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ABSTRACT 

Investigation of the temporal trajectories of currently used neuropsychological tests is 

critical to identifying earliest changing measures on the path to dementia due to 

Alzheimer’s disease (AD). We used the Progression Score (PS) method to characterize 

the temporal trajectories of measures of verbal memory, executive function, attention, 

processing speed, language, and mental state using data spanning normal cognition, mild 

cognitive impairment (MCI), and AD from 1661 participants with a total of 7839 visits 

(age at last visit 77.6 SD 9.2) in the Baltimore Longitudinal Study of Aging and 1542 

participants with a total of 4467 visits (age at last visit 59.9 SD 7.3) in the Wisconsin 

Registry for Alzheimer’s Prevention. This method aligns individuals in time based on the 

similarity of their longitudinal measurements to reveal temporal trajectories. As a 

validation of our methodology, we explored the associations between the individualized 

cognitive progression scores (Cog-PS) computed by our method and clinical diagnosis. 

Digit span tests were the first to show declines in both data sets, and were detected 

mainly among cognitively normal individuals. These were followed by tests of verbal 

memory, which were in turn followed by Trail Making Tests, Boston Naming Test, and 

Mini-Mental State Examination. Differences in Cog-PS across the clinical diagnosis 

groups were statistically significant, highlighting the potential use of Cog-PS as 

individualized indicators of disease progression. Identifying cognitive measures that are 

changing in preclinical AD can lead to the development of novel cognitive tests that are 

finely tuned to detecting earliest changes. 
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AD  Alzheimer’s disease 

AVLT  Rey Auditory Verbal Learning Test 

BLSA  Baltimore Longitudinal Study of Aging 

CI  Cognitive impairment 

Cog-PS Cognitive progression score 

CVLT  California Verbal Learning Test 

MCI  Mild cognitive impairment 

MMSE  Mini-Mental State Examination 

WRAP  Wisconsin Registry for Alzheimer’s Prevention 
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1.INTRODUCTION 

Cognitive changes in Alzheimer’s disease (AD), in particular declines in episodic 

memory, are detectable on neuropsychological testing up to fifteen years prior to clinical 

diagnosis [1–4]. However, cognition has only limited cross-sectional association with 

cerebral amyloid burden [5–11], which marks the beginning of preclinical AD according 

to the National Institute on Aging–Alzheimer’s Association (NIA–AA) criteria [12]. 

Longitudinal studies have consistently shown that amyloid levels are associated with 

greater rates of decline on tests of episodic memory [13–21], suggesting that amyloid 

changes precede episodic memory declines. These findings indicate that despite the 

fifteen-year period prior to diagnosis for detecting cognitive change, currently used 

neuropsychological tests fall short of detecting changes in the earliest disease stages 

where therapeutic intervention is hypothesized to be most promising. Therefore, there is a 

need to develop cognitive tests and batteries that are more sensitive to changes in early 

preclinical AD and that correlate better with AD-related neuroimaging measures. 

Cognitive measures that are dynamic in preclinical disease can facilitate clinical trials 

aimed at this early stage, as they can serve as outcome measures that are non-invasive 

and cheaper to administer than neuroimaging evaluations.  

 

In order to develop such cognitive tests or batteries, it is necessary to study the 

neuroimaging correlates and temporal trajectories of currently used tests to identify 

earliest changing measures. Various studies have investigated correlations between 

cognitive measures and early AD-related neuroimaging markers [22–30]. In this work, 

we focus on characterizing the trajectories of a collection of cognitive markers widely 
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used in studies of aging and AD. The ideal study of preclinical AD markers would follow 

cognitively normal individuals until they are diagnosed with dementia due to AD, and 

retrospectively analyze the time courses of the markers of those who developed AD. 

However, currently available sample sizes do not allow for cross-validation nor yield 

adequate statistical power to conduct such a study. To overcome this limitation, several 

statistical analysis approaches have been developed [31–36]. An important concept in a 

subset of these approaches is the time-alignment of individuals. Here, we used the 

Progression Score Model [36,37], a multivariate nonlinear mixed effects model, to 

construct cognitive marker trajectories spanning normal cognition, mild cognitive 

impairment (MCI), and AD stages by aligning individuals in time based on the similarity 

of their marker profiles. The method incorporates longitudinal information in performing 

this alignment and accounts for inter-individual differences in rate and baseline levels of 

progression. The main premise of the method is that rather than using age as a proxy for 

disease progression, we can obtain better disease progression indicators as well as 

temporal trajectories for the biomarkers by aligning individuals in time based on the 

similarity of their biomarker profiles. Time alignment of individuals allows us to study 

the long-term trajectories of cognitive measures despite the availability of only a small 

number of individuals who have traversed large extents of the cognitive trajectories. We 

conducted separate analyses on two well-characterized longitudinal studies, the Baltimore 

Longitudinal Study of Aging and the Wisconsin Registry for Alzheimer’s Prevention, in 

order to delineate the trajectories of measures of verbal memory, executive function, 

attention, processing speed, language, and mental state among individuals who are 

cognitively normal, have MCI, or have dementia due to AD. 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/081174doi: bioRxiv preprint first posted online Oct. 14, 2016; 

http://dx.doi.org/10.1101/081174
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 6	

 

The main aims of the analyses were to: 1) develop a standardized template of cognitive 

changes against which individuals can be quantified, 2) present evidence of the validity 

of the individualized scores obtained using the standardized cognitive template by 

exploring their associations with clinical diagnosis, 3) identify the order in which 

detectable changes begin to appear across cognitive tests, and 4) validate this identified 

ordering using an independent approach at the individual level. 

