
Portland State University
PDXScholar
Portland Institute for Computational Science
Publications Portland Institute for Computational Science

12-2016

A Scalable Preconditioner for a Primal DPG Method
Andrew T. Barker
Lawrence Livermore National Laboratory

Veselin A. Dobrev
Lawrence Livermore National Laboratory

Jay Gopalakrishnan
Portland State University, gjay@pdx.edu

Tzanio Kolev
Lawrence Livermore National Laboratory

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/pics_pub

Part of the Mathematics Commons

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Portland Institute for Computational Science
Publications by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Barker, A. T., Dobrev, V., Gopalakrishnan, J., & Kolev, T. (2018). A Scalable Preconditioner for a Primal Discontinuous Petrov--
Galerkin Method. SIAM Journal on Scientific Computing, 40(2), A1187-A1203.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/84828704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fpics_pub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/pics_pub?utm_source=pdxscholar.library.pdx.edu%2Fpics_pub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/pics_pub?utm_source=pdxscholar.library.pdx.edu%2Fpics_pub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/pics?utm_source=pdxscholar.library.pdx.edu%2Fpics_pub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/pics_pub/2
https://pdxscholar.library.pdx.edu/pics_pub?utm_source=pdxscholar.library.pdx.edu%2Fpics_pub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=pdxscholar.library.pdx.edu%2Fpics_pub%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

A SCALABLE PRECONDITIONER FOR A PRIMAL DPG METHOD∗

A. T. BARKER† , V. DOBREV† , J. GOPALAKRISHNAN‡ , AND T. KOLEV†

Abstract. We show how a scalable preconditioner for the primal discontinuous Petrov-Galerkin
(DPG) method can be developed using existing algebraic multigrid (AMG) preconditioning tech-
niques. The stability of the DPG method gives a norm equivalence which allows us to exploit existing
AMG algorithms and software. We show how these algebraic preconditioners can be applied directly
to a Schur complement system arising from the DPG method. One of our intermediate results shows
that a generic stable decomposition implies a stable decomposition for the Schur complement. This
justifies the application of algebraic solvers directly to the interface degrees of freedom. Combining
such results, we obtain the first massively scalable algebraic preconditioner for the DPG system.

Key words. algebraic multigrid, BoomerAMG, ADS, Schur complement, Discontinuous Petrov-
Galerkin.

AMS subject classifications. 65F10, 65M55, 65N30.

1. Introduction. Discontinuous Petrov-Galerkin (DPG) methods, introduced
in [12, 13], constructed test spaces that guarantee stability. Today these methods are
known to be simultaneously viewable as Galerkin mixed methods, as least-squares
methods in nonstandard norms, or as Petrov-Galerkin methods using discontinuous
functions [16]. DPG methods have a great deal of flexibility, allowing them to be
applied to a wide variety of problems [10, 14, 17], and their convergence theory has
now matured [9].

However, there is a lack of fast scalable solvers for the DPG method. In [3],
an overlapping Schwarz preconditioner is analyzed: because it has no coarse level,
the preconditioner expectedly deteriorates as overlap size become small. A coarse
level was added for improved scalability in [25], where the authors analyzed a two-
level additive Schwarz preconditioner for an ultraweak DPG method applied to the
Poisson equation with Robin boundary condition. Going beyond the Poisson problem
to the harmonic wave equation, there are numerical reports of good performance of
certain preconditioning strategies [20].

It was clear from the inception of the DPG method that certain norm equivalences
stemming from its stability give a natural avenue for the design of preconditioners,
as was presented abstractly in [29]. We pursue the same avenue, but investigate all
the details necessary to prove optimality. For example, the norm in which the DPG
method is stable involves an infimum over an infinite dimensional space. Its equiv-
alence with a finite dimensional infimum arising from a discrete Schur complement
is an essential ingredient in our preconditioner analysis, an equivalence not proved
in [29]. Another example of an observation immediate from our analysis (but not
clear from [29]) is that the interface variable in the DPG method admits a precon-
ditioner which uses only the interface degrees of freedom. In the recent work of [28]
geometric multilevel strategies are investigated numerically but without theoretical
analysis. In this paper we show how existing algebraic multilevel preconditioners can

∗Performed under the auspices of the U.S. Department of Energy under Contract DE-AC52-
07NA27344 (LLNL-JRNL-710378), supported in part by AFOSR grant FA9550-17-1-0090, and fa-
cilitated by equipment acquired using ARO grant W911NF-16-1-0307.
† Center for Applied Scientific Computing (CASC), Lawrence Livermore National Laboratory,

Livermore, CA 94550, atb@llnl.gov, dobrev1@llnl.gov, tzanio@llnl.gov
‡ Portland State University, PO Box 751 (MTH), Portland, OR 97207-0751, gjay@pdx.edu

1

2

be effectively combined to precondition a DPG system, including at very large scale
on parallel supercomputers.

The particular DPG method we consider is the so-called primal DPG method [15],
reviewed in the next section. After describing a basic norm equivalence associated with
the method, we proceed to analyze one of the component norms in Section 3. We show
that this interface norm, obtained as an infimum over an infinite-dimensional space, is
equivalent to an infimum over a finite-dimensional space. An auxiliary algebraic Schur
complement result is presented in Section 4. Section 5 identifies the finite-dimensional
infimum as a Schur complement norm and proceeds to analyze an auxiliary-space
preconditioner for the Schur complement. The preconditioner and the main result
are summarized in Section 6. Section 7 reports results from numerical studies of the
proposed preconditioner. We conclude by summarizing the main results from the
paper in Section 8.

2. The primal DPG method. For completeness and consistency of notation,
we recall some definitions and results from the work introducing the primal DPG
system [15]. The model problem we consider is the Poisson problem of finding u ∈
H1

0 (Ω) such that ∫
Ω

κ∇u · ∇v dx =

∫
Ω

fv dx (2.1)

for all v ∈ H1
0 (Ω), where Ω is a polygonal (in R2) or polyhedral domain (in R3)

with Lipschitz boundary and κ > 0 is a piecewise constant coefficient. Zero Dirichlet
boundary conditions on ∂Ω are essentially imposed in (2.1). In practice the method
can also handle more general problems with varying coefficients and different boundary
conditions, but we choose this setting for simplicity.

