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Inertial and Time-of-Arrival Ranging Sensor Fusion

Paul Vasilyeva, Sean Pearsona, Mahmoud El-Goharya,*, Mateo Aboya, and James 
McNamesa,b

aAPDM, Inc., 2828 SW Corbett Avenue, Portland, OR, USA

bDepartment of Electrical and Computer Engineering, Portland State University, Portland, OR, 
USA

Abstract

Wearable devices with embedded kinematic sensors including triaxial accelerometers, gyroscopes, 

and magnetometers are becoming widely used in applications for tracking human movement in 

domains that include sports, motion gaming, medicine, and wellness. The kinematic sensors can 

be used to estimate orientation, but can only estimate changes in position over short periods of 

time. We developed a prototype sensor that includes ultra wideband ranging sensors and kinematic 

sensors to determine the feasibility of fusing the two sensor technologies to estimate both 

orientation and position. We used a state space model and applied the unscented Kalman filter to 

fuse the sensor information. Our results demonstrate that it is possible to estimate orientation and 

position with less error than is possible with either sensor technology alone. In our experiment we 

obtained a position root mean square error of 5.2 cm and orientation error of 4.8° over a 15 minute 

recording.

Keywords
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1. Introduction

There is a growing interest in wearable sensor systems for quantifying human activity and 

movement. Applications of this technology range from measuring gross activity throughout 

the day to monitoring specific symptoms of a disease or injury [1, 2, 3, 4, 5, 6]. The 

underlying sensor technologies for these applications have advanced greatly over the last 

decade due to advances in low power integrated circuits that enable sample rates well above 

the Nyquist rate of most human movement (roughly 30 Hz) [7].

A common goal in the processing of this sensor data is to estimate the sensor orientation and 

position, known as pose, continuously during normal daily activities. Many early efforts 
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focused on the use of wearable inertial sensors, which were mostly limited to orientation 

estimation [8, 9, 10, 11, 12, 13, 14, 15]. Because the inertial sensors lack an absolute 

reference for orientation and position, the accumulated error from using the gyroscopes to 

estimate orientation grows linearly with time, . The orientation error results in an error 

in the estimated gravitational force when estimating the acceleration in the Earth frame. This 

error is compounded by integrating the estimated Earth frame acceleration twice to obtain an 

estimate of position. The combined effects of these errors causes the position error from 

inertial sensors alone to grow cubicly with time, .

Recently low-cost and low-power sensors have become available that are capable of 

measuring the time of flight between a transmitter and receiver based on ultra wideband 

(UWB). This makes use of very short pulses to achieve high spatial resolution. The two 

sensor technologies have advantages that are complementary. One can infer position from 

ranging sensors with an accuracy that does not degrade over time. However, it is not feasible 

to estimate the orientation from ranging sensors alone. This is due to the infinite number of 

orientation possibilities that can be inferred from the same ranging measurements when the 

sensor is stationary. The accuracy of position estimates is diminished when multipath is 

present or when the sensors are not within the line of sight of one another.

Inertial sensors are frequently combined with magnetometers to estimate the full sensor 

orientation (elevation, bank, and heading)[16, 14, 15]. These algorithms use gravity during 

periods of slow movement to improve estimates of the elevation and bank angles and use 

Earth’s magnetic field to improve estimates of the heading. In many applications the sensor 

is in continuous motion for long periods of time and gravity cannot be used to improve the 

orientation estimate. Similarly, in many indoor environments the magnetic field is distorted 

and cannot be used to improve heading estimates. This limits the range of applications in 

which accelerometers and magnetometers can aid the gyroscopes in estimating orientation. 

Similarly, due to the rapid accumulation of error when integrating acceleration twice to 

estimate position, inertial sensors alone are unable to estimate position accurately except 

over brief periods from a known starting position. We propose to fuse inertial and ranging 

technologies in a state space model to estimate pose with greater accuracy than could be 

attained with either technology alone. This technology can accurately estimate the 

orientation even during continuous movement and in environments with magnetic 

disturbances.