 

2.METHODS 

Statistical methods used in the following analyses were applied separately to two ongoing 

longitudinal cohort studies of human aging: the Baltimore Longitudinal Study of Aging 

(BLSA) [38], initiated in 1958 and conducted by the Intramural Research Program of the 

National Institute on Aging, and the Wisconsin Registry for Alzheimer’s Prevention 

(WRAP) [39], initiated in 2001 and conducted by the University of Wisconsin 

Alzheimer’s Institute. 

 

2.1.Participants 

BLSA participants. BLSA analyses were based on data from 1661 participants (Table 1). 

We included visits where participants were cognitively normal or had a clinical diagnosis 

of MCI or dementia due to AD. Baseline and last visit were defined for each participant 

as the first and last BLSA visit between 1/1992 and 11/2015 where they were aged ≥60 

and met the inclusion criteria based on clinical diagnosis and number of available 

cognitive scores (see Section 2.2). A total of 7839 visits were selected for analysis. The 
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Institutional Review Board of the NIA Intramural Research Program approved the 

research protocol for this study, and informed consent was obtained at each visit from all 

participants. 

 

WRAP participants. WRAP analyses were based on data from 1542 participants 

(Table 1), 72.3% of whom had a family history of AD. We included all visits where 

participants were cognitively normal or had a clinical diagnosis of MCI (including an 

“early MCI” diagnosis, defined in Section 2.3) or dementia due to AD. Baseline and last 

visit were defined for each participant as the first and last WRAP visit up until Wave 5 

(inclusive) where they met the inclusion criteria based on clinical diagnosis and number 

of available cognitive scores (see Section 2.2). A total of 4467 visits were selected for 

analysis. All activities for this study were approved by the Institutional Review Board 

and completed in accordance with the Helsinki Declaration.	 

 

2.2.Cognitive measures 

Eight cognitive measures were selected for our analyses: Trail Making Tests (Trails) A 

and B [40] to assess processing speed and executive function, Wechsler Adult 

Intelligence Scale (WAIS) digit span forward and backward (revised edition [41] in 

BLSA, 3rd edition [42] in WRAP) to assess attention and executive function, California 

Verbal Learning Test (CVLT) [43] in BLSA and Rey Auditory Verbal Learning Test 

(AVLT) [44] in WRAP measuring immediate recall (sum of total recall across five 

learning trials) and 20-minute delayed recall to assess verbal memory, Boston Naming 

Test [45] to assess language, and Mini-Mental State Examination (MMSE) [46] to assess 
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mental state. Trails A and B were truncated at 300 seconds. All measures were kept in 

their original scales. We included visits where at least four of these eight measures were 

available. We did not include WAIS digit symbol substitution [41,42] or animal fluency 

[47] in our analyses even though they were common to both data sets, since they were 

introduced in later stages in BLSA and/or WRAP. 

 

CVLT was added to the BLSA battery in 3/1993 and digit span was added in 1/1992, 

while the remainder of the measures were added between 5/1984 and 1/1990. BLSA 

participants under age 60 do not receive the Boston naming test as part of their cognitive 

battery and did not receive the Trails making test until 2005; therefore, these test scores 

were not included. MMSE was added to the WRAP battery in Wave 2, while the 

remaining eight measures were available starting with Wave 1 in 2001. 

 

2.3.Clinical Diagnoses 

BLSA methods. All BLSA participants are reviewed for cognitive impairment at a 

consensus case conference if they have a score ≥4 on the Blessed Information–Memory–

Concentration Test [48], if their Clinical Dementia Rating (CDR) score [49] is ≥0.5 on 

the subject or informant report or if they screen abnormal on the Dementia Questionnaire. 

Consensus diagnoses are determined by a research team that includes neurologists, 

psychiatrists, neuropsychologists, research nurses, and research assistants. Diagnoses of 

dementia and AD are based on Diagnostic and Statistical Manual of Mental Disorders 3rd 

edition–revised [50] and National Institute of Neurological and Communication 

Disorders and Stroke–AD and Related Disorders Association (NINCDS-ADRDA) [51] 
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criteria, respectively. Mild cognitive impairment (MCI) is diagnosed based on the 

Petersen criteria [52] when cognitive impairment is evident for a single domain or 

multiple domains without significant functional loss in activities of daily living. Out of 

the eight cognitive measures described in Section 2.2, only Trails A and B, Boston 

Naming, and MMSE are used in clinical diagnosis determination. 

 

WRAP methods. WRAP participant visits are reviewed at a consensus case conference if 

they meet one or more of the following criteria: 1) cognitive abnormalities relative to 

WRAP peers (i.e., at least 1.5 standard deviations below expected relative to robust 

internal norms adjusting for age, sex, and literacy-level on the most recent assessment for 

factor scores or individual measures of memory, executive function, language, working 

memory, or attention [53], [54];  2) cognitive performance on one or more tests below 

values used in other studies as cutpoints for mild cognitive impairment (MCI) diagnoses 

(e.g., WMS-R Logical Memory II [55] story A score <9, Alzheimer’s Disease 

Neuroimaging Initiative [56]); or 3) an abnormal informant report indicating subjective 

cognitive or functional decline. Consensus diagnoses are determined by a research team 

that includes physicians, clinical neuropsychologists, and clinical nurse practitioners. 

Cognitive statuses include cognitively normal, early MCI, clinical MCI, other cognitive 

impairment (e.g., due to other medical conditions), or dementia. The diagnosis of clinical 

MCI is based on NIA-AA criteria [57] and includes a) concern regarding change in 

cognition, b) impairment in one or more cognitive domains, c) preservation of functional 

abilities, and d) does not meet criteria for dementia. The status of early MCI was 

developed to identify individuals in the cohort who exhibit lower than expected objective 
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performance in one or more cognitive domains (relative to internal robust norms), but 

may not yet report subjective cognitive complaints. This experimental construct is 

thought to represent a phenotype of early cognitive decline expected to precede a clinical 

diagnosis of MCI [54,58]. Dementia diagnosis is based on NINCDS-ADRDA criteria 

[51]. Both demented WRAP individuals included in these analyses had dementia due to 

AD. The consensus review process was initiated in late 2012. At the time of these 

analyses, consensus diagnoses were available for each participant’s last attended study 

visit. 