Even before discretization, the DPG formulation uses a mesh-dependent weak
form. We assume that Ω is given together with a mesh Ωh that partitions Ω into
elements of varying shapes. For example, in the R2 case, the mesh elements K ∈ Ωh
may be triangles or quadrilaterals, while in R3 the elements may be tetrahedra, prisms,
hexahedra, etc. Precise assumptions on the mesh and element shapes will be specified
later, but for now we only require that the boundary of each element be Lipschitz,
so that traces of Sobolev space functions on the element boundaries are well-defined.
Specifically, we require a well-defined normal trace operator

trcn : H(div,Ω)→
∏
K∈Ωh

H−1/2(∂K),

which maps to element-wise traces (trcn q)|∂K = q ·n|∂K . One can also define trcn q as
a single valued function on the mesh facets: Indeed, if each interface facet γ = K̄1∩K̄2

between two elements K1,K2 ∈ Ωh, as well as boundary facets γ = K̄1 ∩ ∂Ω are
Lipschitz, then we may fix a continuous unit normal vector function nγ on γ and

define (trcn q)|γ = nγ ·q|γ . This is a well-defined function in the dual space of H̊1/2(γ)

(denoted also by H
1/2
00 (γ)), whenever q ∈ H(div,Ω).

The numerical fluxes of the DPG method lie in the range of trcn, i.e., in the space
Q = ran(trcn) with norm given by

‖q‖Q = inf
τ∈trc−1

n {q}
‖τ‖H(div,Ω). (2.2)

Here, as usual, trc−1
n {q} denotes the pre-image of the singleton {q}. It is standard to

prove that the minimal extension operator E : Q→ H(div,Ω), defined by trcn(Eq) =

3

q and (Eq, v)H(div,K) = 0 for all v ∈ H̊(div,K) and K ∈ Ωh, attains the infimum
at (2.2), i.e.,

‖q‖Q = ‖Eq‖H(div,Ω). (2.3)

Here and throughout, for any inner product space W , we use ‖ · ‖W and (·, ·)W
to denote its norm and inner product, respectively. When the space is uniquely
understood from the argument or other context, we will drop the subscript. Let

H1(Ωh) =
∏
K∈Ωh

H1(K).

This product space is endowed with the standard Cartesian product norm and inner
product. For brevity, put X = H1

0 (Ω)×Q and Y = H1(Ωh). Define the bilinear form
b : X × Y → R by

b((w, r), v) =
∑
K∈Ωh

(∫
K

κ∇w · ∇v dx+ 〈r, v〉H−1/2(∂K)

)
where 〈r, v〉H−1/2(∂K) denotes the duality pairing between H−1/2(∂K) and H1/2(∂K).
The Dirichlet problem (2.1) can then be reformulated [15] as the problem of finding
a pair (u, q) ∈ X satisfying

b((u, q), v) = F (v), ∀v ∈ Y, (2.4)

with F (v) = (f, v)L2(Ω). It is proved in [15, Lemma 3.4] that the problem (2.4) is
uniquely solvable for (u, q) ∈ X given any F in the dual space of Y (see also [9,
Example 3.6] for a simplified analysis).

The primal DPG method uses the formulation (2.4) and finite element sub-
spaces Uh ⊂ H1

0 (Ω), Qh ⊂ Q, and Yh ⊂ H1(Ωh). Here h = maxK∈Ωh
diam(K)

denotes the mesh size of Ωh. To describe a computational version of the method, let
{ui}, {qj}, {vk} denote a finite element basis for Uh, Qh and Yh, respectively. Define
the matrices

[B0]ki = b((ui, 0), vk), [B1]kj = b((0, qj), vk),

[M]kl = (vl, vk)Y ≡ (vl, vk)L2(Ω) + (κ∇vl,∇vk)[L2(Ω)]d

and set

B =
[
B0 B1

]
, A = BT M−1B =

[
BT0 M

−1B0 BT0 M
−1B1

BT1 M
−1B0 BT1 M

−1B1

]
.

Let u denote the vector in Rdim(Uh) representing a function u ∈ Uh by the basis
expansion formula u =

∑
i[u]iui. The vectors q in Rdim(Qh) and v in Rdim(Yh) are

similarly defined. Restricting (2.4) to the finite dimensional spaces formally gives

B

[
u

q

]
= F

where [F]k = F (vk). The DPG discretization of (2.4) solves instead the following
symmetric and positive definite problem for u and q:

A

[
u

q

]
= g (2.5)

4

where g = BT M−1F. Note that M is the Gram matrix in the (weighted) “broken”
H1(Ωh)-inner product and so is block diagonal (one block per element). Thus, M−1

can be evaluated fast locally.
The DPG method admits three well-known interpretations. The early papers on

the DPG method used the concept of optimal test functions [12]. Its interpretation as
a least-squares method in a nonstandard inner product was pointed out in [13, p. 6].
Its interpretation as a mixed method is now well known (see e.g., [6, Theorem 2.4]).
It is easy to see that all these three interpretations, in practice, yield the same matrix
system (2.5) when the same spaces and bases are used.

The starting point of our analysis is the stability of the DPG method (2.5). Let
Xh = Uh ×Qh and let x and z be vectors representing two functions x and z in Xh,
respectively. Per the above-mentioned notational conventions, (Ax, z) denotes the
Euclidean inner product zT Ax. It defines a bilinear form in the function space Xh,
namely a(x, z) = (Ax, z). Note that both Xh and Yh are used in the definition of A.
Throughout this paper we assume that the mesh Ωh and the spaces Xh and Yh are
such that there exist mesh-independent constants c1 and c2 satisfying

c1‖x‖2X ≤ a(x, x) ≤ c2‖x‖2X , (2.6)

for all x ∈ Xh. The connection between (2.6) and the stability of the method is
described next.

Proposition 2.1. Assumption (2.6) holds if and only if

c1‖x‖X ≤ sup
06=v∈Yh

|b(x, v)|
‖v‖Y

≤ c2‖x‖X (2.7)

for all x in Xh.
Proof. Define Th : Xh → Yh by (Thx, y)Y = b(x, y), for all x ∈ Xh and y ∈ Yh.

Then, for any x ∈ Xh,

‖Thx‖2Y = sup
0 6=v∈Yh

(Thx, v)Y
‖v‖Y

= sup
06=v∈Yh

b(x, v)

‖v‖Y
.

Letting x and v denote the vector representations of x ∈ Xh and v = Thx ∈ Yh,
respectively, it is easy to see that v = M−1Bx. Hence the result follows from a(x, x) =
(MM−1Bx, M−1Bx) = ‖Thx‖2Y .

Clearly, the upper inequality of (2.7) follows from the continuity of the bilinear
form b(·, ·), and therefore holds independently of the choice of the discrete spaces. The
lower inequality of (2.7) is an inf-sup condition. It follows from the fact that (2.4) is
well-posed whenever the discrete spaces are chosen so that a Fortin operator [19] can
be constructed. Here are a few known examples of cases where a c1 independent of h
can be obtained for the Dirichlet problem under consideration:

1. Suppose the mesh Ωh is a quasiuniform tetrahedral geometrically conforming
mesh, Uh is the Lagrange finite element space of degree p, Qh = {q : q|γ is a
polynomial of degree at most p− 1 on each mesh facet γ}, and Yh = {v : v|K
is a polynomial of degree at most p + 2}. Then a Fortin operator provided
in [19] yields a c1 independent of h, as proved in [15].

