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ABSTRACT

The self-organizingmaps (SOMs) approach is demonstrated as a way to identify a range of archetypal large-

scale meteorological patterns (LSMPs) over the northwestern United States and connect these patterns with

local-scale temperature and precipitation extremes. SOMs are used to construct a set of 12 characteristic

LSMPs (nodes) based on daily reanalysis circulation fields spanning the range of observed synoptic-scale

variability for the summer and winter seasons for the period 1979–2013. Composites of surface variables are

constructed for subsets of days assigned to each node to explore relationships between temperature, pre-

cipitation, and the node patterns. The SOMs approach also captures interannual variability in daily weather

regime frequency related to El Niño–Southern Oscillation. Temperature and precipitation extremes in high-

resolution gridded observations and in situ station data show robust relationships with particular nodes in

many cases, supporting the approach as a way to identify LSMPs associated with local extremes. Assigning

days from the extreme warm summer of 2015 and wet winter of 2016 to nodes illustrates how SOMs may be

used to assess future changes in extremes. These results point to the applicability of SOMs to climate model

evaluation and assessment of future projections of local-scale extremes without requiring simulations to re-

liably resolve extremes at high spatial scales.

1. Introduction

State-of-the-art climate models generally reproduce

observed features of the mean large-scale climate and

atmospheric circulation with reasonable fidelity, lending

confidence to the ability of models to project changes in

these features (Flato et al. 2013). Changes in mean cli-

mate at large scales under anthropogenic greenhouse

warming are typically projected with strong consensus

across current-generation climate models (IPCC 2013).

However, for many global and some regional climate

models, skill is more limited at capturing phenomena

occurring at higher temporal or spatial scales, such as

localized extremes, that may be influenced by small-

scale geographical, topographical, or meteorological

features not readily resolved at typical model resolu-

tions (Seneviratne et al. 2012; Arritt and Rummukainen

2011; Walton et al. 2015). Projecting future climate at

local scales with precision and confidence is therefore

challenging, with limitations imposed by the computa-

tional feasibility of long-term transient climate change

simulations at sufficiently high resolutions to resolve

local extremes. This challenge becomes greater in re-

gions of complex topography and spatially heteroge-

neous climate zones such as the northwestern United

States (NWUS).

Weather and climate extremes are often associated

with large-scale meteorological patterns (LSMPs) that

drive processes (e.g., horizontal and vertical advection)
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promoting the occurrence of extremes (Grotjahn et al.

2016, and references therein). LSMPs are synoptic-scale

patterns defined in terms of keymeteorological variables,

including those related to circulation such as sea level

pressure (SLP), or surface quantities like temperature.

Because climate models are capable of resolving these

features in many cases, LSMPs can be employed to

evaluate model fidelity in producing synoptic conditions

conducive to extremes, assess whether models capture

extremes for plausible physical reasons, and interpret

future changes in such conditions.

Composite analysis is one common way to define

LSMPs associated with extremes and to interpret the

physical mechanisms of extreme events at various scales

in observations and climate models. For example, Dole

et al. (2011) constructed composite LSMPs associated

with the 2010 Russian heat wave, andMeehl and Tebaldi

(2004) used composites in 500-hPa geopotential height

(Z500) to identify the meteorology associated with the

1995 U.S. and 2003 European heat waves in observations

andmodels. Grotjahn andLee (2016) identified two types

of LSMPs associated with heat waves over the Central

Valley of California and found that model skill at re-

producing these two patterns varied considerably across a

suite of 14 global climate models (GCMs). LSMPs have

also been linked to extreme precipitation events and used

as a basis for model evaluation (e.g., DeAngelis et al.

2013;Gutowski et al. 2010; Kawazoe andGutowski 2013).

LSMPs as defined from composites are useful for

characterizing extremes over relatively small or homo-

geneous regions. However, LSMPs associated with ex-

tremes at one location can differ considerably from

those for other locations, even nearby ones, especially

along coastlines or in regions of complex terrain. The

assessment of composite patterns over large domains

underscores the value of approaches that can extract

common features from gridpoint-derived information.

Loikith and Broccoli (2012) implemented one such ap-

proach by constructing ‘‘composites of composites’’ by

centering reanalysis-derived extreme composites

around a common origin. GCMs were also evaluated

using this methodology and showed reasonable fidelity,

especially in regions lacking complex topography

(Loikith and Broccoli 2015). In a suite of regional cli-

mate models, Loikith et al. (2015) found that models are

still challenged over areas of complex terrain despite the

relatively high 50-km spatial resolution. Employing

empirical orthogonal function (EOF) analysis as a way

to identify regions to construct LSMPs associated with

extreme heat, Lau and Nath (2012, 2014) identified

strong associations between extreme heat and anticy-

clonic circulation anomalies over North America and

Europe, respectively.

An alternative means to defining LSMPs (including

those associated with extremes) is through application of

self-organizing maps (SOMs; Sheridan and Lee 2011).

SOMs comprise a class of unsupervised neural networks

that organize input geospatial data (e.g., LSMPs) into a

user-defined number of outputs (nodes) obtained by iter-

atively adjusting the nodes to resemble the input data.

SOMs are capable of distilling a large amount of data for

LSMPs into an interpretable (small) set of nodes; in our

usage, each nodemay be viewed as a characteristic LSMP.

SOMs have been previously demonstrated as a useful tool

in synoptic meteorology and climatology for characteriz-

ing LSMPs and their associated impacts (e.g., Hewitson

and Crane 2002) with specific applications including de-

fining the continuum of SLP patterns over the entire

Northern Hemisphere (Johnson et al. 2008; Johnson and

Feldstein 2010), evaluating LSMPs in climate models

(Cassano et al. 2006; Loikith and Broccoli 2015), identi-

fying observed trends in dynamics linked to temperature

extremes (Horton et al. 2015), and assessing future climate

change behavior in model simulations (Radić et al. 2015).