 

2.4.Statistical analyses 

2.4.1.Progression score model 

We used an improved version [37] of the Progression Score (PS) method [36] to compute 

cognitive progression scores (Cog-PS) for individuals in BLSA and WRAP in separate 

models using the eight cognitive tests described in Section 2.2 (see Supplementary 

Material for details). The Progression Score method is based on a multivariate model that 

enables the computation of a score for each visit using a collection of longitudinal 

biomarker measures to reflect the state of the visit relative to the rest of the sample. Cog-

PS is an affine transformation of age, and these transformations are allowed to vary 

across individuals via subject-specific variables that model inter-subject differences in 

rate and baseline levels of progression. The scale of the Cog-PS at the end of the model 

fitting procedure is arbitrary (i.e., a Cog-PS of 0 does not convey any meaning on its 

own, but compared to a Cog-PS of 1, it indicates better overall performance on the 

cognitive measures included in the model). In order to give meaning to the Cog-PS scale, 
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we shifted all Cog-PS values such that a Cog-PS of 0 corresponds to the mean value 

across cognitively normal individuals, and then scaled all Cog-PS values such that the 

standard deviation of Cog-PS among cognitively normal individuals is 1. The Cog-PS 

calibration, when combined with the appropriate transformations of the model 

parameters, does not affect the likelihood of the model (i.e., the calibrated and 

uncalibrated models are identical in terms of their fit to the observed data). This 

calibration is intended to make Cog-PS values computed on separate data sets 

comparable, with the underlying assumption that cognitively normal groups are 

comparable. At the end of model fitting, we obtained Cog-PS for each visit as well as 

estimates of cognitive measure trajectories as a function of Cog-PS. The overall 

procedure is summarized in Figure S1. 

 

2.4.2.Temporal ordering of cognitive measures 

To compare the estimated trajectories for the eight cognitive measures, we linearly scaled 

them such that their estimated values at the minimum and maximum Cog-PS observed in 

the sample were 0 and 1, respectively. In this standardized space, we refer to a scaled 

cognitive value of 0 as “normal” and a scaled cognitive value of 1 as “abnormal”. We 

visually evaluated the estimated trajectories to make determinations about temporal 

ordering of cognitive changes. To complement this qualitative evaluation, we developed 

a procedure that relies on a threshold for each cognitive measure to obtain quantifiable 

measures to determine temporal ordering. We transform the midway point of 0.5 in this 

standardized space back into the unstandardized scale for each cognitive measure to 

obtain a threshold for each cognitive measure. These cognitive measure thresholds are 
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not intended for classification of individuals. They rather serve as tools for understanding 

the order in which changes begin to appear across cognitive measures. To this end, we 

determined the Cog-PS value at which the estimated trajectories surpass the cognitive 

measure thresholds. Cognitive measures whose trajectories surpass the threshold at a 

lower Cog-PS value are measures that change earlier in the disease process. In order to 

provide further evidence for the ordering of cognitive marker changes, we performed 20 

bootstrap experiments. The number of bootstrap experiments was limited to 20 due to the 

time consuming model fitting procedure. We visualized the resulting trajectories and 

compared the Cog-PS values at which measures crossed the threshold across the 

bootstrap experiments to quantify the statistical confidence associated with this ordering.  

 

2.4.3.Validation of Cog-PS results 

To show evidence for the validity of the individualized Cog-PS, we first investigated 

differences in Cog-PS cross-sectionally across diagnosis groups using two-sided 

Wilcoxon rank-sum tests. We used the last visit for this analysis since diagnosis was 

available only at last visit in WRAP. 

 

To provide further evidence for the temporal ordering of cognitive marker changes, we 

used an analysis based on a multi-state Markov model that was independent from the 

Cog-PS approach. In this analysis, we used the mean values of the cognitive markers 

within the MCI or CI ([M]CI) group at last visit (listed in Table 1) as thresholds for 

categorizing each cognitive measure at each visit as being normal or abnormal, with the 

exception of MMSE, where we defined abnormality using the conservative threshold 
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≤ 25 rather than using the sample mean since there is a strong ceiling effect in our 

samples. For Trails A and B, abnormality was defined as being equal to or exceeding the 

threshold, and for all other cognitive measures as being equal to or below the threshold. 

We considered each pair of cognitive measures, denoted x and y, in separate Markov 

models. We categorized each visit into one of the following four states: x and y both 

normal (state 1), only x abnormal (state 2A), only y abnormal (state 2B), x and y both 

abnormal (state 3). If both x and y were missing, the visit was excluded from analysis. If 

only one was available, then the state of the visit was censored accordingly (i.e., if only x 

is available and is normal, then the state is either 1 or 2B). We assumed that individuals 

need to pass through one of the intermediate states 2A or 2B in order to transition 

between states 1 and 3. All other transitions, including backward transitions, were 

included in the model, which is summarized in Figure S2. We fitted this multi-state 

Markov model using the msm [59] package in R (version 3.2.1) [60]. We are interested in 

comparing the transitions out of the first state where both measures are normal. To this 

end, we compared the transition rates into States 2A and 2B from State 1. 

 

3.RESULTS 

3.1.Temporal ordering of cognitive measures 

Estimated cognitive marker trajectories as function of Cog-PS are presented in Figure 1. 