2. When Ωh is a uniform mesh of rectangular elements, Uh = {w ∈ H1
0 (Ω) : w|K

is in the tensor product space of polynomials of degree at most p in each
coordinate direction, for all elements K ∈ Ωh}, Qh = {q : q|γ ∈ Pp(γ) on

5

each mesh facet γ}, and Yh = {v : v|K is a polynomial of degree at most
p + 3 in each coordinate direction}, a Fortin operator in [8] gives a mesh-
independent c1.

In the remainder of this paper, we examine an important implication of (2.6).
Namely, in order to precondition the large Hermitian positive definite DPG sys-
tem (2.5), it suffices to obtain a preconditioner for the ‖ · ‖X norm. In our model
problem, this norm is

‖x‖2X = ‖u‖2H1(Ω) + ‖q‖2Q.

for any x = (u, q) ∈ Uh ×Qh, so it suffices to combine preconditioners for the H1(Ω)
and Q norms. Since the former is standard, we focus on the latter in the next section.

3. Characterizing the Q-norm. The Q-norm (2.2) is defined through a min-
imization over an infinite dimensional space (the minimal extension E in (2.3) is
not computable). In this section, we relate this norm to a minimum over a finite
dimensional subspace.

3.1. Tetrahedral case. To present the idea transparently, we first detail the
case when Ωh is a geometrically conforming mesh of tetrahedral elements. For any
tetrahedron K, let Rp(K) = Pp(K)3 + xPp(K), where x is the coordinate vector
and Pp(K) denotes the set of all polynomials of total degree at most p ≥ 1. The
Raviart-Thomas finite element space is Rh = {r ∈ H(div,Ω) : r|K ∈ Rp(K) for all
K ∈ Ωh}. Let Qh = trcn(Rh). Clearly Qh is a finite dimensional subspace of Q.
Define Eh : Qh → Rh by trcn(Ehq) = q, and

(Ehq, v)H(div,K) = 0, ∀v ∈ Rp(K) ∩ H̊(div,K),

for all K ∈ Ωh. This computable approximation of the minimal extension operator
defines a new norm on Qh,

‖q‖Qh
= ‖Ehq‖H(div,Ω).

We now proceed to prove the equivalence of this norm with the Q-norm (in
Theorem 3.3 below). Throughout this section, let c denote a generic positive constant
whose value might change from one occurrence to another, but will remain independent
of h and p. Let K̂ denote the unit tetrahedron, n̂ denote its outward unit normal on
∂K̂, and σ̂n = σ̂ · n̂|∂K̂ . Let Qp(∂K̂) = {σ̂n : σ̂ ∈ Rp(K̂)}. For any σ̂ ∈ Rp(K̂) define
the constant function

σ̄n =
1

|∂K̂|

∫
∂K̂

σ̂n ds ,

where |∂K̂| denotes the surface area of ∂K̂.
Lemma 3.1. There is a c > 0 and a Ĝ : R → Rp(K̂) such that for any σ̂ in

H(div, K̂) with σ̂n ∈ Qp(∂K̂), we have n̂ · (Ĝσ̄n)|∂K̂ = σ̄n,

‖Ĝσ̄n‖L2(K̂) ≤ c‖σ̂‖H(div,K̂), and ‖div Ĝσ̄n‖L2(K̂) ≤ c‖ div σ̂‖K̂ .

6

Proof. We show that the following stronger inequality holds on the unit tetrahe-
dron:

‖Ĝσ̄n‖H(div,K̂) ≤ c‖ div σ̂‖K̂ .

Let x̂I denote the incenter of the unit tetrahedron K̂. Then (x̂− x̂I) ·n̂ = d is constant
for any x̂ ∈ ∂K̂ (d = 3|K̂|/|∂K̂| is the radius of the insphere). Define

Ĝσ̄n =
σ̄n
d

(x̂− x̂I).

Then, setting ĉ = ‖Ĝ1‖H(div,K̂)/|∂K̂| and c = ĉ|K̂| 12 , we have

‖Ĝσ̄n‖2H(div,K̂)
= ĉ2

∣∣∣∣∫
∂K̂

σ̂n ds

∣∣∣∣2 = ĉ2
∣∣∣∣∫
K̂

div σ̂ dx

∣∣∣∣2 ≤ c2‖ div σ̂‖2
K̂

(3.1)

and Ĝσ̄n = σ̄n(x̂− x̂I) · n̂/d = σ̄n, for all x̂ ∈ ∂K̂.
Lemma 3.2. There is a c > 0 and a Ê : Qp(∂K̂) → Rp(K̂) such that for any σ̂

in H(div, K̂) with σ̂n ∈ Qp(∂K̂), we have n̂ · (Ê σ̂n)|∂K̂ = σ̂n,

‖Ê(σ̂n − σ̄n)‖L2(K̂) ≤ c‖σ̂‖H(div,K̂), and div(Ê(σ̂n − σ̄n)) = 0.

Proof. We use the polynomial extension operator Ediv from [18, Theorem 7.1]:
Accordingly (a) if q̂ ∈ Qp(∂K̂), then Edivq̂ is in Rp(K̂), (b) if q̂ has zero mean, then

div(Edivq̂) = 0, and (c) if τ̂ is any extension of q̂ (i.e., τ̂ is a function in H(div, K̂)
satisfying n̂ · τ̂ |∂K̂ = q̂), then

‖Edivq̂‖H(div,K̂) ≤ c‖τ̂‖H(div,K̂).

Since σ̂ is an extension of σ̂n and Ĝσ̄n is an extension of σ̄n,

‖Ediv(σ̂n − σ̄n)‖H(div,K̂) ≤ ‖E
divσ̂n‖H(div,K̂) + ‖Edivσ̄n‖H(div,K̂)

≤ c
(
‖σ̂‖H(div,K̂) + ‖Ĝσ̄n‖H(div,K̂)

)
≤ c‖σ̂‖H(div,K̂).

Finally, since q̂ = σ̂n − σ̄n has zero mean, we have div(Ediv(σ̂n − σ̄n)) = 0.
Before the next result, recall that for any tetrahedral element K, there is an affine

homeomorphism Φ : K̂ → K. Let [DΦ] denote the Jacobian matrix of its derivatives
and let J = det[DΦ]. Define the Piola maps

Φ∗σ̂ = J−1[DΦK]σ̂ ◦ Φ−1, Φ∗σ = J [DΦK]−1σ ◦ Φ.

