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EXECUTIVE SUMMARY 

This Final Report documents a research effort to develop improved safety performance functions 
(SPFs) for signalized intersections in the State of Oregon.  In particular, this research effort 
focused on the relationship between the physical characteristics of the signalized intersection, the 
crash history at each location, and the approach speed (represented by speed limit). In additional 
to developing SPFs for signalized intersection crash prediction for total crashes and severe injury 
crashes, the research also included an estimation procedure for minor road annual average daily 
traffic (AADT) values. The research team also re-assessed and ultimately developed a reliable 
procedure as to how to define an intersection-related crash.   

Chapter 1 introduces the project and reviews the specific objectives of this research effort. 
Chapter 2 of this report includes a literature review summarizing the many known factors that 
influence crashes at signalized intersections as well as current estimation procedures for crashes 
and AADT values. Chapter 3 then presents an overview of the site selection and final sites 
selected for the SPF development and validation activities. Chapter 4 reviews the method 
developed for estimating minor road traffic volumes, and Chapter 5 similarly presents the 
analysis method and findings for defining intersection-related crashes and then developing SPFs 
for total and severe injury crashes. The report concludes with Chapter 6 (summary of findings), 
Chapter 7 (references), and Appendices A - D. 

 
  



viii 



ix 

TABLE OF CONTENTS 

1.0  EACH CHAPTER HEADING USES STYLE HEADING 1 ........................................ 1 

2.0  LITERATURE REVIEW ................................................................................................ 3 

2.1  CALIBRATION OF HSM MODELS ......................................................................................... 3 
2.2  DEPENDENT VARIABLES ................................................................................................... 4 

2.2.1  Spatial Level of Aggregation ................................................................................................................. 4 
2.2.2  Crash Type ............................................................................................................................................. 5 

2.2.2.1  Angle Crashes ................................................................................................................................................... 5 
2.2.2.2  Left-Turning Crashes ........................................................................................................................................ 6 
2.2.2.3  Rear-End ........................................................................................................................................................... 6 
2.2.2.4  Crash Severity ................................................................................................................................................... 6 

2.3  INFLUENCING FACTORS .................................................................................................... 7 
2.3.1  Traffic Characteristics ........................................................................................................................... 7 

2.3.1.1  Volume .............................................................................................................................................................. 8 
2.3.1.2  Vehicle Type ..................................................................................................................................................... 8 
2.3.1.3  Functional Classification ................................................................................................................................... 8 

2.3.2  Traffic Control and Operational Features ............................................................................................. 8 
2.3.2.1  Speed Limit ....................................................................................................................................................... 9 
2.3.2.2  Lighting ........................................................................................................................................................... 10 
2.3.2.3  Signal Head Visibility ..................................................................................................................................... 11 
2.3.2.4  Presence of Advanced Warning Signs ............................................................................................................. 11 
2.3.2.5  Traffic Signal Phasing ..................................................................................................................................... 11 

2.3.3  Geometric Characteristics ................................................................................................................... 12 
2.3.3.1  Approach Lane ................................................................................................................................................ 12 
2.3.3.2  Distance / Spatial............................................................................................................................................. 13 
2.3.3.3  Land Use ......................................................................................................................................................... 13 

2.3.4  Other .................................................................................................................................................... 14 
2.3.4.1  Driver Characteristics ...................................................................................................................................... 14 
2.3.4.2  Environmental ................................................................................................................................................. 14 

2.4  MODELING TECHNIQUES ................................................................................................. 15 
2.4.1  Negative Binomial ............................................................................................................................... 15 
2.4.2  Probit ................................................................................................................................................... 15 
2.4.3  Generalized Additive Model ................................................................................................................ 15 
2.4.4  Generalized Estimating Equations ...................................................................................................... 16 
2.4.5  Logit ..................................................................................................................................................... 16 
2.4.6  Multilevel ............................................................................................................................................. 16 

2.5  ESTIMATING MINOR VOLUMES ........................................................................................ 17 
2.5.1  Travel Demand Modeling .................................................................................................................... 17 
2.5.2  Geospatial Methods ............................................................................................................................. 17 
2.5.3  Regression Methods ............................................................................................................................. 17 

2.5.3.1  Ordinary Least Squares ................................................................................................................................... 17 
2.5.3.2  Geographically Weighted Regression ............................................................................................................. 18 

2.6  SUMMARY OF LITERATURE FINDINGS ............................................................................. 18 

3.0  DATA AND DATA COLLECTION ............................................................................. 21 

3.1  SITE IDENTIFICATION AND SELECTION ............................................................................ 21 
3.1.1  Identifying Candidate Intersections ..................................................................................................... 21 
3.1.2  Study Sample ........................................................................................................................................ 23 
3.1.3  Study Sample for Model Validation ..................................................................................................... 26 

3.2  DATA COLLECTION FOR SPF DEVELOPMENT ................................................................... 28 
3.2.1  Candidate Roadway Variables ............................................................................................................ 29 
3.2.2  Crash Data .......................................................................................................................................... 32 



x 

3.3  DATA COLLECTION FOR MINOR ROAD AADT ESTIMATION ............................................. 33 

4.0  ESTIMATING MINOR VOLUMES ............................................................................ 35 

4.1  DATA .............................................................................................................................. 35 
4.1.1  Average Annual Daily Traffic .............................................................................................................. 35 
4.1.2  Functional Class .................................................................................................................................. 36 
4.1.3  Land Use and Demographic ................................................................................................................ 36 
4.1.4  Network ................................................................................................................................................ 36 

4.2  MODELING APPROACH .................................................................................................... 37 
4.3  RESULTS ......................................................................................................................... 39 

4.3.1  Descriptive Statistics............................................................................................................................ 39 
4.3.2  Models to Estimate Total Minor Entering Volume (AADT) ................................................................. 41 
4.3.3  Models to Estimate Minor Volume by Leg ........................................................................................... 44 

4.4  REVIEW OF AADT MODEL VALIDATION ........................................................................... 47 
4.5  SUMMARY ...................................................................................................................... 48 

4.5.1  Sample Application .............................................................................................................................. 49 

5.0  SAFETY ANALYSIS FOR SIGNALIZED INTERSECTIONS ................................ 51 

5.1  MATCHING CRASHES AND INTERSECTIONS...................................................................... 51 
5.1.1  Investigating a Threshold for Distance from Intersection for Crash Classification in Oregon ........... 51 

5.2  METHODOLOGY .............................................................................................................. 52 
5.2.1  Manual Classification of Intersection Crashes .................................................................................... 53 
5.2.2  Manual Classification of Intersection Related Crashes ....................................................................... 54 
5.2.3  Statistical Analysis on Distance, Speed Limit and Max IFA for Intersection Crash Classification .... 56 

5.2.3.1  Developing Screening Rules based on Statistical Models ............................................................................... 57 
5.2.4  Evaluation of Crash Screening Methods using the Validation Subset ................................................. 58 

5.2.4.1  Measures of Effectiveness ............................................................................................................................... 58 
5.2.4.2  Classic Crash Screening Method Validation Analysis .................................................................................... 59 
5.2.4.3  Leave-One-Out Cross Validation Analysis ..................................................................................................... 60 

5.2.5  Summary of Evaluation of IR Screening Methods ............................................................................... 62 
5.3  SPF DEVELOPMENT ......................................................................................................... 63 

5.3.1  Statistical Methodology for Initial Model Development ...................................................................... 63 
5.3.1.1  Implications of Selected Statistical Methodology for Crash Prediction .......................................................... 64 
5.3.1.2  Dataset Characteristics .................................................................................................................................... 65 

5.3.2  Initial SPF for Total Crashes ............................................................................................................... 68 
5.3.3  Initial SPF for KAB Crashes ............................................................................................................... 73 

5.4  INITIAL PROBABILITY-BASED SEVERITY MODEL ............................................................. 78 
5.5  SPF VALIDATION OVERVIEW ........................................................................................... 81 

5.5.1  Temporal Transferability ..................................................................................................................... 82 
5.5.2  Spatial Transferability ......................................................................................................................... 82 
5.5.3  Spatial Temporal Transferability ......................................................................................................... 83 

5.6  DEVELOPING ENHANCED SPF MODELS ............................................................................ 83 
5.6.1  Characteristics of Assembled Dataset for Model Updates .................................................................. 83 
5.6.2  Enhanced SPF for Total Crashes ........................................................................................................ 84 

5.6.2.1  Fit Assessment ................................................................................................................................................ 85 
5.6.3  Enhanced Probability-Based Severity Model ...................................................................................... 87 

5.7  EXAMPLE PROBLEMS APPLYING SPFS .............................................................................. 88 
5.7.1  Example Use of Total Crash Model ..................................................................................................... 88 
5.7.2  Example Use of the Crash Severity Model ........................................................................................... 89 

5.8  SUMMARY OF WORK ....................................................................................................... 90 

6.0  CONCLUSIONS AND RECOMMENDATIONS ........................................................ 93 

7.0  REFERENCES ................................................................................................................ 97 



xi 

APPENDICES 
 APPENDIX A:  SUPPLEMENTAL TABLES AND EXAMPLE DATA COLLECTION 
 APPENDIX B:  AADT CONVERSION METHODOLOGY 
 APPENDIX C:  AADT MODEL VALIDATION 
 APPENDIX D:  PREDICTIVE METHOD VALIDATION 
 APPENDIX E:  INTERSECTION SITE INFORMATION (SEPARATE DOCUMENT 
 APPENDIX F:  VALIDATION SITE INFORMATION (SEPARATE DOCUMENT) 
 

LIST OF TABLES 

Table 3.1: Preliminary Random Sample of Intersections ............................................................................................ 22 
Table 3.2: Region 1 Random Sample of Sites ............................................................................................................. 24 
Table 3.3: Region 2 Random Sample of Sites ............................................................................................................. 25 
Table 3.4: Region 3 Random Sample of Sites ............................................................................................................. 25 
Table 3.5: Region 4 Random Sample of Sites ............................................................................................................. 26 
Table 3.6: Region 5 Random Sample of Sites ............................................................................................................. 26 
Table 3.7: Region 1 Validation Sites ........................................................................................................................... 27 
Table 3.8: Region 2 Validation of Sites ....................................................................................................................... 27 
Table 3.9: Region 3 Validation Sites ........................................................................................................................... 28 
Table 3.10: Region 4 Validation Sites ......................................................................................................................... 28 
Table 3.11: Region 5 Validation Sites ......................................................................................................................... 28 
Table 3.12: Site Data and Corresponding Collection Method ..................................................................................... 29 
Table 3.13: Location and Geometric Configuration for Intersection #1 ...................................................................... 31 
Table 3.14: Lane Geometry – Intersection #1 ............................................................................................................. 32 
Table 4.1: Types of Intersection Approaches Minor Volume Models ......................................................................... 40 
Table 4.2: Descriptive Statistics for Minor Volume Models ....................................................................................... 40 
Table 4.3: Summary of Categorical Variables for Minor Volume Models ................................................................. 41 
Table 4.4: Model Outputs for Total Minor Entering Volume, Two-way Major and Minor Roads (with Parallel 

Facility) .............................................................................................................................................................. 42 
Table 4.5: Model Outputs Total Minor Entering Volume, Two-way Major and Minor Roads (without Parallel 

Facility) .............................................................................................................................................................. 43 
Table 4.6: Model Outputs for Minor Volume Estimation Model By Leg (with Parallel Facility AADT) .................. 45 
Table 4.7: Model Outputs for Minor Volume Estimation Model By Leg (without Parallel Facility AADT) ............. 46 
Table 5.1: Predictors included in Probability Models Developed ............................................................................... 57 
Table 5.2: Performance of Screening Methods on Validation Data ............................................................................ 59 
Table 5.3: Performance of Screening Methods using LOOCV ................................................................................... 61 
Table 5.4: Yearly Statistics for Complete Intersection-year Data. Years 2010-2012 .................................................. 66 
Table 5.5: Analysis of Deviance for Full and Reduced Models .................................................................................. 69 
Table 5.6: Coefficient Estimates for Reduced Model .................................................................................................. 69 
Table 5.7: Analysis of Deviance for Full and Reduced Models .................................................................................. 74 
Table 5.8: AIC, BIC, LogLikelihood and Deviance Comparisons for Mod3 and Mod4 ............................................. 75 
Table 5.9: Coefficient Estimates for Recommended KAB SPF .................................................................................. 75 
Table 5.10: Analysis of Deviance for Parsimonious and Extended Models ................................................................ 78 
Table 5.11: Coefficient Estimates for Initial Probability-Based Severity Model ........................................................ 79 
Table 5.12: Yearly Statistics for Complete 2010-2013 Dataset for Updating the Models ........................................... 84 
Table 5.13: Updated Coefficient Estimates for Total Crashes SPF ............................................................................. 84 
Table 5.14: Coefficient Estimates for Reduced Model ................................................................................................ 87 
Table 5.15: Table of Road Characteristics for an Example Intersection ..................................................................... 88 
Table 6.1: Equations to Estimate the Minor Road Volume ......................................................................................... 94 
Table 6.2: Enhanced SPFs to Estimate Crashes at Signalized Intersections in Oregon ............................................... 95 



xii 

 

LIST OF FIGURES 

Figure 3.1: Stratified Random Sample (50 Intersections) ............................................................................................ 23 
Figure 3.2: Validation Stratified Random Sample (35 Intersections) .......................................................................... 27 
Figure 3.3: Data Collection Form Photos .................................................................................................................... 30 
Figure 4.1: Example Parallel Facility AADT .............................................................................................................. 36 
Figure 4.2: Sample Images Showing GIS Network Information ................................................................................. 37 
Figure 4.3: Adjusted AADT for Use in the Volume by Leg Models ........................................................................... 39 
Figure 4.4: Diagnostic Plots for Total Minor Entering Volume (with Parallel Facility AADT) ................................. 44 
Figure 4.5: Diagnostic Plots for Total Minor Entering Volume (without Parallel Facility AADT) ............................ 44 
Figure 4.6: Summary Diagnostic Plots for Minor Volume Estimate by Leg (with Parallel Facility AADT) .............. 47 
Figure 4.7: Summary Diagnostic Plots for Minor Volume Estimate by Leg (without Parallel Facility AADT) ......... 47 
Figure 5.1: Sample Sites with Buffers at Various Radii .............................................................................................. 52 
Figure 5.2: Sample Sites of various IFA Radii ............................................................................................................ 53 
Figure 5.3: Sample Site at Low Speed Limit Urban Area ........................................................................................... 54 
Figure 5.4: Probability curves from DS mod (left) and SL mod (right) ...................................................................... 57 
Figure 5.5: Performance Comparison of Screening Methods ...................................................................................... 62 
Figure 5.6: Correlations Among Variables in Complete Dataset ................................................................................ 67 
Figure 5.7: Scatter Plot of ln(KAB Crashes) and Critical Variables in the Complete Dataset .................................... 68 
Figure 5.8: Q-Q Plot of Intersection Random Effect ................................................................................................... 70 
Figure 5.9: Marginal Distribution Fit of Model Parameters Specific to Modeling Data ............................................. 71 
Figure 5.10: Marginal Distribution Fit of Model Parameters Projected to the Population .......................................... 71 
Figure 5.11: Marginal Distribution of Data and the Two Fits of Proposed SPF .......................................................... 72 
Figure 5.12: CURE Plots for Major and Minor AADTs .............................................................................................. 73 
Figure 5.13: Q-Q Plot of Intersection Random Effect in KAB Model ........................................................................ 76 
Figure 5.14: Marginal Distribution Fit of KAB SPF to Data and Population Projection ............................................ 77 
Figure 5.15: CURE Plots for Major SpLim and ModAADT ....................................................................................... 77 
Figure 5.16: KAB Proportion of Crashes vs. Severity Model Prediction by Minor AADT ........................................ 80 
Figure 5.17: Severity Model Prediction vs Major AADT ........................................................................................... 81 
Figure 5.18: Original and Updated SPFs for Minor AADT of 7,000 vpd ................................................................... 85 
Figure 5.19: Q-Q Plot of Intersection Random Effect in Updated Model ................................................................... 86 
Figure 5.20: Theoretical and Observed Marginal Distributions of Sites by Total Crash Frequencies for Period 2010-

2013 ................................................................................................................................................................... 86 
Figure 5.21: CURE Plots for Updated Total Crashes SPF .......................................................................................... 87 
Figure 5.22: Original and Updated Severity Models for Minor Speed Limit of 30 mph ............................................. 88 

 



 

1 

1.0 EACH CHAPTER HEADING USES STYLE HEADING 1 

The effective identification, prioritization, and application of safety treatments will each require 
an understanding of the complex interaction between the elements of roadway design, 
infrastructure, and traffic. This is particularly true in an environment of limited funding, since 
large scale improvements will be increasingly difficult to implement and lower cost targeted 
solutions will be more common. Techniques available in the American Association of Highway 
and Transportation Officials (AASHTO) Highway Safety Manual (HSM) are helping the Oregon 
Department of Transportation (ODOT) staff complete the analysis needed to identify solutions 
suitable to address the causes of crashes. Due to the high percentage of crashes occurring at 
signalized intersections, considerable attention is required for the effective selection of 
improvement strategies that will result in the greatest reduction in crashes for dollars invested at 
these critical locations. ODOT has been researching the data needs and implementing the HSM 
within current procedures when possible but has identified limitations that affect the reliability of 
the results when the study site is a signalized intersection.  

The HSM includes Safety Performance Functions (SPFs) to assess options for improving the 
safety of intersections. These are statistically-derived equations that use traffic volumes and 
other factors to predict crash reductions for various types of improvements. Since the SPFs do 
not allow for certain features such as turn lanes and lane widths, Crash Modification Factors 
(CMFs) can then be used to adjust the results of the equations to address these factors. Currently 
the available safety assessment SPF tools do not explicitly include consideration of approach 
speeds, yet it is widely accepted that speed affects both the frequency and the severity of crashes. 
The initial predictive models upon which the HSM procedure is based focused on rural two-lane 
highways and the approach speed at those intersections was not deemed to be significant. This 
foundation work then was used to define the SPF format for future models for the first edition of 
the HSM, so speed was excluded as a critical input variable in subsequent studies where SPFs 
were developed for other types of facilities.  

The question of including speed in the SPF process is frequently raised by the engineering 
community. The research effort summarized in this Final Report focuses on determining the 
safety impact of different speed limits at signalized intersections in Oregon. 

The research includes three key efforts: 

 Estimating minor road traffic volumes at signalized intersections (see Chapter 4), 

 Determining if a crash should be identified as intersection-related (see Chapter 5), 
and 

 Developing updated SPFs for Oregon signalized intersections (also included in 
Chapter 5). 



 

2 

The overall objective of this research effort, therefore, is to develop more reliable ways to assess 
signalized intersection safety in Oregon so that ODOT and other agencies can allocate funding 
resources towards effective intersection safety configurations for both new and existing facilities. 
This Final Report summarizes the models developed for this purpose. Chapter 2.0 of this report 
presents a brief literature review. Chapter 3.0 next addresses the site selection and data collection 
sampling effort. Chapter 4.0 reviews the minor road AADT estimation analysis. Chapter 5.0 then 
presents the intersection-related crash evaluation followed by the SPF development. Chapter 6.0 
then summarized the findings. Finally, cited references are summarized in Chapter 7.0. The 
report appendices (Chapters 8.0 through 13.0) include a list of abbreviations used in this report, 
the key for the data collection form, a review of AADT conversion methodology, an overview of 
the AADT model validation, a similar overview of the SPF validation, the detailed site 
information for the 50 study sites identified for initial SPF development, and the detailed site 
information for the 35 study sites used for model validation activities.
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2.0 LITERATURE REVIEW 

A variety of methods have been used to estimate crash frequency at signalized intersections.  
Most notably, the HSM (AASHTO 2010) provides SPFs derived from negative binomial 
regression that, once calibrated for local conditions, can be used in any jurisdiction.  The first 
edition of the HSM included four types of signalized intersection SPFs:  

 Rural Two-Lane Four-Legged Signalized Intersections (R4SG2),  

 Rural Multi-Lane Highway Signalized Intersections (R4SG4), 

 Urban/Suburban Arterial Three-Legged Signalized Intersections (U3SG), and 

 Urban/Suburban Arterial Four-Legged Signalized Intersections (U4SG).  

Each of the HSM signalized intersection SPFs is associated with a set of defined base conditions. 
Any features that differ from these established base conditions must be considered explicitly 
through the application of multiplicative CMFs. The R4SG2 models have base conditions that 
assume no lighting, skew of zero degrees, and no left and right turn lanes that are not stop-
controlled.  The U3SG and U4SG intersections have base conditions that assume no left-turn 
lane, no right-turn lane, permissive left turn phase, right turn permitted on red, and no lighting.   
The R4SG4 does not have specified base conditions. The HSM base condition SPFs are based on 
data from multiple states and for similar intersections.   

The purpose of this literature review is to identify the key decision and predictor variables for 
generation of jurisdiction specific SPFs for ODOT. A prior report (SPR 667) studied the safety 
performance of Oregon’s intersections (Monsere et al. 2011). This report included a thorough 
review of relevant work published prior to 2005.  This literature review, therefore, focuses on 
any research related to intersection safety performance modeling or safety effect estimation 
published since 2005. The review is organized around the modeling framework.  The first section 
reviews other efforts to calibrate the HSM models. The second section review the various 
approaches used to establish candidate dependent variables. This review is then followed by a 
summary of influencing variables that have been included in the models or analysis. Finally, the 
review identifies the various statistical approaches that have been used for these studies. 

2.1 CALIBRATION OF HSM MODELS 

Recent studies in Virginia and Ohio suggest that the SPFs included in the HSM can under predict 
crashes in these jurisdictions even after calibration (Garber et al. 2010; Young and Park 2012).  
For these and other reasons, some agencies have elected to develop their own SPFs rather than 
calibrate the HSM models. Young and Park (Young and Park 2012) calibrated the HSM’s SPFs 
and compared them to jurisdiction specific SPFs for the city of Regina, Saskatchewan. Models 
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were developed using volume and road characteristics as predictors for total collisions, 
fatal/injury collisions, and property damage only collisions occurring in 2005 through 2009.  
Comparison of the calibrated HSM SPFs and the jurisdiction specific SPFs suggested that 
calibrated HSM SPFs under predicted the crashes for Regina.   

Garber et al. (Garber et al. 2010) used negative binomial models to calibrate SPFs developed 
using Ohio data for the Virginia Department of Transportation.  The jurisdiction specific SPFs 
predicted crash frequency better than the Ohio data generated functions used in the 
AASHTOWare software program SafetyAnalyst. 

Dixon et al. (Dixon et al. 2012) calibrated the HSM SPFs for both segments and intersections 
based on the HSM calibration procedures.  The authors concluded that the use of severity-based 
calibration factors were more appropriate due to the current crash reporting procedures in 
Oregon.  Also, the calibration factor for urban four-lane divided facilities should not be used due 
to the small available sample size of this type of road segment in Oregon.  For SPFs that use 
proportional adjustments for crash severity and unique CMFs, the Oregon researchers also 
recommended using locally computed proportions rather than the HSM default values. 

2.2 DEPENDENT VARIABLES 

The development of SPFs often requires that total crashes be modeled due to sample size issues; 
however, the literature and practice suggest that improved safety performance models may be 
feasible if models for specific crash types can be estimated.  At intersections, multi-vehicle 
crashes are the most common crash types (e.g. rear-end and angle crashes) that might merit 
unique sub-models. The models in the HSM urban and suburban chapter model multiple and 
single vehicle crashes separately. In the HSM approach, severity and collision-type are estimated 
with proportioning factors that convert the frequency predictions into severity or collision-type 
predictions. For modeling purposes, the dependent variable is some form of crash frequency.  
The majority of studies reviewed total crashes, crash type, and/or crash severity. 

2.2.1 Spatial Level of Aggregation 

Crash prediction models are typically based on crashes that have been grouped to a common 
spatial unit (e.g. intersection or approach leg).  In the studies reviewed, grouping crashes by 
intersection helped researchers  to capture the influences of various intersection features (Miller 
et al. 2011; Jonsson et al. 2007; Abdel-Aty and Haleem 2011; Wang and Abdel-Aty 2006; Wang 
and Abdel-Aty 2007; Wang and Abdel-Aty 2008; Kim and Washington 2006; Yan et al. 2005; 
Chen et al. 2012a; Mitra and Washington 2012; Qi et al. 2013; Chen et al. 2012b; Yan et al. 
2008; Davis and Aul 2007; Souleyrette et al. 2007; Li and Tarko 2011; Bullough et al. 2013; 
Das and Abdel-Aty 2008; Wang et al. 2008; Li and Lee 2011).  Researchers studying advanced 
warning, speed limit reductions, lane width, and signal visibility used intersection approach as a 
way of grouping crashes (Potts et al. 2013; Potts et al. 2007; Sayed et al. 2008; Wu et al. 2013; 
Sharma et al. 2012; Appiah et al. 2011).  Two studies involving segments were reviewed: 
Stephan and Newstead (Stephan and Newstead 2012) studied the natural and built environment 
along signalized urban arterials and Ma et al. (Ma et al. 2010) examined the severity of crashes 
along rural two-lane highways.  Finally, Wang and Abdel-Aty (Wang and Abdel-Aty 2007) 
grouped crashes by associating the crash to the major or minor roadway approach. 
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2.2.2 Crash Type 

Miller et al. (Miller et al. 2011) explored crash causality at intersections using a disaggregated 
approach to crash prediction. In the study, the researchers used six years of crash data (2000-
2005) to mine patterns at 72,218 crashes at more than 6,000 signalized and unsignalized 
intersections in Virginia. Vehicle speed, driver action, alignment, lighting, weather, traffic 
control, driver visibility obstruction, volume, shoulder width, and surface conditions were 
identified as important crash factors in 25 of 51 classification trees.  The researchers also 
generated negative binomial generalized linear models to investigate total crashes, injury 
crashes, rear-end crashes, and angle crashes concluding that disaggregating by crash type was 
generally more accurate when compared to models generated using total crashes.  

Jonsson et al. (Jonsson et al. 2007) estimated crash prediction models to investigate the effects of 
traffic and geometry on four different crashes types in rural California: opposite direction, same 
direction, intersecting (angle), and single-vehicle.  Traffic characteristics, geometric features, and 
crash data from 1993-2002 for 264 four-leg stop-controlled intersections and 378 three-leg stop-
controlled intersections resulting in 2,676 crashes were modeled with negative binomial 
regression. As a result of the modeling effort, the researchers found that when prediction models 
are categorized by the defined crash-types, they will have different significant variables for both 
three-leg intersections and four-leg intersections. 