While digit span tests have a marked downward slope in the left-hand side of the figure 

as a Cog-PS of –2, other cognitive measures do not begin exhibiting marked declines 

until later along the Cog-PS scale. CVLT/AVLT measures are next to exhibit declines, 

followed by Trails, Boston Naming, and MMSE. 
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The standardized cognitive template, obtained by scaling the cognitive measures based on 

fitted values corresponding to the minimum and maximum Cog-PS values in the sample, 

is presented in Figure 2. The cognitive thresholds obtained by transforming the midway 

point along the y-axis back into the unstandardized scale for each cognitive marker are 

presented in Table 2, along with the Cog-PS values at which the estimated trajectories 

attain these thresholds. In both BLSA and WRAP, digit span forward and backward were 

the first measures to attain the cognitive thresholds, followed by CVLT/AVLT immediate 

and delayed recall, and finally Trails A and B, Boston naming, and MMSE. 

 

3.2.Validation of Cog-PS results 

Cog-PS at last visit was associated with concurrent diagnosis, with cognitively normal 

individuals having lower Cog-PS compared to impaired individuals (Figure 3). All 

pairwise group comparisons (normal vs. [M]CI, MCI vs. AD, and normal vs. AD) were 

significant within each data set (two-sided Wilcoxon rank-sum test, all p<.00002). 

 

Estimated transition rates using the Markov model (Table S2) suggest that cognitive 

measures attain the mean level observed in the [M]CI group in the following order in 

BLSA: Digit span backward, digit span forward, CVLT immediate, CVLT delayed, 

Trails A, Trails B, MMSE, and Boston naming. In WRAP, the ordering is as follows: 

digit span forward, digit span backward, AVLT delayed, AVLT immediate, Trails A, 

Trails B, and MMSE. Results in WRAP suggest that change in Boston naming occurs 
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after digit span backward and before MMSE, but its exact placement among AVLT and 

Trails is not clear. 

 

4.DISCUSSION 

We applied the progression score model to align individuals in time based on the 

similarity of their cognitive marker profiles to learn long-term cognitive trajectories from 

shorter-term longitudinal measurements. From this model, we obtained individualized 

scores, termed Cog-PS, which we validated by demonstrating their association with 

clinical diagnosis. Our analyses were conducted separately on data from two well-

characterized longitudinal studies of aging, BLSA and WRAP, and revealed similar 

results.  

 

Using the estimated trajectories, we showed that digit span tests exhibit their most 

extensive dynamic range while individuals are cognitively normal, and that these changes 

precede those observed on verbal memory tests, which in turn precede changes on Trails, 

Boston naming, and MMSE. The trajectory estimates we obtained using the progression 

score model along with their approximate confidence intervals as illustrated in Figure 2 

demonstrated this temporal ordering of the cognitive measures. We also used an approach 

based on a threshold for each cognitive measure to quantify and complement the findings 

of the qualitative assessment. 

 

Our findings about ordering of cognitive changes were validated using a multistate 

Markov model. While the Markov model confirmed our finding that digit span measures 
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are the first to exhibit changes, followed by changes in CVLT/AVLT, its results 

regarding temporal ordering individual cognitive measures were not as consistent 

between the two data sets as the Cog-PS model. These discrepancies may be due to the 

sensitivity of the Markov model to the cognitive thresholds used to define the states in the 

model. 

 

The progression score approach enabled the computation of an individualized indicator of 

cognitive performance based on a collection of longitudinal measurements. We 

demonstrated that there are statistically significant differences in progression score across 

cognitively normal, [M]CI, and AD groups. Since the progression score model is agnostic 

to clinical diagnosis, this analysis served as a validation of the computed scores. 

However, it should be noted that this is a partial validation since there is a degree of 

circularity due to the fact that four out of the eight cognitive measures were used in 

diagnosis determination in BLSA, and eight were used in WRAP. 

 

While we used a calibration approach to render the progression scores computed on 

BLSA and WRAP comparable, it is important to note that due to differences in the 

composition of cognitively normal groups in the two data sets, Cog-PS values do not 

convey the same meaning across the studies. Despite this limitation of our methodology, 

we found similar temporal cognitive patterns in both studies. Cognitively normal as well 

as the [M]CI groups in BLSA had lower cognitive performance on all tests compared to 

WRAP. Our scaling procedure for establishing correspondences across cognitive markers 

is sensitive to the range of cognitive measurements present in the study. Since this scaling 
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procedure is intended to identify normal and abnormal cognitive test values, it is 

important that the data set contain measurements spanning the entire normal-to-abnormal 

range for each cognitive test. This condition is not fully satisfied in either data set we 

considered in this work, particularly in WRAP since WRAP participants are about 18 

years younger than BLSA participants on average. Therefore, the scaling procedure may 

be less accurate in WRAP than in BLSA, especially for later-changing measures such as 

Boston naming and MMSE. 

 

Several previous studies have reported that changes in digit span tests are detectable prior 

to a clinical diagnosis of cognitive impairment. For example, a study that evaluated non-

demented individuals with subjective memory complaints found that those with normal 

digit span scores (as defined using age- and education-adjusted neuropsychological test 

scores) at baseline did not exhibit significant declines on verbal memory, visual memory, 

or executive function after a mean follow-up of 6.6 years, but had significant declines on 

the sum score of digit span forward and backward [61]. On the other hand, age-, sex-, and 

education-matched individuals with impaired digit span scores at baseline had significant 

declines on tests of verbal learning and animal fluency but not on any other cognitive test. 