In the case of daily data analyzed here, each day is

assigned to the node that is most similar (in a Euclidean

distance sense) to the LSMP for that day. This allows

for the association of characteristic LSMPs with

other climate variables or impacts (e.g., extremes in

temperature). In this way, SOMs have been used

to interpret LSMPs associated with precipitation

over South Africa (Lennard and Hegerl 2015) and

temperature extremes over Alaska (Cassano et al.

2015, 2016).

In addition to SOMs and composite analysis, LSMPs

can also be characterized using synoptic typing ap-

proaches, with clustering and EOF analysis as common

methodologies. For example, over the western United

States, Robertson and Ghil (1999) applied a probability

density function bump-hunting method and k-means

clustering to define a set of six synoptic regimes in 700-hPa

geopotential height and linked the regimes with temper-

ature and precipitation anomalies. Casola and Wallace

(2007) clustered 500-hPa geopotential height patterns into

four distinct regimes over the Pacific–North American

sector. Sobie and Weaver (2012) used synoptic typing

linked to precipitation patterns over Vancouver Island to

statistically downscale climate projections of precipitation

at local scales. The SOMs approach offers some advan-

tages over clustering in that it treats the data as a con-

tinuum, spanning the entire data space. The SOMs

approach also identifies an array of direct synoptic states

of the atmosphere and allows for detection of pattern

mixing, whereas EOF analysis yields orthogonal modes

based on variance (Reusch et al. 2005; Lennard and

Hegerl 2015). In contrast to LSMPs constructed from
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composites, LSMPs computed from SOMs are in-

dependent of an index, which as noted is often defined at a

particular location. Consequently, SOMs-derived LSMPs

associatedwith extremes can be identified across an entire

region with one set of maps. Furthermore, it is possible

that distinct synoptic setups could lead to similar out-

comes in terms of extreme events, which a simple com-

posite analysis may not capture.

In this paper, we employ SOMs to describe the range of

synoptic-scale circulation patterns over the NWUS in the

current climate and connect these patterns to tempera-

ture and precipitation extremes at local and/or regional

scales. This work is further intended as a starting point

toward using SOM-defined LSMPs, which are at scales

easily achievable by current modeling capabilities, as

proxies for extremes over the NWUS (in a probabi-

listic sense) for climate model analysis and evalua-

tion. The remainder of the paper is organized as

follows. Section 2 presents the data used. Section 3

describes the methodology including information on

the SOM approach. Results are presented in section 4

followed by a discussion in section 5 and conclusions

in section 6.

2. Data

SLP, Z500, and 250-hPa wind speed (V250) are from

the Modern-Era Retrospective Analysis for Research

and Applications (MERRA) reanalysis (Rienecker

et al. 2011). MERRA is a global reanalysis produced by

the U.S. National Aeronautics and Space Administra-

tion, provided at a 1/28 3 2/38 resolution every hour dating
back to 1979. Near-surface daily maximum and minimum

temperature (Tmax and Tmin), downward shortwave ra-

diation at the surface (DSRS), precipitation, and near-

surface wind speed and direction are provided by the

University of Idaho Gridmet dataset (Abatzoglou 2013).

Gridmet gridded daily surface meteorological data are a

hybrid observational dataset covering the contiguous

United States from 1979 to the present on a 4-km grid. In

situ station data are from the Global Historical Climatol-

ogyNetwork–Daily product (GHCND;Menne et al. 2012).

GHCND provides daily Tmax and Tmin, daily accumu-

lated precipitation, and other meteorological variables.

Anomalies were computed for Tmax and Tmin by re-

moving the daily mean climatology from the entire period

fromeach day.Anomalies forDSRSandprecipitationwere

FIG. 1. (left) Elevation and (middle)mean daily maximum temperature and (right) mean daily precipitation for (top)DJF and (bottom)

JJA for the NWUS region. Note the changes in color scale between DJF and JJA. (Blue dots on the elevation map are locations of local-

scale examples in Figs. 10 and 15.)
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computed as percentages of the daily mean climatology.

Analysis is performed over the 35-yr period 1979–2013.

3. Methodology

SOMs

SOMs have been demonstrated as useful and robust

analytical tools for studying synoptic-scale meteorology

in observations and climate models (Sheridan and Lee

2011; Hewitson and Crane 2002; Liu and Weisberg

2011). Several of the referenced studies include detailed

descriptions of SOMs along with practical consider-

ations for performing SOM analysis, so we only

provide a brief overview here as it relates to this analysis.

Many choices must be made in preparing the SOM,

perhaps the most fundamental of which is the number of

nodes. The choice of node number is often motivated by

balancing the interest in representing a reasonably

complete range of major patterns in the dataset (i.e., too

few nodes will yield patterns that are too general)

against considerations for interpreting the results (i.e.,

too many nodes can be cumbersome or impractical).

Previous studies have used a range of node numbers and

arrangements. For example, Lennard and Hegerl (2015)

use a 3 3 4 node SOM (12 nodes) with multiple mete-

orological fields as inputs. Cassano et al. (2015) argued

that a larger SOM over a smaller domain provides op-

timal interpretability over Alaska and Canada, and

Cassano et al. (2016) employed a relatively large 7 3 5

node SOM over Alaska. In this study, we use a rectan-

gular 43 3 node SOM.We qualitatively assessed results

obtained using both smaller and larger SOM arrays and

found that a 4 3 3 configuration captured the range of

synoptic-scale variability with sufficient detail to dis-

tinguish among different variants of the same regime

while being manageable for physical interpretation. The

12 nodes used here also contain preferred patterns for

the occurrence of extremes at multiple point locations

and across the domain. We use an initial neighborhood

radius of 3 and a final neighborhood radius of 1 with 100

initial iterations and 300 final iterations.