2.2.2.1 Angle Crashes 

Abdel-Aty and Haleem (Abdel-Aty and Haleem 2011) compared multinomial adaptive 
regression splines (MARS) and negative binomial regression techniques to estimate angle 
crash frequency at 2,475 three- and four-legged unsignalized intersections located in six 
different counties in Florida. The researchers found that significant predictors of angle 
crashes included the major traffic volume, distance to nearest upstream signal, distance to 
nearest intersection, median type, percentage of heavy vehicles, size of intersection, and 
geographic location. In prior work, Wang and Abdel-Aty (Wang and Abdel-Aty 2007) 
investigated collisions involving two through movement vehicles conflicting at a right-
angle. They evaluated a total of 197 signalized intersections located in central Florida and 
used generalized estimating equations to account for site correlation.   The research 
determined that significant predictors of right-angle crashes were the product of through 
volumes, number of through lanes, and late night and early morning traffic signal 
flashing-mode operations.  The research also identified speed limit, skew, yellow and all-
red intervals, and the presence of left-turn bay offset as significant predictors of right-
angle crashes.  

Kim and Washington (Kim and Washington 2006) used a limited-information maximum 
likelihood estimation approach to account for endogeneity between left-turn lanes and 
angle crashes using data collected at 155 rural intersections in 38 counties of Georgia.  A 
total of 155 intersections (113 unsignalized intersections and 42 signalized intersections) 
experienced 317 angle crashes within 250 feet of the intersection. The study found that 
when accounting for endogeneity between left-turn lanes and angle crashes, left-turn 
lanes reduced angle crashes. The study also determined that when endogeneity is not 
accounted for, left-turn lanes appear to increase angle crashes. 
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2.2.2.2 Left-Turning Crashes 

Wang and Abdel-Aty (Wang and Abdel-Aty 2008) investigated left-turn crash frequency 
at 197 four-legged signalized intersections located in Orange and Hillsborough counties 
in Florida.  The researchers assembled and modeled crash data (2000-2005), traffic data, 
and intersection characteristics in an effort to evaluate the causality of left-turn crashes.  
The modeling effort for left-turn crash occurrence by pattern type consistently indicated 
that crash occurrence was related to entering flows of the colliding vehicles, and not the 
total entering volume at the intersection.  Wang and Adbel-Aty determined that for four 
of the nine crash patterns approach speed limit was a significant predictor of left-turn 
crash occurrence.  

Yan and Radwan (Yan and Radwan 2008) studied 72,912 crashes that occurred during 
the years 1999 through 2001 in Florida to identify crash risk associated with unprotected 
left-turn crashes at signalized intersections using logistic regression. Results indicated 
that type of vehicle (excluding van) and driver age (under the age of 65) had negative 
effects.  Driver-related factors, non-local versus local, driver age (greater than 65 
compared to less than 18), alcohol, physical defect, and gender had positive effects on 
crashes. 

2.2.2.3 Rear-End 

Wang and Abdel-Aty (Wang and Abdel-Aty 2006) used generalized estimating equations 
(GEE) with a negative binomial link function to investigate the temporal and spatial 
relationships of rear-end crashes. The Florida researchers collected geometric, traffic 
exposure, traffic control, and crash data at 208 signalized intersections for the time period 
of 2001-2003. They performed spatial analysis by grouping 476 intersections along 41 
corridors based on density in central Florida and modeling total rear-end crashes from 
1999 and 2000. The analysis identified traffic volume, number of turn lanes, number of 
phases per cycle, speed limits, and higher population areas as items significantly 
correlated with rear-end crash frequencies.   

Yan et al. (Yan et al. 2005) investigated the relationship of rear-end crashes at signalized 
intersections using multiple logistic regression.  Their analysis of 7666 rear-end crashes 
suggested significant relationships between rear-end crashes and road environmental 
factors, as well as vehicle type, driver age, driver residence, and gender for both the 
struck vehicle role and the striking vehicle role. Additionally, they found that driver 
factors such as alcohol or drug use were significant. 

2.2.2.4 Crash Severity 

Crash severity can be modeled by separate models that estimate frequency (such as in the 
HSM approaches for some models). In other modeling approaches, the risk factors can be 
explored using logistic approaches.  Savolainen et al. (Savolainen et al. 2011) reviewed 
133 previous research efforts describing logit, probit, neural networks, and classification 
trees used to model crash severity. In their review, the authors concluded that 
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endogeneity, underreporting, and the correlation effects of multiple injuries within the 
same crash or within a small period of time are concerns in modeling severity.  

In models particular to intersections, Chen et al. (Chen et al. 2012a) used logistic 
regression to study severity of injuries to vehicle occupants and intersection crashes using 
nine years of crash data (n=12,144 crashes) from Victoria, Australia.  Chen et al. 
identified seven significant independent variables for the prediction of crash severity: 
driver gender, driver age, speed zone, traffic control, time of day, crash type, and seat belt 
usage. Sayed et al. (Sayed et al. 2008) conducted a before-and-after study investigating 
the safety impacts of improved signal visibility at 175 four-legged signalized 
intersections. The study sites each had an approach speed of approximately 30 miles per 
hour (mph) (50 kilometers per hour (kph)).  Visibility improvements included increasing 
the signal lens size, new backboards, addition of reflective tape, and providing additional 
signal heads. They then used five generalized linear models to predict crash severity 
based on major and minor average annual daily traffic (AADT).  Signal visibility did not 
have a significant effect on combined fatal and injury crashes. Property Damage Only 
(PDO), daytime, nighttime, and total collisions each experienced significant decreases in 
crash frequency. 

Anastasopoulos and Mannering (Anastasopoulos and Mannering 2011) compared the use 
of random parameter logit models with fixed parameter logit models. They predicted 
crash severity using geometrics, traffic characteristics, socioeconomics, and collision 
characteristics. The fixed parameters model performed better in predicting crash severity 
than the random parameters models, though the random parameters predicted within five 
percent of the fixed parameters.  

Finally, Ye and Lord (Ye and Lord 2011) modeled crash severity using multinomial logit 
(MNL), mixed logit (ML), and ordered probit methodologies to compare the effects of 
underreporting.  Ye and Lord used simulated crash data and the Monte Carlo approach 
for four years (1998-2001) of observed crashes (26,175 usable records).  Results 
indicated that underreporting occurred in all three model methodologies. The authors 
recommended using fatalities as the baseline for MNL and ML models, while the ordered 
probit model should use a descending order from fatal to PDO. 

2.3 INFLUENCING FACTORS 

The research team reviewed the published literature and identified several safety performance 
factors to consider. These items include traffic characteristics, traffic control and operational 
features, geometric characteristics, and select other factors. These items are reviewed in the 
following sections. 

2.3.1 Traffic Characteristics 

Key influential traffic characteristics identified in the literature included traffic volume, vehicle 
type, and functional classification as reviewed in the following sections. 
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2.3.1.1 Volume 

A large body of work confirmed a positive relationship between increasing traffic volume 
and crashes.  Specifically related to intersection research, major and minor volumes were 
most often used as separate independent variables (Li and Lee 2011; Bullough et al. 
2013; Davis and Aul 2007; Appiah et al. 2011; Sayed et al. 2008; Jonsson et al. 2007; 
Kim and Washington 2006; Wang and Abdel-Aty 2006).  Other studies included the major 
volumes or entering volumes only (Abdel-Aty and Haleem 2011; Wang and Abdel-Aty 
2007; Wang and Abdel-Aty 2008; Stephan and Newstead 2012; Potts et al. 2007; Sharma 
et al. 2012; Souleyrette et al. 2007; Li and Tarko 2011; Wang et al. 2008).  Several 
studies that only examined crashes in approach lanes or where crashes were due to 
turning movements included turning movement counts in the models (Wang et al. 2008; 
Wu et al. 2013; Potts et al. 2013). 

2.3.1.2 Vehicle Type 

Yan et al. (Yan et al. 2005) used logistic regression to contrast heavy vehicles, light 
trucks, and vans to the reference category of cars. They observed that all three larger 
vehicle types were more likely to be involved in rear-end crashes than the more prevalent 
passenger car.  Abdel-Aty and Haleem (Abdel-Aty and Haleem 2011) found that angle 
crash frequency was predicted to increase with an increase in heavy vehicle traffic.  
Similarly, Sharma et al. (Sharma et al. 2012) and Wu et al. (Wu et al. 2013) found a 
positive relationship between heavy vehicles and crash frequency.  However, Bullough et 
al. (Bullough et al. 2013) found that an increase in the percentage of heavy vehicles 
during daylight hours had a negative effect on crash frequency as did an increase during 
the nighttime hours. 

2.3.1.3 Functional Classification 

Miller et al. (Miller et al. 2011) compared crash experience based on road functional 
classification for arterials and roads that were not arterial. The researchers identified a 
significant positive relationship between principal arterials and total crashes, injury 
crashes, and angle crashes. Stephan and Newstead (Stephan and Newstead 2012) studied 
the effects of urban natural and built environments on segment crashes finding that 
principal arterials were more likely to have a crash than non-principal arterials.  Ma et al. 
(Ma et al. 2010) used multivariate Poisson lognormal methods to expose a positive 
relationship for collectors on possible injuries, non-disabling injuries, disabling injuries, 
and fatalities. In comparison, minor arterials were found to have smaller positive effects 
on crash severity. 

2.3.2 Traffic Control and Operational Features 

Traffic control and operational features, as identified in the published literature, that have been 
determined to influence safety performance include speed, lighting, signal head visibility, 
presence of advanced warning signs, and traffic signal phasing. 
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2.3.2.1 Speed Limit 

Speed is an important descriptor of traffic operations that has an effect on crash severity 
and frequency but this variable is difficult to accurately capture in aggregate models. In 
particular, the exact speed of the crash involved vehicle is rarely known with certainty. 
To attempt to capture speed effects, most researchers have used posted speed by 
approach.  Mitra and Washington (Mitra and Washington 2012) studied 15,245 crashes 
occurring at 291 intersections in Tuscon, Arizona between 2001 and 2004. Spatial 
proximity to schools and drinking establishments, weather, and demographic data were 
used to explore the relationship between crashes and these often omitted variables in 
crash prediction models. They found that higher posted speed along the minor approach 
had an increasing effect on crash frequency.  Conversely, Mitra and Washington 
observed that elevated major road speeds had a significant negative relationship with 
crash frequency.  The authors suggest that tandem effects are likely due to differences 
between actual and posted speeds, as well as the effects of different design standards of 
facilities associated with posted speeds.  

Das and Abdel-Aty (Das and Abel-Aty 2008) developed models by aggregating crashes 
by varying the intersection influence area by 50 feet intervals. They determined that 
speed limit had a positive relationship with crash severity at all modeled influence areas. 
Yan and Radwan (Yan and Radwan 2008) found left-turn crash occurrence was highest at 
intersections with a posted speed limit of 45 mph when compared to other speed limits. 
Davis and Aul (Davis and Aul 2007) concluded that signalized intersections converted 
from stop-controlled intersections with approach speeds greater than 40 mph experienced 
a significant increase in rear-end crashes, and a decrease in right-angle crashes.  
Souleyrette et al. (Souleyrette et al. 2007) found that implementation of all-red intervals 
did not have a significant increase in safety benefit for signalized intersections with an 
approach speed of 30 mph or greater. 

Using multivariate Poisson-lognormal techniques, Ma et al. (Ma et al. 2010) found that 
an increase in the posted speed limit of 10 mph would result in an increase in fatal and 
disabling-injury types.  Intuitively, PDO crashes were found to decrease suggesting an 
overall increase in severity with an increase of intersection speed.   

Abdel-Aty and Haleem (Abdel-Aty and Haleem 2011) included a predictor in the MARS 
analysis of three-leg and four-leg unsignalized intersections categorizing speed limit as 
equal to or greater than 45 mph or less than 45 mph.  Results indicated that at three-leg 
intersections speed limits of 45 mph or greater were more likely to result in angle crashes. 

Wang and Abdel-Aty (Wang and Abdel-Aty 2007) found that an increase in speed limit 
has an insignificant positive relationship with right-angle crashes.  In further work, Wang 
and Abdel-Aty (Wang and Abdel-Aty 2008) found that speed limit was a significant 
positive predictor of left-turn crashes involving opposing direction vehicles.  Results 
from this study also suggested a positive but not statistically significant relationship 
between speed limit and crashes involving vehicles approaching from the left. Yan et al. 
(Yan et al. 2005) found that rear-end crashes were more likely to occur with increasing 
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likelihood at posted speed limits from 35 mph to 55 mph than intersections with a posted 
speed limit of 25 mph.   

Sharma et al. (Sharma et al. 2012) studied the effect of speed limit reductions in the 
vicinity of 28 high-speed signalized Nebraska intersections equipped with advanced 
warning flashers to understand the safety impacts of five and ten mph speed limit 
reductions. Quantile regression analysis indicated that a signed 15 mph reduction was not 
statistically significant.  A five mph posted reduction was not statistically significant in 
reducing crash severity, but was found to have significant decreasing effect of 0.6 crashes 
per approach.   

Wu et al. (Wu et al. 2013) investigated the safety impacts of implemented speed 
reductions with advanced flashers on approach to signalized intersections located on 56 
major approaches.  Nested-logit models were developed using ten years of crash data 
from 2001 through 2010. Contradictory results were found with a posted static speed 
reduction on the intersection approach of five mph.  Results indicated that the smaller 
reduction decreased the probability of visible injury, but increased the probability of no 
injury, possible injury, incapacitating injuries, and fatalities. Reductions of ten mph 
significantly increased the probability of no injury. 

Finally, El-Shawarby et al. (El-Shawarby et al. 2011) studied driver running behavior of 
yellow and red phases at high-speed intersections.  Male drivers were observed to be less 
likely to proceed at the onset of the yellow phase when compared to female drivers.  
Also, drivers aged 60 years or older were significantly less likely to clear the intersection 
with shorter detection distances.  

2.3.2.2 Lighting 

Bullough et al. (Bullough et al. 2013) studied the safety effects of lighting at 5,578 
unsignalized and 886 signalized intersections in Pennsylvania.  The expected crashes per 
year for daytime and nighttime were calculated using a negative binomial model with 
independent categorical variables of signalization, land-use, lighting, skew, speed, access 
control, depressed median, and paved-left shoulder.  Lighting was found to have a 
negative relationship to crash frequency, but it was observed that daytime crash 
frequency increased by five to eight percent.  The authors suggest this is due to the 
presence of light poles near the intersection.  Similar results were found by Shankar et al. 
(Shankar et al. 2010) who used negative binomial models to predict crash frequency with 
crash data from Minnesota and California at signalized and unsignalized intersections.  
Results suggest that the presence of lighting had a decreasing effect on crashes for both 
urban/suburban and rural signalized intersections.  

In similar, sometimes parallel, research  authors controlled for day and night conditions 
finding a lower likelihood of crashes at intersections in daylight conditions (Yan and 
Radwan 2008; Das and Abdel-Aty 2008).  Other reviewed studies considered only the 
presence of lighting, and found that lighting had a negative relationship with crash 
occurrence (Yan and Radwan 2008; Souleyrette et al. 2007; Jonsson et al. 2007). 
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2.3.2.3 Signal Head Visibility 

Souleyrette et al. (Souleyrette et al. 2007) found a positive relationship between total 
crashes and all configurations other than overhead signals in one direction in a study of 
the safety impacts of all-red intervals at low speed, urban intersections. Sayed et al. 
(Sayed et al. 2008) conducted a before-and-after study investigating the safety impacts of 
improved signal visibility at 175 four-legged signalized intersections with an approach 
speed of approximately 30 mph (50 kph).  Visibility improvements included increasing 
the signal lens size, new backboards, addition of reflective tape, and providing additional 
signal heads. Five generalized linear models were used to predict crash severity using 
major and minor AADT.  Signal visibility did not have a significant effect on combined 
fatal and injury crashes. PDO, daytime, nighttime, and total collisions were all found to 
have significant decreases in crash frequency. 

2.3.2.4 Presence of Advanced Warning Signs 

Appiah et al. (Appiah et al. 2011) studied the behavior of drivers approaching dilemma 
zones at intersections with actuated advanced warning system to determine if the system 
promotes decreases in crash rates over time. The study included 26 system implemented 
intersections compared to 29 control intersections in Nebraska.  The researchers used 
Bayesian techniques in a before-after study of crash frequency at the high-speed 
intersections. The application of the advanced warning system suggested an improvement 
in safety, especially in right-angle crashes which experienced a 43.6 percent reduction in 
occurrence at the implemented intersections.  In similar research, Wu et al. (Wu et al. 
2013) addressed the safety impacts at signalized intersections equipped with advanced 
warning flashers and speed reductions finding that flashing time of the warning signs was 
not significant in predicting crashes. 

2.3.2.5 Traffic Signal Phasing 

Various crash prediction studies have included traffic signal phasing and phasing 
components. Mitra and Washington (Mitra and Washington 2012) found that the number 
of signal phases at an intersection have a positive relationship with total intersection 
crashes. Three of the studies addressed or included left-turn phases. Chen et al. (Chen et 
al. 2012b) conducted a before and after study investigating the safety impacts of 
changing permissive left-turn signal phasing to protective at 68 signalized intersections 
using negative binomial regression with the GEE technique.  Chen et al. determined that 
no significant decreases in crashes occurred when left-turn phasing was changed to 
protected/permissive left-turn phasing as compared to permissive-only signal phasing. 
Davis and Aul (Davis and Aul 2007) studied the safety impacts of different left-turn 
phases at two major approaches  and four minor approaches with an approach speed 
greater than 40 mph and concluded that a changing of the left-turn phase from 
permissive/protective to protected had a decreasing effect on total left-turn crashes and 
major approach left-turn crashes. Conversely, Wang et al. (Wang et al. 2008) found that 
protected left-turns were positively related to crash occurrence. The authors suggest that 
the positive relationship could explain an increase in rear-end crash types.  
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Souleyrette et al. (Souleyrette et al. 2007) explored the safety impacts of all-red intervals 
on 104 signalized intersections in Minneapolis, Minnesota. The study intersections had 
an approach speed of 30 mph. They used a generalized linear mixed model to predict 
crash frequency.   Results of the model found no safety benefit with the overall use of all-
red intervals but safety benefits were observed at individual sites. Li and Tarko (Li and 
Tarko 2011) developed multinomial logit models to estimate probability of crashes at 
signalized intersections along corridors with coordinated phases. Three coordinated 
systems (encompassing 18 intersections that experienced a total of 1,345 crashes between 
2003 and 2006 in Indiana) were the focus of the evaluation.  Higher concentrations of 
arrivals in the first half of the red phase, in the presence of short yellow intervals, and 
within the first two seconds of green were associated with an increase in the likelihood of 
rear-end and right-angle crashes.  Additionally, variables based on the maximum green 
were significant for the second-half of green phase arrivals, first half of red phase 
arrivals, and traffic for the first two seconds of the green phase while no minimum green 
phase, or mid-point variables were significant allowing the authors to postulate that 
signals that reach the force-off may be related to an increase in the likelihood of crashes.    
Also, right angle crashes are more likely to occur at the beginning of the red phase. Wang 
et al. (Wang et al. 2008) found that signal coordination also had a positive effect on 
crashes when modeled at a fixed influence zone of 250 feet and then at a varied influence 
distance determined by intersection features and furthest crash distance. Finally, Wang 
and Abdel-Aty (Wang and Abdel-Aty2008) found that late night and early morning 
yellow flashing operations had a positive effect on right angle crashes. 

2.3.3 Geometric Characteristics 

Geometric characteristics that influence safety performance include the approach lane features, 
the intersection influence areas, and the adjacent land use. 

2.3.3.1 Approach Lane 

Potts et al. (Potts et al. 2013) studied 400 intersection approaches in Toronto, Canada 
evaluating the safety of the channelized right-turn lanes, shared through/right-turn, and 
conventional right-turn lanes.  The research results suggested that all right-turn treatment 
types exhibited similar safety performance.  As part of a larger study, Potts et al. (Potts et 
al. 2007) studied the safety impact of lane widths on arterial intersection approaches in 
Minnesota (707 intersections) and North Carolina (635 intersections).  They designed a 
cross-sectional modeling approach using average daily traffic (ADT) and lane width to 
develop negative binomial models.  Results indicated that increasing lane width had a 
significant negative effect on fatal-injury single and multiple vehicle crashes for three-
legged signalized intersections.   

Jonsonn et al. (Jonsonn et al. 2007) found that left-turn channelization and number of 
lanes were significant variables in models predicting same direction crashes for four-leg 
intersections. Other research controlled for number of lanes as a continuous variable and 
found that the likelihood of crashes increases with an increase in the number of lanes 
(Stephan and Newstead 2012; Chen et al. 2012b).  



 

13 

In another approach, Wang and Abdel-Aty (Wang and Abdel-Aty 2007) grouped lanes 
into four different subsets: two and three lanes; four and five lanes; six lanes; and seven, 
eight, and nine lanes.  They observed a negative relationship with right-angle crash 
occurrence with an increase in the number of lanes. Yan et al. (Yan et al. 2005) also 
found a negative relationship between roadways with an increasing number of lanes and 
rear-end crashes. Qi et al. (Qi et al. 2013) investigated a total of 235 crashes at 21 
intersections with and without turn lane queue overflow problems in Houston and Austin, 
Texas. Crash rates at intersections were predicted using negative binomial models.   
Results indicated that intersections with turn lane queue overflow problems had 35 
percent higher predicted rear-end crash rates than intersections without overflow 
problems.  Simulation-based analysis reflected that extension of left-turn lanes would 
have resulted in a decrease in rear-end crash occurrence. 

2.3.3.2 Distance / Spatial 

Das and Abdel-Aty (Das and Abdel-Aty 2008) used influence areas varying from zero to 
200 feet to study the impacts of surface, weather, and traffic conditions on crash severity. 
Results suggested that the magnitude of effect on crash severity increased with an 
increased influence area for roadway width and median width.   

Wang et al. (Wang et al. 2008) studied 177 signalized intersections in Florida with the 
objective of investigating the safety influence area for four-legged intersections. The 
study intersections had 7,758 observed crashes over a period of 2000-2005. The authors 
concluded that the influence area varies depending on intersection features (i.e. length of 
left-turn lane, speed limit, etc.) thus all features should be taken into consideration when 
determining the influence distance at the intersection. Li and Lee (Li and Lee 2011) used 
geographically-weighted regression models to estimate crash severity at urban 
intersections in Chicago, Illinois.  The models incorporated spatial distribution of the 
intersections by assigning higher weights to decreasing distances between intersections.  
Li and Lee tested the geographically weighted regression (GWR) models assuming 
lognormal and negative binomial distributions against global models concluding that 
GWR models (lognormal) better predict crash severity. 

2.3.3.3 Land Use 

Stephan and Newstead (Stephan and Newstead 2012) studied 141 road segments near 
strip shopping malls in the Melbourne, Australia metropolitan area to investigate the 
impacts of complex urban environments on safety.  They developed crash prediction 
models to study the relationship between total number of crashes and segment 
characteristics. Results indicated that increasing complexity (measured as traffic density, 
number of lanes, and higher access densities) had a positive relationship with increased 
crash risk, defined by the total crashes within each segment.  Reduced crash risk was 
associated with the presence of median or traffic islands and less complex roadside 
environments such as natural areas buffering pedestrians and motor vehicles.   

Ma et al. (Ma et al. 2010), in a study of 108 signalized intersections and 123.5 kilometers 
of roadway segments in Beijing, China, investigated urban environment effects on crash 
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severity.  They observed that crashes on sharper horizontal curves were more likely to 
result in severe crashes, and increased shoulder widths were more likely to result in less 
severe crashes.  The authors suggested that less complex road designs tend to decrease 
crash severity. 

2.3.4 Other 

In addition to the built environment, researchers have studied a variety of other items including 
driver demographics, socioeconomic characteristics, and the natural environment. 

2.3.4.1 Driver Characteristics 

Chen et al. (Chen et al. 2012a) found that male drivers and lack of seat belt usage were 
more likely to be involved in fatal crashes in a study of risk factors associated with crash 
severity at signalized intersections. The research also indicated that drivers age 65 years 
or older were more likely to be involved in fatal crashes than younger drivers. Yan et al. 
(Yan et al. 2008) found that crashes involving male drivers were less likely to be involved 
in left-turn crashes.  The researchers also found that ages 56-65 were less likely to be 
involved in a left-turn crash compared to drivers less than 18 years of age, but less of a 
decrease in likelihood when compared to drivers of ages 18-55. Drivers 66 years of age 
or older were more likely than drivers less than 18 years of age of being involved in left-
turn crashes.   

Wu et al. (Wu et al. 2013) used a nested logit model to examine safety impacts of 
dynamic warning message signs at high-speed signalized intersections. Severity level was 
described by four variables in the upper nest; no injury, lower intermediate injury, 
incapacitating injury, and fatal injury. The lower nest further defined ‘lower intermediate 
injury’ as possible injury and visible injury.  Crashes involving at-fault male drivers were 
less likely to result in crash severity level of lower intermediate injury, specifically 
visible injury. Additionally, alcohol was found to have a higher likelihood of 
incapacitating injury and fatal injury. Das and Abdel-Aty (Das and Abdel-Aty 2008) also 
found that alcohol had a positive relationship with crash severity. 

2.3.4.2 Environmental 

Yan and Radwan (Yan and Radwan 2008) evaluated factors involved with left-turn 
crashes at signalized intersections and found that crashes during rainy weather are less 
likely than during clear weather. The authors suggest that the reported decrease in crash 
risk was due to more cautious driver behavior. 

Jonsson et al. (Jonsson et al. 2007) used type of terrain to model single vehicle crashes at 
three-leg and four- leg intersections.  They determined that when compared to flat terrain, 
mountainous terrain was found to have a significant positive influence on single vehicle 
crashes at three-leg intersections while rolling and mountainous terrain had a significant 
positive influence on single vehicle crashes at four-leg intersections. 
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Ma et al. (Ma et al. 2010) found that a two degree increase in roadway gradient 
contributed to a decrease of 12.41 percent in fatal crashes, but increased disabling (24.88 
percent), non-disabling (30.93 percent), possible (27.62 percent), PDO (24.07 percent), 
and total crashes (24.86 percent).  Also, a two degree increase in degree of curvature 
contributed to an increase in crashes for all severity levels. In comparison, mountainous 
terrain typically associated with steep gradients and sharp degrees of curvature were 
found to have a positive relationship on PDO and fatal crash severity levels.  In addition, 
the researchers identified negative but statistically insignificant relationships were found 
for possible and non-disabling severity levels, but were statistically insignificant. 

2.4 MODELING TECHNIQUES 

Various methodologies have been explored to improve or account for correlations between 
variables. Novel approaches, such as generalized additive models, were attempted to apply non-
linear modeling techniques to predict crashes. In other research, techniques such as generalized 
estimating equations, multilevel, probit, and logit techniques were utilized and compared to the 
state of the practice count models (Poisson and negative binomial techniques). 

2.4.1 Negative Binomial 

Kweon (Kweon 2011) investigated four-legged signalized intersections with the objective of 
developing a tool for identifying high-risk intersections by traffic movements and time of day. 
Using crash data from 2001 through 2004, Kweon developed negative binomial and Poisson 
model based safety performance functions using crash patterns, flow, and time of day for data at 
35 signalized intersections. 