Several other groups have also investigated the possibility of fusing these two sensor 

technologies. Their approaches can be generally categorized based on loosely coupled and 

tightly coupled models. The loosely coupled models pre-process the UWB range 

measurements to obtain a position solution through trilateration [17, 18, 19, 20]. This 

position estimate is then used as a measurement for the UWB-inertial fusion. This has the 

advantage of simplifying the model because the measurements are linearly related to the 

position estimates. However, trilateration requires a minimum of four simultaneous range 

measurements to unambiguously estimate the 3-D position of a tag and does not take 

advantage of the information provided by the inertial sensors. Tightly coupled models use 

the range measurements directly in the fusion framework [21, 22]. Although the models are 
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nonlinear, they are potentially more accurate than loosely coupled models and provide some 

advantages. For example, it is easier to detect outliers in range estimates due to multipath or 

occlusion. The tightly coupled approach is more scalable and can continuously provide 

estimates even when there are not enough range sensors to estimate position directly. We use 

a tightly coupled model.

Hol [21] and Asher [22] both use an unsynchronized wearable transmitter to transmit a 

message to a set of synchronized receivers. Since the transmitter is unsynchronized with the 

receivers, the time delay between transmission and reception is unknown and must be 

estimated. This approach to estimating position is called Time Difference of Arrival 

(TDOA), and it relies on a precise synchronization of the receivers. This can often be 

difficult to accomplish wirelessly. Since the distance is measured by the amount of time it 

takes an electromagnetic pulse to travel from the transmitter to the receiver at the speed of 

light, it takes only 3.34 ns of timing error to accumulate a 1 m range error. Therefore such 

precise synchronization is usually achieved through a physical wired connection of the 

receivers. This may be cumbersome or impractical.

Our approach uses a different fundamental UWB technology that does not require precise 

synchronization of receivers or transmitters. Each device acts as both a receiver and 

transmitter. Each device is equipped with a precise clock which can time-stamp transmit and 

receive events with nanosecond resolution. To measure the range a series of transmit and 

receive events are performed between two UWB devices in order to collect a set of precise 

time-stamps, which are then used to compute the range between them. To minimize the 

effects of clock drift, we use a ranging protocol called Symmetric Double-Sided Two-Way 

Ranging (Figure 1). This requires more power consumption and results in a slower sampling 

rate than a simpler two-way ranging, but it is considerably less sensitive to the mismatch 

between the frequencies of the clocks in the two devices. Our UWB radio network is 

comprised of stationary (anchors) and mobile (tags) devices. The tag sends a poll message to 

a specific anchor and records the transmit time Ttx1. The tag then listens for a response 

message. When the anchor receives a poll, it records the receive time Arx1, sends a response 

back to the tag, and records its send time Atx1. When the tag receives the response, it records 

the receive time Trx1, and sends a second poll message recording the transmit time Ttx2. The 

tag then listens for the final response message from the anchor. The anchor listens for the 

second poll message. When the anchor receives the second poll it records the receive time 

Arx2 and sends the final response to the tag. When the tag receives the final response 

message it has all the time-stamps necessary to compute the range between the tag and 

anchor devices.

(1)

Our unsynchronized UWB approach has many distinct advantages over the synchronized 

anchors approach based on time difference of arrival. For example, it does not require 

carefully synchronized transmitters or receivers. Eliminating the need to physically 

interconnect the transmitters or receivers enables this technology to estimate ranges between 
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multiple wearable sensors that are not physically connected with one another. A 

consequence of our unsynchronized approach is that the ranging can only be done between 

one pair of devices at a time, and therefore the sample rate is inversely proportional to the 

number of device pairs in the network.

Our proposed tightly coupled state space model includes both a nonlinear process model and 

a nonlinear measurement model, both with additive noise. There are a variety of algorithms 

available for state estimation with nonlinear state space models. The extended Kalman filter 

(EKF) is one of the most common for tracking pose from fused UWB and inertial sensor 

data. The EKF is based on linearizing the state and observation models with a first-order 

Taylor series expansion. If the model is highly nonlinear, then the linearization may lead to 

poor performance. The EKF also requires calculation of Jacobian matrices for the process 

and measurement models, which can be tedious and error prone.