We provide a multivariate SOM input, similar to the

approach of Lennard and Hegerl (2015). SOM input

comprises daily fields of SLP, Z500, and V250 to capture

FIG. 2. Climatological mean of (left) Z500, (middle) SLP, and (right) V250 for (top) DJF and (bottom) JJA. The domain plotted is the

same as the input for the SOM.
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near-surface, midtropospheric, and upper-tropospheric

circulation, respectively. The multivariate SOM input

provides a more complete set of dynamical information

to the algorithm than a univariate input, and allows

systematic interpretation of the LSMPs across different

levels. The input domain is bounded on the north and

south by 608 and 358N, respectively, and on the east

and west by 1118 and 1428W, respectively. The NWUS

has strong seasonality in climate, so the SOM was

performed separately on winter months, defined as

December, January, and February (DJF; 90 days season21,

excluding 29 February in leap years), and summer

months, defined as June, July, and August (JJA; 92 days

season21). At each grid point all input values of SLP,

Z500, and V250 were first normalized by the temporal

standard deviation to reduce the potential dispropor-

tionate influence of one quantity. Next, all input data

were weighted by the square root of the cosine of lati-

tude to account for area differences across the grid

points. The normalized and area-weighted SLP, Z500,

and V250 data are then provided together as the input

data to the SOM such that the SOM is trained over the

three quantities simultaneously. In other words, the

node assignment for any given day is valid for and de-

termined collectively using all three input quantities.We

found that the SOMs obtained for total fields yielded

more readily interpretable results than those for de-

seasonalized anomalies.

A Monte Carlo approach is used to determine whether

the percentage of extreme events concurrent with each

SOM node is statistically significant. The procedure is

performed as follows: entire seasons of temperature and

node assignments are sampled at random separately to

construct a shuffled pair of time series. Then, the per-

centage of extreme days concurrent with each node is

computed. This process is repeated 1000 times on each grid

point. Observed percentages that are greater than the 95th

percentile of the synthetic probability distribution are

considered statistically significant.

4. Results

The NWUS is characterized by complex topography,

spatial climate heterogeneity, and a distinct seasonal

cycle. Figure 1 shows surface elevation and climatolog-

ical means in temperature and precipitation from

Gridmet. The moderating influences of the Pacific

Ocean keep the coastal regions relatively mild during

winter and summer (Fig. 1, middle). On average, inland

areas are the coldest regions in winter and the warmest

temperatures in summer are to the south, in the Co-

lumbia River basin, and in the Snake River valley. The

higher terrain of the Rocky Mountains and Cascades is

FIG. 3. DJF SOM patterns of (a) SLP (hPa), (b) Z500 (m), and

(c) V250 (m s21) for each of the 12 nodes indicated above each

panel. (bottom) The percentage of days assigned to each node out

of a total of 3150 days is shown in the table.
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cooler and wetter than surrounding valleys in both sea-

sons. Winter experiences much greater precipitation

than summer throughout most of the domain with the

highest DJF precipitation amounts falling along the

coastal mountains and Cascades, which create a rain

shadow to their east.

Figure 2 shows the climatological means in the SOM

input fields (Z500, SLP, and V250) over the SOM input

region. Winter climatology is characterized by an off-

shore surface low, a strong 250-hPa jet weakening from

west to east, and a subtle ridge axis along the coast at

500 hPa. In JJA, high pressure dominates offshore,

with a Z500 trough axis along and just west of the coast,

and a relatively weak 250-hPa jet overhead.

a. DJF

1) SOM RESULTS AND MEAN CLIMATE

ASSOCIATIONS

Figure 3 shows the SOM node patterns for DJF. The

12 maps for each variable show the composite mean for

days assigned to the node, numbered as shown above

each panel and referred to as node 1 (N1), node 2 (N2),

etc. The percentage of days (out of 3150) assigned to

each node is shown at the bottom, with each cell in the

chart corresponding to a node. N1 shows a surface low

pressure centered to the northwest of the NWUS with a

Z500 trough axis offshore and the main axis of the

250-hPa jet zonally oriented over central California. N12

(bottom right of SOM) is nearly opposite with a surface

high pressure, an offshore Z500 ridge, and a 250-hPa jet

arching to the north and east of the region. Patterns

generally transition from N1 to N12 moving diagonally

across the SOM. N10, which shares commonalities with

the climatological mean in Fig. 2, and N7 have the

highest frequency of pattern assignments with 11% and

10% of days, respectively, while N1 and N2 have the

fewest with 6.7% and 6.8% days, respectively.

Figures 4, 5, and 6 show composites of Tmin anomalies,

precipitation anomalies, and the most frequent 10-m

wind direction quadrant for days assigned to each node.

For DJF, only Tmin is presented, as extreme cold daily

low temperatures are arguably associated with the ma-

jority of winter temperature impacts; Tmax composites

FIG. 4. Composites of DJF daily minimum temperature anomalies (K) for days assigned to each SOM node. Node

numbers are indicated above each panel and correspond to the node numbering convention in Fig. 3.
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were also computed and shared many commonalities

with Tmin. Wind direction is presented because of the

important influence near-surface advection has on tem-

perature; wind speed composites were also constructed

but were less informative. Additionally, composites of

surface insolation were constructed; however, the rela-

tively short winter days and low sun angle diminish the

role of insolation in the occurrence of temperature ex-

tremes compared with the warm season (although

nighttime cooling via longwave emission may be impor-

tant in some cases).