Lord and Park (Lord and Park 2008) compared varying and fixed parameters negative binomial 
approaches on rural three-legged intersections in California. Comparison between the traditional 
negative binomial models and generalized negative binomial model suggested that generalized 
negative binomial models can rank some sites as more hazardous when compared to the 
traditional negative binomial and may not be suitable for empirical Bayes (EB) methods. 

2.4.2 Probit 

Chiou et al. (Chiou et al. 2013) comparatively fit a bivariate generalized ordered probit (BGOP) 
with a bivariate ordered probit (BOP) model to two-vehicle crashes at signalized intersections in 
Taipei, Taiwan.    The BGOP was found to predict crash severity better than the conventional 
BOP. Castro et al. (Castro et al. 2012) used a special case generalized ordered response probit 
model to estimate crash frequency in Arlington, Texas using a latent continuous variable divided 
into intervals to account for time-varying and spatial effects. 

2.4.3 Generalized Additive Model 

Xie and Zhang (Xie and Zhang 2008) compared generalized linear models (GLMs) and 
generalized additive models (GAMs) using crash data from 59 signalized intersections in 
Toronto, Canada.  Negative binomial distributions for both methodologies were assumed to 
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account for over dispersion.  The authors concluded that GAMs can generate statistically 
interpretable results and offer useful nonlinear modeling techniques. 

2.4.4 Generalized Estimating Equations 

Wang and Abdel-Aty (Wang and Abdel-Aty 2007, 2008) used GEE to account for correlation in 
repeated observations.  Negative binomial regression and GEE with negative binomial regression 
were used to model left-turn crash occurrence at signalized intersections to account for site 
correlation. 

2.4.5 Logit 

Anastasopoulos and Mannering (Anastasopoulos and Mannering 2011) compared the use of 
random parameter logit models with fixed parameter logit models.  Geometrics, traffic 
characteristics, socioeconomics, and collision characteristics were used to predict crash severity. 
The fixed parameters model performed better in predicting crash severity than the random 
parameters models, though the random parameters predicted within five percent of the fixed 
parameters.  

Ye and Lord (Ye and Lord 2011) modeled crash severity using MNL, ML, and ordered probit 
(OP) methodologies to compare the effects of underreporting.  Simulated crash data was used 
using the Monte Carlo approach as well as four years (1998-2001) of observed crashes (26,175 
usable records).  Results indicated that underreporting occurred in all three model 
methodologies. The authors recommend using fatalities as baseline for MNL and ML models, 
whilst the OP model should use a descending order from fatal to PDO.  

2.4.6 Multilevel 

Multilevel models have also been used to predict crashes in recent years. Kim et al. (Kim et al. 
2007) explored the application of binomial multilevel models using 548 crashes from 91 two-
lane rural intersections in Georgia. A multilevel model was developed for each of five crash 
types (angle, head-on, rear-end, sideswipe-same direction, sideswipe-opposite direction) to study 
the interactions between observed and environmental factors and the crash type.  The authors 
found that rural intersections can be modeled using a multilevel techniques to overcome the 
correlation between crashes at each hierarchy.   

Huang et al. (Huang et al. 2008) used a Bayesian hierarchical approach to crash prediction to 
account for the multilevel structure of crash information within datasets.  Geographic region, 
traffic, crash, driver-vehicle, and vehicle-occupant were the proposed levels for the employed 
methodology.  The results demonstrate that accounting for the heterogeneity between the groups 
is important in crash prediction models and can be accomplished through Bayesian hierarchical 
methods.  

A study in Shanghai, China of 195 signalized intersections within 22 urban corridors was 
conducted using hierarchical models to predict crashes to account for the correlation between 
signalized intersections within a corridor. Xie et al. (Xie et al. 2012) suggest that the hierarchical 
negative binomial performed better than the Poisson hierarchical in predicting crashes.  Results 
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also suggested that increasing exposure elements at the intersection level as well as increasing 
average speeds at the corridor level contributed to higher crash occurrence. 

2.5 ESTIMATING MINOR VOLUMES 

This section provides a comprehensive discussion of the methods used to estimate traffic 
volumes on roadways that are not traditionally part of counting programs. 

2.5.1 Travel Demand Modeling 

One approach towards estimating volumes is to employ the four step travel demand modeling 
processes. Zhong and Hanson (Zhong and Hanson 2009) estimated volumes using TransCAD’s 
built-in four step model for New Brunswick, Canada and found that traffic assignment to only 65 
percent of the network forced overestimated traffic on the roadway network.  Wang (Wang 2012) 
estimated AADT for local roads using parcel-level travel demand analysis with Institute of 
Transportation Engineering (ITE) trip generation rates, the gravity model for trip distribution, 
and equilibrium assignment. 

2.5.2 Geospatial Methods 

Generally, spatial methods approach estimation of AADT values by attaching weights that 
decrease with an increase in Euclidean or network distance between the measured traffic count 
and the estimation location. Wang and Kockelman (Wang and Kockelman 2009) used short term 
program counts to test the ability of Kriging to estimate AADT in Texas.  They identified an 
overall median error percentage of 33 percent with larger errors on low volume roadways and 
underestimation on high volume roadways. The error was attributed to the non-inclusion of 
variables such as number of lanes, speed limit, and functional class. Selby and Kockelman (Selby 
and Kockelman 2011) explored the same data set accounting for speed, number of lanes, 
employment per acre, population per acre, and functional class as covariates. While these 
variables decreased the absolute error within mini-regions, they had limited effect on the high 
error percentages associated with low-volume counts. 

Pulugurtha and Kasam (Pulugurtha and Kasam 2012) investigated the effects of polygon-based 
network buffers compared to Euclidean distances in Charlotte, North Carolina. Bandwidths of 
one, one and a half, two, three, four, and five mile distances were compared to similar circular 
buffers defined by Euclidean radii. Minor thoroughfare volumes were estimated by urban 
indicator, upstream link speed limit, and rural district indicator. The researchers concluded that 
negative binomial regression performed better than Poisson, and modeling by functional class 
performed better than an overall model. 

2.5.3 Regression Methods 

2.5.3.1 Ordinary Least Squares 

Mohamad et al. (Mohamad et al. 1998) used multiple regression to estimate AADT on 
urban and rural county roads using county population, the number of occupied housing 
units (number of households), county vehicle registration, county employment, and per 
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capita income at the county level.  The final model contained four variables: location, 
accessibility, county arterial road mileage, and county population accounting for 75 
percent of the variation in traffic volumes.  

Xia et al. (Xia et al. 1999) used ordinary least squares (OLS) regression to estimate the 
volumes of 450 non-state urbanized roads in Florida.  The resultant model included 
number of lanes, functional class, land-use, auto-ownership, proximity to county roads, 
and service employment. Seaver et al. (Seaver et al. 2000) developed regression models 
using traffic volumes collected on 1213 local roads in Georgia.  They evaluated 45 
independent variables covering population demographics, education, transportation, 
income, employment, farming, and urbanization using principal component analysis and 
regression. Ultimately they developed two sets of models to account for road-types 
within and outside of a metropolitan statistical area. Of the three models for rural paved 
roads outside of metropolitan statistical areas, the prediction R2 values were 0.74, 0.81, 
and 0.96 with small sample sizes used to calibrated the models (n=17, n=19, and n =22, 
respectively). 

Zhao and Chung (Zhao and Chung 2001) estimated volumes using OLS for roads in 
Broward County, Florida. The independent variables used were number of lanes, 
functional class, direct access to expressways, employment within varying Euclidean 
distances, and accessibility. The Florida researchers generated four models with the best 
model performance of R2 = 0.818. Dixon et al. (Dixon et al 2012) estimated minor AADT 
for rural roadways using county and nearest city populations, regional average per capita 
income, distance to the freeway, functional classification, within a city boundary, 
presence of a minor and/or major right turn lane, land-use, centerline, and striped edge 
lines.  The resulting analysis generated two models, one model for rural roadways 
(R2=0.62), and another for use when estimating minor volumes at minor road four-leg 
signalized intersections (R2=0.64).   

2.5.3.2 Geographically Weighted Regression 

Zhao and Park (Zhao and Park 2004) developed geographically weighted regression 
models to estimate AADT in Broward County, Florida. They used five independent 
variables: number of lanes, population concentration, employment concentration, 
regional accessibility, whether or not the road that had the count station was directly 
connected to an expressway.  The authors concluded that GWR models predict better 
than OLS regression due to the ability of the models to better explain the variation in data 
by accounting for spatial variation in the predictor variables.   

2.6 SUMMARY OF LITERATURE FINDINGS 

This chapter provided an overview of recent safety research related to the development and 
calibration of signalized intersection safety performance models. Three critical crash types 
common to these intersections and as summarized in the literature included angle, left-turning, 
and rear-end crashes. In addition, much of the literature addressed the development of crash 
severity models so that the user can better understand what the expected levels of injury may be 
for crashes at a specific location. The literature review also highlighted a variety of influencing 
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factors broadly grouped into the categories of traffic characteristics, traffic control and 
operational features, geometric characteristics, and various other factors such as driver 
demographics, socioeconomic characteristics, and the natural environment.  

This chapter concluded with an evaluation of recent modeling efforts. This included a wide 
variety of recent modeling techniques used to assess safety at similar locations and past research 
modeling efforts for generating AADT values using a variety of approaches. While complex 
methodologies have the capacity to generate more accurate results than regression methods, they 
are limited in application for practitioners due to the complex, time-consuming modeling 
processes.  The resulting methodology of preference is OLS regression. 
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3.0 DATA AND DATA COLLECTION 

The initial data collection effort for this study required the identification and selection of 
candidate study locations. Since the focus of the study is on signalized intersections in Oregon, 
the research team developed a strategy for identifying potential intersections while minimizing 
the likelihood of selection bias. Following site identification and selection, the research team 
collected comprehensive data for each intersection. In a supplemental effort, the research team 
also acquired data to facilitate the development of an estimation procedure for minor road traffic 
volumes at signalized locations. Sections 3.1, 3.2, and 3.3 describe these site identification and 
data collection efforts. 

3.1 SITE IDENTIFICATION AND SELECTION 

During the initial stages of this project, the research team explored the feasibility of using an 
existing signalized intersection database for Oregon roadways and determined that this type of 
comprehensive database does not exist. Consequently, the research team developed a strategy for 
identifying candidate intersections and selecting potential intersections to study. Upon 
development of this site identification procedure, the research team then developed a sample of 
sufficient size to perform the model development activities. These two tasks are reviewed in 
Sections 3.1.1 and 3.1.2. 

3.1.1 Identifying Candidate Intersections 

As previously noted, the identification of study sites for this research effort is not straightforward 
since the researchers could not locate a comprehensive database that identifies all signalized 
intersections in Oregon. As a result, the project team developed a sampling procedure to locate 
potential intersections. The following steps summarize this site identification procedure. 

1. First, members of the research team hypothesized that it is unlikely that, over a three 
year period, an Oregon signalized intersection would not have at least one reported 
crash. It is possible that this assumption could potentially miss a few locations in 
Oregon; however, the likelihood is great that most intersections would have at least 
one crash in a three year period. Consequently, the research team used the traffic 
control device field in the Oregon crash database to locate every intersection that was 
indicated as a signalized intersection. 

2. Next, the researchers randomly selected 31 intersection locations and evaluated their 
characteristics to determine if the intersections selected were suitable study candidate 
sites. For this purpose a “suitable study” site would be one that is actually signalized, 
is not located too close to another intersection, interchange, or railroad crossing, and 
has typical signalized intersection features. For example, an intersection with five 
legs would be removed from consideration since there are a very small number of 
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these types of signalized intersection configurations in Oregon. One-way roads were, 
however, retained in the data set and subsequent analysis. 

As shown in Table 3.1, of the initial 31 randomly selected intersections, 14 of the 
sites were located in ODOT Region 1, 11 were located in Region 2, five were in 
Region 3 and one was in Region 4. Region 5 did not have any intersections in this 
initial random test sample of 31 intersections. This observation provides strong 
evidence that to successfully evaluate safety at signalized intersections that are 
representative for the entire State of Oregon, the sampling procedure must be a 
stratified random sample with each Oregon region treated as a population strata. This 
approach provides the added benefit that the probability sample for each region can 
collectively be smaller as this sampling procedure provides greater precision. 

Also noted in the final column of Table 3.1, only 14 of the originally sampled 31 
intersections can be considered suitable for the purposes of this study.  In many cases, 
the reporting officers and/or self-reporting drivers indicated STOP controlled 
intersections with flashing red beacons as locations with traffic signals. Other 
intersections were excluded due to atypical site characteristics (as determined using 
aerial and video site review). This preliminary random sample provided critical 
information by informing the research team that using the crash data cannot be the 
sole basis for site selection, but that additional filters must be included before 
finalizing site selection. 

Table 3.1: Preliminary Random Sample of Intersections 
ODOT 
Region 

Total Intersections 
Identified in Initial 

Screening of Crash Data 

Distribution of 
Preliminary Random 

Test Sample of 
Intersections 

Distribution of 
Suitable 

Intersections 
from the 

Random Test 
Sample Number Percent (%) Number Percent (%) 

1 2635 55 14 45 14 
2 1423 30 11 36 0 
3 358 8 5 16 0 
4 229 5 1 3 0 
5 91 2 0 0 0 

Total 4736 100 31 100 14 
 

3. Following the preliminary sampling test, the research team determined that upon 
initial selection (using the random sampling process for each region), each site must 
then be inspected using aerial photographs and video information to confirm that a 
traffic signal is indeed present. After this initial screening analysis, the intersection 
must then be further assessed and atypical configurations removed from further 
analysis. 
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3.1.2 Study Sample 

The use of a stratified random sample helps to insure that any heterogeneous characteristics 
associated with a region can be directly evaluated. As shown in Table 3.1, the number of 
potential intersections varies by region. The random sample, therefore, should be somewhat 
larger for Region 1 and Region 2 where a large percentage of the identified candidate 
intersections are located; however, each region should be adequately considered in the overall 
project sample. This resulted in a list of 50 intersections to use for the development of the 
Oregon signalized intersection SPF.  

The study sites are shown in Figure 3.1. In this figure, intersections located in close proximity to 
other selected intersections may appear as a single star as the GIS tool simply stacks the 
symbols. This is particularly evident in Region 5 where three of the Hermiston intersections 
appear as a single star. The specific site locations are also identified in Table 3.2 (Region 1), 
Table 3.3 (Region 2), Table 3.4 (Region 3), Table 3.5 (Region 4), and Table 3.6 (Region 5). The 
project team used the “Random Number” shown in these tables for the site selection process and 
retained this value in the tables so that the sites could be excluded for future sampling efforts (to 
validate the resulting models). During the data collection and reduction process, approximately 
50 percent of the sites initially selected in the random sampling effort that used only the crash 
database intersection list were ultimately not feasible candidates for this study (generally due to 
miscoding of a traffic signal). This observation is consistent with the original 31 site test. The 
final analysis database included 12 sites for Region 1, 16 sites for Region 2, nine sites for Region 
3, seven sites for Region 4, and six Region 5 sites for a total of 50 sites.  

 
Figure 3.1: Stratified Random Sample (50 Intersections) 
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Table 3.2: Region 1 Random Sample of Sites 
ID County City Road1 Road2 

Region 1 
1 Clackamas Happy Valley SE Sunnyside Rd. SE Stevens Rd. 
2 Clackamas Happy Valley SE Sunnyside Rd. SE 152nd Ave. 
3 Washington Hillsboro NW Evergreen Pkwy. NW Stucki Place 
4 Washington Beaverton SW Hart Rd. SW 155th Ave. 

5 Clackamas Oregon City 
Cascade Hwy 
(OR 213) 

S. Douglas Loop / S. 
Molalla Ave. 

6 Clackamas Portland SE Division St. SE 11th Ave. 

7 Multnomah Portland NE Sandy Blvd. 
NE 22nd Ave. / NE 
Glisan St. 

8 Clackamas Milwaukie 
SE McLoughlin Blvd. 
(OR 99E) 

SE Courtney Ave. 

9 Multnomah Gresham SE Burnside Rd. SE 3rd St. 
10 Multnomah Portland W Burnside St. 21st Ave. 

11 Multnomah Portland 
SE Powell Blvd. 
(US 26) 

SE 174th Ave. 

12 Clackamas Happy Valley SE Sunnyside Rd. SE 132nd Ave. 
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Table 3.3: Region 2 Random Sample of Sites 
ID County City Road1 Road2 

Region 2

13 Lane Eugene 
Pearl St. / Amazon 
Pkwy. 

19th Ave. 

14 Marion Salem 
Fairgrounds Rd. NE / 
Portland Rd. NE (OR 
99E) 

Highland Ave. / 
Silverton Rd. 

15 Marion Woodburn 
N Pacific Hwy. 
(OR 99E)                   

Witham Rd. / E 
Lincoln St.               

16 Marion Salem Broadway St.                 
Salem Pkwy. 
(OR 99E) 

17 Marion Salem NE Hawthorne Ave.      NE D St.                      

18 Marion Salem 
NE Commercial St. 
(OR 99E)             

NE Pine St.                   

19 Lane Eugene Pearl St.                     13th Ave.                     
20 Polk Dallas Ellendale Ave.               Kings Valley Hwy.        
21 Lane Eugene N Delta Hwy. Green Acres Rd. 
22 Marion Salem Lancaster Dr.              Cooley Dr. 

23 Polk Salem NW Doaks Ferry Rd.     
NW Orchard Heights 
Rd. 

24 Marion Silverton 
Main St. / Cascade 
Hwy. (OR 213) 

Water St. (OR 214) 

25 Marion Salem Marion St. (OR 22) Commercial St. 
26 Marion Salem Pringle Rd. Madrona Ave. 

27 Lane Eugene 
W Pacific Hwy. 
(OR 99) 

Irving Rd. 

28 Lane Eugene 6th Ave. (OR 99) Garfield St. (OR 126) 

 
 

Table 3.4: Region 3 Random Sample of Sites 
ID County City Road1 Road2 

Region 3
29 Jackson Medford Main St. Ross Ln. / Lozier Ln. 
30 Jackson Ashland Ashland St. (OR 66) Walker Ave.               
31 Jackson Medford Crater Lake Ave. Brookhurst St. 
32 Jackson Eagle Point Crater Lake Hwy. (OR 62) Linn Rd.                 
33 Jackson Medford Lozier Ln.                   W Stewart Ave.              
34 Jackson Medford Crater Lake Hwy. (OR 62) E Vilas Rd. 
35 Jackson Medford Highland Dr. Barnett Rd. 
36 Jackson Medford S Riverside Ave. (OR 99) E 10th St. 
37 Jackson Medford E Barnett Rd. Ellendale Dr. 
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Table 3.5: Region 4 Random Sample of Sites 
ID County City Road1 Road2 

Region 4
38 Jefferson Madras 4th St. (U.S. 26) B St. 

39 Deschutes Bend 
NW Newport Ave. / NW 
Greenwood Ave. 

NW Wall St. 

40 Deschutes Bend E 8th St. 
Olney Ave. /  
Penn Ave. 

41 Deschutes Bend SE 3rd St. (US 97) Division St. / Brosterhous Rd. 
42 Deschutes Redmond Rimrock Way / NW 19th St. Antler Ave. 
43 Deschutes Bend Bend Pkwy. (US 97) Powers Rd. 

44 Klamath 
Klamath 

Falls 
Main St. (US 97) 6th St. 

 
Table 3.6: Region 5 Random Sample of Sites 

ID County City Road1 Road2 
Region 5 

45 Umatilla Pendleton Court Ave. (US 30)              S Main St. 
46 Malheur Ontario SW 4th Ave.                 SW 4th St.                   

47 Grant John Day 
John Day Hwy. 
(US 26) 

N Canyon Blvd. (US 395) 

48 Umatilla Hermiston N 1st St. (US 395) E Gladys Ave. 

49 Umatilla Hermiston 
Umatilla Stanfield Hwy. 
(US 395) 

E 4th St.                    

50 Umatilla Hermiston 
Umatilla Stanfield Hwy. 
(US 395) 

Jennie Ave. 

 
3.1.3 Study Sample for Model Validation 

To confirm that models developed for the initial evaluation are representative of Oregon 
conditions at other locations and during additional years, the research team collected site data 
that they specifically reserved for the model validation effort. Figure 3.2 depicts the 35 randomly 
selected validation intersections with data available for all study variables. The specific locations 
are identified in Table 3.7 (Region 1), Table 3.8 (Region 2), Table 3.9 (Region 3), Table 3.10 
(Region 4), and Table 3.11 (Region 5). Section 5.5 and Appendix D review the validation 
procedure used for this analysis. 
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Figure 3.2: Validation Stratified Random Sample (35 Intersections) 

 

Table 3.7: Region 1 Validation Sites 
ID County City Road1 Road2 

Region 1 
51 Multnomah Wood Village NE Arata Rd.                 NE 238th Dr.                   
52 Washington Tigard SW Greenburg Rd.        SW Washington Square Rd.     
53 Washington Hillsboro SE Century Blvd.           SE Tualatin Valley Hwy.        
54 Washington --- SW Farmington Rd.       SW Grabhorn Rd.             
55 Multnomah Gresham SE Hogan Ave.              SE Palmquist Rd.            
 

Table 3.8: Region 2 Validation of Sites 
ID County City Road1 Road2 

Region 2 
56 Yamhill Newberg Pacific Hwy. 99W              Villa Rd.                     
57 Marion Salem Madrona Ave. SE              Peck Ave. SE                  
58 Marion --- Portland Rd. NE Brooklake Rd. NE 
59 Marion Salem Kuebler Blvd. SE             S Liberty Rd.                
60 Benton Corvallis Western Blvd.                 15th St.                      
61 Benton Corvallis Walnut Blvd.                  29th St.                      
62 Marion Salem Kuebler Blvd. SE             27th Ave. SE                  
63 Lane Eugene River Rd.                     Silver Ln.                    

 
  

5

1

2 

3 

4



 

28 

Table 3.9: Region 3 Validation Sites 
ID County City Road1 Road2 

Region 3 
64 Josephine Grants Pass D St.                         6th St.                       
65 Jackson Medford Central Ave.                  8th St.                       
66 Jackson Medford Central Ave.                  Main St.                      
67 Josephine Grants Pass F St.                         Grants Pass Pkwy.              
68 Jackson Medford Black Oak Dr.                 Siskiyou Blvd.                
69 Jackson Central Point Hamrick Rd.                   Pine St.                      
70 Josephine Grants Pass Allen Creek Rd.               Redwood Hwy.                  
 

Table 3.10: Region 4 Validation Sites 
ID County City Road1 Road2 

Region 4 
71 Deschutes Redmond Glacier Ave.                  SW 9th St.                    
72 Klamath Klamath Falls Avalon St.                    Shasta Way                   
73 Wasco The Dalles Washington St.                3rd St.                       
74 Deschutes Bend Colorado Ave.                 Wall St.                      
75 Klamath --- S 6th St. Madison St. 
76 Deschutes Bend NW Portland Ave.             NW Wall St.                   
77 Deschutes Bend Bond St.                      Oregon Ave.                   
78 Klamath Klamath Falls Crosby Ave.                   Washburn Way                 
 

Table 3.11: Region 5 Validation Sites 
ID County City Road1 Road2 

Region 5 
79 Umatilla Hermiston Orchard Ave.             Umatilla-Stanfield Hwy.          
80 Umatilla Pendleton Court Ave.                 SW 10th St.                   
81 Umatilla Hermiston Main St.                     1st St.                       
82 Umatilla Hermiston Elm Ave.                   E 4th St.                     
83 Umatilla Hermiston Main St.                     E 4th St.                     
84 Umatilla Pendleton Court Ave.                 S Main St.                    
85 Umatilla Pendleton Perkins Ave.              Southgate                    
 
3.2 DATA COLLECTION FOR SPF DEVELOPMENT 

A wide variety of information about an intersection may be needed to adequately evaluate the 
associated safety performance. The Chapter 2 literature review highlighted many of the common 
variables used in SPF development. In this section, the roadway variables acquired for the model 
development are identified. In general, this site-specific data is separated into physical site 
information (generally represented as roadway variables) and crash data. Sections 3.2.1 and 3.2.2 
briefly describe this data collection effort. 
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3.2.1 Candidate Roadway Variables 

In recent research for Oregon, members of the project team have collected signalized intersection 
data. From these projects it is clear that a substantial number of candidate variables occur at each 
location. Consequently, the research team developed a data collection form to summarize 
information for each individual study site. A completed form for Intersection #1 is shown on the 
following pages to demonstrate these data collection activities. Table 3.12 summarizes the site 
data and data collection methods used to date.  

Table 3.12: Site Data and Corresponding Collection Method 

Intersection Data to Collect Collection Method 

Traffic Volume (represented by AADT) ODOT Databases 
Intersection Location Google Earth 

Intersection Dimensions Google Earth 
Site Characteristics (parking, turn lanes, 

bicycle facilities, bus stops, etc.) 
Google Earth/Video Log 

Number of Lanes Google Earth 
Median Configuration Google Earth/Video Log 

Posted Speed 
Google Earth/Video Log/ODOT 

Databases 
Traffic Control Google Earth/Video Log 

 
The first two photos in the data collection form (see Figure 3.3) include an aerial view and a 
view from the driver’s perspective. Table 3.13 shows the completed location and geometric 
collection form for Intersection #1. Similarly, Table 3.14 shows the completed lane geometry 
data collection form. Advisory signs were also acquired, where applicable, but are not shown on 
the general data collection forms. The project team developed similar data summary figures and 
tables for all 50 of the selected intersection locations. Due to size constraints, these are included 
in the stand-alone Appendix C. 

Much of the data required to populate this table can be measured using on-line tools such as 
aerial photographs. For a definition of the various descriptors (shown with footnotes), refer to the 
data collection key located in Table A.2, Appendix A.  
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Intersection #1 -- Aerial Photo 

  Street View Photo 
 

Figure 3.3: Data Collection Form Photos 
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Table 3.13: Location and Geometric Configuration for Intersection #1 
Location Latitude: 45.433403 Longitude: -122.561669 
Milepost  0.52 

Int. Type1 1 

ODOT Region  Region 1 

Road 1 Name SE Sunnyside 
Road 2 
Name 

SE Stevens Rd. 