Sequential Monte Carlo methods, also known as particle filters, can overcome the 

performance limitations of the EKF [23], but they have computational requirements that are 

orders of magnitude larger than the EKF[24, 25]. Unlike earlier approaches that used an 

extended Kalman filter (EKF) [21] or an iterative Kalman filter [22], we use the Unscented 

Kalman Filter (UKF) [26] to fuse the inertial and ranging inertial sensors. Like the EKF, it 

relies on a linearization of the process and measurement models, but the linearization is done 

statistically with sigma points, which accounts for the effects of the variability in the state 

estimate. The computation required by the UKF is approximately the same as the EKF, but 

the accuracy is typically higher. LaViola [27] has shown the UKF to be more accurate than 

the EKF for orientation tracking, which is a key component of pose estimation.

Previous work has not precisely quantified the accuracy of the performance in this type of 

applications. Consequently, it is difficult to determine from the existing literature what level 

of position and orientation accuracy is achievable from the fusion of these two technologies 

for tracking human movement. Existing work focuses on movement over a large volume, 

such as tracking position within a building or a large room. Our goal is to determine the 

feasibility of using the fused technologies to accurately estimating human movement. If 

successful, this may enable us to determine, for example, the feasibility of using this 

technology to more accurately estimate human joint angles [28, 29]. In this study, we assess 

the feasibility and evaluate the performance of the fused system and the algorithms through 

the use of an industrial robot arm with six degrees of freedom. The arm provides precise 

control of the movement and precise orientation and position of the inertial sensor at all 

times. We compare the position and orientation calculated by our tracker with those obtained 

from the reference system, the robot arm.

2. Methods

2.1. Instrumentation

Our instrumentation consists of a commercially available Opal inertial sensor (APDM, Inc., 

Portland, Oregon) and custom ranging prototyped hardware that is based on the ScenSor 

DWM1000 UWB ranging module (DecaWave, Inc., Dublin, Ireland), as shown in Figure 2. 

With further development, the inertial sensor and ranging sensors could be combined in a 
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small, wearable device approximately the same size as the current Opal inertial sensors. In 

our experiments, all of the ranging sensors were stationary except for one. The stationary 

sensors are called anchors and the mobile sensor is called a tag. Only the tag was 

mechanically attached and electrically connected to the Opal inertial sensor. The anchors 

only included ranging hardware. All of the devices were battery powered and all control, 

data streaming, and communications with the devices were performed wirelessly.

The ranging sensors are controlled by a base station connected to a laptop and 

communicates with the tag and anchors wirelessly. To begin ranging with the set of anchors, 

the base station sends a trigger message to the tag. Upon receiving the trigger signal the tag 

conducts a ranging transaction with each anchor in sequential order. In our experiments, 

each ranging transaction between tag and anchor consumed 12.35 ms and was individually 

time-stamped and synchronized with the inertial sensor. It took the tag a total of 61.75 ms to 

range with all the anchors in our system. After completing ranging with all the anchors, the 

tag relayed the collected ranges to the base station so that they could be stored on the laptop. 

Storing the ranges on the laptop consumed an additional 38.25 ms. After storing the set of 

ranges on the laptop the base station would send a new trigger message to the tag and the 

entire process would repeat. This resulted in the base station sending a trigger message to 

the tag at a rate of 10 Hz.

2.2. State Space Model

Our proposed system uses a state space tracking framework to fuse the information from the 

inertial and ranging sensors, and uses the unscented Kalman filter (UKF) recursions to 

estimate the state of the system, which includes the position and orientation of interest. State 

space models include a process model that represents the prior knowledge of how the state 

evolves over time and a measurement model that relates the measurements to the state. If we 

assume additive noise, this can be represented concisely as

(2)

(3)

where n is the time index, xn is the state vector, the function fn(·) models the deterministic 

part of the state transition from time n to n +1, wn is a known input signal, un is additive 

white process noise, yn is the measurement vector, the function hn(·) models the relationship 

between the state and the measurements, and vn is additive white measurement noise. In our 

design the state vector includes the orientation, position, and velocity of the tag,

(4)

where qn ∈ ℝ4 is a unit quaternion representing the orientation as a rotation between the tag

and the Earth frame, pn ∈ ℝ3 is the position, ṗn ∈ ℝ3 is the velocity. The input wn = [wnan]T
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includes the vector of gyroscope measurements ωn ∈ ℝ3 and the vector of accelerometer

measurements an ∈ ℝ3.