Nodes in the upper left of the SOM (N1, N2, N5, and

N6) tend to have positive Tmin anomalies throughout

the NWUS. N1 and N5 also exhibit the highest domain

wide positive precipitation anomalies. Patterns for N1

and N5 show an SLP gradient favorable for warm south

or southwesterly flow near the surface, which is sup-

ported by the predominant southerly wind component

evident in Fig. 6. Combined with the offshore Z500

trough and strong 250-hPa jet, these nodes resemble

those conducive to landfalling atmospheric rivers (ARs)

(Dacre et al. 2015; Ryoo et al. 2015). N2, while generally

associated with warm conditions, exhibits negative pre-

cipitation anomalies across most of the domain except

along the southern tier. N6 is drier than average across

the south and east and wetter than average over the

northwest. The positive and negative precipitation

anomalies align closely with the position of the 250-hPa

jet as well as the centers of the Z500 ridge–trough pat-

tern. Nodes on the right side of the SOM (N3, N4, N8,

and N12) tend to be associated with negative tempera-

ture anomalies, with N8 standing out as having the most

widespread and largest amplitude anomalies. The

LSMPs for these nodes vary, although all four have

relatively high SLP. N8 exhibits a strong surface high to

the north, promoting easterly winds, as suggested by

Fig. 6, and advection of cold inland air masses toward

the coast. N8 and N12 also tend to be associated with

very little precipitation across the NWUS (Fig. 5),

while N3 and N4 have dry north–wet south anomaly

patterns consistent with the southern location of the

250-hPa jet.

FIG. 5. Composites of daily DJF precipitation anomalies for each node. Anomalies are computed as a fraction of

the climatological mean so a value of 1 indicates no deviation of the climatological mean. Node numbers are

indicated above each panel and correspond to the node numbering convention used in Fig. 3.
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N7 shows generally cool anomalies in lower elevations

and basins corresponding to conditions favorable for

strong radiational cooling under a surface high and

upper-level ridge. The opposite is true for N9 and N10

where valleys and basins tend be warmer than average

while mountains are colder, suggestive of anomalously

negative lapse rates. N9 has positive precipitation

anomalies, while N10 shows positive precipitation

anomalies in the northwest and northeast portions of the

domain and a band of negative anomalies aligning with

the Cascades rain shadow, a pattern indicative of oro-

graphic precipitation. N11 is anomalously warm except

for the southeast where ideal conditions for radiational

cooling under the Z500 ridge and surface high may

contribute to below-average minimum temperatures.

This is consistent with the negative precipitation

anomalies, which suggest the presence of dry air and

clear skies. It is interesting to note for nodes that show a

SLP gradient oriented from east to west (N1, N2, N3,

N6, and N7), a common occurrence in winter in the re-

gion, the corresponding panels in Fig. 6 depict the re-

sulting relatively small-scale easterly winds through and

west of the Columbia River Gorge (indicated on maps

with black circle), highlighting the benefit to connecting

the synoptic-scale LSMPs with high-resolution obser-

vations like Gridmet.

2) NODE FREQUENCIES BY YEAR

The yearly frequency of occurrence for each node is

shown in Fig. 7. El Niño–Southern Oscillation (ENSO)

plays an important role in interannual climate variability

across the region (Ropelewski andHalpert 1986). To see

if the SOMs approach captures climate variability re-

lated to ENSO, warm phase years are shown in red and

cold phase years in blue, defined as years when the

oceanic Niño index was greater than 1.0 or less

than 21.0, respectively. The bar second from the right,

labeled ‘‘Clim’’ is the frequency of node occurrence for

the entire 35-yr period.

There is a tendency for warm ENSO years to have

higher frequencies of N1, N2, and to some extent N5

and lower frequencies of N4, N8, N9, N11, and N12. In

Fig. 3, N1 and N2 are associated with an amplified jet to

the south, while N5 shows a strong jet axis oriented

FIG. 6. The mode of wind direction for days assigned to each node. The wind direction for each day is rounded to

the nearest cardinal direction [north (N), south (S), east (E), or west (W)] before the mode is computed. The black

circle indicates the area around the Columbia River Gorge.
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over the Pacific Northwest. N1 and N5 are associated

with heavy rainfall, especially toward the south (Figs. 5

and 8), and all three are associated with anomalously

warm temperatures. These patterns and their impacts

are broadly consistent with that expected from a warm

ENSO. The rightmost bar shows the node assignments

for DJF 2016, a strong warm ENSO year. Note that

DJF 2016 days were not provided as input to the SOM;

node assignments were determined by finding the node

with the minimum root-mean-square distance (RMSD)

for each day. The strong warm phase event of 2016 was

not associated with the high frequencies of N1, N2, and

N5; however, it did have low frequencies of N8–N12.

DJF 2016 also deviated from the canonical warm

ENSO climate impacts for the region, withWashington

and western Oregon receiving the most anomalously

high precipitation amounts while the entire region ex-

perienced anomalous warmth (not shown). This

matches expectations from the relatively high fre-

quency of N6 in 2016 and low frequency of cold nodes

like N8 and N12.

For cold phase ENSO years there is a tendency to-

ward higher frequencies of N9 and N10 and lower fre-

quencies of N1, N2, N3, and N4. N9 and N10 are

associated with generally weak temperature anomalies

and positive precipitation anomalies. There is a general

lack of anomalously warm node occurrence for cold

ENSO years, and these results are also consistent

with expectations from known cold phase ENSO

teleconnections. The SOMs approach does appear to

robustly capture tendencies toward certain LSMPs

during warm and cold ENSO years. However, there is

considerable variability in climate and corresponding

node frequencies from one ENSO year to another.