No. of lanes2 5 (2,2,TWLTL) No. of lanes2 4 (2,2) 

Road No.  -- Road No. -- 

Description Road 1 Road 2 

Direction (NB, SB, WB, EB) WB EB NB SB 

Speed Limit (mph) 40 40 10 35 

Road Width3 (Face-face, ft) 71 88 47 62 
Road Width at Int.3 (Face-
face at stop bar, ft) 

96 109 47 67 

Closest Int. Upstream4 (ft. 
behind stop bar) 

135 481 255 148 

Closest Int. Downstream4 (ft. 
behind stop bar) 

332 512 303 423 

1st & 2nd Closest Dwy. to Int. 
(ft. behind stop bar) 

-- -- -- -- -- -- -- -- 

Dwy. Location 0 0 0 0 0 0 0 0 

Dwy. Type 0 0 0 0 0 0 0 0 

Median Type 4 4 1 4 

On-Street Parking  4 4 4 4 
On-Street Parking Location 
(ends ft. behind stop bar) 

N/A N/A N/A N/A 

Bike Lane 3 3 4 4 

Bus Stop Near Int. 3 3 3 3 
Bus Stops Location (ft. 
behind stop bar) 

N/A N/A N/A N/A 

Traffic Control Device5 1 12 12 1 
Signs on Traffic Light 
Pole/Span wire 7, 9, 10 7, 2, 11 1, 4 1, 4, 2 

Pedestrian Crossing Light 1 1 1 2 
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Table 3.14: Lane Geometry – Intersection #1 
Description Road 1 Road 2 Description Road 1 

Exclusive Left Turn Lane 
per direction6 1 2 1 1 

Shared - Left Turn & Thru 
Lane6 0 0 0 1 

Exclusive Thru Lane6 2 2 0 0 
Shared - Right Turn & Thru 
Lane6 1 0 0 0 

Exclusive Right Turn Lane6 0 1 0 1 
Shared – Left turn / thru / 
right turn lane6 0 0 1 0 

Free Right Turn Lane6 0 0 0 0 
Right Turn Lane Length7 (ft. 
behind stop bar) 

N/A 143 N/A N/A 

Right Turn Lane - Taper 
Length7 (ft) 

N/A 132 N/A N/A 

Left Turn Lane Length7 (ft. 
behind stop bar) 

166 279 N/A 175 

Left Turn Lane - Taper 
Length7 (ft.) 

74 286 N/A 92 

Offset Left Turn Lane8 2 2 2 2 
Are chevrons properly 
oriented? 9 

3 3 3 3 

Channelization10 3 3 3 3 
Exclusive Left Turn Lane 
Signalization 11 

3 3 3 3 

Shared turn & thru 
lane/Exclusive Thru Lane 
Signalization 11 

1 1 1 4 

Exclusive Right Turn Lane 
Signalization 11 

0 5 0 3 

 
3.2.2 Crash Data 

The use of crash data for a three year period helps to address minor fluctuations in observed 
crashes over time. The research team used crash data from 2010 through 2012. In addition to the 
selection of multi-year crash data, it is important to define which corridor crashes to include in 
the analysis. Though the crash reports include an option to indicate if an intersection was 
associated with the crash (these are often upstream queue-related rear-end crashes that may be 
missed if the sorted crash is solely based on the intersection field). Consequently, the research 
team performed a sensitivity analysis to determine which crashes should be included as 
intersection-related crashes. This analysis and resulting procedure are reviewed in Section 5.0 of 
this report. In addition, there is a need to better understand the level of severity for a specific 



 

33 

crash. Consequently, the model development (also included in Section 5.0) incorporated severe 
crashes in addition to total crashes. 

3.3 DATA COLLECTION FOR MINOR ROAD AADT ESTIMATION 

Due to the random nature of the stratified random sampling procedure, recent traffic volume 
information is not available for every intersection with particular gaps in data for the minor 
roads. As a result, the research team used a variety of resources to identify the traffic volume. 
For locations where the traffic volume was not available, the research team developed an 
estimation procedure for reliably populating this content. Section 4.0 and Section 10.0 
(Appendix B) of this report collectively review this process in detail.
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4.0 ESTIMATING MINOR VOLUMES 

As discussed previously, the volumes on the minor approaches are often missing or not available 
(even for intersections that are signalized). This chapter explores the possibility of estimating 
minor volumes based primarily on the data collected as part of the development of the SPFs. 
This estimation could be useful where it is desirable to apply the SPFs that were developed in 
this research (or from the HSM) but for which the minor volume is unknown. Based on the 
reviewed literature, the research team collected additional variables to supplement those gathered 
for estimating the SPFs. This chapter describes these additional variables, presents the modeling 
approach, and summarizes the resulting traffic volume estimation model. The chapter concludes 
with a sample application. 

4.1 DATA 

This section describes the data used to develop the models. A number of the volume, roadway, 
and geometric variables are identical to those used in the SPF development so their description is 
not repeated here unless needed for clarity. 

4.1.1 Average Annual Daily Traffic 

As described in Section 3.0, the collection of AADT data for both major and minor legs at 
signalized intersections involved internet searches and public record requests by the research 
team. The counts were either available as AADT (already factored and converted by reporting 
agency), ADT, or peak hour counts. The ADT and peak hour counts were factored to AADT 
using the methods outlined in FHWA Traffic Monitoring Guide (FHWA  2013) and factors 
derived from the nearest suitable automated traffic recording (ATR) station. In addition, the 
research team computed the AADT for both major and minor legs, for each year from 2007-2013 
using time of day, yearly and monthly factors, when appropriate. These factoring methods are 
described in Appendix B. 

For this modeling effort, it was hypothesized that the AADT of facilities that were parallel to the 
minor facility being modeled and of the same functional class could be a significant predictor. 
Thus efforts were made to obtain these data. If these parallel facility counts were ADT or peak 
hour counts, they were factored to AADT using factors derived from the nearest suitable ATR 
station. If the factored AADTs were obtained for different years, they were all factored to 2013 
volumes using time of day, yearly, and monthly factors. Figure 4.1 shows the conceptual 
drawing of the facility parallel to the minor road whose AADT was gathered and used as a 
predictor in the analysis. 
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Figure 4.1: Example Parallel Facility AADT 

4.1.2 Functional Class 

The research team derived the functional classification of major and minor legs at each 
intersection from the Oregon Department of Transportation’s TransGIS viewer (ODOT 2014). 
Since the sample included signalized intersections only, all the roadways in the sample fell into 
three functional classes: arterial, collector, and local. For major roadways, the categories of 
principal arterial, minor arterial, and rural minor arterial were collapsed to arterial.  For minor 
roadways, the categories of minor arterial and principal arterial were collapsed to “arterial.” 
Major collector and rural major collector were collapsed to “collector.” 

4.1.3 Land Use and Demographic 

All of the intersections used in this analysis were located in urban areas so it was not possible to 
include  simple variables such as urban/rural/suburban to capture land use. To capture some of 
the socio-economic variables such as population and income, members of the research team used 
data from the US Census Bureau (US Census Bureau 2014). For each intersection in the sample, 
population and income data were available by the corresponding county and city where the 
intersection is located. Therefore, for the appropriate counties and cities, 2013 estimates of 
population, median income and per capita income were gathered for each intersection. 

4.1.4 Network 

The research team gathered network related variables such as total road network density and 
street intersection density for each intersection from the Environmental Protection Agency 
(EPA)’s Smart Location Database (EPA 2013). The street intersection density variable in the 
EPA database reflected the weighted density of multi-modal intersections. This data was 
available by census tract. An example of the street network and intersection density variables can 
be seen in Figure 4.2. 
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A. Street Intersection Density 

 
B. Total Road Network Density 

Figure 4.2: Sample Images Showing GIS Network Information 

4.2 MODELING APPROACH 

In order to estimate the AADT for the minor approaches, the research team employed multiple 
linear regressions. Based on prior research by Xie et al. (Xie et al. 2011) and inspection of the 
data, all the volumes were log10 transformed. The process for model building explored many 
possible combinations of independent variables including the results from a stepwise search 
process. During initial model development, the researchers computed correlations between each 
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pair of predictor variables. Within each pair, if the variables were significantly correlated with 
each other (correlation coefficient > 0.5), only one variable was retained in subsequent models.  

In order to estimate minor volumes, two modeling approaches were applied. The first modeling 
approach limited the model input data to only intersections that had two-way major and minor 
roads (i.e. four legs at each intersection). For this model, the AADT for each road was used. The 
second approach was to model the volumes by leg. The sample of intersections included both 
one-way and two-way approaches for both major and minor roads. To do this, two-way AADT 
was converted so that only one leg of the intersection was being modeled.  Figure 4.3 shows how 
the AADT volumes were converted to one leg of the intersection based on one-way or two-way 
traffic.  For major or minor approaches that were two-way, the major AADT was divided by two. 
For one-way approaches, the AADT is the volume on the leg. This approach assumes that the 
volumes on the major road are proportional in each direction which may not be necessarily true 
in reality. However, estimating volumes by leg allows the user to estimate AADT at one-way 
facilities (and possibly three-leg intersections).  

The selection of the final models was based both on the model fit and diagnostics and the ability 
to readily gather the data for volume estimation.  After a preliminary analysis, it was clear that 
not all roadway-related variables would be predictors of minor road volumes. The analysis 
indicated that the following variables were at least partially correlated to minor leg AADT and 
were used in the model building:  

 Presence of major and minor exclusive right or left turn lanes,  

 Average number of approach thru lanes on major and minor legs, 

 Speed limits, 

 Presence of center lane (two-way left-turn lane (TWLTL)), and 

 Road width.  

Despite some initial promise, inclusion of more complicated network variables (e.g. street 
network density) or the demographic variables (e.g. county and city income levels) did not 
substantially improve the models. The detailed outputs from the modeling runs are not provided 
in the chapter text. Rather, only the final models with the significant variables are presented. 
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Figure 4.3: Adjusted AADT for Use in the Volume by Leg Models 

4.3 RESULTS 

The following section presents the analysis and results obtained from the model generation 
process using the sample sites. As described previously, the results of both models are presented 
in succession along with model fit parameters. 

4.3.1 Descriptive Statistics 

The following section presents the descriptive statistics of the variables used in the models. The 
initial AADT estimation sample consisted of 78 intersections. However, volumes on parallel 
facilities with the same functional class as the minor road were not available for all intersections. 
Therefore, the final sample used for AADT modeling consisted of 66 intersections.  Table 4.1 
shows the distribution of one-way and two-way approaches in the sample. 
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Table 4.1: Types of Intersection Approaches Minor Volume Models 
Major Leg Minor Leg 

One-way Two-way 
One-way 6 5 
Two-way 4 51 

Total 10 56 
 

A majority of the intersections (77 percent) in the sample are two-way facilities on the major and 
minor roads, while nine percent of the intersections were one-way for both roads. Table 4.2 
shows the descriptive statistics for the variables used in modeling the minor road AADT. Within 
the sample, the major road AADT for 2013 varies from 1806 to 29,500 vehicles per day (vpd). 
The parallel facility volume also encompasses a wide range of AADT values, varying between a 
minimum of 733 to a maximum of 18,497 vpd. The average number of approach thru lanes on 
the major road (sum of the number of through lanes on each major approach divided by 2) varied 
between one and four, whereas on the minor road they varied between one and three. The speed 
limit on the major road ranged from 20 to 55 mph and on the minor road it varied between 15 to 
45 mph. Similarly, road width for the major road varied from 30 to 83 feet, whereas for the 
minor the width varied from 30-73 ft.  The population and income variables also showed 
significant variation between various cities and counties as shown in Table 4.2. 

Table 4.2: Descriptive Statistics for Minor Volume Models 
Parameter Min Max Mean St.Dev 

AADT Major Road Volume (2013) 3,612 44,464 17,757 8,5551.741
Log (Major Road Volume) (2013) 3.26 4.47 3.95 0.229
Parallel Facility Volume (2013) 733 18,497 6,083 4,006.19
Log (Parallel Facility Volume) (2013) 2.87 4.27 3.69 0.30

Roadway Average Number of Approach Lanes 
on Major Road 

1 3 1.98 0.63

Average Number of Approach Lanes 
on Minor Road  

1 3 1.39 0.59

Speed Limit on Major Road (mph) 20 55 33.26 7.32
Speed Limit on Minor Road (mph) 15 45 28.98 6.81
Road Width of Major Road (ft) 30.33 83.36 55.32 15.46
Road Width of Minor Road (ft) 30.28 72.92 44.65 9.91

Socio-
Demographic 

County Population 16,018 766,135 281,976 195,025.19
County Per Capita Income 16,352 32,781 25,564 4,070.84
County Median Income 35,578 64,352 49,511 12,165.80
City Population 9,368 609,456 85,360 8,4381.41
City Per Capita Income 16,441 35,823 24,620 4,412.50
City Median Income 25,455 92,773 48,384 12,165.80

Network Road Network Density 4.27 39.87 18.06 6.77
Intersection Density 6.24 305.49 99.37 60.92
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A few variables were coded as dummy variables (either 0 or 1) to be included in the model. A 
value of zero indicates that the facility (major or minor road) did not have a particular feature, 
while a value of one indicates the presence of the feature.  Table 4.3 shows a list of dummy 
variables used in the models. A total of 53 intersections in the sample had an exclusive left turn 
lane on the major road and 43 had left turn lanes on the minor road respectively. Similarly 38 
and 52 intersections in the sample did not have the TWLTL for the major and minor roads. 
While only four major roads in the sample were classified as collectors, 43 minor roads were 
classified as collectors. 

Table 4.3: Summary of Categorical Variables for Minor Volume Models 
Parameter  0=No 1=Yes 
Exclusive Left Turn Lane of Major Road 13 53 
Exclusive Right Turn Lane of Major Road 43 23 
TWLTL Lane on Major Road 38 28 
Exclusive Left Turn Lane of Minor Road 23 43 
Exclusive Right Turn Lane of Minor Road 44 22 
TWLTL Lane on Minor Road 52 14 
Functional Class of Major Road: Collector 62 4 
Functional Class of Minor Road: Collector 23 43 
 
4.3.2 Models to Estimate Total Minor Entering Volume (AADT) 

For this set of models, the goal of the AADT estimation effort was to develop a regression model 
to predict the minor road AADT at intersections where both major and minor roads were two-
way facilities. The research team, therefore, estimated two models -- one with the volumes from 
a parallel facility included as an independent variable and one without.  Table 4.4 shows the 
significant variables for the model that includes values from a parallel facility along with model 
fit parameters and goodness of fit parameters. The R-squared of the model is 0.63 and the 
standard error of the residuals is 0.19. Table 4.5 shows the model fit parameters for the model 
estimated without the parallel volume variable. The R-squared of the model is 0.60 and the 
standard error of the residuals is 0.1945.  

As shown in both tables, major road volume has a positive relationship with minor road AADT, 
implying that as major road volume increases, minor road AADT also increases. Other variables 
that show a positive relationship include the nearest parallel road volume, if the major road is a 
collector or the minor road is a minor arterial. The only variable that exhibited a negative 
relationship with log (AADT) for the minor road was the average number of approach lanes on 
the major road.  

Further diagnostics of the models are shown in Figure 4.4 and Figure 4.5. To better understand 
the model outputs, the predicted and observed volumes are transformed back to volumes (rather 
than log model inputs. In the figures, the plot in the upper left shows the predicted minor 
volumes on the y-axis with the observed minor volumes on the x-axis. The solid line represents 
the equal line (where the modeled volume would equal observed volumes). In these plots for 
both models, it is clear that modeled and observed volumes are in reasonable agreement. To 
explore any issues with bias by major road volumes, the plot in the upper right shows the 
residuals on the y-axis with the observed major AADT on the x-axis. The two lower histograms 
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show two other diagnostics that explain the predictive quality of the models. In the lower left, the 
histogram shows the absolute percent predicted error as well as the mean absolute percent error 
(MAPE).  Finally, in the lower right the histogram shows the error expressed in vehicles per day 
as well as the mean error. 

Inspection of the goodness of fit parameters presented in the tables and plots in the Figure 4.4 
and Figure 4.5 indicate that the final selected models do a reasonable job of estimating the minor 
road AADT. The mean absolute error is about 36 percent with the majority of the estimates 
having less than 50 percent error and only a small number of locations have high percent error. 
The mean error (the difference in the predicted minor volume and actual minor volume) is 
around 2,000 vpd. As shown in the histogram, the majority of these errors are less than 2,000.  
The errors (residuals) do not show any trends over the range of major AADT included in the 
model (3,600 to 44,400 vpd). Given that the models will be used to estimate minor volumes that 
will be then be applied in SPF for crash prediction, the level of error is acceptable. Finally, there 
does not seem to be any practical difference between the models estimated (though the model 
that includes the parallel facility volume has better goodness of fit and diagnostic performance).  

 

Table 4.4: Model Outputs for Total Minor Entering Volume, Two-way Major and Minor 
Roads (with Parallel Facility) 
Parameter  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.6837 0.5752 0.68 0.4998 

log(Major AADT) 0.686 0.1432 4.79 0.0000** 

log(Parallel AADT) 0.1764 0.0991 1.78 0.0818* 

Avg. Number of Approach Thru 
Lanes on Major Road 

-0.1636 0.0548 -2.99 0.0046** 

Func. Class Major (Arterial=0, 
Collector=1) 

0.2384 0.1141 2.09 0.0423** 

Func. Class Minor (Arterial=0, 
Collector=1) 

-0.29235 0.0646 4.53 0.0000** 

Residual standard error 0.1900 on 45 degrees of freedom 
R-squared Multiple R-squared:  0.6268, Adjusted R-squared:  0.5854  
F-statistic 15.12 on 5 and 45 DF,  p-value: 1.046e-08 
* Significant at the 90 percent confidence level, ** Significant at the 95 percent confidence level 

 
The resulting equation associated with Table 4.4 and AADT estimation using traffic volume 
information from a parallel facility can be represented by the following equation: 

 
log 	

0.6837 0.686 log
0.1764 log 	 0.1636 0.2384
0.29235  
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Where: 
 LNMajor = Average number of approach thru lanes on the major road  
 FCMajor = Value of 1 if major road is a collector, otherwise a value of 0. 
 FCMinor = Value of 1 if minor road is a collector, otherwise a value of 0. 

Table 4.5: Model Outputs Total Minor Entering Volume, Two-way Major and Minor Roads 
(without Parallel Facility) 
Parameter  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 1.05631 0.5559 1.31 0.197 

log(Major AADT) 0.7698 0.1384 5.56 0.0000** 

Avg. Number of Approach Thru 
Lanes on Major Road  

-0.1915 0.0537 -3.56 0.0009** 

Func. Class Major (Arterial=0, 
Collector=1) 

0.2343 0.1167 2.01 0.0506** 

Func. Class Minor (Arterial=0, 
Collector=1) 

-0.32851 0.0627 5.24 0.0000** 

Residual standard error 0.1945 on 46 degrees of freedom 
R-squared Multiple R-squared:  0.6006, Adjusted R-squared:  0.5658 
F-statistic 17.29 on 4 and 46 DF,  p-value: 1.009e-08 
* Significant at the 90 percent confidence level, ** Significant at the 95 percent confidence level 

 
The resulting equation associated with Table 4.5 and AADT estimation without using 
information from a parallel facility can be represented by the following equation: 

log 	

1.05631 0.7698 log 0.1915 0.2343
0.32851  

Where: 
All variables are as previously defined. 
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Figure 4.4: Diagnostic Plots for Total Minor Entering Volume (with Parallel Facility AADT) 

 

Figure 4.5: Diagnostic Plots for Total Minor Entering Volume (without Parallel Facility AADT) 

4.3.3 Models to Estimate Minor Volume by Leg 

In this model, both one-way major and minor facilities are estimated. Each two-way facility in 
the sample included 50 percent of the volume for each leg and 50 percent for the number of 
approach thru lanes as described previously. Therefore the model was able to incorporate all 66 
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intersections in the sample. Again, two models were estimated—one with the volumes from 
parallel facility included as an independent variable and one without. Table 4.6 shows the 
significant variables along with the associated model fit parameters and goodness of fit 
parameters. The R-squared of the model is 0.73 and the standard error of the residuals is 0.22. 
Table 4.7 shows the model fit parameters for the model estimated without the parallel volume 
variable. The R-squared of the model is 0.69 and the standard error of the residuals is 0.23. As 
shown in both tables, four variables were significant predictors of the minor AADT. These 
included log transformed parallel road volume, number of approach thru lanes on minor facility 
(avg. if two-way), if the minor facility was an arterial, and the presence of a TWLTL on the 
major facility. Except for the TWLTL variable on the major facility and functional class of the 
minor road, all the other variables showed a positive relationship with minor facility AADT. 

Table 4.6: Model Outputs for Minor Volume Estimation Model By Leg (with Parallel 
Facility AADT) 
Parameter  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 0.9815 0.5542 1.77 0.0816* 

log(Major AADT) 0.2318 0.1265 1.83 0.0718* 

log(Parallel AADT) 0.3019 0.0981 3.08 0.0031** 

Number of Approach Thru Lanes 
on Minor Road  

0.321 0.0568 5.65 0.0000** 

Func. Class Minor (Arterial=0, 
Collector=1) 

-0.2511 0.065 -3.86 0.0003** 

Major TWLTL (0=No, 1=Yes) -0.1299 0.058 -2.24 0.0287** 

Residual standard error 0.2191 on 60 degrees of freedom 
R-squared Multiple R-squared: 0.7312, Adjusted R-squared:  0.7088  
F-statistic 32.65 on 5 and 60 DF,  p-value: 6.372e-16 
* Significant at the 90 percent confidence level, ** Significant at the 95 percent confidence level 

 
The equation for minor traffic volume estimation by leg, as shown in Table 4.6, when traffic 
volume information is available from a parallel facility can be shown as follows:  

log 	 	

0.9815 0.2318 log
0.3019 log 	 0.321 0.2511
0.1299  

Where: 

 TWLTLMajor = Value of 1 if TWLTL present on major approach, otherwise value of 0. 

All other variables are as previously defined. 
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Table 4.7: Model Outputs for Minor Volume Estimation Model By Leg (without Parallel 
Facility AADT) 
Parameter  Estimate Std. Error t value Pr(>|t|) 

(Intercept) 1.8516 0.5088 3.64 0.0006** 

log(Major AADT) 0.2945 0.1332 2.21 0.0308** 

Number of Approach Thru Lanes 
on Minor Road  

0.3393 0.0602 5.63 0.0000** 

Func. Class Minor (Arterial=0, 
Collector=1) 

-0.2892 0.0681 -4.24 0.0001** 

Major TWLTL (0=No, 1=Yes) -0.1382 0.0618 -2.24 0.029** 

Residual standard error 0.2338 on 61 degrees of freedom 
R-squared Multiple R-squared:  0.6888, Adjusted R-squared:  0.6683 
F-statistic 33.75 on 4 and 61 DF,  p-value: 7.627e-15 
* Significant at the 90 percent confidence level, ** Significant at the 95 percent confidence level 

 
The equation for minor traffic volume estimation by leg, as shown in Table 4.7, when traffic 
volume information is not available from a parallel facility can be shown as follows:  

log 	 	

1.8516 0.2945 log 0.3393 0.2892
0.1382  

 
Where: 

All variables are as previously defined. 
 
Additional diagnostics of the models are shown in Figure 4.6 and Figure 4.7. Overall, the 
goodness of fit parameters presented in the tables and inspection of the figures reveal that the 
final models do a reasonable job of estimating the minor road volume by leg. The mean absolute 
error is about 43 percent for the models that include the parallel facility volume and about 47 
percent for the model that does not. Still, the majority of the estimates have less than 50 percent 
error and only a small number of locations have a high percent error. The mean error (the 
difference in the predicted minor volume and actual minor volume) is around 1,000 vpd. This 
corresponds to the error in the total entering volume since the analysis primarily modelled 50 
percent of the AADT for the two-way legs. As shown in the histogram, the majority of these 
errors are less than 1000.  The errors (residuals) do not show any trends over the range of major 
AADT included in the model (1800 to 29,000 vpd). Finally, there does not seem to be any 
practical difference between the estimated models, though the model that includes the parallel 
facility volume does have a better goodness of fit and diagnostic performance.  
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Figure 4.6: Summary Diagnostic Plots for Minor Volume Estimate by Leg (with Parallel Facility 
AADT) 

 

Figure 4.7: Summary Diagnostic Plots for Minor Volume Estimate by Leg (without Parallel 
Facility AADT) 

4.4 REVIEW OF AADT MODEL VALIDATION 

The models were validated by applying them to twenty-five new intersections that were not used 
in model development. These intersections were sampled from across the state. Of the 25 
intersections selected for validation, nine were in Region 1 (36 percent), five in Region 2 (20 
percent), five in Region 3 (20 percent), four in Region 4 (16 percent), and two in Region 5 (8 
percent). A detailed description of the validation effort is presented in Appendix C.  The 
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selection of these intersections was based on available data, including major and minor volumes 
and the volume on the parallel facility. Overall, the models estimated the minor facility AADT 
reasonably well. For the models estimating total minor entering volume the mean absolute error 
was 1,950 vpd and the MAPE was 52.4 percent.  For the models estimated by leg, the mean 
absolute error was 1,400 vpd and the MAPE was 49.1 percent. Thus, the models were judged to 
produce reasonable estimates of minor volumes when applied to the new data set.  

As a further test, the regression models to predict minor facility AADT were re-estimated using a 
larger set of intersections drawing from both the training and the validation set. The research 
team used a total of 91 intersections for this re-estimation effort. Two sets of models were 
estimated for total entering volume and by leg without using parallel facility volume as a 
predictor. The goodness of fit parameters revealed that these models performed reasonably well 
in predicting minor road AADT and were similar to the models estimated using training data 
only. However, as the validation intersections were not chosen randomly, the research team 
recommends the use of models estimated using the training data only as presented in this chapter. 

4.5 SUMMARY 

If both approaches to the intersection are two-way streets, the recommended model is the model 
to estimate total entering volume. The models should not be applied to major roads with AADTs 
that exceed 30,000 vpd. The models can be applied with or without the nearest parallel facility 
AADT. This information is relatively easy to obtain, but if the parallel facility volume cannot be 
obtained or is not available, the prediction of the minor volume can be determined with the 
model developed without this parameter. If the minor volume to be estimated is either a one-way 
street or intersects a one-way street, the models developed to estimate volumes by leg can be 
used. Note that models for three-leg intersections were not specifically developed. The models 
for estimating volume by leg could be used. 

Based on the parameter specifications used in model estimation, the research team recommends 
that the model be applied within the following ranges:  

 Major road AADT < 44,000, 

 Parallel road AADT < 18,500, 

 Average of approach thru lanes on major road < 3 (for model to estimate total 
entering volume, 

 Average of total approach thru lanes on minor road < 3, and 

 Functional classification of major and minor roads either arterials or collectors.  

One acknowledged limitation is that the total entering models assume that the minor entering 
volumes will be the same from both directions. In addition, the models are calibrated to 2013 
traffic volumes. To adjust the volume to current or other years, the year-to-year correction 
factors will need to be applied as shown in Appendix B. 
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4.5.1 Sample Application 

To illustrate how the estimated model could be applied to predict the AADT for the minor road, 
a hypothetical problem is presented. Consider a hypothetical intersection with the following 
parameters:  

 Two-way major AADT – 10,000 vpd 

 Number of Thru lanes on Major approach 1 – 2 

 Number of Thru lanes on Major approach 2 – 2 

 Number of Thru lanes on Minor approach 1 – 2 

 Number of Thru lanes on Minor approach 2 - 2 

 AADT of parallel facility – 6,000 vpd 

 Major facility is an arterial  

 Minor facility is a collector  

 Major facility does not have a TWLTL 

Solution: 

The intersection is a two-way major and minor facility. For the intersection in this example, the 
report recommends using the estimated coefficients for the total entering minor volume model 
listed in Table 4.4. Since both major and minor roads are two-way facilities, the average number 
of approach thru lanes on the major and minor road is estimated as 2 using the following 
formula. 

