋ, z) =
αk
2m

x2 +
1
2

ẋ2 +
(1− α)D2k

2mA
z2, (9)

as an energy expression, the time derivative along the system in equations (1), (2) and (5) yields

V̇ =
αk
m

xẋ+ ẋẍ+
(1− α)D2k

mA
zż

=
1
m

(

ẋ [mẍ+ αkx] +
(1− α)D2k

A
zż

)

=
1
m

(

ẋ
[
−cẋ− (1− α)Dkz+ f (t) − ρ sgn(ẋ)

]
+

(1− α)D2k
A

zż

)

=
1
m

(

−cẋ2 − (1− α)Dkzẋ+ f (t)ẋ− ρ sgn(ẋ)ẋ +
(1− α)D2k

A
z

[

1
D

Aẋ−
1
D

g(z)|ẋ|

])

=
1
m

(

−cẋ2 + f (t)ẋ− ρ|ẋ| −
(1− α)Dk

A
zg(z)|ẋ|

)

≤
1
m





−cẋ2 − (ρ − | f (t)|)
︸      ︷︷      ︸

≥0

|ẋ| −
(1− α)Dk

A
zg(z)
︸︷︷︸

≥0

|ẋ|





≤
1
m

(

−cẋ2 − (ρ − F)|ẋ|
)

.

Whenρ ≥ F, sinceg(z) is a passive function, we obtaiṅV ≤ 0, implying that the closed-loop system (1), (2), (5)
and (8) is stable in the Lyapunov sense. To demonstrate the seismic attenuation, let us compare the Lyapunov time
derivatives of the open-loop and closed-loop systems, i.e., V̇OL andV̇CL. From (9),

V̇CL = V̇OL −
1
m
ρ|ẋ| ⇒ V̇CL < V̇OL. (10)

Next we define the transient decay rate for both cases as in [20]:

ζ =
−V̇(x)
V(x)

.

From (10), we deduce that
ζCL > ζOL.

We conclude that the closed-loop system has a larger transient decay rate response than the uncontrolled system, thus
mitigating the seismic disturbance.

Whenρ < F, it has been obtained that

V̇ ≤
1
m

(

−cẋ2
− (ρ − F)|ẋ|

)

,

which can be rewritten as

V̇ ≤ −
1
m

(c|ẋ| − (F − ρ)) |ẋ|.
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Thus, when|ẋ| ≥ F−ρ
c thenV̇ ≤ 0, implying that the closed-loop system (1), (2), (5) and (8)remains bounded.�

Remark 2.- Note that if accelerometers are employed instead of velocity sensors, velocity information can still be
extracted [22]. In fact, only the sign of the velocity, quantity that can be achieved implicitly, is required (peaks at
displacement signal).

Remark 3.- The signum function in the control law in Theorem 1, which is commonly used in sliding mode control
theory, produces chattering [23]. One way to avoid chattering is to replace the signum function by a smooth sigmoid-
like function such as

νδ(ẋ(t)) =
ẋ(t)

|ẋ(t)| + δ
, (11)

whereδ is a sufficiently small positive scalar.

Remark 4.- For control implementation, the gainρ satisfying the condition of Theorem 1 may be too large for an
actuator to provide. In this case, the controller performance is evaluated using some realistic value of this gain. This
is the objective of the following sections.

Remark 5.- It has been also proven [22] that the proposed controller also stabilizes the system under the Bouc–Wen
model.

4. Simulation and experimental proposal

In this section, a numerical example is presented to demonstrate the effectiveness of the proposed controller de-
fined in Theorem 1. We test the robustness of the control scheme (11) when it is applied to a more complex realistic
structure: a hysteretic, base-isolated, eight-story building that is similar to existing buildings in Los Angeles (Califor-
nia) [24]. As said in section 2, selecting appropriated parameters of the proposed hysteric model (5), it can capture the
hysteretic Bouc-Wen behavior. So, despite the numerical simulation are done using the original hysteretic Bouc-Wen
model, the stability is preserved.