3) EXTREMES

Figures 8 and 9 present the percentage of extremes in

Tmin and precipitation occurring on days assigned to

each node, respectively. Extremes are defined as the

coldest (heaviest) 5% of the daily Tmin anomaly (pre-

cipitation) distribution. Note that if all extreme Tmin

events for a given grid cell were associated with a single

node, the value at that grid cell (within the node of oc-

currence) would be 100%. Only grid cells deemed sta-

tistically significant at the 5% confidence level according

to a Monte Carlo simulation are shaded. Following the

composites of Tmin anomalies, N8 has widespread oc-

currences of extreme cold across the domain with simi-

lar features in N4. Together, N8 and N4 account for the

majority of extreme cold nights across most of the do-

main. Other than N3, N4, N8, and N12, no other nodes

have statistically significant associations with extreme

cold (with the exceptions of a small area in northern

Nevada in N10). N3, N4, and N8 are all associated with

the most amplified upper-level troughs and relatively

high SLP in Fig. 3, consistent with expectations of syn-

optic meteorology associated with extreme cold. N12

shows highly amplified ridges for Z500 and 250-hPa

geopotential height (Z250) in Fig. 3, suggesting extreme

cold in the southern portion of the domain occurs as a

result of strong radiational cooling under clear skies and

calm winds provided by the ridge.

FIG. 7. Stacked bar chart depicting the fraction of days in a DJF season that are assigned to each SOMnode. Each

bar represents a different year (designated by the year of January; i.e., 1980 representsDJF 1979/80), and each color

corresponds to a different node. The bar labeled Clim is the total node assignment fractions for the entire period.

The bar at the far right is for DJF 2015/16.
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In Fig. 9, the majority of extreme precipitation days

occur with N1 over the northern California–Nevada

border and over portions of southeastern Idaho. This

corresponds to the pattern suggesting landfalling ARs

over northern California. N5 also has a high prevalence

of extremes across most of the domain, with the SOM

LSMP suggesting synoptic conditions associated with

AR landfall to the north of those assigned to N1. The

location and strength of the 250-hPa jet correspond

closely with extreme precipitation, indicating that the

SOM appropriately captures key features of the storm

track. For example, only northern regions have strong

associations with extremes in N10, as this part of the

domain is collocated with the axis of the 250-hPa jet in

Fig. 3. N7, N8, N11, and N12 are not associated with

extreme precipitation throughout the domain. This fol-

lows the dry anomaly composites in Fig. 5 and a general

lack of predominant onshore flow in Fig. 6.

4) LOCAL-SCALE ANALYSIS

Ongoing and anticipated climate change is driving

demand for local-scale climate information. Some cities

are taking action toward adaptation to and mitigation

of impacts. For example, Portland, Oregon, has de-

veloped a climate action plan (Anderson et al. 2015) to

outline and implement strategies to develop resilience

to climate change, reduce the carbon footprint of the

city, and promote equitable and sustainable solutions to

planning, housing, and food. Reducing uncertainty in

the magnitude and character of future changes in ex-

tremes at the local scale would better inform such

efforts; however, current dynamical modeling capabil-

ities are challenged at such tasks, especially in regions

of complex topography such as the NWUS. Further

emphasizing a local-scale approach, research has shown

that, because of the underlying temperature distribu-

tion, some places are more likely to experience larger

changes in extremes than others (Ruff and Neelin 2012;

Loikith and Neelin 2015). Here we demonstrate that

LSMPs defined using the SOM approach can inform on

the drivingmechanisms behind climate at the local scale.

Five cities covering a range of climate zones are chosen

for analysis, with their locations shown in Fig. 1 (left).

Only a subset is presented for brevity.

Figure 10 shows scatterplots for precipitation in

Portland, Oregon, and Seattle, Washington, and Tmax

FIG. 8. Percent of extreme cold days occurring during each node in eachDJF SOMnode.Only grid cells determined

to be statistically significant at the 5% confidence level according to a Monte Carlo simulation are shaded.
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and Tmin for Portland and Boise, Idaho. The x axis is

daily accumulated precipitation for precipitation and

temperature anomaly for Tmax and Tmin with the y axis

indicating the node assignment for each day. The winter

of 2015/16 was record wet in Portland and Seattle and

anomalously warm across the NWUS. While not in-

cluded in the SOM input, the LSMPs for each day in

DJF 2015/16 were assigned to the node with the smallest

RMSD. This single season is then included in Fig. 10

(green symbols) to explore the efficacy of using node

patterns based on historical data to inform on future

local-scale temperature and precipitation extremes.

Further interpretation of the anomalous 2015/16 winter

is provided in the discussion in section 5.

Portland and Seattle both show strong precipitation

associations with node assignment. N1, N5, N6, N9, and

N10 are most frequently associated with the heaviest

precipitation days in Portland and Seattle with N11 also

being associated with extreme precipitation for Seattle.

N5 and N6 stand out as having the strongest extreme

precipitation associations, both of which are the char-

acteristic AR patterns in the SOM (Fig. 3). N9 and N10,

while dominated by surface high pressure, have SLP

gradients conducive to strong onshore flow and a strong

250-hPa jet promoting heavy precipitation at both cities.

A ridge inhibits precipitation in Portland but is sup-

pressed southward enough to allow heavy precipitation

in Seattle in N11. N2, N7, N8, and N12 are not strongly

associated with heavy precipitation at both cities. Days

assigned to these nodes tend to be associated with dry

winds from the continent and/or upper-level ridging.

For temperature at Portland, N3, N4, and N8 stand out

as having themost extreme cold for Tmin andN5,N6,N7,

and N11 show the strongest association with extreme

warmth. Here, extreme warmth can occur as a result of

warm air advection from the south and west (N5 and N6)

but also from winds with an easterly trajectory, which

tend to be dry, thus inhibiting clouds, and can experience

downslope adiabatic warming (N11 and N12). For Boise,

extreme cold can occur with many synoptic regimes;

however, N3, N4, and N8 stand out as having the most

extreme cold. This is likely due to the ability of temper-

atures to drop to extreme levels under ideal radiational

cooling conditions, which can occur under multiple syn-

optic conditions that allow for clear skies and calmwinds.