These findings are in agreement with our estimated ordering of cognitive trajectories on 

the path to cognitive impairment, with digit span measures declining first, followed by 

measures of verbal memory. Another study that investigated changes in cognition prior to 

autopsy in a sample of individuals who remained cognitively normal found that while 

longitudinal changes were not significant when assessed separately among individuals 

with and without AD neuropathology, longitudinal decline in the attention/working 
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memory domain (assessed using digit span forward and backward tests) was greater 

among those with neuropathology compared to those without [62]. Other domains, 

including episodic memory, language, and executive function, did not show statistically 

significant longitudinal differences between the two groups [62]. 

 

A limitation of our method is that it does not indicate whether the detected cognitive 

changes are due to AD-related mechanisms, and further studies are needed to delineate 

normal aging versus disease. Therefore, our results cannot be interpreted as evidence for 

using digit span to predict individualized diagnoses. Digit span is not a good predictor of 

concurrent diagnosis; using cognitive measure thresholds based on our Cog-PS model to 

classify individuals as normal versus [M]CI/AD yields a large number of false positives. 

This lack of specificity of digit span for dementia has been documented previously 

[63,64]. What our results demonstrate is that changes in digit span are most evident early 

on in cognitively normal stages. Detectability of these changes and their associations with 

future outcomes at the individual-level, including AD diagnosis in following years or 

decades, remain to be fully elucidated; however, prior studies have reported that 

sensitivity to change on digit span is small [65]. Another limitation of our method is that 

it treats discrete cognitive measures such as digit span as continuous variables, and 

therefore may introduce bias into the characterization of their longitudinal trajectories. 

Despite these limitations, understanding the association of digit span tests with brain 

changes can be informative for designing novel cognitive tests or batteries that are more 

sensitive to changes in preclinical AD and that correlate with functional and structural 

brain changes over the course of disease. 
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Several studies of a small number of healthy individuals found that higher performance 

on digit span backward is associated with activation of the right dorsolateral prefrontal 

cortex (DLPFC) [66–68], bilateral inferior parietal lobule, anterior cingulate, left DLPFC, 

and Broca’s area, with a subset of these regions also implicated in relation to digit span 

forward [67,68]. DLPFC is one of the amyloid accumulating regions, and therefore it 

may be possible to demonstrate associations between digit span performance and DLPFC 

amyloid levels among cognitively normal individuals in studies with large sample sizes. 

 

Analyses conducted in parallel in multiple data sets or in combined samples will 

accelerate efforts to further elucidate the relationships among cognitive measures 

implicated in preclinical AD. Identifying cognitive measures that are dynamic in 

preclinical AD can lead to the development of novel cognitive tests that are finely tuned 

to detecting earliest changes. Such measures will facilitate clinical trials aimed at this 

early stage by serving as outcome measures that are non-invasive and cheaper to 

administer than neuroimaging. 

 

ACKNOWLEDGMENTS 

We would like to thank the BLSA and WRAP participants and staff for their efforts and 

commitment. Without them this research would not have been possible. 

 

This research was supported in part by the Intramural Research Program of the National 

Institute on Aging (National Institutes of Health) and the Michael J. Fox Foundation for 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/081174doi: bioRxiv preprint first posted online Oct. 14, 2016; 

http://dx.doi.org/10.1101/081174
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 20	

Parkinson’s Research, MJFF Research Grant ID: 9310 (BMJ). WRAP is supported by 

NIA grant R01AG27161 (SCJ; Wisconsin Registry for Alzheimer Prevention: 

Biomarkers of Preclinical AD). WRAP is also supported by the Clinical and 

Translational Science Award (CTSA) program, through the NIH National Center for 

Advancing Translational Sciences (NCATS), grant UL1TR000427. The content is solely 

the responsibility of the authors and does not necessarily represent the official views of 

the NIH. 

	

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/081174doi: bioRxiv preprint first posted online Oct. 14, 2016; 

http://dx.doi.org/10.1101/081174
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 21	

Table 1. Participants. 
 BLSA WRAP 
Final cognitive status Normal 

(N=1428) 
MCI 
(N=146) 

AD 
(N=87) 

Whole sample 
(N=1661) 

Normal 
(N=689) 

CI* 
(N=147) 

Whole sample 
(N=1542**) 

Age at last visit, mean (SD), y 
Range 

76.4 (9.0) 
60.0–101.0 

84.3 (6.4) 
68.0–99.3 

85.8 (6.7) 
66.4–98.6 

77.6 (9.2) 
60.0–101.0 

61.2 (6.7) 
42–76 

63.2 (6.8) 
44–76 

59.9 (7.3) 
38–78 

Male, no. (%) 687 (48%) 58 (40%) 36 (41%) 781 (47%) 209 (30%) 63 (43%) 454 (30%) 
White, no. (%) 1082 (76%) 128 (88%) 76 (87%) 1286 (77%) 654 (95%) 136 (92%) 1374 (89%) 
Education, mean (SD), y 
Range 