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	1
	 	 	 	 	 	 	 	2 /2  

Thus, the minor road AADT at this intersection can be estimated by substituting the values into 
the appropriate equation. 

log 	
0.6837 0.686 log 10,000
0.1764 log 6000 0.1636 2 0.2384 0 0.29235 1  

log 	 3.475 

Therefore total minor entering AADT = 103.475 = 2,983 => 2,900 vpd (rounded down).
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5.0 SAFETY ANALYSIS FOR SIGNALIZED INTERSECTIONS 

The process for the development of signalized intersection SPFs for Oregon included identifying 
intersection-related (IR) crashes followed by the initial SPF development activity, model 
validation, and final (enhanced) model refinement. This chapter summarizes these model 
development activities. At the initial stages of this effort, the research team found that defining 
IR crashes can prove challenging when modeling the expected number of crashes at signalized 
intersections. In general, the closer a crash is located and subsequently coded in relation to an 
intersection the more likely the crash actually is related to some sort of intersection maneuver or 
activity. Yet, specific features of the intersection, such as left turn pockets, design speed, skew 
angle, etc. most likely affect IR crash location. The crash could be shown at some unknown 
distance upstream the intersection when it is actually due to actual intersection activities. The 
extent of the intersection functional area (IFA), a factor of volume, queue storage, speed, and 
deceleration, is likely to affect the distance an IR crash is located from an intersection. 

Before developing reliable SPFs, therefore, the research team faced the task of correctly 
identifying related crashes. These IR identification efforts are addressed in Sections 5.1and 5.2 
followed by the SPF development activities presented in Section 5.3 and 5.4. 

5.1 MATCHING CRASHES AND INTERSECTIONS 

Although it is natural to expect that some given distance from an intersection could be used as an 
indicator as to whether a crash is related to that intersection, there is no general agreement about 
a maximum distance for which a crash is too far to be considered when conducting a safety 
analysis of that intersection. A threshold of 250 feet is a common distance used to indicate that a 
crash is IR for many state crash databases. In fact, California, Indiana, and Ohio, among other 
state DOTs, use this threshold to define IR areas at the physical intersection of two roads. In 
contrast, Utah and Pennsylvania DOTs identify some IR crashes that extend up to 500 feet 
upstream of the roadways centerline intersection (Stollof 2008). 

5.1.1 Investigating a Threshold for Distance from Intersection for Crash 
Classification in Oregon 

The research team performed an investigation to classify crashes as IR utilizing a subset of the 
data collected for this research. The main purpose of this effort was to establish a feasible 
distance from each intersection to confidently determine IR crashes for the subsequent crash 
modeling activities using the Oregon data. The study data offers an excellent opportunity to 
establish this threshold, as this source data consists of a probability sample representative of the 
state. The additional effort of identifying this IR threshold not only allows accurate crash 
identification to be used at later stages of this research, but also provides information for how 
practitioners and future researchers can quickly determine if a crash should be attributed to an 
intersection. 
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5.2 METHODOLOGY 

The research team determined the IFA for each leg of the 73 intersections available for SPF 
development. For a leg, the IFA encompasses the area defined by two thresholds: (1) the 
upstream stopping sight distance (SSD) of the farthest IR geometric feature for that leg 
(measured in feet), and (2) the downstream SSD. The intersection IFA is the four-legged shaped 
area that results from simply joining the set of leg IFAs at a given intersection. This shape is 
similar to the definition provided in the document A Policy On Geometric Design of Highways 
and Streets (commonly referred to as the Green Book) (AASHTO 2011). 

The researchers imported the intersection geometric database information and geo-located crash 
data for years 2010 to 2012 into a GIS commercial software (ESRI 2011). The research team 
defined circular buffers around each intersection utilizing different radii, including the IFAs 
previously computed for each intersection (see Figure 5.1). The largest buffer at any given 
intersection was defined by a radius equal to the largest IFA for that particular intersection, 
denoted Max IFA.  

 
Figure 5.1: Sample Sites with Buffers at Various Radii 

The research team examined the differences between buffer radii but did not find any radius that 
performed significantly better than others. For this reason, the research team decided to perform 
a systematic evaluation of various classification methods based on the set of crashes within the 
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Max IFA buffers. The research team considered that a critical step was necessary prior to the 
statistical analysis: manually classifying the 1944 crashes identified within the max IFA buffers 
as either IR or not. This effort is summarized in Section 5.2.1. 

5.2.1 Manual Classification of Intersection Crashes 

To manually classify each crash, the research team drew from the combined data available from 
the geo-location of crashes, the geometric database, and the various fields in the ODOT crash 
database. 

Naturally, the extent of each buffer radius depends heavily on specific intersection features, as 
Figure 5.2 shows for three select intersections. In this figure, green circles indicate a crash 
related to an intersection (IR), and black diamonds indicate non-IR crashes. It is clear from 
Figure 5.2 that the buffers encircled crashes that corresponded to other streets or intersections in 
several instances. Figure 5.3 shows an example of non-IR crashes in the buffer that are clearly 
unrelated to the intersection of interest. After filtering and cleaning the crash database from these 
types of locations, the research team identified 1535 crashes from the initial pool of 1944 
candidate crashes. 

 
Figure 5.2: Sample Sites of various IFA Radii 
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Figure 5.3: Sample Site at Low Speed Limit Urban Area 

The research team found that 1330 of the 1535 crashes were geocoded within an IFA in the 
sample. This preliminarily finding indicates that geo-location is a clear indicator of potential IR 
crashes (1330/1535=0.866), in general. However, only 551 of these crashes included crash report 
codes that indicated a traffic signal might be associated with the crash. This number remained 
low (673) even after the research team explored alternative IR codes in the Oregon crash 
database (i.e. ‘Left turn refuge’, ‘Left turn arrow’, ‘right turn prohibited on red’ etc.). There were 
65 of the crashes coded as ‘stop sign’ and 96 coded as ‘No Control’ that were geo-located within 
the IFA of a study site. 

5.2.2 Manual Classification of Intersection Related Crashes 

The research team proceeded to manually classify the 1535 crashes either as IR or non-IR using 
the combined information from geo-location, the reported crash descriptions, and their relation 
with geometric characteristics from each site.  

First, the research team inspected all the 205 crashes that did not correspond to any IFA to 
confirm that the coding in the crash database did not indicate they were IR. Only 105 of these 
crashes were coded as related to one of the study signalized intersections. Upon consideration of 
additional crash report code categories that might indirectly indicate a signalized intersection, 
this count increased to 110 crashes. Given these numbers, the research team estimated that the 
chances of a crash being coded as signal related are roughly 50 percent (110/205) when that 
crash does not fall within any IFA.  
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A subtotal of 1440 IR-candidates crashes resulted from pooling all crashes within IFAs with the 
110 crashes outside IFAs that were coded as involving a traffic control device (TCD) related to a 
traffic signal. This rule alone would exclude only 87 of the 1535 candidate crashes to be 
classified as non-IR for this analysis. However, 476 out of the 1440 IR candidate crashes were 
located closer to encroaching non-signalized intersections (456 upstream and 20 downstream of 
the signalized intersections under study). The research team noted that most of these crashes 
were not likely to be IR, but would be erroneously classified as IR because they are located 
within the IFA. After a closer examination of the corresponding crash database records, the 
research team determined that 306 upstream and 16 downstream of these crashes are clearly 
associated with an encroaching non-signalized intersection instead of the studied signalized 
intersection in close proximity. This finding reinforces the notion that geo-location (combined 
with aerial photography in this case) tends to correctly capture complex situations that may not 
be observed when only using the information in the crash database. 

Finally, for the purposes of this research, the research team established a definitive IR 
classification as follows: 

1. The 110 crashes that were coded as IR in the crash database but not geo-coded as 
such (via indications of an intersection TCD); and  

2. Any crash that was geo-located within an IFA, but that was not closer to an 
encroaching non-signalized intersection.  

In total, 964 crashes were identified as IR and 571 crashes were identified as non-IR. 

The creation of a database and manual crash classification is time consuming, thus explaining the 
appeal of using radius / distance thresholds as previously discussed. Rules that utilize such 
distance thresholds are popular, even with the prospect of potential shortcomings. By using such 
rules, a researcher or practitioner places their trust on the reliability of geo-location as a critical 
piece of information supplementing the codes in the crash database records. For these rules to be 
useful, therefore, distance from the intersection (as can be obtained from the geo-locations of 
crash and intersection) should correlate highly with the likelihood of a crash truly being IR. This 
preliminary examination of the data offers clues that that is likely the case.  

Next, the research team performed a formal evaluation of various screening methods, using the 
dataset readily assembled for that purpose. In Section 5.2.3, two basic types of screening 
methods are compared: 

 Rules that utilize distance thresholds, and  

 Rules based on predicting models by utilizing a distance from the intersection as well 
as other potential predictors.  
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5.2.3 Statistical Analysis on Distance, Speed Limit and Max IFA for 
Intersection Crash Classification 

To compare models to assess the IR crash selection screening rules –based only on distance 
thresholds –the research team partitioned the database into two subsets: a training set consisting 
of three quarters of the dataset (i.e. 55 intersections containing 1149 crashes) selected at random, 
and a validation subset consisting of 18 intersections containing 386 crashes. The objective of 
setting aside the validation subset is to later perform comparisons using a subset of sites that is 
independent to either of the two methods (i.e. distance-based rules vs. rules based on statistical 
models). 

Utilizing the training subset database, the research team developed logistic models to estimate 
the probability of a crash being IR, given a set of predicting variables. The general form of the 
models is represented by the following equation: 

∙  

Where: 
 = Probability of a crash being related to an intersection; 

X = vector of fixed-effect predictors; 
 = coefficients corresponding to fixed-effect predictors; 
 = random effect for ith intersection; and 

  = nested random effect for ith approach in jth intersection. 
 
Utilizing this general model, the research team developed four candidate models that included 
different predictors. Interestingly, all models incorporated distance from intersection among their 
independent variables. Table 5.1 summarizes the variables included in each of the four candidate 
models. 
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Table 5.1: Predictors included in Probability Models Developed 

Model 
Distance 

(ft) 
Speed Limit

(mph) 

IFA 
(1=inside, 

0=otherwise)

Distance to 
Intersection 

Upstream (ft) 
Distance Model (DS mod) X 

Speed Limit Model (SL mod ) X X 
 

IFA Model 1 (IFA1 mod) X X 
 

IFA Model 2(IFA2 mod) X X X 

 

As an example, Figure 5.4 shows the probability curves resulting from the first two models in 
Table 5.1. There are two important thresholds represented as dashed lines indicated in this figure. 
The vertical dashed line indicates a distance of 250 feet from the intersection, a commonly used 
rule to identify IR crashes. The horizontal line shows a probability of 0.5, which is a natural 
breaking point for the probability curves. 

 

Figure 5.4: Probability curves from DS mod (left) and SL mod (right) 

As can be seen for the DS model, the natural IR/non-IR breaking point occurs around 300 feet 
from the intersection. However, for the SL model, speed limit clearly determines how far from 
the intersection a curve crosses the 0.5 horizontal line. In general, the higher the speed limit, the 
more likely that IR crashes are located farther from the intersection. 

5.2.3.1 Developing Screening Rules based on Statistical Models 

The purpose of developing these models is to estimate the probability that a crash was IR. 
In order for these models be useful as screening tools, the researchers need to set an 
adequate probability threshold to use (i.e. How high are the chances that a crash that is IR 
should be identified as IR?). 
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Four thresholds were selected: 25, 50, 75 and 90 percent. On the one hand, a threshold of 
25 percent implies that there is a probability of 0.25 that an IR crash will be identified as 
an IR crash. Therefore, the highest number of IR classifications should result when using 
this threshold. A potential shortcoming is that a significant proportion of crashes are not 
likely to be associated with the intersection. On the other hand, the lowest number of IR 
classifications should result from using the strictest threshold: 90 percent, with all or 
almost all of these crashes being IR in reality. The expected shortcoming in this case is 
that a considerable number of actual IR crashes will likely be classified as non-IR.  

Section 5.2.4 describes the evaluation of various crash screening methods, including the 
alternative methods that utilized the probability models described in this section. 

5.2.4 Evaluation of Crash Screening Methods using the Validation Subset 

Using the validation subset, the researchers evaluated different screening criteria based on 
adequate performance measures.  

In addition to applying the screening methods based on the developed models, the research team 
compared the performance of two rules commonly used by the transportation community to 
identify IR crashes. The first rule is to classify any crash within a radius of an intersection as IR 
(commonly a value of 250 feet). The second rule includes the crashes from the previous criterion 
but it also adds any crash that is coded in its database record as related to an intersection TCD, 
even when the crash may be located a distance greater than the selected radius from the 
intersection. The research team developed six specific methods, based on three thresholds for the 
maximum radius rule: 

 The commonly used 250 feet distance; 

 A value of 300 feet as clearly suggested in Figure 5.4; and  

 A narrower threshold of 200 feet, to try to identify a trend by these rules.  

In total, considering the six distance-rule methods and the 12 methods based on statistical models 
(i.e. the 3 first model specifications x 4 probability thresholds), the research team compared the 
performance of 18 different screening methods for the validation data. 

5.2.4.1 Measures of Effectiveness 

In order to evaluate the individual screening methods, the research team classified each 
crash in the validation data subset using each of the methods selected for evaluation. 
When all crashes in the validation dataset were classified by all methods, the research 
team computed the following quantities from the outcomes of each method: 

 The cumulative frequencies of the four possible outcomes when classifying IR 
crashes (True IR, False IR, True non-IR, and False non-IR).  

 The percentages of types I and II errors: 
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o Type-I error= (False non-IRs) / (False non-IRs + True IRs); and  

o Type-II error= (False IRs) / (False IRs + True non-IRs).  

 The outcome percentages of True IRs and True non-IRs per each method of 
screening:  

o %True IRs=(True IRs)/ (True IRs+False IRs); and  

o %True non-IRs=(True non-IRs)/ (True non-IRs+False non-IRs) 

5.2.4.2 Classic Crash Screening Method Validation Analysis 

Table 5.2 shows the results ranked by the absolute difference between false IRs and false 
non-IR. This difference is of particular interest, since the purpose of this study is to 
develop an SPF which will ultimately be used to predict crash frequency; therefore, an 
SPF is expected to yield better predictions if the total absolute amounts of type-I and 
type-II errors tend to be the same (i.e. tend to ‘cancel out’).  

Table 5.2: Performance of Screening Methods on Validation Data 

Rank Method 
Freq. 
True 
IRs 

Freq. 
False 
IRs 

Freq.  
True 
non-
IRs 

Freq. 
False 
non-
IRs 

Type-
I 

Error 
(%) 

Type-
II 

Error 
(%) 

 
True 
IRs 
(%) 

 
True 
non-
IRs 
(%) 

Abs(False 
IRs-False 
non-IRs) 

1 D ≤ 300 ft and TCD 227 41 68 50 18 38 85 58 9 

2 DSmod at 50% (385 ft) 222 46 63 55 20 42 83 53 9 

3 SPmod at 25% 218 71 43 62 22 62 75 41 9 

4 IFAmod1 at 25% 232 74 35 45 16 68 76 44 29 

5 D ≤ 250 ft and TCD 206 32 77 71 26 29 87 52 39 

6 SPmod at 50% 194 47 67 86 31 41 80 44 39 

7 DSmod at 25% (510 ft) 250 77 32 27 10 71 76 54 50 

8 D ≤ 200 ft and TCD 197 30 79 80 29 28 87 50 50 

9 IFAmod1 at 50% 195 20 89 82 30 18 91 52 62 

10 SPmod at 75% 181 35 79 99 35 31 84 44 64 

11 D ≤ 300 ft 186 16 93 91 33 15 92 51 75 

12 SPmod at 90% 161 32 82 119 43 28 83 41 87 

13 IFAmod1 at 75% 174 7 102 103 37 6 96 50 96 

14 DSmod at 75% (260 ft) 164 9 100 113 41 8 95 47 104 

15 D ≤ 250 ft 163 5 104 114 41 5 97 48 109 

16 D ≤ 200 ft 153 3 106 124 45 3 98 46 121 

17 DSmod at 90% (140 ft) 130 0 109 147 53 0 100 43 147 

18 IFAmod1 at 90% 127 3 106 150 54 3 98 41 147 
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The best ranked threshold-based method, as indicated by shading in Table 5.2, utilizes a 
300 feet radius in combination with crash codes that indicate TCDs contributing to the 
crash event. 

5.2.4.3 Leave-One-Out Cross Validation Analysis 

To confirm and fine tune these results, the research team performed a Leave-One-Out 
Cross Validation analysis (LOOCV). Although it is computationally intensive, this 
procedure maximizes the use of the data at hand giving detailed statistics of the expected 
performance of the different methods under evaluation. The procedure consists of the 
following steps: 

1. One intersection is set aside; 

2. The statistical models under evaluation are then developed for the remaining 72 
intersections; 

3. All methods under evaluation are applied to screening IR vs. non-IR crashes using the 
one intersection set aside at the beginning; and  

4. The above steps are repeated until every one of the 73 intersections has been set aside 
and screened for IR crashes.  

This process yields 73 performance comparisons where crashes at each intersection are 
evaluated in fairness, given that the crashes of the intersection evaluated have no bearing 
over the estimates from the model-based methods (based on the data from the other 72 
intersections).  

The research team expects that results from the LOOCV analysis should yield better 
insights regarding the potential benefits of using model-based methods than the classical 
validation approach for the following three reasons: 

 These estimates are based on several coefficient estimations and so incorporate 
variation due to regression, otherwise overlooked. 

 When considering the available data, the models are as refined as they can be for 
a ‘fair comparison’ with the other methods. Each model is fitted to data from 72 
intersections for the LOOCV procedure, in contrast to 55 intersections in the 
classical validation approach. 

 The influence of anomalies in a particular partition of the data in 
training/validation subsets is removed since results are averaged over all possible 
72:1 partitions in the dataset. 

Table 5.3 shows the averages obtained from the LOOCV procedure. This result confirms 
the preliminary finding that using a 300 feet threshold in combination with the TCD 
indicator codes is the best performing of the distance-threshold rules. Results from this  
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simple method are comparable with IFAmod1 and SPmod, the only two models that out 
performed this simple model based on the LOOCV procedure (see shaded model ranked 
third in Table 5.3). 

Table 5.3: Performance of Screening Methods using LOOCV 

Rank Method 
Freq. 
True 
IRs 

Freq. 
False 
IRs 

Freq.  
True 
non-
IRs 

Freq. 
False 
non-
IRs 

Type-
I 

Error
(%) 

Type-
II 

Error 
(%) 

True 
IRs 
(%) 

True 
non-
IRs 
(%) 

Abs(False 
IRs-False 
non-IRs) 

1 IFAmod1 at 50% 13.110 2.247 3.301 2.370 9 27 84 64 0.123 

2 SPmod at 50% 12.781 2.644 2.740 2.479 10 36 81 47 0.164 

3 D ≤ 300 ft and TCD 12.986 2.205 3.342 2.493 12 26 85 55 0.288 

4 DSmod at 50% (385 ft) 13.082 2.849 2.699 2.397 8 45 79 45 0.452 

5 IFAmod2 at 25% 13.603 2.479 3.068 1.849 5 37 82 61 0.630 

6 IFAmod2 at 50% 13.082 1.479 4.068 2.370 9 20 87 67 0.890 

7 D ≤ 250 ft and TCD 12.329 1.740 3.808 3.151 17 19 86 54 1.411 

8 SPmod at 75% 11.973 1.616 3.767 3.288 17 18 85 55 1.671 

9 D ≤ 300 ft 12.151 1.630 3.918 3.329 15 22 87 53 1.699 

10 IFAmod1 at 75% 12.123 1.329 4.219 3.356 16 13 88 61 2.027 

11 D ≤ 200 ft and TCD 11.863 1.370 4.178 3.616 19 13 88 55 2.247 

12 SPmod at 25% 13.904 3.753 1.630 1.356 5 55 76 37 2.397 

13 IFAmod2 at 75% 12.397 0.644 4.904 3.055 14 8 90 66 2.411 

14 DSmod at 75% (260 ft) 11.562 1.411 4.137 3.918 19 19 87 51 2.507 

15 DSmod at 25% (510 ft) 13.932 4.151 1.397 1.548 4 65 75 27 2.603 

16 IFAmod1 at 25% 14.356 4.123 1.425 1.123 3 62 75 36 3.000 

17 D ≤ 250 ft 11.466 1.014 4.534 4.014 19 14 89 53 3.000 

18 SPmod at 90% 11.041 0.712 4.671 4.219 21 9 89 53 3.507 

19 D ≤ 200 ft 10.986 0.630 4.918 4.493 22 8 91 54 3.863 

20 IFAmod1 at 90% 10.164 0.671 4.877 5.315 33 5 83 50 4.644 

21 DSmod at 90% (140 ft) 10.411 0.260 5.288 5.068 25 3 92 54 4.808 

22 IFAmod2 at 90% 9.836 0.055 5.493 5.616 36 2 79 55 5.562 

 

Furthermore, comparing the three best performing methods, the research team considers 
that there is little incremental gain from using any of the two better-performing methods, 
in terms of input required, statistical tool calibration, etc. In contrast, a simplistic rule of 
300 feet + TCD indicators performs similarly and much more straightforward to apply. 
This observation is also apparent in Figure 5.5. 
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Figure 5.5: Performance Comparison of Screening Methods 

The blue dashed line in Figure 5.5 indicates the ideal case of a screening method 
“cancelling out” exactly the number of false positives and the number of false negatives. 
The rule of 300 ft + TCD falls very close to this line as do the only two methods that 
outperformed this rule. 

5.2.5 Summary of Evaluation of IR Screening Methods 

The research team developed a dataset of intersections for which IR crashes were manually 
classified. This dataset was then utilized to test the performance of various classification 
methods. Some of these methods were based on popular rules based on distance from 
intersection and database codes indicating involvement of intersection-related TCDs. The 
research team developed additional classification methods based on statistical models fitted to 
the dataset of manually classified IR crashes. 

The research team compared the performance of a total of 22 classification methods utilizing two 
alternative evaluation techniques: classic validation, which utilizes a subset of sites initially 
preserved from the development of tools staged; and a Leave-One-Out Cross Validation 
procedure, which maximizes data utilization at the cost of increased need for computation power. 
Both evaluations yielded similar results: the recommended screening method identified in this 
section (i.e. 300 feet + TCD rule) were then be utilized to select the crashes for subsequent years 
and intersections for the SPF validation effort reviewed in Section 5.3 of this report. 
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5.3 SPF DEVELOPMENT 

To refine IR crash screening procedures, the research team manually reviewed a substantial 
quantity of crash data (see Section 5.2). Although the purpose of the detailed examination was to 
screen additional crash data for analysis, the research team determined that the manually 
screened dataset was sufficiently large so as to facilitate the development of the signalized 
intersection SPFs, the overall objective of this research effort. The research team reserved data 
for additional years and for additional intersections for a later validation effort as presented in 
Appendix D and summarized in Section 5.5. The modeling dataset therefore consists of 964 
crashes positively identified as IR corresponding to a total of 73 intersections.  

Procuring AADT counts was particularly challenging for minor roads. It was not possible to 
obtain this count information at all for a few intersections. Similarly, speed limit was not always 
available for all legs of all intersections. As a result, it was not possible to utilize all 73 
intersections for SPF development. Inevitably, some intersections in the dataset had missing 
information in at least one of the variables critical for this analysis.  More details on incomplete 
data points will be given later in this document. 

Given these data shortages, the research team decided to add a longitudinal component to the 
analysis, instead of treating the data simply as a cross-sectional sample of independent points. 
This strategy maximizes the amount of useful data, as well as it accounts for year-to-year 
variability in a more realistic way. Such an approach implies that the unit of analysis is not the 
sum of crashes that occurred at an intersection during a study period (2010-2012 for the dataset 
at hand); rather, the unit of analysis is total crashes per intersection for each year in the study 
period. This analysis unit will be referred to as intersection-year from this point forward in the 
document. 

Section 5.3.1 describes the statistical methodology to be applied to a dataset structured by 
intersection-year counts rather than counts by intersection. 

5.3.1 Statistical Methodology for Initial Model Development 

Because more than one time period from each intersection is to be used as an analysis unit, an 
appropriate methodology should account for the grouping structure that this feature enables: all 
crashes from a common space unit (i.e. intersection) should be considered a “family” sharing a 
“baseline” to the crash generation process at that intersection. In other words, the modeling tool 
should have a way to account for this grouping correlation, even though it is not practical to 
explicitly consider all the underlying similarities among crashes from a single location. An 
appropriate way to deal with this need is the use of random effects during the modeling effort. 
Among other properties of these effects in mixed models, they induce a grouping structure and 
treat explicitly the resulting correlation from that structure, as is required in this research. 

Specifically, the research team elected to perform the analysis using a Poisson-lognormal 
Generalized Linear Mixed model. The expected crash count at an intersection for a particular 
year is assumed to follow the Poisson (or random) distribution, whose probability function is 
represented as: 
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!
∙  

Where: 

 = Number of crashes in a year at i-th intersection; 

 = An actual count of yearly crashes, ∈ 0, ; and 

 = Mean parameter in the Poisson distribution of   at the i-th intersection.

It should be noted that in the above definition, the parameter  is defined for a given intersection 
“i.” The methodology allows a slightly different parameter to be defined for intersection “i+1”, 
that is, parameter . It is then expected then that the distribution of mean parameters in the 
dataset should influence the resulting SPF. More details will be given later in this report about 
how this distribution relates to the crash prediction that pertains to this research. 

The model estimation describes the relationship between yearly counts at each intersection and 
the critical factors via a link function, the natural logarithm in this case. For the i-th intersection, 
the next formula defines the parameter	 : 

exp ∙  

Where: 

 = Vector of fixed effects (i.e. explanatory variables); 
 = Vector of fixed-effects coefficients; and 

 = Random effect for i-th intersection. 

All other variables as previously defined. 

The above definition implies that, in general, different intersections have different crash 
expectations, even when all predictors in the vector X are the same (say, all the critical variables 
considered for this analysis: MjAADT, MnAADT, MjSpLm, and MnSpLm). 

5.3.1.1 Implications of Selected Statistical Methodology for Crash Prediction 

It is of interest to develop predictions about a larger population of intersections thought to 
be represented by the study dataset. This is a reasonable assumption since the dataset is a 
random sample of intersections in Oregon. For the purposes of this analysis, the 
population can be defined as “all signalized intersections with a crash history in the 
Oregon crash databases.”  