2.3. Process Model

We use a process model based on [21],

(5)

(6)

(7)

where Ts is the sampling interval, ⊙ represents a quaternion product [30], R(qn) is an 

orthonormal 3 × 3 rotation matrix computed from the quaternion qn[30] that rotates a vector 

in the tag frame to the Earth frame, an is the specific force vector as measured by the 

accelerometer on the tag, g is a vector representing gravitational acceleration in the Earth 

frame,

(8)

and rn is a quaternion representing the change in orientation from time n to n + 1

(9)

where ωx,n, ωy,n, and ωz,n are the rotational rates in the tag frame as measured by the 

gyroscopes and

(10)

In practice MEMS gyroscopes and accelerometers contain noise and drift. The propose 

system lumps the noise components as part of the overall additive noise vector, un = 

[uq,nup,nuṗ,n]T The model could be easily adapted to include sensor drift as part of the state

vector [21]. It is also possible to model the quaternion portion of the state vector more 

precisely to preserve the unit norm of the quaternion portion of the state vector [31]. The 
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model uses a diagonal process noise covariance matrix with the standard deviations listed in 

Table 1.

2.4. Measurement Model

The proposed measurement model is the vector of Euclidean distances between the position 

of the tag pn and the locations of each of the stationary anchors that are known at time n,

(11)

where denotes the Euclidean norm, αn(i) ∈ ℝ3 is the location of the anchor, un(i) is the

ith element of the measurement noise vector, Μn is the number of anchors that provided 

measurements at time n, and  is the dimension of the measurement vector at time 

n.

In our instrumentation, the sample rate of the inertial sensors (128 Hz) was much higher 

than that of the ranging sensors (10 Hz), so during most sample times n only the 

measurement between the tag and a single anchor was available. However, the model is 

general enough to account for as many measurements as are available at time n. As a 

consequence, our design uses a time-varying measurement model.

We modeled the additive measurement noise as a white noise process with a diagonal 

covariance. The ranging sensors that we used have an error that is statistically 

indistinguishable from Gaussian white noise when the tag is stationary, but the error also 

varies with position and orientation of the tag and anchors. We combined all of these effects 

into the additive noise vector vn with a standard deviation of 20 cm.

3. Performance Assessment

3.1. Robotic Control of Movement

To evaluate the performance of the tracking systems, we compared the position and 

orientation angles calculated by the inertial tracker with those obtained from an industrial 

Epson C3 robot (Epson Robots, California) with six degrees of freedom, as shown in Figure 

3. The arm is capable of movements that are rapid, precise, and repeatable. Although the

arm was designed for industrial assembly, it is well suited for controlled studies of 

movement. The C3 provides angular velocities of each of the six joints in the range of 450–

720°/s, has a repeatability of ±0.02 mm, and has a work area of ±48 cm × ±48 cm × ±48 cm.

Our tag was attached to the end effector of the Epson C3 robot. We placed five anchors 

around the perimeter of the robot as highlighted in green in Figure 3. The anchor placement 

was chosen to uniformly distribute the anchors around the tracking volume. We chose to use 

five anchors in order to ensure that we had enough range measurement to calculate an 

estimate using trilateration, however, we chose not to use more anchors so as not to reduce 
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the sample rate on the ranging sensors. The robot frame was used as the Earth reference 

frame. We precisely measured the position of each anchor prior to data collection.

3.2. Sensor Calibration

To obtain the best possible performance, we performed a separate linear calibration for each 

tag-anchor combination. The robot was programmed to perform a linear motion from −380.0 

mm to +380.0 mm in the y-axis at a speed of 10 mm/s while ranging data was recorded 

between the tag module and the six anchor modules. The spatial location of each anchor 

module was precisely measured and thus the true range between the tag module and anchor 

modules was known at each time sample. A linear least squares fit was used to calculate 

scale and offset factors for each anchor. We also estimated the bias of the gyroscopes during 

a brief 10 s period when the tag was held in a stationary position. The bias was subtracted 

from the subsequent gyroscope measurements.