16.7 (2.7) 
8–21 

16.2 (2.9) 
8–20 

17.2 (2.4) 
9–21 

16.7 (2.7) 
8–21 

16.3 (2.8) 
12–29 

16.1 (3.2) 
10–26 

16.1 (2.9) 
9–29 

Number of visits, mean (SD) 
Range 

4.5 (3.8) 
1–22 

5.5 (4.4) 
1–23 

6.3 (4.5) 
1–22 

4.7 (3.9) 
1–23 

3.4 (0.8) 
1–5 

3.4 (0.7) 
1–5 

2.9 (1.2) 
1–5 

Follow-up duration, mean (SD), y 
Range 

7.1 (6.5) 
0.0–23.4 

7.6 (6.2) 
0.0–23.0 

9.1 (6.5) 
0–22.9 

7.3 (6.5) 
0–23.4 

7.6 (2.2) 
0–13 

7.9 (2.2) 
0–12 

6.2 (3.5) 
0–13 

Trails A at last visit, mean (SD)*** 
Range 

38.8 (19.6) 
11–300 

54.5 (20.8) 
21–145 

87.1 (56.7) 
29–300 

42.3 (25.0) 
11–300 

25.3 (8.0) 
11–85 

31.4 (10.1) 
13–63 

27.2 (9.6) 
9–110 

Trails B 98.4 (50.2) 
26–300 

168.6 (70.2) 
51–300 

198.8 (73.9) 
78–300 

106.2 (57.8) 
26–300 

59.7 (20.7) 
24–169 

84.4 (35.6) 
29–300 

67.3 (32.5) 
24–300 

Digit span forward 7.7 (2.5) 
0–14 

7.2 (2.3) 
0–13 

6.2 (2.6) 
0–12 

7.6 (2.5) 
0–14 

10.7 (2.2) 
5–16 

9.9 (2.3) 
5–16 

10.4 (2.2) 
4–16 

Digit span backward 6.7 (2.4) 
0–14 

5.8 (2.1) 
0–13 

4.7 (2.2) 
0–11 

6.5 (2.4) 
0–14 

7.4 (2.2) 
2–14 

6.3 (2.3) 
2–13 

7.1 (2.2) 
2–14 

CVLT/AVLT# immediate recall 49.5 (12.4) 
0–80 

33.1 (9.3) 
15–61 

21.4 (10.6) 
0–47 

46.8 (14.1) 
0–80 

52.7 (7.5) 
34–72 

41.5 (8.1) 
21–62 

50.2 (8.8) 
21–72 

CVLT/AVLT delayed recall 10.2 (3.6) 
0–16 

5.2 (3.3) 
0–13 

1.7 (2.1) 
0–8 

9.5 (4.1) 
0–16 

11.0 (2.6) 
1–15 

7.5 (3.1) 
0–15 

10.3 (3.1) 
0–15 

Boston naming test 53.6 (6.4) 
6–60 

48.2 (8.0) 
18–60 

42.3 (12.2) 
5–58 

52.6 (7.4) 
5–60 

57.8 (2.5) 
36–60 

56.6 (4.0) 
40–60 

56.9 (3.8) 
30–60 

MMSE 28.3 (1.8) 
13–30 

26.4 (2.7) 
13–30 

22.3 (5.9) 
0–30 

27.8 (2.6) 
0–30 

29.4 (0.9) 
24–30 

29.0 (1.3) 
24–30 

29.3 (1.0) 
23–30 

* Cognitively impaired (CI) group in WRAP includes both clinical MCI (N=19) as well as individuals who were determined to have early MCI based on internal norms for 
cognitive measures (N=128). 
** Not all WRAP participants had consensus diagnosis data. Two participants were diagnosed with dementia due to Alzheimer’s disease at last visit. 
*** All cognitive measure statistics are computed using available values at last visit and reported as mean (SD); Range. 
# Verbal memory is measured using CVLT in BLSA and AVLT in WRAP. 
BLSA = Baltimore Longitudinal Study of Aging; WRAP = Wisconsin Registry for Alzheimer’s Prevention; CI = Cognitive impairment; MCI = Mild cognitive impairment; AD = 
Alzheimer’s disease; SD = standard deviation; CVLT = California verbal learning test; AVLT = Auditory verbal learning test; MMSE = Mini mental state exam
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Figure 1a. 
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Figure 1b.  

 

Figure 1. Cognitive measure trajectories in (a) BLSA and (b) WRAP. Gray, blue, and red dots indicate cognitively normal, MCI or CI 

([M]CI), and AD visits, respectively. Visits where consensus diagnoses are not available are indicated as unfilled circles. 
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Figure 2a.  

 

 

Figure 2b.  
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Figure 2. Scaled cognitive trajectories obtained using (a) BLSA and (b) WRAP data. 

Dotted line in the top panel corresponds to the midway point between Normal and 

Abnormal. Line segments in the bottom panel indicate the range of the Cog-PS values 

that attain the midway point (i.e., cognitive threshold) across 20 bootstrap experiments. 

 

Table 2. Cognitive measure thresholds computed on the whole sample. Minimum and 

maximum values obtained across 20 bootstraps are indicated in parentheses. 

 BLSA WRAP 
Cognitive 
measure Threshold Cog-PS at 

threshold Threshold Cog-PS at 
threshold 

Trails A 49.5 
(46.5–300.0) 

1.26 
(0.90–3.07) 

34.3 
(29.9–43.0) 

2.10 
(1.03–2.48) 

Trails B 127.3 
(108.7–300.0) 

0.98 
(0.69–1.05) 

107.3 
(93.6–167.3) 

2.32 
(2.03–2.59) 

Digit span 
forward 

9.5 
(9.47–14.0) 

-1.38 
(-2.54– -1.38) 

11.4 
(11.2–11.5) 

-0.95 
(-0.95– -0.46) 

Digit span 
backward 

8.4 
(8.4–14.0) 

-1.26 
(-2.53– -1.26) 

8.6 
(8.4–9.0) 

-1.17 
(-1.21– -0.91) 

CVLT/AVLT 
immediate 

50.6 
(46.5–50.6) 

0.04 
(-0.16–0.16) 

49.5 
(48.1–50.2) 

0.38 
(0.30–0.65) 

CVLT/AVLT 
delayed 

10.3 
(10.3–11.3) 

0.13 
(-0.25–0.13) 

10.0 
(9.7–10.3) 

0.40 
(0.28–0.67) 

Boston 
naming 

42.0 
(41.8–51.6) 

2.01 
(0.42–2.01) 

51.8 
(32.0–54.2) 

2.39 
(1.86–2.76) 

MMSE 25.6 
(13.7–25.6) 

2.32 
(2.32–3.05) 

28.8 
(28.0–29.2) 