Clearly Φ∗ maps functions on K̂ to K, while Φ∗ maps in the opposite direction, from
K to K̂. Letting |K| denote the volume of the K and hK = diam(K), we recall the
following standard estimates [5] for affine Φ: There is a c > 0, depending only on
shape regularity of K, such that

‖Φ∗σ̂‖2L2(K) ≤ c
h2
K

|K|
‖σ̂‖2

L2(K̂)
, ‖div(Φ∗σ̂)‖2L2(K) ≤

c

|K|
‖divσ̂‖2

L2(K̂)
, (3.2a)

‖Φ∗σ‖2
L2(K̂)

≤ c |K|
h2
K

‖σ‖2L2(K), ‖div(Φ∗σ)‖2
L2(K̂)

≤ c |K| ‖divσ‖2L2(K), (3.2b)

7

for all σ̂ ∈ H(div, K̂) and σ ∈ H(div,K).
We are now in a position to put everything together and prove the main norm

equivalence result of this section.
Theorem 3.3. If Ωh is shape regular, then there is a c3 > 0 independent of h

and p (and depending only on the shape regularity) such that

‖q‖Q ≤ ‖q‖Qh
≤ c3‖q‖Q (3.3)

for all q ∈ Qh.
Proof. The lower inequality follows from

‖q‖Q = inf
τ∈trc−1

n {q}
‖τ‖H(div,Ω) ≤ inf

τh∈Rh∩trc−1
n {q}

‖τh‖H(div,Ω) = ‖q‖Qh
.

To prove the upper inequality, pick any K ∈ Ωh, set

σ = (Eq)|K , σ̂ = Φ∗σ, FKq = Φ∗F̂ σ̂n,

where E is the minimal extension in (2.3),

F̂ σ̂n = Ĝσ̄n + Ê(σ̂n − σ̄n),

and Ĝ and Ê are as given by Lemmas 3.1 and 3.2. Clearly, n · (FKq)|∂K = q and the
function Fq, defined by (Fq)|K = FKq for all K ∈ Ωh, is in H(div,Ω). Moreover the
estimates of Lemmas 3.1 and 3.2, together with (3.2), imply

‖Fq‖2L2(K) ≤ c
h2
K

|K|

(
‖Ĝσ̄n‖2L2(K̂)

+ ‖Ê(σ̂n − σ̄n)‖2
L2(K̂)

)
≤ c h

2
K

|K|
‖σ̂‖2

H(div,K̂)

= c
h2
K

|K|
‖Φ∗σ‖2

H(div,K̂)
≤ c

(
‖σ‖2L2(K) + h2

K‖divσ‖2L2(K)

)
,

‖divFq‖2L2(K) ≤
c

|K|
‖div(Ĝσ̄n)‖2

L2(K̂)
≤ c

|K|
‖divσ̂‖2

L2(K̂)
=

c

|K|
‖div(Φ∗σ)‖2

L2(K̂)

≤ c‖divσ‖2L2(K).

We have thus obtained, for any q ∈ Qh, an extension Fq ∈ Rh satisfying

‖Fq‖H(div,Ω) ≤ c‖σ‖H(div,Ω) = c‖Eq‖H(div,Ω) = c‖q‖Q.

Since ‖q‖Qh
is the infimum of ‖τh‖H(div,Ω) over all τh ∈ Rh satisfying trcn τh = q, the

inequality ‖q‖Qh
≤ ‖Fq‖H(div,Ω) holds and completes the proof.

3.2. General meshes. We now briefly remark on how the norm equivalence of
Theorem 3.3 may be extended to more general elements and meshes. While a general
theorem for all element shapes is beyond the scope of this paper, we wish to provide
pointers on what arguments need extension. The proof of Theorem 3.3 depends on
three ingredients: (a) Lemma 3.1, (b) Lemma 3.2, and (c) the scaling estimates (3.2).
Moving from tetrahedral to other element shapes, we must first obtain generalizations
of the extension operators of Lemmas 3.1 and 3.2 on the reference element K̂ for the
new shapes. We show how this can be done for two other element shapes, one in two
dimensions and another in three dimensions.

Triangles: The extension Ĝ constructed in the proof of Lemma 3.1 continues to
work for the unit triangle if we set x̂I to be the center of the inscribed circle of the

8

triangle. As for Lemma 3.2, if K̂ is a triangle, then the extension of [1, Corollary 2.2]
has all the properties stated in the lemma.

Cubes: To obtain the result of Lemma 3.1 when K̂ is the unit cube, we set
x̂I = (1/2, 1/2, 1/2) and Ĝσ̄n = 2(x̂− x̂I)σ̄n. Then proceeding as in (3.1), we obtain
the result. The extension operators constructed in [11] for each p provide the required
Ê in Lemma 3.2 when K̂ is a cube.

The scaling estimates (3.2) are valid for affine mappings Φ. We next comment on
meshes with curved elements, which are images of reference elements under a possibly
nonlinear Φ. If Φ is such that the estimates of (3.2) with a properly (re)defined hK and
|K| for curvilinear elements K hold, then the proof of Theorem 3.3 can be generalized.
Examples of nonlinear Φ where such geometrical quantities can be identified can be
found in [4, 5].

4. An algebraic Schur complement result. The purpose of this section,
which can be read independently of the rest of the paper, is to present a simple matrix
result, whose relevance to our problem will be clear in the next section. The result is a
generalization of [7, Lemma 4.2]. Suppose i∪f = {1, 2, . . . ,m} and j∪e = {1, 2, . . . , l}
are disjoint partitions of two index sets. Let D be an m×m symmetric positive definite
matrix and H be an m × l matrix (both with real entries). We use standard block
notations, e.g., xf denotes the restriction of a vector x to f -indices, and the matrices
have block forms

D =

[
Dii Dif
Dfi Dff

]
, H =

[
Hij Hie
Hfj Hfe

]
. (4.1)

Define S to be the Schur complement S = Dff − DfiD
−1
ii Dif . Let diag(D) denote the

diagonal matrix formed from the diagonal of D.
Lemma 4.1. Suppose there is a c4 > 0 such that every u ∈ Rm can be decomposed

as u = v + Hr, for some v ∈ Rm and r ∈ Rl, such that

(diag(D)v, v) + (DHr, Hr) ≤ c4(Du, u). (4.2)

Then for any u ∈ Rm there exist v ∈ Rm and r ∈ Rl (not necessarily the same as in
the assumption), depending only on uf , such that the decomposition uf = vf + [Hr]f
holds and satisfies

(diag(S)vf , vf) + (S[Hr]f , [Hr]f) ≤ c4(Suf , uf).

Proof. Let E be the matrix representation of the extension operator Eh

E =

[
−D−1

ii Dif
Iff

]
.