3.3. Movement Protocol

To evaluate the performance of our tracker, we programmed the robot to alter the orientation 

and position of the tag over a range of frequencies for a sustained period of time. The 

movement protocol was designed to represent a range of movements, fast and slow, that are 

typical of human movement. We chose a 15 min total recording duration to contrast the 

accumulated error in orientation with inertial sensing alone with the fused estimate. The 

movement protocol included linear translational oscillations between ±380.0 mm along the 

y-axis of the Earth frame. We programmed the robot to move the tag rapidly at first and 

gradually decrease the speed of movement. The starting velocity and acceleration for the 

linear movement were set to 2.0m/s and 20.0m/s2, respectively. At either end of the linear 

motion, the velocity and acceleration were reduced by 0.001 m/s and 0.125 m/s2 until they 

reached a final value of 0.560 m/s and 2.0m/s2. The fundamental period of the movement 

gradually increased from 2.1 s to 8.5 s by the end of the last cycle. The orientation 

oscillations were over the same rates about the z-axis between ±45°. We repeated these chirp 

intervals of fast-to-slow movement four times with brief still periods in between each chirp 

interval for a total recording duration of 15 min.

3.4·Time Alignment

Although the UWB and inertial sensors were carefully synchronized through a 

synchronization pulse, the robot arm was not synchronized with the sensors. We accounted 

for both deviation from the nominal sample rates and the time offset between the two 

systems through a moving-window, cross-correlation analysis. The sample times of the robot 

arm positions and orientations were then scaled and offset to provide precise time alignment 

with the sensors.

3.5. Performance Criteria

We compared two different estimates of position and orientation to that of the robot, which 

we treated as a gold standard. Both estimates were initialized with the true position and 

orientation. The first estimate was obtained by fusing the range and inertial sensor 

measurements with an unscented Kalman filter, as described in earlier sections. Our second 
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estimate was obtained from using the ranging sensors alone. It is not possible to estimate the 

orientation of the tag from these sensors. We estimated the position through trilateration, 

which essentially is a means of minimizing the total error,

(12)

where dn(i) is the measured range between the tag and the ith anchor. The trilateration is 

underdetermined and there are multiple solutions that produce an error of zero unless the 

ranges to at least four anchors are known. Since the sample rate of our estimates were 

chosen to match that of the inertial sensors (128 Hz) and the range measurements were only 

available at 10 Hz, only one range measurements were available at most sample times. To 

provide a continuous estimate of the position, we resampled the range measurements to 128 

Hz and used the resampled range measurements to perform trilateration.

We chose to quantify the performance based on the root mean squared (RMS) error for each 

of the positions, x, y, and z, in the Earth frame. For example,

(13)

We also measured the average RMS error of the total position error. We quantified the 

orientation error by calculating the elevation, bank, and heading errors. This required 

conversion of the quaternion to Euler angles [30]. We also calculated the RMS of the total 

angular error, which is the angle of rotation required to rotate the estimated orientation to the 

true orientation.

4. Results

Table 2 summarizes the performance of the algorithm In estimating the orientation angles 

using the fused data from the UWB and inertial sensors. The table shows the RMS error in 

orientation angle estimates. Similarly, Table 3 shows the RMS error in position estimates.

Figure 4 shows a comparison during a brief segment of the actual position (light gray) and 

estimated position through inertial-ranging fusion (dark red) for the y-axis. Figure 5 shows a 

comparison of the true heading (light gray), its estimates from the inertial-ranging fusion 

(dark red), and the absolute error (black in the bottom panel), during the first 270s of the 

recording.

5. Discussion

Figure 4 shows that there is a steady state error during the still period of about 5 cm between 

the true position and the estimate. This error is due to the ranging sensors, and is also present 

with the trilateration estimate based on the ranging sensors alone. This is due to a position-
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dependent error in the ranging sensors at this particular position. Ideally this error could be 

accounted for by creating a calibration for the ranging sensors that was dependent on 

position and orientation of the tag and the environmental conditions, but it is impractical to 

use this approach because it would require an extensive calibration procedure.

It is important to recognize that the fusion of the ranging and inertial sensors is only 

effective during movement that is sufficiently rapid. When the tag is stationary, the ranging 

sensors do not provide any feedback about the orientation of the tag. Similarly, when the tag 

is stationary the integration of the accelerometers only produces an accumulated error in the 

position estimate and they cannot be used to provide any information about the high 

frequency components of the movement. Conversely, when rapid movement is present the 

accelerometers can track the high frequency movements over brief periods of time. Aligning 

these variations in position as estimated from the accelerometers with the ranging sensors 

requires accurate estimation of the tag orientation. During movement with sufficiently high 

frequency content the UKF is able to fuse the information from the inertial sensors with the 

ranging sensors to perform this alignment and improve the accuracy of both the position and 

orientation estimates, shown in Tables 2 and 3.