1.73 
(0.89–2.45) 
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Figure 3. Box plot of Cog-PS by clinical diagnosis at last visit in BLSA (left) and WRAP 

(right). Central mark is the median, edges of the box correspond to the interquartile 

range, and whiskers extend to the range of non-outlier Cog-PS values. Outliers are 

plotted individually. All pairwise group comparisons were significant within each data set 

(two-sided Wilcoxon rank-sum test, p < 0.00002). 
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SUPPLEMENTARY MATERIAL 

Progression Score Model 

For clarity, vector-valued variables are in bold and matrices are capitalized. The 

affine transformation between the age !"# of subject $ at visit % and the Cog-PS &"# is 

given by 

&"# = ("!"# + *", 

where (" and *" are the subject-specific variables assumed to be independent and 

identically distributed across subjects with a bivariate normal distribution ,(., /). (" 

and *" model the rate of change and baseline level of Cog-PS, respectively. 

The trajectory of cognitive measure 1 is assumed to be a sigmoid in Cog-PS, and 

is given by 

23 &;53 =
63

1 + 89:;(<9=;) + >3, 

where 53 = (63, ?3, @3, >3) are trajectory parameters to be estimated. >3 and 63 + >3 

correspond to the minimum and maximum values of the sigmoid, respectively. @3 is the 

inflection point (the Cog-PS value at which the second derivative is zero) and 63?3 4 is 

the slope at the inflection point. 

The observed cognitive measures B"#3 stacked into the vector C"# are assumed to 

have additive normally distributed noise, and are described by 

C"# = D &;5 + E"#, 

where D is the vector obtained by stacking 23, and E"# is noise, assumed to be 

independent and identically distributed with a multivariate normal distribution ,(F, G). G 

is an unstructured covariance matrix that represents the variance of noise for each 
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cognitive measure as well as the correlations among them, and is estimated during the 

model fitting procedure. 

Model fitting is performed using a Monte Carlo expectation-maximization 

(MC-EM) algorithm. The subject-specific variables and missing cognitive measures 

constitute the hidden variables in this framework. Model parameters include 5, .,/, and 

G. The EM approach is an iterative procedure where the most likely values of the hidden 

variables are computed given the data and current parameter estimates, and then the 

model parameters are estimated using these most likely values for the hidden variables. 

Since the integral in the E-step for our model does not have an analytical form, we 

approximate it using Monte Carlo samples. 

After model fitting, we compute the cross-sectional mean and variance of the 

Cog-PS among cognitively normal individuals: 

H =
1

ΩJKLMNO
&"#P

"∈RSTUVWX

	, 

															Z[ =
1

ΩJKLMNO
(&"#P − H)

[

"∈RSTUVWX

 

where %] is the visit index at which the mean and variance are computed and ΩJKLMNO is 

the set of individuals who are cognitively normal at visit %]. For BLSA, %] corresponds to 

the baseline visit, and for WRAP to the last visit (since diagnosis information is available 

only at last visit). We calibrate the Cog-PS scale as &"#∗ =
<_`9a
b

, which corresponds to the 

following changes in the subject-specific variables: 

("∗
*"∗

=
1
Z

("
*" − H . 
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This calibration is accompanied by the following standardization of the model 

parameters: 

?3∗ = Z?3, 

@3∗ =
@3 − H
Z , 

.∗ =
1
Z .− 0

H , 

/∗ = 	
1
Z[ /. 

 

Let the minimum and maximum progression scores observed in the data set after 

model fitting be &MeJ and &MNf. We scale the trajectory of each marker so that fitted 

values at these values correspond across markers. Scaled values are given by 

23
(ghNOij) &;53 =

23 &;53 − 23 &MeJ;53

23 &MNf;53 − 23 &MeJ;53
	. 
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Figure S1. Diagram illustrating progression score (PS) model fitting, PS calibration, and 

cognitive measurement scaling to obtain standardized space of cognitive markers. Lower 

values for the illustrated cognitive markers indicate lower cognitive performance. PS 

values are calibrated such that lower progression scores indicate better overall cognitive 

performance. 
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Multi-state Markov model 

 

Figure S2. Multi-state Markov model. Each node corresponds to one of the four states in 

the model. x and y correspond to cognitive measures. Normal and abnormal 

categorization of the cognitive measures are based on thresholding at the mean value 

within the [M]CI group at last visit. 

 

We present detailed results comparing digit span forward and CVLT delayed recall tests 

in BLSA. Table S1 presents the counts of consecutive states in the BLSA, and Figure S3 

displays the estimated transition rates. Since we did not characterize transition rates by 

age, our results represent the transition rates for an individual at the sample mean age. 

 

Table S1. Summary of the BLSA data as a frequency table of pairs of consecutive states 
for x=Digit span forward and y=CVLT delayed recall. 
From \ To State 1 State 2A State 2B State 3 
State 1 2056 593 81 41 
State 2A 524 1204 27 99 
State 2B 56 16 89 27 
State 3 24 48 35 135 
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Figure S3. Multi-state Markov model for x=Digit span forward and y=CVLT delayed 

recall. Transition rates per 100 person-years, estimated using BLSA data, are shown next 

to the arrows. 95% confidence intervals for the transition rates are in parentheses. 

 

 

Assuming an initial cohort consisting of 100 individuals in State 1 at baseline, the model 

estimates that approximately 53 of them would be in State 1, 37 in State 2A, 4 in State 

2B, and 6 in State 3 after a follow-up of 7.3 years (the mean follow-up duration in the 

BLSA). 