Since S = ET DE, from the well-known properties of Schur complements

(Sxf , xf) = (DExf , Exf) = inf
{y∈Rm: yf=xf}

(Dy, y) ≤ (Dx, x), ∀x ∈ Rm. (4.3)

Now, given any u ∈ Rm, let us set w = Euf and let v ∈ Rm, r ∈ Rl be such that
w = v + Hr (and in particular uf = wf = vf + [Hr]f) and

(diag(D)v, v) + (DHr, Hr) ≤ c4(Dw, w). (4.4)

9

By (4.3), with x = Hr

(S[Hr]f , [Hr]f) ≤ (DHr, Hr). (4.5)

Next, consider the k-th diagonal entry of S which can be expressed as Skk = (Sek, ek)
where ek is the vector with entries [ek]s = δks. Setting xT = [0T eTk] in (4.3), we get

Skk = (Sek, ek) ≤ (Dffek, ek) = [Dff]kk .

Since all diagonal entries of D are positive, we conclude that

(diag(S)vf , vf) ≤ (diag(Dff)vf , vf) ≤ (diag(D)v, v). (4.6)

Adding the estimates (4.5) and (4.6) and then using (4.4) we arrive at

(diag(S)vf , vf) + (S[Hr]f , [Hr]f) ≤ (diag(D)v, v) + (DHr, Hr) ≤ c4(Dw, w).

Noting that (Dw, w) = (DEuf , Euf) = (Suf , uf) completes the proof.
The statement of Lemma 4.1 can be easily extended to the case of more than one

matrix H: assume that we have a sequence of real matrices Hk with dimensions m× lk,
k = 1, . . . , n.

Corollary 4.2. Suppose there is c4 > 0 such that for all u ∈ Rm there exist
v ∈ Rm and rk ∈ Rlk , k = 1, . . . , n, such that

u = v +

n∑
k=1

Hkrk , and (diag(D)v, v) +

n∑
k=1

(DHkrk, Hkrk) ≤ c4(Du, u).

Then for any u ∈ Rm there exist v ∈ Rm and rk ∈ Rlk , k = 1, . . . , n (not necessarily
the same as in the assumption), depending only on uf , such that

uf = vf +

n∑
k=1

[Hkrk]f , and (diag(S)vf , vf) +

n∑
k=1

(S[Hkrk]f , [Hkrk]f) ≤ c4(Suf , uf).

5. Preconditioning the Qh-norm using an interface decomposition. In
Section 3, we reduced the problem of preconditioning ‖ · ‖2Q to that of preconditioning

‖·‖2Qh
. In this section we propose a scalable method for preconditioning the Qh-norm,

by further reducing the problem to that of preconditioning the Gram matrix of the
H(div,Ω) inner product. Such matrices can be efficiently handled by recent algebraic
multigrid techniques [24], resulting ultimately in a good preconditioner for the DPG
matrix A, as shown in the next section. We will also show that only computations
involving the interface degrees of freedom are needed to precondition the Qh-norm.

Let {rm} denote a finite element basis of Rh. Define D to be the Gram matrix of
the H(div,Ω) inner product in the {rm} basis. We partition the degrees of freedom
of {rm} into those associated with the interior of elements – denoted by i – and those
on the element interfaces – denoted by f – and block partition D as in (4.1). Recall
the notational conventions from Section 2 that allow us to move from functions q to
their vector representations q using appropriate basis expansions. As already noted
in (4.3), the Schur complement S = Dff − DfiD

−1
ii Dif satisfies

(Sq, q) = inf
{r∈Rh: rf=q}

(Dr, r) = ‖Ehq‖2H(div,Ω) = ‖q‖2Qh
, (5.1)

10

i.e., to precondition the Qh-norm we need to construct a good preconditioner for S.
The characterization of the Qh-norm in terms of an H(div)-norm suggests the

use of an H(div) preconditioner. Indeed, if T =
[
0fi Iff

]
denotes the restriction

operator such that Tr = rf for all r ∈ Rh, then it follows from

D−1 =

[
I −D−1

ii Dif
0 I

] [
D−1
ii 0
0 S−1

] [
I 0

−DfiD−1
ii I

]
that S−1 = [D−1]ff = TD−1TT . Thus, replacing D−1 by any spectrally equivalent
H(div,Ω)-preconditioner will give us a spectrally equivalent preconditioner for S. In
particular, we may use the Auxiliary-space Divergence Solver (ADS) of [24].

It is well known that ADS is a good preconditioner for many problems set in
the H(div,Ω)-conforming space Rh. However, we want to precondition the interface
operator S using only the interface degrees of freedom. The ADS preconditioner when
applied to Rh uses all degrees of freedom of Rh, and not merely the interface degrees
of freedom in Qh. This can become a significant addition to the cost as the order p
increases.

What can we expect when the algebraic ADS is directly applied to the interface
space Qh? To answer this, we examine below the stable decomposition underpinning
the theory of ADS and employ Corollary 4.2 to get an analogous stable decomposition
restricted to the interface. For simplicity, we now focus on the three-dimensional case.
(The two-dimensional case is similar once curl is properly defined.) Let Nh denote
the H(curl)-conforming Nedelec space of the first kind on the same mesh, which is in
correspondence with Rh in the standard finite element exact sequence.

ADS is based on a decomposition of an arbitrary H(div,Ω) function using an H1

component, the curl of an H(curl) component, and a component that is “small” in
the sense that it can be handled by simple smoothing. This decomposition leads to
an additive preconditioner for D in the form

BADS = R + Π BΠ ΠT + C BC CT (5.2)

where the ingredients are as follows:
1. R is a simple smoother for the global matrix D, for example, one symmetrized

Gauss-Seidel iteration.
2. Π is the matrix representation of the Raviart-Thomas interpolation operator

from Uh×Uh×Uh (or simply U3
h) to Rh obtained using a standard basis {ul}

of Uh and the basis {rm} of Rh.
3. C is the matrix representation of curl : Nh → Rh using a standard basis {nk}

of Nh and the basis {rm} of Rh.
4. BΠ is a standard algebraic H1 solver, for example BoomerAMG from [21, 2],

applied to the matrix ΠT DΠ.
5. BC is an algebraic Maxwell solver, such as the Auxiliary-space Maxwell Solver

(AMS) of [23] applied to CT DC.
Just as we partitioned the degrees of freedom of Rh into interior (i) and interface

(f) ones, we can partition the degrees of freedom of U3
h into its interior ĩ and its

interface (f̃) degrees of freedom. Similarly the degrees of freedom ofNh are partitioned

into sets ĭ (interior) and f̆ (interface). An important property of the matrices Π and
C is that when we decompose them into the interior and interface degrees of freedom,
their block form is

Π =

[
Πĩi Πif̃
0 Πff̃

]
, C =

[
Cĭi Cif̆
0 Cff̆

]
. (5.3)

11

The fact that Πfĩ and Cfĭ are zero blocks follows from the definition of the finite
element spaces Uh, Rh, Nh and their degrees of freedom, e.g., the Rh degrees of
freedom on a face for the curl of a function in Nh depend only on the Nh degrees of
freedom associated with that face.