Figure 5 illustrates this effect. During rapid movement near the beginning of the recording 

the fused estimate accurately tracks the heading. As the movement becomes slower during 

the period of 90–175 s, the UKF begins to lose track of the heading because the movement is 

slower and there is insufficient overlap in the information provided by the ranging sensors 

and inertial sensors to accurately determine the tag orientation. As soon as the rapid 

movement resumes approximately 190 s into the recording, the UKF is once again able to 

use the redundant information in the accelerometer and ranging sensors to estimate the tag 

orientation accurately.

In some respects, our experiment provides an opportunity for performance that may be more 

favorable than is possible in practice. As errors such as occlusion, ranging dropouts, 

suboptimal anchor placement, anchor position surveying errors, and calibration errors are 

introduced, the performance will degrade. We were careful to select a configuration of 

anchors that provided a position dilution of precision factor of less than 2 over the range of 

motion. Each tag-anchor pair was individually calibrated with a linear model from a 

calibration recording done prior to the experiment with the anchors in the same positions as 

used for the experiment. Because we were careful to avoid occlusions, we did not include a 

protocol for detecting and removing them, however such protocols are presented in the 

literature [21] and could be adapted to this model.

In other respects, it may be possible to obtain further performance improvements. For 

instance, it is possible to include sensor bias state variables in the state space models for the 

accelerometers and gyroscopes. The proposed simpler approach of subtracting the gyroscope 

bias as determined from a static period at the beginning of the recording and ignoring the 

accelerometer bias was sufficient for our purpose of determining whether the technologies 

could be fused to improve accuracy. However, for long duration recordings (≫ 15 min) 

tracking these biases may improve performance.
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We also did not use gravity to improve our orientation estimates, as is common practice 

when working with inertial sensors alone. It is possible to estimate the elevation and bank 

angles during periods when the sensors are either stationary or at a constant translational 

velocity[15, 14]. It is also possible to use the magnetometers to estimate heading, though 

this is difficult in non-uniform magnetic fields[15, 14].

There is a several cm difference between the location of the inertial sensors and the location 

of the ranging antenna. We did not account for this because the specific movement that we 

used made it unnecessary. The ranging antenna is on the same axis of rotation as the inertial 

sensor so there is only a vertical displacement between the two sensors.

Range estimates are sensitive to antenna orientation. However, in the proposed model we did 

not account for this effect. It is also known that the range estimates may exhibit nonlinear 

distortions, particularly when the ranges are close (< 2 m), as they were in our experiment. 

We did not compensate for this and used a simple linear transform with only scale and bias 

to calibrate the range sensors.

Our tracking algorithm was causal and could easily be implemented in real time. For off line 

applications, smoothing methods could be used to further increase performance.
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Figure 1. 
Ranging protocol between tag and anchor.
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Figure 2. 
Pictures of the prototype instrumentation used for the mobile tag, stationary anchors, and 

base station.
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Figure 3. 
Robot (Epson C3) arm used for performance assessment.
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Figure 4. 
Short segment showing the true y-axis position (light gray) and the estimated position 

through inertial-ranging fusion (dark red).
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Figure 5. 
The true heading (gray), its estimate from the inertial-ranging fusion (red), and the absolute 

error (bottom panel) for the first 270 s of the recording.

Vasilyev et al. Page 17



Vasilyev et al. Page 18

Table 1

Process noise standard deviations.

Noise Term σ

uq,k 0.04

up,k 0.01 m

uṗ,k 0.02 m/s
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Table 2

RMS error between reference and estimated orientation angles.

Fused Ranging

Elevation 0.8° –

Bank 0.4° –

Heading 4.7° –

Total 4.8° –
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Table 3

RMS error between reference and position estimates.

Fused Ranging

x 2.22 cm 2.93 cm

y 3.72 cm 3.06 cm

z 2.92 cm 6.02 cm

Total 5.22 cm 7.36 cm
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