 

Transition rates out of state 1 are shown in Table S2 for all Markov models fitted using 

each pair (x,y) of cognitive tests.
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Cognitive measure pair (x,y) BLSA WRAP 
x y State 1 à 2A State 1 à 2B State 1 à 2A State 1 à 2B 
Trails A Trails B 4.20 

(3.57–4.95) 
3.28 
(2.70–3.98) 

6.79 
(5.77–8.00) 

2.88 
(2.22–3.75) 

Digit span 
forward 

4.62 
(3.74–5.72) 

18.89 
(17.31–20.62) 

6.65 
(5.54–7.98) 

7.23 
(6.23–8.40) 

Digit span 
backward 

4.33 
(3.63–5.16) 

11.21 
(10.10–12.43) 

6.11 
(4.95–7.54) 

11.47 
(9.94–13.24) 

CVLT/AVLT 
immediate 

4.38 
(3.76–5.10) 

4.10 
(3.50–4.80) 

6.75 
(5.75–7.92) 

2.78 
(2.23–3.48) 

CVLT/AVLT 
delayed 

4.25 
(3.66–4.93) 

3.74 
(3.20–4.38) 

7.04 
(5.99–8.26) 

3.39 
(2.79–4.13) 

Boston naming 4.82 
(4.15–5.60) 

2.46 
(2.08–2.91) 

7.19 
(6.07–8.50) 

4.16 
(3.49–4.96) 

MMSE 4.95 
(4.32–5.67) 

2.70 
(2.19–3.32) 

7.40 
(6.46–8.48) 

0.42 
(0.15–1.18) 

Trails B Digit span 
forward 

2.94 
(2.21–3.91) 

19.21 
(17.63–20.93) 

3.18 
(2.48–4.07) 

7.19 
(6.27–8.24) 

Digit span 
backward 

3.00 
(2.41–3.73) 

10.89 
(9.83–12.07) 

3.52 
(2.65–4.68) 

11.81 
(10.39–13.43) 

CVLT/AVLT 
immediate 

4.04 
(3.41–4.78) 

3.72 
(3.15–4.39) 

3.17 
(2.58–3.89) 

3.12 
(2.59–3.76) 

CVLT/AVLT 
delayed 

3.99 
(3.37–4.73) 

3.24 
(2.74–3.84) 

3.63 
(2.99–4.41) 

3.40 
(2.83–4.08) 

Boston naming 4.17 
(3.54–4.91) 

2.30 
(1.94–2.74) 

4.32 
(3.51–5.31) 

3.60 
(3.00–4.32) 

MMSE 4.08 
(3.49–4.76) 

2.28 
(1.84–2.83) 

4.48 
(3.83–5.24) 

0.2 
(0.06–0.75) 

Digit span 
forward 

Digit span 
backward 

16.98 
(15.30–18.83) 

8.10 
(6.67–9.83) 

4.79 
(3.81–6.02) 

9.52 
(8.05–11.26) 

CVLT/AVLT 
immediate 

18.77 
(17.21–20.47) 

3.43 
(2.68–4.41) 

7.08 
(6.18–8.11) 

3.31 
(2.67–4.11) 

CVLT/AVLT 
delayed 

19.21 
(17.63–20.93) 

3.42 
(2.71–4.31) 

7.16 
(6.21–8.25) 

3.68 
(3.02–4.49) 

Boston naming 18.64 
(17.07–20.36) 

2.06 
(1.60–2.67) 

7.31 
(6.32–8.46) 

3.64 
(2.94–4.50) 

MMSE 19.13 
(17.58–20.81) 

2.81 
(1.93–4.11) 

7.72 
(6.83–8.73) 

0.45 
(0.12–1.74) 

Digit span 
backward 

CVLT/AVLT 
immediate 

11.55 
(10.43–12.78) 

3.86 
(3.14–4.75) 

11.21 
(9.82–12.79) 

3.14 
(2.42–4.06) 

CVLT/AVLT 
delayed 

11.75 
(10.62–13.01) 

3.48 
(2.86–4.23) 

11.04 
(9.66–12.62) 

3.62 
(2.88–4.54) 

Boston naming 11.53 
(10.39–12.80) 

2.12 
(1.72–2.61) 

11.48 
( 9.99–13.19) 

3.40 
(2.68–4.30) 

MMSE 11.82 
(10.70–13.06) 

3.52 
(2.66–4.65) 

12.06 
(10.73–13.57) 

0.48 
(0.17–1.33) 

CVLT/AVLT 
immediate 

CVLT/AVLT 
delayed 

3.35 
(2.58–4.37) 

2.78 
(2.17–3.57) 

2.82 
(2.16–3.69) 

2.90 
(2.29–3.67) 

Boston naming 3.58 
(3.07–4.19) 

2.14 
(1.79–2.55) 

3.17 
(2.59–3.87) 

3.81 
(3.21–4.52) 

MMSE 4.38 
(3.75–5.12) 

3.13 
(2.54–3.86) 

3.72 
(3.19–4.33) 

0.07 
(0.01–0.56) 

CVLT/AVLT 
delayed 

Boston naming 3.77 
(3.24–4.38) 

2.12 
(1.78–2.53) 

3.40 
(2.80–4.13) 

3.85 
(3.24–4.59) 

MMSE 3.87 
(3.31–4.52) 

2.92 
(2.35–3.63) 

4.06 
(3.50–4.71) 

0.16 
(0.04–0.71) 

Boston naming MMSE 2.44 
(2.07–2.86) 

2.92 
(2.36–3.60) 

4.43 
(3.82–5.14) 

0.41 
(0.15–1.12) 

Table S2. State transition rates per 100 person-years. 95% confidence intervals are in parentheses. The higher 
transition rate is in bold whenever it is statistically different from the lower rate based on 95% CIs. If the State 1 à 2A 
transition rate is higher, the measure listed under column x becomes abnormal before y. If the State 1 à 2B transition 
rate is higher, the measure listed under column y becomes abnormal before x. 
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