We setδ = 0.05 in (11) andρ = 5.05m0 N in (8), wherem0 = 3565.7 × 103 is the building base mass. With this
controller gain, the maximum controller force is about 50% of the total building mass (see Table 1). The evaluation
is reported in terms of two performance indices:Q1, defined as the peak base displacement in the controlled struc-
ture normalized by the corresponding displacement in the uncontrolled structure, andQ2, is the peak absolute floor
acceleration in the controlled structure normalized by thecorresponding acceleration in the uncontrolled structure.
The controlled structure – whose parameters are described in Tables 1-2 – is simulated for seven earthquake ground
accelerations (Newhall, Sylmar, El Centro, Rinaldi, Kobe,Ji-Ji and Erzinkan) and Table 3 presents the values of in-
dicesQ1 andQ2 under these earthquakes. All the excitations are used at their full intensity for the evaluation of the
performance indices. Performance indices larger than 1 indicate that the response of the controlled structure is larger
than that of the uncontrolled structure. These quantities are highlighted in bold. In this paper, the controllers are
assumed to be fully active. These actuators are used to applythe active control forces to the base of the structure. In
this control strategy, almost all the response quantities are substantially reduced from the uncontrolled cases. More
precisely, the reduction in base displacement is around 90%in all cases, and the floor accelerations are also reduced
by 38-75% in a majority of earthquakes (except El Centro). For the El Centro case, whereQ2 = 1.3292, this value is
above one. This could be because of the earthquake behavior, such as: frequency contents, time duration, dynamic
range, DC-component, etc. However, this value can be improved if we increase the controller gain.

The benefit of this active control strategy is the reduction of base displacements (Q1) without increasing the accelera-
tion (Q2). The reduction of the peak base displacementQ1 of the base-isolated building is one of the most important
criteria during strong earthquakes. At the same time, reducing acceleration levels is crucial for non-structural compo-
nents, which account for 75% of the damage during an earthquake.
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For the base-isolated buildings, superstructure drifts are reduced significantly compared to the corresponding fixed
buildings because of the isolation from the ground motion. Hence, a controller that reduces or does not increase the
peak superstructure, while reducing the base displacementsignificantly, is desirable for practical applications [25]. In
this respect, the proposed active controller performs well.

4.1. Time-history plots

Figures 6-8 show the time-history plots of various responsequantities for the uncontrolled building and the build-
ing with active controllers using one of the seven earthquakes. More precisely, Figure 6 presents the plots for the base
displacement under Erzinkan for both the uncontrolled and the controlled scenarios. The quantities plotted in Figure
7 are the absolute acceleration of the base for the uncontrolled and controlled situations. The magnitude of the control
signal in Figure 81 seems reasonable in comparison to the seismic excitation accelerationa(t) plotted in Figure 9.

Table 1: Model coefficients of the hysteretic base-isolated eight-story building.

mass(×1000 kg) stiffness(N/m) damping (Ns/m)
base 3565.7 919422 101439

1st floor 2580 12913000 11363
2nd floor 2247 10431000 10213
3rd floor 2057 7928600 8904
4th floor 2051 5743900 7578
5th floor 2051 3292800 5738
6th floor 2051 1674400 4092
7th floor 2051 496420 2228
8th floor 2051 496420 704

Table 2: Parameters of the hysteresis model in Equations (2)-(3)

α = 0.5 A = 1
k = 6466100 N/m β = 0.5
D = 0.0245 m λ = 0.5

n = 1

Table 3: Performance indices obtained by the numerical simulations.

Q1 Q2

Newhall 0.0750 0.6211
Sylmar 0.0355 0.4051

El Centro 0.1032 1.3295
Rinaldi 0.0643 0.4570
Kobe 0.1158 0.4051
Ji-Ji 0.1165 0.4830

Erzinkan 0.0633 0.2530

1This control signal is not of thesignumdisplay because we are employing its smooth version (see Remark 1).
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Figure 7: Time-history response under Erzinkan excitation. Closed-loop acceleration (dashed) and open-loop acceleration (solid).

Looking at Figure 6, it is clear that the controlled relativedisplacement of the base is significantly reduced compared
to the uncontrolled case. Figure 7 shows that the reduction in the absolute base acceleration is not as drastic but is still
significant.

5. Conclusions

A class of passive Bouc–Wen models has been presented in thispaper where a nonlinear term of the original Bouc–
Wen model has been replaced by a passive function. The proposed class maintains rate-independence property and
reproduces hysteretic loops that have been previously observed. Furthermore, selecting appropriated parameters, this
class of hysteretic model can capture the Bouc-Wen model behavior. Using the proposed hysteretic model represen-
tations due to its simplicity, a control scheme using only velocity measurements has been developed. The robustness
of the controller is tested using the original Bouc–Wen model through numerical simulations. The controller’s perfor-
mance has been validated with numerical experiments in a more realistic base-isolated building structure.
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