The rationale behind the preconditioner construction in (5.2) comes from the
theory of auxiliary space preconditioners [22]. For example, it is possible to prove
[24, Section 5.2] under further simplifying assumptions that any u ∈ Rh can be
decomposed into

u = v + Πz + Cy (5.4a)

with z ∈ Uh × Uh × Uh, y ∈ Nh, and v ∈ Rh such that

(diag(D)v, v) + (DΠz, Πz) + (DCy, Cy) ≤ c5(Du, u) (5.4b)

where c5 > 0 is a constant independent of the size of the problem. This is enough
to conclude [27] that BADS is a good preconditioner for D−1 (and the “goodness” is
measured by c5 and the condition numbers of BΠΠT DΠ and BCCT DC). In practice, BADS

often serves as a good preconditioner for D−1 even when a rigorous proof of (5.4)
is difficult (such as for non-conforming irregular meshes and discontinuous material
coefficients). Loosely speaking, (5.4) means that u can be decomposed into well-
behaved components in the ranges of Π and C with a small remainder v.

When a purely algebraic implementation of ADS is applied to S, it results in the
preconditioner

Bf = Rf + Πff̃ B̃
ΠΠT
ff̃

+ Cff̆ B̆
CCT
ff̆

(5.5)

which uses only the interface degrees of freedom of all the spaces involved. Here Rf is a
simple point smoother, like the symmetrized Gauss-Seidel iteration, applied to S, B̃Π is
BoomerAMG solver applied to ΠT

ff̃
SΠff̃ , and B̆C is AMS applied to CT

ff̆
SCff̆ . Arguments

for the effectiveness of the interface preconditioners B̆C and B̃Π are presented in [7].
Our goal is to discuss the effectiveness of Bf . Just as (5.4) implies that B is a good
preconditioner for D, a stable interface decomposition is required for Bf to be a good
preconditioner for S. We will now show that the decomposition (5.4) implies a stable
interface decomposition.

Lemma 5.1. If (5.4) holds, then any q ∈ Qh can be decomposed as

q = vf + Πff̃zf + Cff̆yf

where v ∈ Rh, z ∈ U3
h and y ∈ Nh and their interface degrees of freedom satisfy

(diag(S)vf , vf) + (SΠff̃zf̃ , Πff̃zf̃) + (SCff̆yf̆ , Cff̆yf̆) ≤ c5(Sq, q).

In addition, if

κ
(
B̃Π ΠT

ff̃
SΠff̃

)
≤ cκ, κ

(
B̆C CT

ff̆
SCff̆

)
≤ cκ ,

then the condition number κ(BfS) depends only on c5 and cκ.
Proof. Apply Corollary 4.2 with H1 = Π, and H2 = C, and observe that [Πz]f =

Πff̃zf̃ and [Cy]f = Cff̆yf̆ due to (5.3).
Informally, the result of the lemma can be stated as follows: if ADS works for the

matrix D (a volumetric discretization of ‖ · ‖H(div,Ω)), it will also work for its Schur
complement S (an interfacial discretization of ‖ · ‖Qh

). Since we assume the former,
we can conclude that ADS will be an effective preconditioner for S.

12

6. Scalable preconditioner. We are now ready to put all the pieces together
and define a scalable preconditioner for the original DPG matrix A. Our basic premise
is that (i) the algebraic ADS is a good solver for the Gram matrix of the H(div,Ω)-
inner product in Rh, in the sense that (5.4) holds, and (ii) the algebraic solver
BoomerAMG [21], denoted by Bo, is a good preconditioner for the Gram matrix G

of the H1(Ω)-inner product on Uh, in the sense that the spectral condition number is
bounded independent of discretization size h and polynomial order p, that is,

κ(BoG) ≤ cκ. (6.1)

Combining this with the Bf defined in (5.5), we have the following result.
Theorem 6.1. Assume that (2.6), (3.3), (5.4) and (6.1) hold. Then the block-

diagonal matrix [
Bo

Bf

]
(6.2)

is a preconditioner for A and the condition number of the preconditioned system de-
pends only on c1, c2, c3, c5 and cκ.

Proof. From (2.6), for any x = (u, q) ∈ X, we have

c1(‖u‖2H1(Ω) + ‖q‖2Q) ≤ (Ax, x) ≤ c2(‖u‖2H1(Ω) + ‖q‖2Q).

Using (3.3),

c1‖u‖2H1(Ω) + c1c
−2
3 ‖q‖2Qh

≤ (Ax, x) ≤ c2‖u‖2H1(Ω) + c2‖q‖2Qh
(6.3)

Hence the result follows from Lemma 5.1 and (6.1).
In practice, the application of Bo and Bf requires the availability of the Gram

matrices G and D, which may be inconvenient. What we have in hand is A. Hence
instead of the preconditioner in (6.2), we may use the block preconditioner[

Po

Pf

]
where Po and Pf are the algebraic solvers BoomerAMG and ADS applied directly to
the principal minors of A corresponding to Uh and Qh, namely to A0 = BT0 M

−1B0 and
A1 = BT1 M

−1B1 respectively. The justification for this comes from the observation that
by taking q = 0 in (6.3), we can conclude that

c1‖u‖2H1(Ω) ≤ (A0u, u) ≤ c2‖u‖2H1(Ω),

i.e., A0 is spectrally equivalent to G. Similarly, by taking u = 0 in (6.3), we have

c1c
−2
3 ‖q‖2Qh

≤ (A1q, q) ≤ c2‖q‖2Qh
.

Thus instead of preconditioning the matrices G and S, whose quadratic forms give the
norms ‖ · ‖2H1(Ω) and ‖ · ‖2Qh

respectively, we can directly precondition their spectrally
equivalent principal minors A0 and A1. In our implementation it is in fact straight-
forward to construct the Gram matrix G, and we do so in order to build the AMG
preconditioner Bo, but we use the principal minor A1 to construct the ADS precondi-
tioner Pf , so that the preconditioner we use in the numerical results below takes the
form [

Bo

Pf

]
. (6.4)

13

Table 7.1
Number of CG iterations and average reduction factors per iteration (in parenthesis) for various

h and p refinement levels.

order (p)

elements 1 2 4 6 8

64 5 (0.06) 8 (0.14) 12 (0.30) 13 (0.34) 13 (0.34)
512 7 (0.12) 10 (0.23) 12 (0.31) 14 (0.36) —
4096 8 (0.18) 10 (0.25) 13 (0.33) — —
32768 10 (0.22) 10 (0.24) — — —
262144 10 (0.22) — — — —

7. Numerical results. In this section we report some numerical results with
the proposed DPG preconditioner that test its performance with respect to the mesh
size h, the polynomial order of the trial space p, as well as the orders of the test and
interfacial spaces. We also examine the parallel scalability of the new algorithm and
examine its behavior on more challenging problems with unstructured meshes and
large coefficient jumps.