Because the estimation of  is performed using a set of given intersections, the crash 
prediction is inevitably affected by the variability among the intersections. If a more 
classical approach were feasible to use to fit coefficients for an NB2 regression – such as 
using Generalized Linear Models (GLM) – then the extra-Poisson variability would be 
captured by the dispersion parameter. However, for a mixed model proposed in this 
methodology, this variability is captured by the distribution of the intersection of random 
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effect. Under the assumption that this effect is normally-distributed in the link scale (an 
assumption that will be assessed from the model fit) it can be shown that: 

exp ∙
2

 

Given that 

ln ~N ∙ ,  

 

Where: 

 = Expected yearly crashes for the subpopulation of intersections 
; 

 = A particular value for , the vector of fixed effects; 
 = Variance of Intersection random effect, estimated from the 

intersections in the modeling dataset; 
N ∙ , ∙  = The normal distribution; 

 = Mean parameter for the normal distribution; and 
 = Variance parameter for the normal distribution. 

 
All other variables are as previously defined. 

 
The next section shows descriptive statistics for the dataset developed for this effort. 
These characteristics ultimately define the scope and limitations of the developed SPFs. 

5.3.1.2 Dataset Characteristics 

One advantage of utilizing the approach just described is the potential pool of 73 x 3 = 
219 intersection-years for analysis, as opposed to just 73 intersections, where the 
response is the aggregate crash counts for the three years under study. However, this 
potential pool reduces to 210 useful intersection-years considering that no AADT 
information at all is available at three intersections for any of the three years in the 
analysis period. Similarly, speed limit for the major road (MjSpLim) is not available for 
six intersection-years. In addition, there are 15 intersection-years with missing data about 
speed limit at the minor approaches (MnSpLim).  

For the two primary exposure variables (i.e. AADT variables), there are 36 intersection-
years without data for the major road (MjAADT), and 45 intersection-years with data 
missing for the minor road (MnAADT). Only 162 intersection-years have data available 
for AADT at both intersection roads. Only 150 intersection-years constitute a complete 
dataset, having data for both AADTs and both speed limits. These 150 intersection-years 
represent 50 different intersections as present in Section 3.0. Table 5.4 show the summary 
statistics for this complete dataset.  
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As shown in Table 5.4, the yearly average of total crashes per year is 5.74. Most of the 
observed IR crashes are multivehicle crashes (791 MV_Crashes out of 861 Total 
Crashes). The range of values of each of the critical variables is an important feature, as it 
determines the range of validity of the resulting SPF. These minimum and maximum 
values are shown in the “Min” and “Max” columns in Table 5.4. Consequently, this 
dataset is representative of intersections with Major AADT ranging from approximately 
5,000 to 43,000 vpd; minor AADT from 800 to 23,000 vpd; speed limit for the major 
street between 20 and 55 mph; and minor street speed limit ranging from 10 to 45 mph. 

 

Table 5.4: Yearly Statistics for Complete Intersection-year Data. Years 2010-2012 

Variable Name Description  Mean Std.Dev Min Max Total N 

Total Crashes All crashes 5.74 6.36 0 46 861 150 

MV_Crashes 
Multiple vehicle 

crashes 
5.27 6.06 0 42 791 150 

KAB_Crashes 
Fatal and serious 

injury crashes 
0.82 1.30 0 8 123 150 

MV_KAB_Crashes 
Severe crashes 
with multiple 

vehicles 

0.57 1.01 0 6 85 150 

MjAADT 
Major AADT 

(vpd) 
17203.45 8366.87 5007 43160 - 150 

MnAADT 
Minor AADT 

(vpd) 
7391.48 5184.17 807 23316 - 150 

MjSpLimMax 
Major Speed 
Limit (mph) 

33.8 7.68 20 55 - 150 

MnSpLimMin 
Minor Speed 
Limit (mph) 

28.3 6.92 10 45 - 150 

 

The variables have a positive correlation to each other as represented by large solid 
circles in Figure 5.6. Figure 5.7 shows a direct comparison of the correlation between the 
individual variables. Sites with higher speed limits, for example, tend to have higher 
AADTs, which in turn, are subject to more crashes. 



 

67 

 

Figure 5.6: Correlations Among Variables in Complete Dataset 

MjAADT exhibited the highest correlations with Total and MV crashes. MnSpLim is the 
variable with the weaker association to the first two types of crashes. Interestingly, the 
correlations of this variable with KAB and MV KAB crashes are very comparable to the 
correlations of Major AADT to these crash types. 

Unfortunately, the notable correlations between Major and Minor AADTs and between 
Major and Minor SpLim increase the likelihood of multicollinearity in SPF estimates. In 
other words, because only so much information is required to produce reasonable crash 
estimates, some relevant variables may not be part of the final SPF because their 
contribution ‘overlaps’ with the contributions of other, more influential variables in the 
prediction, despite there being important links between the less relevant variables and 
crash occurrence. 
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Figure 5.7: Scatter Plot of ln(KAB Crashes) and Critical Variables in the Complete Dataset 

Section 5.3.2 describes the model development of an SPF for total crashes at signalized 
intersections. Similarly, Sections 5.3.3 and 5.4 review the fatal and serious injury SPF 
development for the signalized intersections. 

5.3.2 Initial SPF for Total Crashes 

As a first step in the modelling process, the research team developed a full model that included 
the four critical variables (AADTs and speed limits at both intersecting roads) as well as the 
number of lanes and median types for both roads. For this full model, only the AADT terms were 
determined to be statistically significant. 

The research team then reduced the model to include a subset of individual variables for different 
alternative configurations of speed limit, number of lanes and medians, including derived 
variables such as the difference between speed limits, the module of speed limit, and sites with 
TWLTL compared to the rest, among others. None of these alternatives were more parsimonious 
than the simplest of specifications. Only the coefficient for both AADTs proved to be 
statistically significant. Table 5.5 shows a comparison between the full and reduced models. 
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Table 5.5: Analysis of Deviance for Full and Reduced Models 
Reduced model variables MjAADT, MnAADT 

Full model variables MjAADT, MnAADT, MjSpLim, MnSpLim, TWLTL, NoLanesMj, NoLanesMn 

Likelihood Ratio Test  
 Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

Reduced 4 758.04 770.08 -375.02 750.04       

Full 9 764.57 791.66 -373.28 746.57 3.4758 5 0.627 

 
Since the Likelihood Ratio test favors the reduced model, the research team recommends this 
model as the SPF for total crashes at signalized intersections. Model coefficients were then 
estimated for the recommended SPF including an additional 12 intersection-years (where traffic 
volume was known) added to the dataset used for a total of 162 intersection-years. These 12 
points were incomplete cases for the full model critical variables other than the AADT values. A 
test on the residuals of the model did not show evidence of over-dispersion (0.5442 p-value from 
a 155.375 chi-squared statistic on 158 degrees of freedom). The formulation for the resulting 
total crash model is then: 

 

 

Table 5.6 shows the coefficients corresponding to the recommended model. 

Table 5.6: Coefficient Estimates for Reduced Model 

 
Estimate Std. Error z value Pr(>|z|) 

Statistical 
Significance 

 -9.9211 1.7168 -5.779 7.52E-09 *** 
 0.7079 0.1823 3.882 0.000103 *** 
 0.5206 0.1303 3.996 6.45E-05 *** 

Var(Int) = 0.2752 
Significance values are as follows: º  p<0.1; * p <  0.05; ** p <  0.01; and *** p < 0.001 

 

The resulting SPF for total number of crashes per year, after substituting the coefficients 
estimates in Table 5.6, is as follows: 

5.63741 10 MjAADT . MnAADT .  

The research team assessed the fit of the recommended SPF to the modeling dataset using 
various graphic techniques, in order to assure the appropriateness of the model specification. 

There are two components, at a minimum, that should be reviewed when assessing the fit of 
mixed models intended for prediction: a fit to the modeling data, and (more importantly) a fit 
considering the assumptions that link the model to an underlying larger population, presumably 
represented by the modeling data. Therefore, the normality assumption of the intersection 
random effect should be verified as well. 
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Figure 5.8 shows the normal Quantile-to-Quantile plot of the random effects of the 
recommended SPF. There is only one site with an unusually large random effect (i.e. upper right 
corner), but the research team verified that this outlier does not exert undue influence over the 
model estimates. Since the normality of the intersection random effect appears reasonable, the 
research team next assessed the model fits to the sample and the projected fit to the population of 
signalized intersections in Oregon. 

 

Figure 5.8: Q-Q Plot of Intersection Random Effect 

Figure 5.9 demonstrates that the SPF fits adequately the modelling dataset. There are not enough 
degrees of freedom to statistically assess the fit using a chi-squared Goodness-of-Fit test for this 
figure. This is because the fit incorporates the 53 random effects specific to each intersection 
from the modelling dataset. 
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Figure 5.9: Marginal Distribution Fit of Model Parameters Specific to Modeling Data 

Similarly, Figure 5.10 shows an adequate fit of the SPF projected for a larger population of sites. 
This figure relies on the normality of the intersection random effects, as verified in Figure 5.8. 

 

Figure 5.10: Marginal Distribution Fit of Model Parameters Projected to the Population 

Figure 5.11 presents the observed frequencies, the model fit to the modeling sample and the 
population level projection from the model.  
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Figure 5.11: Marginal Distribution of Data and the Two Fits of Proposed SPF 

An interesting contrast between model projections is that the population projection has a clear 
shortage in its prediction of nineteen or more crashes, compared to the actual observed 
frequency. Conversely, the prediction for the sample at hand (i.e. Model fit in Figure 5.11) is 
better aligned with the observed frequency. Since the population projection draws from the 
normality assumption on the intersection random effect, the research team expects that the 
difference between distributions is reflective of the influence of the one outlying site observed in 
Figure 5.8. Nonetheless, the chi-squared test on the marginal distribution does not warrant 
removal of this intersection (per Figure 5.10). 

Finally, Figure 5.12 shows the CUmulative REsidual (CURE) plots for the two predictors in the 
SPF. Ideally, the line in a CURE plot should oscillate around the value of zero. The area 
enclosed by the red dashed lines represents the typical range for the CURE line. As the figure 
shows, the CURE lines for both variables are within the typical range, which indicates no 
concerns about significant biases of the SPF within the range of its predictors. 
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Figure 5.12: CURE Plots for Major and Minor AADTs 

5.3.3 Initial SPF for KAB Crashes 

The research team conducted a similar analysis for the most severe crash types (i.e. 
classifications K, A, and B as depicted in the ODOT crash database). Again, the research team 
started from a full model and then derived from this model the most parsimonious option 
available from the modeling dataset. The full model included both AADT, major and minor road 
speed limits, numbers of lanes on major and minor approaches, and median types. The most 
parsimonious form identified using this approach included only the MjAADT and MjSpLim. 
Model selection was guided by the Akaike Information Criterion (AIC).  

The first stage of model reduction resulted in a model with only four variables: both AADTs and 
both Speed Limits (Mod1). Only MjAADT proved statistically significant among the four 
predictors in this model. However, after eliminating the coefficient for MnAADT, there were 
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two statistically significant coefficients: MjAADT and MjSpLim (Mod2). This is clear evidence 
of multicollinearity between speed limits. Additionally, the research team suspects that another 
instance of multicollinearity (between AADTs) explains the coefficient for MnAADT failing to 
prove statistically different than zero.  

After eliminating the coefficient for MnAADT, the research team arrived to Mod3, the most 
parsimonious model from this model selection procedure. A Likelihood Ratio test clearly favors 
this model, as shown in Table 5.7.  

Table 5.7: Analysis of Deviance for Full and Reduced Models 
Analysis of Deviance for Full and Reduced Models 

Mod3   MjAADT, MjSpLim 

Mod2   MjAADT, MnAADT, MjSpLim 

Mod1   MjAADT, MnAADT, MjSpLim, MnSpLim 

Full   MjAADT, MnAADT, MjSpLim, MnSpLim, TWLTL, NoLanesMj, NoLanesMn 

Likelihood Ratio Test 

MODEL Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 

Mod3 4 368.94 380.98 -180.47 360.94       

Mod2 5 369.17 384.22 -179.59 359.17 1.7656 1 0.1839 

Mod1 6 370.66 388.72 -179.33 358.66 0.5129 1 0.4739 

Full 9 376.52 403.62 -179.26 358.52 0.1335 3 0.98757 

 
Because the sign and relative magnitude of the coefficient for MnAADT in Mod2 are similar to 
the sign and magnitude of this variable in the recommended SPF for total crashes (reduced 
model from the previous section), the research team suspects that this variable is potentially 
important, and that its lack of statistical significance is likely explained by the combined effects 
of magnitude of its contribution to the prediction, multicollinearity between both AADTs, and 
sample size relative to the reduced variability of the response when considering KAB 
intersection crashes (as opposed to total intersection crashes). For these reasons, the research 
team repeated the estimation of Mod3 substituting MjAADT by the Module AADT, defined as: 

 

This variable can be thought of as the hypotenuse of a right triangle that has both AADTs as legs 
resulting in a weighted AADT value. A nice property of the module AADT is that its magnitude 
is mostly determined by the larger AADT, but still reflective of the smaller AADT. As an 
illustration, when the smaller AADT tends to zero, the module’s magnitude simply converges 
toward the magnitude of the larger AADT. 

The research team named the new model utilizing the module AADT Mod4. Table 5.8 shows 
that Mod4 slightly improves the fit to the data (due to a smaller AIC value), compared to Mod3 
(i.e. per deviance criterion).  
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Table 5.8: AIC, BIC, LogLikelihood and Deviance Comparisons for Mod3 and Mod4 
Analysis of Deviance for Full and Reduced Models 

Mod3   MjAADT, MjSpLim 
Mod4   ModAADT, MjSpLim 

  
MODEL Df AIC BIC logLik deviance Chisq Chi Df Pr(>Chisq) 
Mod3 4 368.94 380.98 -180.47 360.94 N.A. N.A. N.A. 
Mod4 4 368.54 380.58 -180.27 360.54 N.A. N.A. N.A. 
 
The research team recommends this model be selected as the SPF for KAB crashes for signalized 
intersections in Oregon, not only because of the improved fit of Mod4, but also because it 
incorporates a variable suspected to be critical. Similar to the development of the SPF for Total 
intersection crashes, model coefficients were estimated again including an additional nine 
intersection-years not included in the model comparisons (for a total of 159 intersection-years). 
These nine additional points are incomplete cases for the set of four critical variables, but 
complete cases when only the predictors in the recommended SPF are under consideration. A 
test of the residuals of the model did not show evidence of over-dispersion (0.695 p-value from a 
145.5476 chi-squared statistic on 155 degrees of freedom). The formula for the recommended 
model is then: 

∙ ∙ ∙  

 

Table 5.9 shows the coefficients corresponding to the recommended KAB SPF. 

 

Table 5.9: Coefficient Estimates for Recommended KAB SPF 
Estimate Std. Error z value Pr(>|z|) Statistical Significance 

 -9.32681 3.00549 -3.103 1.91E-03 *** 
 0.75354 0.31337 2.405 0.01619 * 
 0.04149 0.01965 2.111 3.48E-02 * 

Var(Int) = 0.4737 
Significance values are as follows: º  p<0.1; * p <  0.05; ** p <  0.01; and *** p < 0.001 

 

The resulting equation after substituting the coefficient estimates from Table 5.6 is shown as 
follows: 

1.1279 ∙ 10 ∙ . ∙ . ∙  

Similar to the SPF for total intersection crashes, the research team assessed the fit of the 
recommended KAB SPF to the modeling dataset. 
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First, the research team verified the normality assumption of the intersection random effect. The 
graphic in Figure 5.13 shows that this is a reasonable assumption as the sample quantiles appear 
to have a linear configuration when plotted against the theoretical values. 

 

Figure 5.13: Q-Q Plot of Intersection Random Effect in KAB Model 

For the KAB model, there is not a site with any unusually large random effects (see Figure 5.13), 
as opposed to Figure 5.8. Since the normality of the intersection random effect was verified, the 
research team next assessed the model fits to the study data sample as well as the projected 
population of signalized intersections in Oregon. 

Figure 5.14 shows how the SPF fits both the modeling dataset and a larger population of sites. 
Although the adequateness of the fit is apparent from this figure, a formal Goodness-of-Fit Chi-
Squared Test on the population projection indicates that the data distribution differs from the 
model-based expected distribution (0.0309 p-value for a 6.957 chi-squared statistic on two 
degrees of freedom from the population projection fit). The research team considers the model fit 
satisfactory because of the qualitative evidence represented in Figure 5.14. Additional, there is a 
potential shortcoming of the result of the statistical test: the limited number of degrees of 
freedom available when the response is KAB Crashes instead of Total Crashes. 
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Figure 5.14: Marginal Distribution Fit of KAB SPF to Data and Population Projection 

Finally, Figure 5.15 shows the CURE plots for the two predictors in the KAB SPF. This plot 
indicates that the model tends to over-predict crashes at intersections with major speed limits of 
40 mph or more. Additionally, there is a run of negative residuals between approximately 12,000 
and 20,000 vpd for ModAADT, even though the plot remains mostly within the confines of the 
red dashed line.  

 

Figure 5.15: CURE Plots for Major SpLim and ModAADT 

The research team believes that the limited variability inherent to KAB crashes restricts the 
predictive power of the SPF developed in this section. Considering these limitations, the research 
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team elected to fit a severity model in order to take advantage of a richer dataset, comprised by 
both Total and KAB crashes. 

5.4 INITIAL PROBABILITY-BASED SEVERITY MODEL 

The research team developed a severity model to be used in conjunction with the Total Crashes 
SPF as an alternative way to estimate the severity distribution at a signalized intersection, given 
the limitations found for the KAB SPF developed in the previous section. 

The link function in this case is the logit function, also known as the log-odds function. The 
response variable is the proportion of KAB crashes to Total crashes at a given intersection for a 
particular year. Various specifications were tested in the composition of the vector of predictors, 
as in previous analyses. The most parsimonious model obtained had only one predictor: speed 
limit at the minor street (MnSpLim). However, the researchers expect that speed limit at the 
major approach also relates with severity in all likelihood, but it was not found significant due to 
the multicollinearity between the two speed limits (i.e. these are correlated variables). In a 
manner similar to developing the KAB SPF, the research team tested an alternative model 
specification that considers both speed limit variables simultaneously. In conjunction with the 
major speed limit, the speed limit differential was introduced in this model. This new variable is 
defined as: 

 

The comparison between these two models is shown in Table 5.10. The Likelihood Ratio test 
favors the parsimonious model. However, the research team still prefers the extended model 
because of its interpretability, as will be shown later. The large p-value of the test simply 
indicates that the slight improvement in log likelihood of the extended model is not substantial 
enough to warrant an additional parameter in the model. However, the extended model only has 
four parameters, thus the research team does not believe there is over-fitting involved in this 
case. 

Table 5.10: Analysis of Deviance for Parsimonious and Extended Models 
Parsimonious 

model variables 
MnSpLim 

Extended 
model variables 

MjSpLim, SpLimDif 

Likelihood Ratio Test  
 Df AIC BIC logLik deviance Chisq Chi 

Df 
Pr(>Chisq) 

Parsimonious 3 396.46 406.18 -195.23 390.46       
Extended 4 397.63 410.6 -194.82 389.63 0.8252 1 0.3637 
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The research team selected the extended model as a companion function to the SPF for total 
crashes at signalized intersections. The equation of this model is as follows:  

1
 

Where: 

 = proportion of KAB crashes, out of total crashes at an 
intersection; 

, , 	  = regression coefficient for fixed effects variables; 

 = variance of intersection random effect, estimated from the 
intersections in the modeling dataset; 

All other variables are as previously defined. 

Since no knowledge about AADTs was necessary, there were 189 intersection-years (from 63 
intersections) available to fit the severity model. Table 5.11 the corresponding coefficients. 

Table 5.11: Coefficient Estimates for Initial Probability-Based Severity Model 
 

Estimate Std. Error z value Pr(>|z|) 
Statistical 

Significance 
 -2.87248 0.51119 -5.619 1.92E-08 *** 
 0.03283 0.01468 2.236 0.0253 * 
 -0.02087 0.01133 -1.841 0.0656 º 

Var(Int) = 0.0714 

Significance values are as follows: º  p<0.1; * p <  0.05; ** p <  0.01; and *** p < 0.001 

 

It is noticeable that the variance component is quite small. This feature indicates that differences 
among intersections are minimal and almost inconsequential to the model. The resulting 
equation, when substituting the coefficient estimates from Table 5.11, is as follows: 

 
. . .

1 . . .  

A graphical assessment of the severity model is challenging because of the limited range and 
discrete behavior of the response variable (i.e. proportion of KAB crashes). However, there is 
evidence of the appropriate fit of the model. A Pearson chi-squared test on the residuals does not 
indicate over-dispersion (0.6968 p-value for 214.182 chi-squared statistic on 185 degrees of 
freedom).  
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Figure 5.16 shows increasing trends for each speed limit depicted, which is consistent with the 
implication for minor speed limit in the severity model. Finally, Figure 5.17 shows how the 
severity model varies by speed limit at the major road, and how those curves shift as a function 
of the speed limit differential.  

 

Figure 5.16: KAB Proportion of Crashes vs. Severity Model Prediction by Minor AADT 
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Figure 5.17: Severity Model Prediction vs Major AADT 

The most adverse scenario depicted in this figure occurs when the major and the minor speed 
limits are the same (i.e. SpLimDif=0). Severity decreases as the speed limit at the minor road 
decreases. 

5.5 SPF VALIDATION OVERVIEW 

Appendix D provides details about the validation analysis for the SPFs. The research team used 
the following three validation techniques to assess model suitability: 

 Model temporal transferability, 

 Model spatial transferability, and 

 Model spatial-temporal transferability. 

  

20 30 40 50 60

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

Speed Limit on Major Street (mph)

P
re

d
ic

te
d

 K
A

B
 P

ro
p

o
rt

io
n

SpDif=0

SpDif=10

SpDif=20

SpDif=30



 

82 

5.5.1 Temporal Transferability 

The validation efforts to assess temporal transferability of the initial models provided the 
following results:  

 The temporal transferability for the Total Crashes SPF resulted in a 96 percent fit 
(indicating the initial model prediction years are statistically similar to the 2013 
model prediction year). 

 The temporal transferability for the KAB SPF (initial regression model) resulted in a 
96 percent fit but appeared to overpredict crashes when the prediction exceeded 1.5 
KAB crashes per year. 

 The temporal transferability for the probability-based severity model resulted in a 94 
percent fit but did not experience the over distribution biases as noted in the KAB 
SPF regression model assessment. 

In summary, the temporal transferability analysis determined that the models are indeed reliable 
and representative of the Oregon crash conditions over time; however, the probability-based 
severity model generally represents the overall population better than the associated regression 
model (with an apparent over representation at higher crash numbers). 

5.5.2 Spatial Transferability 

The spatial transferability evaluation documented in Appendix D resulted in the following 
observations: 

 The spatial transferability for the Total Crashes SPF resulted in a 98 percent fit 
indicating similar values between observed total crashes and predicted total crashes at 
the validation sites. 

 The spatial transferability applied to the KAB SPF (regression analysis) demonstrated 
similar limitations as noted for the KAB SPF for temporal transferability. The model 
over represented crashes when the number of KAB crashes was greater than 1.6 per 
year. The validation fit, however, resulted in a 97 percent fit. 

 The model spatial transferability for the probability-based severity model resulted in a 
92 percent fit, but eliminated the overprediction problem associated with the KAB 
SPF regression model. 

The results indicate that all three models are reliable and representative of Oregon crashes, but 
once again the probability-based severity model is more precise and better represents the overall 
injury crash population. 
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5.5.3 Spatial Temporal Transferability 

An evaluation of model transferability over space and time resulted in the following 
observations: 

 Model spatial-temporal transferability for the Total Crashes SPF resulted in a 100 
percent fit demonstrating that the predicted total crashes are consistent with the 
observed crashes over time and space. 

 The KAB SPF regression model performed marginally with a 90 percent fit. The 
overprediction issue noted in the other KAB SPF models, however, was no longer 
present. 

 The probability-based severity model also resulted in a 90 percent fit. Since the 
predictions tend to be more precise for the probability model, it is logical to use this 
equivalent model so that it is consistent with the temporal transferability and the 
spatial transferability. 

The spatial-temporal transferability validation results indicate that all three models are reliable 
and representative of Oregon crashes. 

5.6 DEVELOPING ENHANCED SPF MODELS 

As summarized in the previous section, the initially developed models fit the validation datasets 
adequately; however, refining the models with a larger dataset population (original model data 
plus the validation data) is expected to further strengthen the resulting models. The procedure is 
similar to that used for the initial model development as demonstrated in the following sections. 
Since the initial modelling efforts and the subsequent model validation both indicated limitations 
for the regression based KAB SPF that were not apparent in the probability-based severity 
models, the enhanced models only include the Total Crashes SPF and the probability-based 
Severity model. 

5.6.1 Characteristics of Assembled Dataset for Model Updates 

The assembled dataset included data from 109 intersections, representing 70 intersections from 
the modelling effort, four additional intersections from the temporal validation effort (i.e. there 
four additional intersections with data, compared to the modelling effort), and 35 intersections 
from the spatial validation effort.  

The largest dataset containing all the variables in any of the developed functions (both SPFs and 
the probability-based severity model) consists of 281 site-years from 71 intersections (50 from 
the initial modelling effort, and one additional intersection from the temporal validation and 20 
additional intersections from the spatial validation). Table 5.12 shows the summary statistics for 
this complete dataset.  

As shown in Table 5.12, the range for variables is generally unchanged, suggesting the same for 
the range of application of the updated SPFs and the Severity Model. 
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5.6.2 Enhanced SPF for Total Crashes 

The original Total Crashes SPF equation format was represented as:  

∙ ∙  

 

The enhanced model for total crashes (see Table 5.13) introduced some minor changes when 
repeating the estimation of the SPF using the dataset described in the previous section. 

Table 5.12: Yearly Statistics for Complete 2010-2013 Dataset for Updating the Models 

Variable Description Mean Std.Dev Min Max Total N 

Total Crashes All crashes 5.7 5.57 0 46 1611 281

MV_Crashes 
Multiple vehicle 

crashes 
5.3 5.35 0 42 1485 281

KAB_Crashes 
Fatal and serious 

injury crashes 
0.8 1.14 0 8 227 281

MV_KAB_Crashes 
Severe crashes 
with multiple 

vehicles 
0.6 0.93 0 6 160 281

MjAADT 
Major AADT 

(vpd) 
17,496.6 8309.41 5007 44,464 - 281

MnAADT 
Minor AADT 

(vpd) 
6920.9 4605.22 800 23,316 - 281

MjSpLimMax 
Major Speed 
Limit (mph) 

33.7 7.96 20 55 - 281

MnSpLimMin 
Minor Speed 
Limit (mph) 

28.2 7.13 10 45 - 281

 

Table 5.13: Updated Coefficient Estimates for Total Crashes SPF 
 Estimate Std. Error z value Pr(>|z|) Statistical Significance 

 -8.6415 1.3575 -6.366 1.94E-10 *** 

 0.6748 0.1351 4.996 5.86E-07 *** 

 0.4168 0.1018 4.094 4.24E-05 *** 

Var(Int) = 0.2399 

Significance values are as follows: º  p<0.1; * p <  0.05; ** p <  0.01; and *** p < 0.001 

 

The resulting enhanced SPF for total number of crashes per year, when substituting the 
coefficients estimates in Table 5.13, is as follows: 

1.991 ∙ 10 ∙ MjAADT . ∙ MnAADT .  