N1, N2, N5, and N6 have the strongest associations with

extreme warmth, all associated with large-scale SLP

gradient-induced warm air advection from the south. The

FIG. 9. As in Fig. 8, but for extreme heavy precipitation days.
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larger deviations from the mean for cold Tmin anomalies

compared with warm anomalies indicate a negatively

skewed temperature distribution for Boise (skewness

of 20.9).

b. JJA

1) SOM RESULTS AND MEAN CLIMATE

ASSOCIATIONS

Figure 11 shows the SOM node patterns for JJA. The

main variation between nodes in SLP is the strength and

position of the offshore high pressure. The surface high

is strongest in the upper part of the SOM, becoming

weaker toward the bottom and to the left where N9 has

an offshore low. While node-to-node variations in sur-

face features are mostly subtle, there is a broader range

of Z500 and Z250 ridges and troughs. The left (right)

side of the SOM tends to be associated with synoptic-

scale troughs (ridges). N9 has a deep Z500 trough axis

offshore with a closed low west of British Columbia

and a strong 250-hPa jet, together with the SLP low in-

dicative of a midlatitude cyclone. N11 and N2 are the

most common with 12% and 11% of days, respectively,

and N9 is the least common with 5.4% of days. The

relatively uncommon occurrence of days assigned to N9,

which resembles stormy conditions and differs consid-

erably from the climatological means in Fig. 2, corre-

sponds to the relatively low rate of midlatitude cyclone

passages during summer.

Composites of Tmax and insolation anomalies con-

current with days assigned to each node are shown in

Fig. 12. Tmax is presented for JJA, as compared with

Tmin or DJF, because summer temperature impacts are

more associated with extreme heat than cold, the peaks

of which are captured by the daytime high. Insolation is

provided because of the strong relationship between

solar heating and temperature; however, inland areas

climatologically receive few clouds in JJA, resulting in

small insolation anomalies there for any given node. In

general, nodes toward the bottom and right are warmer

than nodes to the top left. SOM corners are nearly op-

posites with temperature patterns transitioning di-

agonally in between. N8 is the warmest pattern

domainwide and is associated with strong Z500 and

Z250 ridges. This pattern resembles that associated with

heat waves over the Pacific Northwest (Bumbaco et al.

2013; Brewer et al. 2012; Brewer and Mass 2016), which

result primarily from clear skies and subsidence under

the Z500 ridge and an inland extension of the offshore

high resulting in offshore surface winds. The SLP

FIG. 10. Scatterplots of daily precipitation amount plotted according to the node that day was assigned to for

(a) Portland, Oregon, and (b) Seattle, Washington. For precipitation, blue dots indicate days above the 90th

percentile of the daily precipitation frequency distribution, with the first vertical blue line from left indicating the

90th, the second the 95th, and the third the 99th percentiles. Dot size increases proportionally to threshold ex-

ceedance. Scatterplots for temperature are plotted for (c) Portland, Oregon, and (d) Boise, Idaho. Tmin is plotted

with squares and Tmax with diamonds. Blue symbols indicate extreme cold Tmin days and red diamonds extreme

warm Tmax days. The innermost blue (red) vertical lines indicate the 10th (90th) percentiles followed by the 5th

(95th) and 1st (99th) percentiles moving outward. Symbol size increases proportional to anomaly magnitude. Days

from DJF 2015/16 are plotted with a green asterisk.
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feature is less obvious in the SOM results compared with

the upper levels. Figure 13 shows positive insolation

anomalies for N8 indicating maximized solar heating.

A key feature associated with heat waves across the

NWUS is the thermal trough. This mesoscale feature is

usually oriented from south to north, most often along

the coast or on the windward side of the Cascades, with

inland occurrences also common (Brewer et al. 2012).

This feature is not apparent in the SLP field of N8 or any

node associated with anomalous warmth in Fig. 11a. The

absence of this key feature likely results from two pri-

mary reasons. First, the occurrence of thermal troughs is

relatively rare in any given portion of the domain, so the

compositing used to create Fig. 11may average out these

mesoscale features. Second, Brewer et al. (2012) found

that thermal troughs evolve throughout the day so the

daily averages used to construct the SOM may not re-

solve thermal troughs robustly. However, the large-scale

Z500 ridge and subtle eastward extension of the SLP

high, particularly in N4 and N8, are consistent with

previous findings (e.g., Brewer et al. 2012; Bumbaco

et al. 2013; Brewer andMass 2016) supporting the SOMs

approach as robust in capturing key synoptic features

associated with anomalous heat in the region.

N1, N2, and N5 are associated with anomalously cool

conditions domain wide. All three nodes show Z500 and

Z250 troughs. Figure 13 shows negative insolation

anomalies indicating increased cloud cover is a driver of

the cool anomalies. N9 shows cool (warm) anomalies in

the western (eastern) half of the domain. This is the

node most associated with stormy conditions with on-

shore winds (not shown) and strong negative insolation

anomalies advecting cool marine air and diminishing

solar heating. N3 has a cold north–warm south pattern

broadly consistent with the placement of the 250-hPa jet

position with cooler (warmer) air to the north (south) of

the jet axis. N12 shows anomalous warmth toward the

west, associated with a SLP gradient perpendicular to

the coast promoting winds with a northerly trajectory

that inhibit cool onshore flow and marine clouds from

penetrating inland, as well as a Z500 ridge.