We apply a Conjugate Gradients (CG) solver to the problem (2.5) preconditioned
with the preconditioner (6.4) where Bo and Pf use a single V-cycle of BoomerAMG
and ADS respectively. The CG relative tolerance we used was 10−6.

Our implementation is freely available in the MFEM finite element library [26]
and we used a slightly modified version of MFEM’s parallel Example 8 (version 3.2)
to perform the numerical experiments in this section. Specific ADS and BoomerAMG
parameters and additional details can be found in the source code of that example.

7.1. Scalability with respect to h, p for structured mesh. Here we solve
the test problem (2.1) on the domain Ω = (0, 1)3 with constant coefficient κ = 1
meshed with a uniform hexahedral grid. The right hand side f is set to the constant
one and zero Dirichlet boundary conditions are imposed on all of ∂Ω.

Table 7.1 reports results for experiments with varying mesh size h (reported as
number of finite elements) and polynomial orders p. The order p sets the polynomial
degree of Uh to p, the order of Qh to p−1, and the order of Yh to p+d−1 where d = 3
is the spatial dimension of Ω. As mentioned in Section 2, Assumption (2.6) holds in
this setting. The table reports iteration counts as well as the average reduction factors
in the PCG iteration. We observe that both of these convergence metrics are quite
stable with respect to h and p.

In Table 7.2, we explore the parallel scalability of this algorithm, doing a weak
scaling study where the number of elements per processor is kept almost constant as
we increase the number of processors. This particular experiment uses a trial space
order of p = 1 but a test space order of 2 rather than the theoretically necessary 3
(see the remarks in Section 7.2). The test was run on an IBM BlueGene/Q machine,
where we use four MPI tasks per node.

While the number of iterations in Table 7.2 exhibits some growth, the overall
performance is reasonably scalable, and we are continuing to work on improving the
per-iteration run time in our implementation.

7.2. Influence of the order of the test space. Currently known theoretical
results on the DPG method requires one to set the test space a few degrees higher than

14

Table 7.2
Weak scaling for the solver with polynomial order fixed at p = 1.

processors elements iterations conv. factor solve time time/iteration

4 2.62e+5 9 0.21 249.42s 27.7s
32 2.10e+6 11 0.26 473.84s 43.1s
256 1.68e+7 12 0.29 547.95s 45.7s
2048 1.34e+8 13 0.32 665.81s 51.2s
16384 1.07e+9 14 0.37 745.69s 53.3s

Table 7.3
Effect of test space order r on scalability with respect to h-refinement for a triangular mesh.

p = 4 p = 5

refine r = 4 r = 5 r = 5 r = 6

1 14 12 18 18
2 20 14 16 16
3 28 15 17 17
4 46 15 16 16
5 50 16 16 16
6 67 17 15 15

the trial space. Higher order test spaces can significantly add to the size of the discrete
system (2.5) and the overall computational cost. Our numerical results indicate that
test spaces of one degree lower than the theoretical requirement often continue to yield
a scalable method. We have observed this for triangles, quadrilaterals, tetrahedra, and
hexahedra. In Table 7.3, we present some representative results for the interesting
case of triangles in two dimensions, where the scalability depends on the parity of p.
For even p = 4, scalability requires a test space order one degree higher than for the
odd order p = 5. The dependence of the error convergence rate on the parity of p was
discussed in [6]. It is interesting to observe that our preconditioner also exhibits such
dependence.

7.3. Scalability with respect to h on unstructured meshes. Next we con-
sider problems with different meshes, including unstructured triangular, quadrilateral,
and tetrahedral meshes, using in particular the meshes shown in Figure 7.1 at various
levels of refinement. The problem is the same as in Section 7.1 except for the mesh.
We fix p = 1 and focus on the scalability with respect to h. The convergence results in
Table 7.4 demonstrate that the preconditioner continues to be scalable in these more
general settings.

7.4. Behavior of solver with respect to contrast in coefficient. In the
following numerical results the coefficient κ in (2.1) is piecewise constant, chosen
randomly on each element, so that it is 1 with probability 1/2 and κ0 with probability
1/2, where κ0 is a specified constant across the mesh. Here the Bo component in (6.4)
is constructed from an H1 matrix assembled from the bilinear form in (2.1) using the
varying coefficient κ, and Pf is constructed as usual using the principal minor of A,
which also includes the coefficient κ. In Table 7.5 we report the number of iterations
and average reduction factor for several refinement levels and choice of contrast κ0. As

15

Fig. 7.1. Three unstructured meshes, using triangles, tetrahedra, and quadrilaterals.

Table 7.4
Number of CG iterations and average reduction factors per iteration (in parenthesis) for several

unstructured meshes at various refinement levels.

refine triangles tetrahedra quadrilaterals

0 13 (0.34) 8 (0.17) 9 (0.21)
1 14 (0.37) 11 (0.27) 12 (0.31)
2 14 (0.36) 13 (0.35) 13 (0.32)
3 14 (0.35) 15 (0.39) 13 (0.33)
4 14 (0.36) 16 (0.42) 12 (0.31)
5 14 (0.37) 12 (0.30)
6 15 (0.38) 12 (0.30)
7 15 (0.38) 12 (0.29)
8 15 (0.39) 12 (0.30)

the underlying discretization we use here is not robust to contrast in coefficients, we
do not expect the solver to perform perfectly with respect to variation in coefficients.
Nonetheless, we see that the preconditioner performs acceptably for a wide range of
contrasts and we are able to solve the problem effectively.

8. Conclusions. In this paper we presented a scalable preconditioner for the
primal DPG formulation of the Poisson problem based on parallel algebraic multigrid
techniques. We proved that the preconditioner is optimal under certain assumptions
on the mesh and problem coefficients. We also demonstrated that the new algorithm
performs well on a wide variety of problems, including some where the theory is not
applicable. Due to its algebraic nature, the preconditioner is easy to apply in practice,
and has a freely available implementation in the MFEM library.