The changes observed in the coefficient estimates reflect a trade-off between an increased 
constant term (i.e. the first factor in the formula) and slightly smaller exponents for the AADTs. 
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The enhanced estimates are within two standard errors of the initial model estimates suggesting 
that both sets of coefficients are statistically equivalent. Figure 5.18 shows the curves 
corresponding to the original and updated SPFs for a minor AADT of 7,000 vpd (i.e. roughly the 
average in the complete dataset shown in Table 5.12). 

 

 
Figure 5.18: Original and Updated SPFs for Minor AADT of 7,000 vpd 

As shown in Figure 5.18, the predictions of the two SPFs are very comparable (for the range of 
variables represented in the figure). The next section evaluates the fit of the enhanced SPF.  

5.6.2.1 Fit Assessment 

The research team assessed the fit of the updated SPF to the modelling dataset using a 
variety of techniques. First, a Chi-Squared test on the standardized residuals did not 
suggest over-dispersion (p-value of 0.4632 for a 303.61 Chi-Squared statistic on 302 
degrees of freedom). Next, the research team assessed the normality assumption of the 
intersection random effect as shown in Figure 5.19. 
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Figure 5.19: Q-Q Plot of Intersection Random Effect in Updated Model 

This figure shows the Quantile-to-Quantile plot of the random effects of the enhanced 
SPF assuming the theoretical normal distribution. The normality of the intersection 
random effect appears reasonable, with just one random effect appearing as a potential 
outlier. The research team then evaluated the fit of the marginal distribution of the sites to 
the marginal distribution emerging from the updated SPF for total crashes (see Figure 
5.20). 

 

 
Figure 5.20: Theoretical and Observed Marginal Distributions of Sites by Total Crash 

Frequencies for Period 2010-2013 

Figure 5.20 shows an appropriate fit of the updated SPF to the enhanced dataset. An 
evaluation of the cumulative residuals (see Figure 5.21) for the enhanced SPF shows 
oscillation around the zero value as expected. 
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Figure 5.21: CURE Plots for Updated Total Crashes SPF 

5.6.3 Enhanced Probability-Based Severity Model 

As previously noted, the probability-based severity model produced more precise predictions 
during model validation than the KAB SPF, so the research team elected to only update the 
severity model to be used in combination with the Total Crashes SPF. The recommended 
equation format for the severity model, as indicated in Section 5.4, is represented as: 

1
 

 

Table 5.14 shows the new coefficient estimates, derived from 370 intersection-years available 
from 94 intersections at locations with complete data regarding both major and minor speed 
limits. 

Table 5.14: Coefficient Estimates for Reduced Model 
 Estimate Std. Error z value Pr(>|z|) Statistical Significance 

 -2.69704 0.38166 -7.067 1.59E-12 *** 

 0.02874 0.01132 2.539 0.0111 * 

 -0.02412 0.01054 -2.289 0.0221 * 

Var(Int) = 0.1282 

Significance values are as follows: º  p<0.1; * p <  0.05; ** p <  0.01; and *** p < 0.001 

 

The resulting coefficients are very similar to those obtained in the initial analysis.  Figure 5.22 
shows a comparison of the predicted severities for the entire range of major speed limits when 
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the minor speed limit is fixed at 30 mph (about the average of this variable in Table 5.12). The 
largest difference in predictions occurs at a major speed limit of 20 mph. This difference is 
equivalent to about 12 percent of the KAB crashes based on the initial Severity Model compared 
to about 14 percent for the enhanced Severity Model. 

  
Figure 5.22: Original and Updated Severity Models for Minor Speed Limit of 30 mph 

A Pearson chi-squared test for the residuals does not indicate over dispersion (0.87303 p-value 
for 335.35 chi-squared statistic on 366 degrees of freedom).  

5.7 EXAMPLE PROBLEMS APPLYING SPFs 

This section demonstrates how to use the methodology outlined in the previous sections. For this 
demonstration, Section 5.5.1 demonstrates an application of the enhanced total crash model and 
Section 5.5.2 demonstrates the use of the enhanced probability-based crash severity model.  

5.7.1 Example Use of Total Crash Model 

A signalized intersection has the traffic volume and speed characteristics shown in Table 5.15. 
The predicted number of total crashes can then be calculated using the total crash SPF. 

Table 5.15: Table of Road Characteristics for an Example Intersection  
Signalized Intersection Features Values 

Major Road AADT 22,500 vpd 
Minor Road AADT 11,800 vpd 
Major Road Speed Limit 45 
Minor Road Speed Limit 20 
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1. Select the Appropriate SPF (for Total Crashes): 

1.991 10 MjAADT . MnAADT .  

2. Confirm that the input values are within the minimum and maximum range applicable 
to the SPF. 

 Major AADT = 22,500 which is greater than 5007 and less than 44,464 vpd  

 Minor AADT = 11,800 which is greater than 800 and less than 23,316 vpd 

3. Calculate the total number of predicted crashes 

1.991 10 22,500 . 11,800 .

	8.61	 	9	 	 	  

 

Example problem conclusion: 

Based on the known exposure, we can predict 
approximately 9 intersection-related crashes will 
occur per year. 

 
5.7.2 Example Use of the Crash Severity Model 

The calculation of the severe crashes, using the severe crash SPF, can be calculated using the 
following procedure. 

1. Confirm that the speed limit input values are within the minimum and maximum range 
applicable to the SPF. 

 Major Road Speed Limit = 45 which is greater than 20 and less than 55 mph 

 Minor Road Speed Limit = 20 which is greater than 10 and less than 45 mph 

2. Calculate the speed limit differential: 

45 20 25	  

3. Calculate the KAB proportion of total crashes. 

. . . .

1 . . . .  

 

. . . .

1 . . . . 0.125 
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4. Calculate the number of Total crashes (previously calculated in Section Error! 
Reference source not found.). 

	8.61	 	 	  

5. Calculate the number of predicted severe (KAB) crashes by multiplying the total number 
of predicted crashes by the KAB proportion. 

 	
	8.61 0.125 1.08		 	2	 	 	  

Example problem conclusion: 

Based on the known exposure and speed limits, 
we can predict approximately 2 KAB 
intersection-related crashes will occur per year 
out of 9 Total intersection crashes. 

 
5.8 SUMMARY OF WORK 

The objective of this research was to develop SPFs for signalized intersections in Oregon and, 
where appropriate, explicitly consider the influence of speed limit. For this purpose, the research 
team used probability sampling to assemble a database of typical sites. As a result, the resulting 
database resulted in a representative sample for the State of Oregon. 

The first issue addressed by the research team was to determine how to identified intersection 
related (IR) crashes. The research team developed various statistically-based methodologies and 
compared them against current simpler methodologies (maximum-threshold rules) to screen 
intersection crashes. This comparative analysis indicates that it is cost-effective to use distance-
based rules in combination with crash codes indicative of Traffic Control Devices (TCD) at 
signalized intersections, despite the flexibility gained by using statistically-based methodologies. 
The best performing maximum-threshold rule (performance based on the objective of SPF 
development) is as follows: classify as IR crashes all crashes within three hundred feet of the 
intersection in addition to other crashes in the vicinity but farther than that distance, as long as 
they have crash codes indicating their relation to intersection-specific TCDs. 

Using the sample of sites already classified as IR, the research team developed three initial 
predictive models to be considered as SPFs for the state of Oregon: (1) An SPF for Total 
Crashes, which relies on both major and minor AADTs to predict the expected number of 
crashes; (2) An SPF for KAB crashes, whose predictions derive from both AADTs (through the 
defined quantity ModAADT) as well as from the speed limit on the major road; and (3) A 
severity model to predict the proportion of KAB crashes to be used in combination with the SPF 
for Total Crashes. The last predicting tool was developed as a way to overcome the limited 
variability observed in KAB crashes, and the impact on the prediction power of the SPF for KAB 
crashes alone. 
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Throughout all the analyses of this research, the speed limit variable significantly improved the 
quality of the SPFs and severity model, the main products of this work. Following the initial 
model development, the research team performed a validation analysis on the initial safety 
prediction models (see Appendix D for an expanded review of this validation effort). Ultimately, 
the validation effort indicated that the initial models adequately represent Oregon conditions; 
however, the regression-based KAB models appeared to over predict the number of crashes at 
higher crash locations. Ultimately, the research team used the combined dataset and developed 
an enhanced Total Crash SPF and an enhanced probability-based Severity model as the final 
recommended predictive equations to apply.
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6.0 CONCLUSIONS AND RECOMMENDATIONS 

This final report reviews the research effort performed for the Oregon signalized intersection 
SPF project and summarizes the literature review, site selection, data collection, analysis, and 
findings of statistical analyses required for this effort. In additional to a comprehensive literature 
review, the research team also developed a technique for estimating minor road traffic volume at 
signalized intersections, created a procedure for identifying IR crashes, and then performed a 
statistical analysis and validation effort for SPF development. 

The literature review is summarized in Section 2.0. This effort focused on recent research 
associated with safety performance measurement and assessment as well as AADT estimation 
techniques. Section 3.0 of this report presents an overview of the site selection process and 
resulting 50 independent signalized intersections that the research team used for the initial SPF 
development task and 35 additional independent signalized intersections that the research team 
ultimately used for validation of the initial models. 

Section 4.0 of this report explored the most effective way for estimating a minor road AADT 
value. While the preference should be to use actual traffic volume information, whenever 
available, for safety analysis, there are many locations where this exposure information is not 
available. The evaluation explored ways to estimate minor road AADT for the entire road as well 
as for a single leg. At locations where a parallel facility existed, the research team used this 
information to aid with the estimation procedure; however, in locations where parallel traffic 
information is also not available, an alternative equation has been provided. These equations are 
depicted, along with the variable definitions and boundary conditions, in Table 6.1. An example 
calculation is also included in Section 4.0. 

Section 5.0 included two key components: (1) a fresh look at how to best identify IR crashes for 
the purposes of subsequent safety evaluations, and (2) SPFs for signalized intersections with the 
speed limit explicitly considered as a candidate variable. For the IR crash location, the research 
team determined that the best option is to use crash data that is geo-located within 300 feet of the 
centerline intersection at signalized locations plus crashes where the crash report indicates that 
they were associated with a traffic control device (i.e. traffic signal). The subsequent statistical 
analysis to develop SPFs focused on predicting total crashes and severe injury crashes (coded as 
KAB). One common Goodness-of-Fit assessment is a CURE plot. For the KAB regression 
equation, the residuals did not oscillate about the zero value as expected and were beyond the 
recommended thresholds; therefore, the research team developed a second technique for 
estimating the severe crashes that used a probability function applied to the total crashes. The 
research team then performed a validation effort based on additional sites and an additional year 
of data. The models all performed well during the validation; however, the research team then 
developed two enhanced models to improve model reliability based on the larger dataset. The 
resulting variable definitions, boundary conditions, and associated enhanced SPF equations are 
presented in Table 6.2. In addition, the Section 5.7 content concludes with an example 
calculation that demonstrates the procedures.  
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The Report Appendix B reviews the AADT conversion methodology and Appendix C presents 
the AADT Model validation review. Similarly, Appendix D reviews the SPF validation effort. 
Finally, the site summaries for the initial model development are included in Appendix E and the 
validation site summaries are reviewed in Appendix F. 

Table 6.1: Equations to Estimate the Minor Road Volume 
Variable Definitions 

AADTMajor = Major road two-directional daily volume (vpd) 
ParallelAADT = Parallel corridor two-directional daily volume (vpd) 

 LNMajor =  Average number of approach thru lanes on the major road  
LNMinor = Average number of approach thru lanes on the minor road  

 FCMajor = Value of 1 if major road is a collector, otherwise a value of 0 
FCMinor = Value of 1 if minor road is a collector, otherwise a value of 0 

 TWLTLMajor = Value of 1 if TWLTL present on major approach, otherwise value of 0 
Boundary Conditions for Minor Road Estimation Equations 

AADTMajor ≤ 44,000 
ParallelAADT  ≤ 18,500  

 1 ≤ LNMajor ≤ 3  
1 ≤ LNMinor ≤ 3 

Estimating AADT for the Minor Road 
Preferred Option -- Parallel Facility Traffic Volume Known: 

log 	
0.6837 0.686 log
0.1764 log 0.1636 0.2384
0.29235  

Alternative Option -- Parallel Facility AADT is not available: 
log 	

1.05631 0.7698 log 0.1915 0.2343
0.32851  

Estimating AADT for the Individual Minor Road Leg 
Preferred Option – Parallel Facility Traffic Volume Known: 

log 	

0.9815 0.2318 log
0.3019 log 0.321 0.2511
0.1299  

Alternative Option -- Parallel Facility AADT is not available: 
log 	 	

1.8516 0.2945 log 0.3393 0.2892
0.1382  
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Table 6.2: Enhanced SPFs to Estimate Crashes at Signalized Intersections in Oregon 
Variable Definitions 

AADTMajor = Major road two-directional daily volume (vpd) 
AADTMinor = Minor road two-directional daily volume (vpd) 
MjSpLim = Major road posted speed limit (mph) 
MnSpLim = Minor road posted speed limit (mph) 
SpLimDif = Major speed limit minus minor speed limit (mph) 
PKAB = Proportion of KAB crashes out of total crashes at an intersection 

Boundary Conditions for  SPFs 
5007 vpd ≤ Major AADT ≤ 44,464 vpd 
800 vpd ≤ Minor AADT ≤ 23,316 vpd 
20 mph ≤ Major Speed Limit ≤ 55 mph 
10 mph ≤ Minor Speed Limit ≤ 45 mph 

Enhanced SPF Equations for Signalized Intersections 
Regression Model to Predict Total Crashes: 

1.991 10 . .  
 
Probability-Based Model to Predict Severe (KAB) Crashes: 
 

. . . .

1 . . . .  

 

 
The SPFs that resulted from this effort demonstrated an interesting and somewhat intuitive 
observation:  speed limit (a surrogate value that represents general speeds) is not significant for 
total crash estimation; however, the speed is significant for injury crash estimation. Currently the 
AASHTO HSM does not directly consider speed or speed limit in speed prediction equations, yet 
the Oregon sites are likely to be representative of signalized intersections in other jurisdictions. 
This research effort focused on signalized intersections, but the findings would suggest that 
future research efforts should similarly evaluate the influence of speed at unsignalized 
intersection locations.   
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APPENDIX A 

This appendix contains supplemental tables as well as an example data collection form. 

SUPPLEMENTAL TABLES 

Table A.1: Abbreviations and Acronym Definitions 

Acronym Definition 

AASHTO American Association of State Highway and Transportation Officials 
AADT Average Annual Daily Traffic 
ADT Average Daily Traffic 
AIC Akaike Information Criterion 
ATR Automatic Traffic Recorders 
BGOP Bivariate Generalized Ordered Probit 
BOP Bivariate Ordered Probit 
CMF Crash Modification Factor (or Function) 
CURE Cumulative Residual Plot 
DOT Department of Transportation 
EB Empirical Bayes 
EPA Environmental Protection Agency 
GAM Generalized Additive Model 
GEE Generalized Estimating Equations 
GIS Geographic Information Systems 
GLM Generalized Linear Model 
GWR Geographically Weighted Regression 
HSM Highway Safety Manual 
IFA Intersection Functional Area 
IR Intersection-Related (crashes) 
ITE Institution of Transportation Engineers 
KAB Fatal and serious injury crashes 
KPH Kilometers per Hour 
LOOCV Leave-One-Out Cross Validation analysis 
MAPE Mean Absolute Percent Error 
MARS Multinomial Adaptive Regression Splines 
MjAADT Major Road AADT 
MjSpLm Major Road Speed Limit 
ML Mixed Logit 
MnAADT Minor Road AADT 
MNL Multinomial Logit 
MnSpLm Minor Road Speed Limit 
MPH Miles per Hour 
ODOT Oregon Department of Transportation 
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Acronym Definition 

OLS Ordinary Least Squares (Regression) 
OP Ordered Probit Model 
PDO Property Damage Only 
R4SG2 Rural Two-lane Four-leg Signalized Intersection 
R4SG4 Rural Four-lane Four-leg Signalized Intersection 
SPF Safety Performance Function 
SSD Stopping Sight Distance 
TCD Traffic Control Device 
TWLTL Two-Way Left-Turn Lane 
U3SG Urban/Suburban Three-leg Signalized Intersection 
U4SG Urban/Suburban Four-leg Signalized Intersection 
vpd Vehicles per Day 
vph Vehicles per Hour 
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Table A.2: Data Collection Form Key 
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APPENDIX B: AADT CONVERSION METHODOLOGY 

The AADT data for the major or minor road for each year were not available for many of 
intersections.  If available, the research team obtained short-term traffic counts from local 
agencies or ODOT.  Some of these counts were available in Transportation System Plans or 
other documents.  For the sites without any available traffic data, the team attempted to contact 
private vendors for historical counts. All of the short-term counts were then converted to AADT 
using a similar methodology. Next, all sites were factored to year over year volumes using the 
trends established from the nearest automatic traffic recorders (ATR). 

B.1 METHODOLOGY 

For each site, the research team selected the nearest and most compatible ATR station.  A list of 
the ATR stations is shown in Table B.1.  The Traffic Monitoring Guide (FHWA 2001) provides 
the following formula to convert 24-hour axle counts to AADT:  

AADT 	 VOL M 	 	D 	A G  
where 

AADThi = the annual average daily travel at location i of factor group h (vpd); 
VOLhi = the 24-hour axle volume at location i of factor group h; 
Mh = the applicable seasonal (monthly) factor for factor group h; 
Dh = the applicable day-of-week factor for factor group h (if needed); 
Ai = the applicable axle-correction factor for location i (if needed); and 
Gh = the applicable growth factor for factor group h (if needed). 

 
For this effort, however, the counts available to the project team are not axle counts, but vehicle 
counts.  Traffic and Highway Engineering (Garber and Hoel 2009) presents a modified equation 
which uses hourly, daily, and monthly expansion factors to covert counts of durations shorter 
than 24 hours. In general, a two-hour traffic volume count is converted to AADT with the 
following formula: 

AADT 	 VOL 	H M 	 	D  

where 

AADThi = the annual average daily travel at location i of factor group h (vpd); 
VOLij= the two-hour peak volume during time period j at location i of factor group h; 
Hij= the applicable hourly factor during time period j at location I; 
M h= the applicable seasonal (monthly) factor for factor group h; and 
Dh = the applicable day-of-week factor for factor group h.
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Table B.1: List of Automatic Traffic Recorders used in the Analysis  
ATR 

Station 
Highway Number  Mile Post  Highway Name  ATR Nearby Crossi

03‐017  OR 8  14.84  Tualatin Valley Highway No. 29  0.28 mile west of NW 334th Ave. 

03‐018  OR 212 / OR 224  6.8  Clackamas Highway No. 171  0.14 mile west of SE 130th Ave 

09‐009  OR 224  3.6  Clackamas Highway No. 171  0.13 mile west of Johnson Road 

15‐017  US 97  137.36  The Dalles‐California Highway No. 4  0.23 mile south of Revere Ave. 

17‐005  OR 62  1.11  Crater Lake Highway No. 22  0.64 mil east of Pacific Highway 

18‐018  US 199  4.68  Redwood Highway no. 25  0.50 mile east of Redwood Ave. 

24‐001  OR 39 / US 97  4.08  Klamath Falls‐Malin Highway no. 50  0.46 mile south of Main St. 

26‐003 
OR 99 E  34.03  Pacific Highway East No. 81  1.16 mile south of Hillsboro Silverton 

214) 

27‐002  US 26  14.36  Mt. Hood Highway No. 26  0.18 mile southeast of SE Powell Valle

30‐019  OR 221  18.6  Salem‐Dayton Highway No. 150  0.09 mile north of Brush College Rd N

30‐021  US 395  8.7  Umatilla Stanfield Highway No. 54  0.12 mile northwest of Feedville Road

34‐009  OR 11  34.46  Oregon‐Washington Highway No. 8  0.86 mile south of Oregon‐Washingto
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Table B.2: Monthly Factor (Weekday Averages) for Automatic Traffic Recorders used in 
the Analysis 
ATR 
Statio
n 

2012 

Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec  Averag
e 

03‐
017 

1.08
7 

1.03
8 

1.03
8 

1.00
6 

0.99
9 

0.96
4 

0.94
5 

0.93
3 

0.94
1 

0.98
9 

1.03
7 

1.04
8 

1 

03‐
018 

1.04
8 

0.99
7 

1.01
3 

0.96
9 

0.99
3 

0.96
6 

1.00
6 

0.97
9 

0.97
8 

0.98
2 

1.02
2 

1.05
7 

1 

09‐
009 

1.15
3 

1.09
0 

1.08
5 

1.01
0 

0.97
9 

0.92
1 

0.90
3 

0.88
5 

0.94
7 

0.98
3 

1.04
2 

1.08
0 

1 

15‐
017 

1.06
7 

1.00
9 

1.01
9 

0.97
7 

0.97
3 

0.94
0 

0.94
9 

0.96
3 

1.01
2 

1.02
1 

1.04
1 

1.04
6 

1 

17‐
005 

1.15
9 

1.08
1 

1.08
9 

1.04
6 

0.98
1 

0.92
3 

0.84
7 

0.85
5 

0.92
4 

0.99
6 

1.06
2 

1.16
9 

1 

18‐
018 

1.02
8 

1.00
1 

1.04
4 

0.95
0 

0.95
3 

0.96
0 

1.01
1 

0.99
0 

0.98
1 

0.95
1 

1.01
7 

1.14
6 

1 

24‐
001 

1.12
9 

1.05
4 

1.07
2 

1.01
5 

0.97
2 

0.95
4 

0.90
4 

0.88
8 

0.92
8 

0.95
4 

1.05
1 

1.16
1 

1 

26‐
003 

1.07
2 

1.01
6 

1.03
3 

1.00
6 

1.00
6 

0.96
5 

0.94
5 

0.92
1 

0.96
6 

1.01
1 

1.06
6 

1.01
7 

1 

27‐
002 

1.09
4 

1.02
3 

1.06
2 

0.99
8 

0.96
7 

0.91
3 

0.95
1 

0.94
6 

0.99
6 

0.99
3 

1.04
1 

1.04
7 

1 

30‐
019 

1.14
5 

1.00
7 

1.03
1 

0.99
0 

0.96
2 

0.96
3 

0.94
5 

0.93
5 

0.95
2 

0.98
2 

1.03
6 

1.09
5 

1 

30‐
021 

1.17
2 

1.06
5 

1.03
8 

0.97
9 

0.95
4 

0.93
5 

0.93
0 

0.93
4 

0.95
8 

0.97
1 

1.04
6 

1.07
7 

1 

34‐
009 

1.04
1 

1.00
1 

1.00
2 

0.96
4 

0.98
3 

0.97
3 

0.98
8 

0.99
5 

0.99
8 

1.00
9 

1.02
7 

1.02
6 

1 
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Table B.3: Annual AADT Estimates for Automatic Traffic Recorders used in the Analysis 
ATR 
Statio
n 

Yearly (vpd) 

2003  2004  2005  2006  2007  2008  2009  2010  2011  2012  2013 

03‐
017 

        35,65
5 

32,17
7 

32,09
3 

32,40
4 

32,24
0 

32,85
7 

33,84
9 

03‐
018 

        35,28
5 

35,28
5 

35,43
4 

35,14
9 

35,16
3 

35,36
8 

34,99
5 

09‐
009 

37,12
5 

38,56
5 

3965
7 

42,16
3 

42,82
5 

39,22
9 

38,14
0 

38,46
7 

38,50
6 

39,05
2 

41,55
6 

15‐
017 

37,94
6 

38,51
6 

3848
3 

38,40
0 

44,22
2 

42,38
2 

41,91
4 

42,37
0 

42,39
9 

41,62
0 

41,68
6 

17‐
005 

11,73
7 

11,86
0 

1172
5 

11,56
1 

11,42
2 

10,55
3 

10,92
7 

10,95
4 

10,45
3 

10,31
0 

10,46
8 

18‐
018 

23,38
5 

23,43
2 

2408
5 

23,20
2 

24,75
7 

23,40
9 

22,96
5 

22,49
6 

21,52
0 

21,16
3 

21,22
4 

24‐
001 

10,67
6 

10,81
0 

1030
1 

10,74
8 

10,95
4 

10,25
4 

10,26
3 

10,22
4 

10,14
7 

10,05
0 

10,57
3 

26‐
003 

39,13
8 

37,65
7 

3374
3 

33,47
1 

33,22
5 

31,77
6 

32,25
2 

32,27
3 

30,53
0 

29,97
8 

30,31
5 

27‐
002 

      12,27
3 

12,57
8 

11,80
2 

12,02
2 

12,22
9 

12,09
6 

12,08
4 

12,11
4 

30‐
019 

      7,743  7,727  7,469  7,618  7,706  7,567  7,347  7,384 

30‐
021 

14,32
3 

14,36
0 

1481
9 

14,88
2 

14,86
3 

14,31
0 

14,71
8 

14,73
9 

14,52
1 

14,33
3 

14,20
1 

34‐
009 

        33,62
0 

33,83
8 

33,04
2 

33,23
7 

33,24
8 

33,33
3 

33,00
0 

 

B.2 SAMPLE APPLICATIONS 

Example 1: Site with AADT from local agencies or ODOT 

Site Description  

The major road is SE. Sunnyside Road in Clackamas County, OR intersecting with SE. Stevens 
Road.  SE. Stevens Road had an AADT of 13,350 vpd in 2011. Since AADT is already available, 
there is no need to apply time of day, month of year, or day of week factors. However, yearly 
factors have to be applied to the AADT from 2011, to estimate AADT for other years. The year-
year factors are taken from ATR 03-017 and depicted in Table B.4. Also shown are the AADT 
for the different years, which are computed using the formula: 

∗  

where 
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AADThi = the annual average daily travel at location i of factor group h (vpd); 
Yhi = the applicable year factor for location i of factor group h; and 
AADT = the available AADT for a particular year (vpd). 

 

Table B.4: ATR 03-017 Year-Year Factors 

 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Factor - - - - 1.106 0.998 0.995 1.005 1.000 1.019 1.050 

AADT - - - - 14,764 13,324 13,289 13,418 133,50 13,605 14,106

 

Example 2: Site with four-hour counts for the minor road and obtained from local agencies 

Site Description 
The major road is E. Pine St, which is located in Central Point, OR.  It intersects with N 4th St.  
The counts on each leg of the minor facility were 431 and 617, with an average count of 524. 
They were collected between 2-6 p.m. on 9/29/2010.  