2) EXTREMES

Figure 14 shows the frequency of extreme warm

Tmax days for each node. Several nodes are associated

with significant occurrences of extreme warmth. N7,

N8, and N10 have the largest areas covered by signifi-

cant association percentages; however, N12 shows high

percentages along western Washington and Oregon,

consistent with the composite patterns in Fig. 12. N8

accounts for the majority of remaining extreme warm

days along the coast; however, N8 also has high fre-

quencies of inland heat under a broad amplified upper-

level ridge. N10 shows a preference for extreme heat

inland corresponding to a Z500 trough axis offshore

and a ridge axis along the eastern margins. Extreme

heat is absent along the coast for nodes with upper-

level troughs (N1, N2, N5, and N6) and inland when

FIG. 11. As in Fig. 3, but for JJA.
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Z500 and Z250 flow is zonal (N3, N4, and N12). It is

important to note that other factors that are not cap-

tured by the SOMs are also important for extreme heat,

such as anomalously low soil moisture anomalies (e.g.,

Berg et al. 2014; Loikith and Broccoli 2014; Seneviratne

et al. 2010; Vautard et al. 2007; Fischer et al. 2007).

Because precipitation extremes are generally rare and

smaller in magnitude in JJA compared with DJF, do-

mainwide node associations are not presented or dis-

cussed in detail here.

3) LOCAL-SCALE ANALYSIS

Figure 15 shows example station-scale scatterplots for

JJA in the same format as Fig. 10. As noted above,

precipitation is generally very light in the NWUS during

the summer; however, precipitation for Spokane and

Seattle is presented to demonstrate how the SOMs ap-

proach can be both successful and limited at capturing

precipitation extremes in the warm season. Similar to

Fig. 10 forDJF 2015/16, green symbols in Fig. 15 indicate

JJA 2015 days, a season associated with multiple warm

temperature records across the NWUS. Further discus-

sion on summer 2015 is provided in section 5.

Spokane (Fig. 15a), a climatologically dry city with

summer average precipitation of 68mm, shows a weak

relationship between precipitation and node assign-

ment. Synoptic meteorology may not be a key driver

of precipitation here highlighting a limitation of the

SOMs application. Additionally, precipitation is rare

and generally light during the summer at Spokane

with the 99th percentile of daily precipitation around

12mm. Because a modest amount of precipitation

can qualify as extreme, such events may arise out of

subtle mesoscale variations in weather possible un-

der multiple synoptic regimes. Seattle, conversely,

exhibits relationships between node assignment and

precipitation. In particular, N9 is associated with

extreme summer precipitation, as are N6 and N5. The

relationship with N9 and N6 is consistent with results

in Fig. 15 and the midlatitude cyclone pattern in

Fig. 11.

For Portland temperature, the strongest association

between node assignment and extreme warm Tmax is

with N4, N8, and N12. However, these nodes are also

associated with anomalous cold Tmax (not colored,

and Tmax extreme cold thresholds not indicated). In

FIG. 12. Composites of JJA daily maximum temperature anomalies (K) for each SOM node. Node numbers are

indicated above each panel and correspond to the node numbering convention used in Fig. 11.
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these cases, the broad synoptic-scale pattern may re-

semble one typically associated with anomalously

warm conditions, but smaller-scale features potentially

relating to inland penetration of marine influence and

cloud cover could cause local-scale cool anomalies. For

Tmin, extreme cold can occur with multiple nodes;

however, N1, N2, and N3 stand out as having relatively

strong relationships with extreme cold. A relative lack

of source region for extremely cold air (in an anoma-

lous sense) results in apparent larger deviations from

the mean on the warm side of the distribution than the

cold side.

Coastal Astoria is characterized by a highly asym-

metrical temperature distribution with relatively small

anomalies qualifying as extreme cold Tmin and large

anomalies for Tmax extremes. This highlights another

limitation to the SOMs approach as applied in this pa-

per, as no nodes stand out as particularly favorable for

extreme temperatures, likely because temperature is

highly influenced by the adjacent Pacific Ocean and

subtle changes in wind direction can have major impacts

on temperature locally.

5. Discussion

In this study, we demonstrate the efficacy of SOMs

as a way of compactly visualizing and describing

synoptic-scale weather and climate variability across

the NWUS and as a basis for connecting large-scale

meteorological mechanisms with local-scale extremes.

This methodology has potential for application in

interpreting extreme behavior in climate change pro-

jections because it relies on information from spatial

scales that can readily be resolved by climatemodels, in

contrast to the more localized scales of extremes, which

may not be resolved. Furthermore, by linking LSMPs

with other high-impact events not well resolved or

captured directly by climate models, such as lightning

outbreaks, this methodology could be extended to a

wide range of climate impacts. This approach may also

facilitate interpretation and contextualization of the

dynamics associated with very high-end extreme events

(e.g., Singh et al. 2014).

The SOMs approach offers many advantages over

composite analysis for characterizing LSMPs, as outlined

FIG. 13. Composites of JJA anomalies in daily downward shortwave radiation at the surface for each SOM node,

computed as fraction of the climatological mean such that a value of 1 indicates no deviation from the climatological

mean. Node numbers are indicated above each panel and correspond to the node numbering convention in Fig. 11.
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in the introduction. Specific to climate model analysis,

by using the SOMs approach, models are only required to

reproduce and track changes in the node patterns and their

frequencies. In contrast, composite analysis requires

computing a separate composite for each location and for

each type of extreme. This can result in a large number of

LSMPs in need of interpretation, inhibiting systematic

model evaluation and future simulation assessment.

Under future global warming, changes in extremes

could result from, on the one hand, systematic changes

in LSMPs, including their frequency and structure, or,

on the other hand, from an overall warming of climate.

In other words, change could be manifested as change

in the shape of the probability density function

(pdf), a shift in the pdf, or more generally a combi-

nation of the two. The unusually extreme hot summer

of 2015 and the warm, wet winter of 2015/16 may be

viewed as consistent with expected future mean cli-

mate conditions over the NWUS (Mote and Salathé
2010). While we do not claim that these anomalous

seasons are the result of climate change, we consider

them as case studies to illustrate how we may relate

future extreme occurrence to LSMPs by posing the

following question: To what extent were these seasons

characterized by unusual frequencies of LSMPs associ-

ated with extremes? Here we outline the use of SOMs in

answering this question as a preliminary step for the study

of future climate change in subsequent research.