REFERENCES

[1] M. Ainsworth and L. Demkowicz, Explicit polynomial preserving trace liftings on a triangle,
Math. Nachr., 282 (2009), pp. 640–658. 8

[2] A. Baker, R. Falgout, T. Kolev, and U. Yang, Scaling hypre’s multigrid solvers to 100,000
cores, in High Performance Scientific Computing: Algorithms and Applications, Springer,
2012, pp. 261–279. LLNL-JRNL-479591. 10

[3] A. T. Barker, S. C. Brenner, E.-H. Park, and L.-Y. Sung, A one-level additive Schwarz pre-
conditioner for a discontinuous Petrov-Galerkin method, in Domain Decomposition Meth-
ods in Science and Engineering XXI, vol. 98 of Lecture Notes in Computational Science
and Engineering, 2014, pp. 417–425. 1

16

Table 7.5
Number of CG iterations and average reduction factors per iteration (in parenthesis) for various

values of the contrasts coefficient κ0.

contrast

elements 1e-06 1e-04 1e-02 1e+00 1e+02 1e+04

64 13 (0.29) 12 (0.31) 10 (0.24) 5 (0.06) 8 (0.15) 12 (0.24)
512 31 (0.64) 29 (0.61) 14 (0.36) 7 (0.10) 11 (0.27) 17 (0.44)
4096 64 (0.80) 49 (0.75) 15 (0.39) 8 (0.16) 13 (0.33) 33 (0.64)
32768 119 (0.89) 73 (0.83) 16 (0.41) 9 (0.20) 14 (0.36) 43 (0.72)

[4] C. Bernardi, Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal.,
26 (1989), pp. 1212–1240. 8

[5] D. Boffi, F. Brezzi, and M. Fortin, Mixed Finite Element Methods and Applications, vol. 44
of Springer Series in Computational Mathematics, Springer Berlin Heidelberg, 2013. doi:
10.1007/978-3-642-36519-5. 6, 8

[6] T. Bouma, J. Gopalakrishnan, and A. Harb, Convergence rates of the DPG method with
reduced test space degree, Computers and Mathematics with Applications, 68 (2014),
pp. 1550–1561. 4, 14

[7] T. A. Brunner and T. V. Kolev, Algebraic multigrid for linear systems obtained by explicit
element reduction, SIAM J. Sci. Comput., 33 (2011), pp. 2706–2731. 8, 11

[8] V. M. Calo, N. O. Collier, and A. H. Niemi, Analysis of the discontinuous Petrov-Galerkin
method with optimal test functions for the Reissner-Mindlin plate bending model, Com-
puters and Mathematics with Applications, 66 (2014), pp. 2570–2586. 5

[9] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan, Breaking spaces and forms for the
dpg method and applications including maxwell equations, Computers and Mathematics
with Applications, 72 (2016), pp. 494–522. 1, 3

[10] J. Chan, N. Heuer, T. Bui-Thanh, and L. Demkowicz, A robust DPG method for convection-
dominated diffusion problems II: adjoint boundary conditions and mesh-dependent test
norms, Comput. Math. Appl., 67 (2014), pp. 771–795. 1

[11] M. Costabel, M. Dauge, and L. Demkowicz, Polynomial extension operators for H1, H(curl)
and H(div)-spaces on a cube, Math. Comp., 77 (2008), pp. 1967–1999. 8

[12] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods.
Part I: The transport equation, Comp. Meth. Appl. Math. Engrg., 199 (2010), pp. 1558–
1572. 1, 4

[13] , A class of discontinuous Petrov–Galerkin methods. Part II: Optimal test functions,
Num. Meth. Part. Diff. Eq., 27 (2011), pp. 70–105. 1, 4

[14] , A class of discontinuous Petrov–Galerkin methods. Part IV: The optimal test norm
and time–harmonic wave propagation in 1D, J. Comp. Phys., 230 (2011), pp. 2406–2432.
1

[15] L. Demkowicz and J. Gopalakrishnan, A primal DPG method without a first-order refor-
mulation, Comp. Math. Applic., 66 (2013), pp. 1058–1064. 2, 3, 4

[16] L. Demkowicz and J. Gopalakrishnan, Discontinuous Petrov Galerkin (DPG) method, in
Encyclopedia of Computational Mechanics, Wiley Computational Mechanics Online, 2016
(to appear). 1

[17] L. Demkowicz, J. Gopalakrishnan, and A. H. Niemi, A class of discontinuous Petrov–
Galerkin methods. Part III: Adaptivity, Appl. Numer. Math., (2011), p. in press. 1

[18] L. Demkowicz, J. Gopalakrishnan, and J. Schöberl, Polynomial extension operators. Part
III., Math. Comp., 81 (2012), pp. 1289–1326. 6

[19] J. Gopalakrishnan and W. Qiu, An analysis of the practical DPG method, Mathematics of
Computation, 83 (2014), pp. 537–552. 4

[20] J. Gopalakrishnan and J. Schöberl, Degree and wavenumber [in]dependence of Schwarz
preconditioner for the DPG method, in Spectral and High Order Methods for Partial Dif-
ferential Equations (ICOSAHOM 2014), R. M. Kirby, M. Berzins, and J. S.Hesthaven,
eds., no. 106 in Lecture Notes in Computational Science and Engineering, Springer, 2015,
pp. 257–265. 1

[21] V. E. Henson and U. M. Yang, BoomerAMG: A parallel algebraic multigrid solver and pre-
conditioner, Appl. Numer. Math., 41 (2002), pp. 155–177. 10, 12

17

[22] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces,
SIAM J. Numer. Anal., 45 (2007), pp. 2483–2509 (electronic). 11

[23] T. V. Kolev and P. S. Vassilevski, Parallel auxiliary space AMG solver for H(curl) problems,
J. Comput. Math., 27 (2009), pp. 604–623. 10

[24] , Parallel auxiliary space AMG solver for H(div) problems, SIAM J. Sci. Comput., 34
(2012), pp. A3079–A3098. 9, 10, 11

[25] X. Li and X. Xu, Domain decomposition preconditioners for the discontinuous Petrov-Galerkin
method, ESAIM: Mathematical Modelling and Numerical Analysis, in press (2016). 1

[26] MFEM: Modular finite element methods. http://mfem.org. 13
[27] S. Nepomnyaschikh, Domain decomposition methods, in Lectures on advanced computational

methods in mechanics, vol. 1 of Radon Ser. Comput. Appl. Math., Walter de Gruyter,
Berlin, 2007, pp. 89–159. 11

[28] N. V. Roberts and J. Chan, A geometric multigrid preconditioning strategy for DPG system
matrices, ArXiV Preprint: 1608.02567, (2016). 1

[29] C. Wieners and B. Wohlmuth, Robust operator estimates and the application to substruc-
turing methods for first-order systems, ESAIM: Mathematical Modelling and Numerical
Analysis, 48 (2014), pp. 1473–1494. 1

	Portland State University
	PDXScholar
	12-2016

	A Scalable Preconditioner for a Primal DPG Method
	Andrew T. Barker
	Veselin A. Dobrev
	Jay Gopalakrishnan
	Tzanio Kolev
	Let us know how access to this document benefits you.
	Citation Details

	tmp.1498666647.pdf.ZLbdj