To determine how the daily LSMPs from the two

case seasons project onto the SOMs space, we com-

puted the RMSD between the SLP, Z500, and V250

from each day and each node. Days were then assigned

to the node with the lowest RMSD. The multiple ex-

treme precipitation events (including the greatest daily

precipitation total on record at Portland) that con-

tributed to the record wet winter at Portland and

Seattle are apparent in Figs. 10a and 10b, respectively.

For both cities, these extreme precipitation days were as-

signed to nodes demonstrated by the SOMs approach to

be associated with heavy precipitation over the 1979–2013

period. The frequent assignment of days to anomalously

wet nodes is apparent on the rightmost bar of Fig. 7 with

N1, N5, N6, N8, and N9 making up 47 out of the 90 days.

Winter 2015/16 was also anomalously warm across the

NWUS, and node assignments reflect this for Portland and

Boise in Fig. 10.

Summer 2015 exhibited record warmth across the

NWUSwith notable occurrences of extreme temperatures

FIG. 14. As in Fig. 8, but for JJA Tmax extreme warm days.

2844 JOURNAL OF CL IMATE VOLUME 30



across the region. The high frequency of days with Tmax

exceeding the 90th percentile is apparent in Figs. 15c,d in

Portland and Astoria. N2, N3, N8, N10, and N12 all had

over 10 days assigned to them, and all are associated with

relatively high occurrences of extreme warmth at Portland

(Astoria has weaker node–temperature associations).

Nodes not associated with warm temperature extremes

over the western NWUS in Fig. 14 had few days assigned

to them in summer 2015, including only one day assigned

toN1 andN9. This suggests the recordwarmthof JJA2015

had a large contribution from high frequencies of LSMPs

that, over the historic period examined, are associatedwith

anomalous or extremewarmth. Interestingly,many days in

summer 2015 that were not extreme were also above the

long-term average for both Portland and Astoria. The

predominance of green symbols to the right of the zero line

is notable for both cities as is the very low frequency of

substantial negative Tmin anomalies. This is suggestive of

an overall warmer climate during this season. Apart from

secular anthropogenic warming, anomalously warm sea

surface temperatures over the adjacent Pacific Oceanmay

have contributed to this behavior.

6. Summary and conclusions

We have applied SOMs as a tool to characterize both

the winter and summer synoptic climatologies over the

NWUS using daily reanalysis data and to provide a

basis for physical interpretation of associated regional-

and local-scale extremes in temperature and precipitation.

Three variables are provided as input to a 4 3 3 node

SOM, SLP, Z500, and V250, chosen to capture circulation

near the surface and in the mid- and upper troposphere,

respectively. The resultant outputs (nodes) of the SOM

capture the range of synoptic regimes in thewinter (Fig. 3),

spanning patterns characteristic of deep midlatitude cy-

clones and atmospheric rivers to strong cold inland surface

high pressure systems. During summer (Fig. 11), the in-

ternode variability is subtler, largely capturing variations in

the persistent offshore surface high and upper-level ridges

and troughs.

Composites of key surface meteorological vari-

ables are constructed for days assigned to each SOM

node (Figs. 4–6, 12, and 13). The composites indicate

consistent spatial relationships between the SOM

circulation patterns and surface meteorology in-

cluding temperature, precipitation, and insolation.

The distribution of extremes in temperature and

precipitation across the nodes is generally consistent

with physical expectations based on the LSMP

characteristics reflected in the node patterns and the

composites (Figs. 7 and 8 for DJF and Fig. 14 for JJA).

The SOMs approach is also demonstrated as capable of

identifying patterns associated with anomalous and ex-

treme temperature and precipitation days at the local or

city scale with some exceptions (Figs. 10 and 15). To-

gether, this suggests that the SOMs approach as applied

here has potential for studying changes in extremes in

climate models.

Some limitations to the SOMs approach are evident.

While the associations between nodes and extremes are

generally robust, for some regions and some extremes

FIG. 15. As in Fig. 10, but for JJA and for precipitation in (a) Spokane, Washington, and (b) Seattle, Washington,

and temperature in (c) Portland, Oregon, and (d) Astoria, Oregon. Green symbols are days in JJA 2015.
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there is not a clear node association. It is possible that a

larger SOM array could constrain extreme days to more

representative nodes in some cases; however, increas-

ing the number of nodes comes at the expense of split-

ting the characteristic LSMPs into smaller subgroups,

restricting concise interpretation of synoptic regimes in

relation to local-scale extremes. In other cases, synoptic

circulation may not be the most important mechanism

for extremes. For example, inland regions during winter

often have low frequencies of extreme cold occurrences

over multiple nodes, suggesting such extremes occur

across multiple synoptic regimes (e.g., as a result of

nighttime clear-sky radiative cooling). Along the coast

in JJA, subtle variations in local circulation that inhibit

marine influences over land can result in extreme

warmth, and such variability is not well captured at the

scales analyzed here. It is also possible that different

combinations of quantities other than those provided as

input to the SOM may improve the efficacy of the ap-

proach in some cases.

Our interest in demonstrating the efficacy of using

SOMs to describe the LSMPs associated with extremes

in temperature and precipitation across the NWUS is

motivated by the desire to better understand future

changes in extremes at scales not readily resolvable by

most climate models. By connecting extremes at var-

ious scales to the driving LSMPs, it is possible to

evaluate the ability of climate models to simulate

conditions conducive to such extremes even if the

models cannot directly resolve relevant impact scales.

This is a topic of ongoing and future research. Fur-

thermore, the LSMPs defined from SOMs provide a

basis for assessing future changes in dynamical

mechanisms that provide favorable conditions for

extremes. Last, this methodology could be extended

to other high-impact phenomena such as wildfire,

lightning outbreaks, or drought.
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