Step 1: Convert peak hour traffic count to daily traffic volume 
The research team converted the peak hour traffic count to daily traffic volume using a time of 
day factor of 0.31.  

Daily	traffic	volume	
Peak	hour	count	
Time	of	Day	factor	

1690	  

Step 2: Calculate AADT 
The ATR for this site occurs at station 17-005. Since the count was collected in September, the 
associated monthly factor is 0.92 and the day of the week factor is 1.0 

AADT 	 VOL 	M 	 	D 1690 0.92	 1.0		 1555	vpd 
 Step 3: Calculate AADT for Other Years 
The year-year factors are computed using the counts from ATR 17-005 and are listed in Table 
B.5. The AADT for the various years can then be computed by applying these factors to the 
AADT previously computed. 
 

Table B.5: Year-Year Factors for ATR 17-005 

 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Factor 1.071 1.083 1.070 1.055 1.043 0.963 0.998 1.000 0.954 0.941 0.956 

AADT 1667 1684 1665 1642 1622 1498 1552 1555 1484 1464 1486 

 
If two-hour peak period counts are available, the same procedure can be followed, except that the 
time of day factor will be different and will have to be estimated.  
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APPENDIX C: AADT MODEL VALIDATION 

To confirm model reliability, this section of the report summarizes the validation activities for 
the AADT models. The purpose of validation is to assess if the model is able to reproduce the 
estimated parameters within reasonable limits. For the purpose of validation, twenty-five 
additional intersections were sampled from across the state. Of these, nine were in Region 1 (36 
percent), five in Region 2 (20 percent), five in Region 3 (20 percent), four in Region 4 (16 
percent), and two in Region 5 (8 percent). The selection of these intersections was based on 
available data, including major and minor volumes, and the volume on the parallel faculty. Thus, 
this sample was not a random sample; the list of intersections is included at the end of this 
section.  

C.1 MODEL VALIDATION RESULTS 

Table C.1 shows the descriptive statistics for the validation sample. For the sample intersections, 
the major road AADT varied between 9,865 and 17,562 vpd with a mean of 3,603 vpd. 
Similarly, the volumes for the facility parallel to the minor road varied between a minimum of 
860 vpd to a maximum of 14,409 vpd. The total number of lanes on both the major and minor 
roads varied between a minimum of one and a maximum of three.  

Table C.1: Validation Sample Descriptive Statistics 
Parameter  Validation Sample (n = 25) 

Max Min Mean Std. Dev 

  
Volume  

Major Road Volume (2013)  17562 3603 9865 4390.20 

Log (Major Road Volume) (2013)  4.245 3.56 3.95 0.21 

Parallel Facility  Volume (2013)  14409 860 4740 3187.67 

Log (Parallel Facility Volume) (2013)  4.159 2.93 3.58 0.31 

  
Geometry 

Avg. Number of Approach Thru Lanes of 
Major Road  

3 1 1.96 0.52 

Avg. Number of Approach Thru  Lanes 
of Minor Road 

3 1 1.52 0.59 

 
Table C.2 shows the summary of the dummy variables in the validation sample that were used in 
the final model specifications. In the sample, ten intersections had a two-way left-turn lane on 
the minor road. The major and minor roads were classified as collectors at nine and 21 
intersections respectively. 
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Table C.2: Summary of Categorical Variables 

Parameter 
Validation Sample (n = 25) 

0 = No  1 = Yes 

Two way Left Turn Lane on Minor Road  15  10 

Functional Class of Major Road: Collector  16  9 

Functional Class of Minor Road: Collector  4  21 

 
The research team performed the model validation for both models that were developed in the 
research summarized in Chapter 4. The first model estimated minor road volumes at intersections 
where both the major and minor roads were two-way facilities, using parallel facility volumes.   

The model was applied to the validation intersection variables and the estimates compared to the 
actual (observed) volumes. Figure C.1 shows the plot of predicted and observed values for two-
way major and minor roads using the model specification that includes the parallel facility 
volume.  The MAPE was calculated as the difference between the observed and predicted values 
using the following formula. 

	 	 	 	
1 	

∗ 100 

The mean absolute error was obtained as 1951.36 vehicles and MAPE was obtained as 52.4 
percent.  The second model specification estimated minor road volumes by each leg.  
Figure C.2 shows the plot of predicted and observed minor road volumes for the model estimates 
by leg. For majority of the intersections, the predicted volumes are underestimated compared to 
the observed volumes.  For this model, the mean absolute error is 1401.54 vehicles and the 
MAPE is obtained as 49.1 percent. Figure C.2 demonstrates that the model significantly 
overestimated minor road AADT for one intersection. The intersection was located at NW 185th 
Avenue and NW West Union Road in Washington County (intersection at index=11 in the 
figure). One potential source of error could be related to the factoring process used in estimating 
volumes for multiple years. For the model estimation process, the intersections in Washington 
County were factored using data from an automatic traffic recorder (ATR) on OR 8. For this 
ATR, factors were developed for years 2007 to 2013. However, in the validation sample, the 
volume at this intersection and other Washington County intersections were originally collected 
in 2006. Hence, factors obtained from a different ATR located on US 26 were used for 
estimating major road and parallel facility volumes in 2013, which could have induced some 
error. 
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Figure C.1: Predicted and Observed Minor Road Volumes for Two-way Major and Minor 
Facilities 

  
Figure C.2: Predicted and Observed Minor Road Volumes Estimated by Leg 
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Table C.3: List of Intersections used for Model Validation 

Major Street  Minor Street  County 
Maj Volume 

(2013) 

Min  
Volume 
(2013) 

Parallel 
Road 

Volume 
(2013) 

Total 
Lanes 
Major 

Total 
Lanes 
Minor 

Two‐way 
Left‐Turn 
Lane 
Major 

Function
al Class 
Major 

Function
al Class 
Minor 

Comments 

Roberts Rd  Keene Way Dr  Jackson  6689  1625  1529  3  2  1  Collector  Collector   

4th Street  Front Street  Jackson  6355  1290  860  3  2  0  Collector  Collector   

E Jackson St  Sunrise Ave  Jackson  6546  4969  4587  3  3  0  Collector  Collector   

Seneca Rd  5th Ave  Lane  11,696  6317  5429  3  2  1  Arterial  Collector   

Donald St  46th Ave  Lane  3603  1382  1974  2  2  0  Collector  Collector   

Broadway St  Main St  Baker  5650  3800  3000  4  3  0  Arterial  Arterial   

10th St  Broadway St  Baker  4800  1191  1520  4  3  1  Arterial  Collector   

3rd St  Wilson Ave  Deschutes  16,647  6699  5688  5  3  1  Arterial  Collector   

Olney Ave  Portland Ave  Deschutes  13,235  8410  9665  4  4  0  Collector  Collector   

3rd St  Revere Ave  Deschutes  17,562  9665  8204  5  4  1  Arterial  Collector   

185th Ave  West Union Rd  Washington  17,221  8885  10,302  6  6  0  Arterial  Arterial   

Thompson Rd  Saltzman Rd  Washington  6637  5178  5797  4  3  0  Arterial  Collector   

Cornell Rd  113 Ave  Washington  13,153  5597  4376  4  4  1  Arterial  Collector   

198th Ave  Johnson St  Washington  8926  3262  3495  3  2  1  Collector  Collector   

185th Ave  Rosa Rd  Washington  11,794  2821  4098  3  2  1  Arterial  Collector   

Farmington Road  185th Ave  Washington  16,356  8674  14,409  4  4  0  Arterial  Arterial   

Beef Bend Rd  Barrows Rd  Washington  4332  1219  915  3  2  0  Arterial  Collector   

198th Ave  Alexander St  Washington  8926  2760  3262  3  2  1  Collector  Collector   

West Union Rd  Kaiser Rd  Washington  8608  5797  5178  4  3  1  Arterial  Collector   

8th Street  Oakdale Ave  Jackson  5065  4205  2007  4  3  0  Arterial  Collector  Maj One way 

11th Ave  Olive St  Lane  13,523  3405  4343  6  3  0  Arterial  Collector  Maj One way 

8th Ave  Willamette St  Lane  5379  4442  3060  4  2  0  Collector  Collector  Maj One way 

Pearl St  Broadway Ave  Lane  12,289  3553  3307  4  2  0  Arterial  Collector  Maj One way 

NW Franklin Blvd  NW Bond St  Deschutes  8916  5589  5191  4  4  0  Collector  Collector 
Minor One 

way 

Central Ave  Main Street  Jackson  12,710  7072  6307  6  6  0  Arterial  Arterial 
Maj, Min One 

way 
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C.2  MODEL RE-ESTIMATION 

Multiple linear regression models to estimate minor AADT were re-estimated using all the 
combined intersections from training as well as the validation sample set. This was done to test if 
any significant differences were found in the models estimated from a larger sample. The 
combined sample consisted of a total of 91 intersections (66 – training set, 25 – validation). The 
variable descriptive statistics for the combined data used in model estimation are shown in Table 
C.4 . 

Table C.4: Descriptive Statistics for Minor Volume Models 
Parameter  Min  Max  Mean  St. Dev 

AADT  Major Road Volume (2013)  3,603  44,464  15589  8396.74 

Log (Major Road Volume) (2013)  3.56  4.65  4.13  0.24 

Parallel Facility Volume (2013)  733  18,497  5714  3829.41 

Log (Parallel Facility Volume) 
(2013) 

2.87  4.27  3.88  0.30 

Roadway  Avg. Number of Approach Thru 
Lanes on Major Road 

1  3  1.97  0.60 

Avg. Number of Approach Thru 
Lanes on Minor Road 

1  3  1.42  0.58 

 
Within the combined sample, the major road AADT for 2013 varied between 3,603 to 44,464 
vehicles per day (vpd), with a mean of 15,589 vpd. The parallel facility volume varied between a 
minimum of 733 to a maximum of 18,497 vpd. The average number of approach thru lanes on 
the major road varied between one and four, whereas on the minor road they varied between one 
and three. 

Previously, a total of four models were estimated to predict AADT for the minor road, either by 
leg (for 1-way roads) or two-way with or without parallel facility volumes. However, using the 
combined data, only three models were estimated, one by leg and two for two-way facilities. The 
model estimating minor AADT by leg did not incorporate the parallel facility volume, as the 
inclusion of this variable rendered the major road AADT as insignificant predictor of minor road 
AADT. The research team determined that the major road AADT variable was of higher priority 
than the parallel facility volume, which may not be always available. However, two model 
specifications (with and without parallel facility volume) were estimated for two way facilities 
that predicted total entering volume for the minor facility 
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C.3  MODEL TO RE-ESTIMATE TOTAL MINOR ENTERING 
VOLUME (AADT) 

Two regression models were estimated to predict minor AADT when both the major and minor 
roads were two way facilities. Table C.5 shows the significant variables for the model that 
estimates minor volume AADT, along with model fit parameters and goodness of fit parameters 
using the parallel facility volume. The R-squared of the model is 0.63 and the standard error of 
the residuals is 0.19.  Table C.6 shows the significant variables for the model estimated without 
the parallel volume variable. The R-squared of the model is 0.54 and the standard error of the 
residuals is 0.21. 

As shown in both tables, major road volume has a positive relationship with minor road AADT, 
implying that as major road volume increases, minor road AADT also increases. The other 
variable that showed a positive relationship with minor road AADT was the nearest parallel road 
volume. Variables that exhibited a negative relationship with log (AADT) for the minor road 
were the average number of approach thru lanes on the major road and functional class of the 
minor road (1= collector, 0 = arterial).  

Further diagnostics of these model are shown in Figure C.3 and Figure C.4 . To better understand 
the model outputs, the predicted and observed volumes are transformed back to volumes (rather 
than log model inputs). In the figures, the plot in the upper left shows the predicted minor 
volumes on the y-axis with the observed minor volumes on the x-axis. The solid line represents 
the equal line (where the modeled volume would equal observed volumes). In these plots for 
both models, it is clear that modeled and observed volumes are in reasonable agreement.  To 
explore any issues with bias by major road volumes, the plot in the upper right shows the 
residuals on the y-axis with the observed major AADT on the x-axis. The two lower histograms 
show two other diagnostics that explain the predictive quality of the models. In the lower left, the 
histogram shows the absolute percent predicted error as well as the mean absolute percent error 
(MAPE).  Finally, in the lower right the histogram shows the error expressed in vehicles per day 
as well as the mean error. 

Inspection of the goodness of fit parameters presented in the tables and plots in Figure C.3 and 
Figure C.4 indicate that the models do a reasonable job of estimating the minor road AADT. The 
mean absolute error for the models with and without parallel facility AADT are about 38 percent 
and 41 percent respectively, with the majority of the estimates having less than 50 percent error 
and only a small number of locations have high percent error. The mean error (the difference in 
the predicted minor volume and actual minor volume) varies between 1,800 - 2,000 vpd. The 
errors (residuals) do not show any trends over the range of major AADT included in the model 
(3,300 to 44,000 vpd). Given that the models will be used to estimate minor volumes that will be 
then be applied in SPF for crash prediction, the level of error is acceptable. 

Figure C.5 and Figure C.6 show comparison plots between estimated volumes predicted using 
training data, combined data (training and validation) with the observed volumes for two-way 
facilities with and without parallel facility AADT. Both the models perform reasonably well in 
estimating minor road volumes. There is no apparent estimation bias with either model. 
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Table C.5: Model Outputs for Total Entering Volume, Two-way Major and Minor Roads 
(with Parallel Facility) 

Parameter  Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)  0.5404  0.4313  1.25  0.2148 

log(Major AADT)  0.5528  0.1149  4.81  9.27×10‐6*** 

Log(Parallel AADT)  0.3384  0.0857  3.95  0.0002*** 

Avg. Number of Approach Thru 
Lanes on Major  

‐0.1099  0.0480  ‐2.29  0.0252** 

Func. Class Minor (Arterial=0, 
Collector=1) 

‐0.2379  0.0573  ‐4.16  9.70×10‐5*** 

Residual standard error  0.1927 on 65 degrees of freedom 

R‐squared  Multiple R‐squared:  0.6267, Adjusted R‐squared:  0.6037 

F‐statistic  27.84 on 4 and 65 DF,  p‐value: 2.638×10‐13 

* Significant at 90% confidence 
** Significant at 95% confidence 
***Significant at 99% confidence 

 

Table C.6: Model Outputs for Total Entering Volume, Two-way Major and Minor Roads 
(without Parallel Facility) 
Parameter   Estimate  Std. Error  t value  Pr(>|t|) 

(Intercept)  1.116  0.449  2.49  0.0154** 

log(Major AADT)  0.742  0.115  6.43  1.67×10‐8*** 

Avg. Number of Approach Thru 
Lanes on Major  

‐0.144  0.052  ‐2.76  0.007*** 

Func. Class Minor (Arterial=0, 
Collector=1) 

‐0.319  0.059  ‐5.41  9.33×10‐7*** 

Residual standard error  0.213 on 66 degrees of freedom 

R‐squared  Multiple R‐squared:  0.5371, Adjusted R‐squared:  0.5161 

F‐statistic  25.53 on 3 and 66 DF,  p‐value: 4.441×10‐11 

* Significant at 90% confidence level 
** Significant at 95% confidence level 
***Significant at 99% confidence level 
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Figure C.3: Summary Diagnostic Plots for Total Minor Entering Volume (with Parallel Facility 

AADT) 

 

Figure C.4: Summary Diagnostic Plots for Total Minor Entering Volume (without Parallel 
Facility AADT) 
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Figure C.5: Comparison of Estimated Total Entering Volumes to Observed Volumes for Minor 

Facility (with Parallel AADT) 
  

 
Figure C.6: Comparison of Estimated Total Entering Volumes to Observed Volumes for Minor 

Road (without Parallel Facility AADT) 
 

C.4  MODELS TO ESTIMATE MINOR VOLUME BY LEG 

A regression model was also estimated to predict minor volume by leg. This model could be 
used to predict minor road AADT for one way facilities. A total of 91 intersections were used in 
the combined model. As outlined previously, parallel facility volume was not used as a 
parameter to estimate minor AADT. Table C.7 shows the significant variables along with the 
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associated model fit parameters and goodness of fit parameters. The R-squared of the model is 
0.60 and the standard error of the residuals is 0.25. As shown, three variables were significant 
predictors of the minor AADT. These included log transformed major road volume, average 
number of approach through lanes on minor facility and functional class of minor road. Except 
for functional class variable on the minor facility, the other two variables showed a positive 
relationship with minor facility AADT. 

 

Table C.7: Model Outputs for Minor Volume Estimation Model by Leg (without Parallel 
Facility AADT) 

Parameter Estimate Std. Error t value Pr(>|t|) 

(Intercept) 2.1489 0.4007 5.36 6.7×10-7*** 

log(Major AADT) 0.1781 0.1035 1.72 0.0888* 

Avg. Number of Approach 
Thru Lanes on Minor  

0.3922 0.0507 7.74 1.66×10-11*** 

Func. Class Minor (Arterial=0, 
Collector=1) 

-0.1959 0.0633 -3.10 0.0026*** 

Residual standard error 0.2452 on 87 degrees of freedom 
R-squared Multiple R-squared:  0.6033, Adjusted R-squared:  0.5897 
F-statistic 44.11 on 3 and 87 DF,  p-value: < 2.2×10-16 
* Significant at 90% confidence level 
** Significant at 95% confidence level 
***Significant at 99% confidence level 
 
Additional diagnostics of the model are shown in Figure C.7. Overall, the goodness of fit 
parameters presented in the tables and inspection of the figures reveal that the model does a 
reasonable job of estimating the minor road volume by leg. The mean absolute error is about 45 
percent. Still, the majority of the estimates have less than 50 percent error and only a small 
number of locations have a high percent error. The mean error (the difference in the predicted 
minor volume and actual minor volume) is around 1,000 vpd. This corresponds to the error in the 
total entering volume since the analysis primarily modelled 50 percent of the AADT for the two-
way legs. As shown in the histogram, the majority of these errors are less than 1000.  The errors 
(residuals) do not show any trends over the range of major AADT included in the model.  
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Figure C.7: Summary Diagnostic Plots for Minor Volume Estimation by Leg (without Parallel 

Facility AADT) 
 
Figure C.8 shows the comparison between estimated volumes by leg and observed volumes for 
the minor facility with the training as well as combined data. Both the models perform 
reasonably well when estimating minor facility volume by leg. 
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Figure C. 8: Comparison of Estimated Volumes by Leg and Observed Volumes for Minor 

Facility 

C.5  SUMMARY 

In this section, model validation was performed using twenty five intersections. Overall, the 
models estimated the minor facility AADT reasonably well. In addition, the regression models to 
predict minor facility AADT were also re-estimated using a larger set of intersections drawing 
from both the training and the validation set. A total of 91 intersections were used for re-
estimation. Two sets of models were estimated for total entering volume and by leg without 
using parallel facility volume as a predictor. The goodness of fit parameters revealed that these 
models performed reasonably well in predicting minor road AADT and were similar to the 
models estimated using training data only. However, as the validation intersections were not 
chosen randomly, the research team recommends the use of models estimated using the training 
data only as outlined in Chapter 4.0 for estimating minor facility AADT.  
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APPENDIX D:  PREDICTIVE METHOD VALIDATION 

To confirm model reliability, this section of the report summarizes the validation activities for 
the signalized intersection SPFs for the state of Oregon. The focus of this validation analysis was 
to verify the predicting power of the previously developed (referred to as initial) signalized-
intersection SPFs. The research team performed this verification using three approaches:  

 Model temporal transferability: reviews the validity of model results for the same 
sites in the original analysis but for a new period of time (2013); 

 Model spatial transferability: reviews the validity of model results for the same years 
in the original analysis (2010 through 2012) but at a new set of sites; and 

 Model spatial-temporal transferability: verifies the predicting power of the model for 
a different time period (2013) at the new set of sites.  

The basic validation approach is to directly compare the model crash predictions to a new 
independent sample of crashes. The transferability of the model is then satisfactorily validated if 
the differences between the observed and predicted crashes do not exceed the theoretical 
thresholds imposed by the model (i.e. differences are not statistically significant). 

Prior to developing the SPFs, the research team determined the appropriateness of using a 
maximum threshold rule to match crashes to intersections. Accordingly, the research team used a 
threshold of 300 ft in combination with crash codes indicating the involvement of traffic control 
devices (TCDs) specific to signalized intersections. 

D.1  TEMPORAL TRANSFERABILITY 

To verify the temporal transferability of the models, the research team acquired crash data for an 
additional year (2013) at the same locations utilized in the SPF development phase. 

D.1.1 Available Data for Temporal-Transferability Assessment 

A total of 624 crashes that occurred in 2013 were identified in the vicinity of the 73 intersections 
comprising the modelling dataset. The definition of “vicinity” is, for the purpose of this analysis, 
the same as for the modelling dataset: a distance equal to or shorter than the maximum IFA in 
each intersection. Out of the 624 crashes, 423 were located within a radius of 300 ft, leaving 201 
crashes to be examined for TCD indicators. 

After querying the 201 crashes for TCD indicators, only 68 crashes had codes indicating 
signalized-intersection TCDs (i.e. Advanced Flashing Beacons, Left or Right turn Signal Phase, 
or Traffic Signal). However, most of the 68 crashes were related to other signalized 
intersections/driveways. The research team could identify only six out of the 68 crashes that 
were related to the study sites but beyond the 300 ft buffers. 
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In total, there were 429 crashes from 2013 available for the temporal transferability validation. 
The research team obtained AADTs using the same techniques used when developing the SPFs. 
Ultimately data from only 64 sites could be used for the validation effort since the research team 
could not identify AADT data for the nine excluded sites. A total of 370 crashes occurred in the 
vicinity of the 64 available sites. Even though there are 64 crashes with AADT data, there were 
sites with at least one speed limit value missing (a key focus of the SPF development). 
Consequently, the research team evaluated data from 54 of the initial model sites for the 
temporal validation analysis. 

D.1.2 Characteristics of Filtered Dataset for Temporal-Transferability Assessment 

The data the research team collected for the validation effort was filtered using the same 
approach utilized for the development of the SPFs. Data for the year 2013 was collected for the 
54 sites noted in the previous section. This was the same dataset available to evaluate the validity 
of using the Total Crash Model and the Severity Model. In the case of the KAB SPF, an 
additional intersection was available with values for all the variables from the models. This 
additional intersection resulted in a complete dataset of 55 intersections for validating the KAB 
Model.  

The largest dataset that contained all of the variables that were determined to be significant for 
all of the developed safety functions included 50 out of the 73 intersections. Table D.1shows the 
summary statistics for this complete dataset.  

Table D.1: Yearly Statistics for Complete 2013 Dataset for Temporal Validation 

Variable Name Description Mean Std.Dev Min Max Total N 

Total Crashes All crashes 6.4 5.99 0 31 320 50 

MV_Crashes Multiple vehicle 
crashes 

5.98 5.91 0 30 299 50 

KAB_Crashes Fatal and serious 
injury crashes 

0.96 1.11 0 5 48 50 

MV_KAB_Crashes 
Severe crashes 
with multiple 

vehicles 
0.76 0.94 0 4 38 50 

MjAADT 
Major AADT 

(vpd) 
17,353.78 8575.37 5019 44,464 867,689 50 

MnAADT 
Minor AADT 

(vpd) 
7442.38 5221.59 800 22,924 372,119 50 

MjSpLimMax 
Major Speed 
Limit (mph) 

33.8 7.73 20 55 1690 50 

MnSpLimMin 
Minor Speed 
Limit (mph) 

28.3 6.97 10 45 1415 50 

As shown in Table D.1, the average of total crashes for the year 2013 was 6.4, similar to the 5.74 
crashes per year value in the complete dataset for the initial models. This value is also very close 
to the proportion of multiple vehicle (MV) crashes observed in the initial model dataset, which 
includes most of the crashes in the temporal validation set (299 MV crashes out of 320 total 
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crashes). Not surprisingly, the correlations between the explanatory variables and crashes in the 
dataset are also similar to the correlations in the initial model dataset as shown in Figure D.1. 

 
Figure D.1: Correlations Among Variables in Complete 2013 Dataset 

The next section describes the evaluations of the predictive powers of the initial SPFs and 
companion Severity Model for the new 2013 dataset. 

D.1.3 Temporal Transferability of Total Crashes SPF 

The research team calculated the SPF predictions for 2013 at each site in the database utilized to 
develop the SPFs. Using these predictions, the research team estimated the expected marginal 
distribution of crashes. The first evaluation presented in this section compares this predicted 
marginal distribution to the actual marginal distribution of 2013 crashes, as shown in Figure D.2 
and Figure D.3.  

Figure D.2 shows the fit of the model using site-specific predictions, as obtained from the 
random terms originally obtained for each site.  Because users will not know the specific random 
terms for sites other than those in the SPF development dataset, this comparison does not reflect 
the conditions that users of the SPF will face. In any case, there is some value to this comparison 
as a baseline to begin this analysis. However, no p-value can be computed for this fit because 
there are 54 site-specific random terms, which leaves a defect of 40 degrees of freedom, 
compared to the 15 classes available from the plot. 
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Figure D.2: Marginal Distribution of Crashes compared to Site-Specific SPF Predictions 

Figure D.3, in contrast, shows a more realistic scenario: the marginal distribution fit of the SPF 
population-level predictions instead of the aggregate from site-specific predictions. It is notable 
how similar  Figure D.2 is to Figure D.3; this similarity suggests that the explicit Poisson over-
dispersion included in the computation of the predictions is well-represented by the variation of 
the random effects, as defined for the Poisson log-normal mixed model (utilized in the 
predictions in Figure D.3).  

It is possible to compute a Chi-Squared Goodness-of-Fit test for Figure D.3 since there are 
enough degrees of freedom for that purpose. The p-value represents the probability that the 
average of the relative squared differences between the two distributions is at least as extreme as 
observed in the plot, under the assumption that the predicted distribution is correct. This test 
indicates that the distribution of sites by their crash frequencies for 2013 corresponds very well 
to what would be expected from the developed SPF for total crashes, at a 0.05 significance level. 
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Figure D.3: Marginal Distribution of Crashes compared to Population SPF Predictions 

The biggest absolute difference between distributions occurs for a frequency of eight crashes. 
There should be 2.431 sites with eight crashes according to the joint predictions from the Total 
SPF, but instead there were six sites with eight crashes in the dataset for 2013. However, this 
mismatch is offset by the better match between distributions for other crash frequencies: for 
example, the predicted frequency of sites with frequency of zero crashes is 3.738 sites whereas 
actually there are three sites with exactly zero crashes in the temporal validation dataset.  

The next step in the temporal validation was an examination of the difference between the model 
prediction and the corresponding crash frequency site by site. Figure D.4 demonstrates this 
comparison graphically. 
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Figure D.4: Observed vs. Predicted Crash Frequencies by Site for 2013 

The shaded zone corresponds to a region where 95 percent of all sites are expected to have their 
observed crash frequencies. Figure D.4 shows that 52 out of 54 sites have crash frequencies 
within this blue shaded zone, corresponding to 96 percent of all sites. This result indicates that 
the Total Crash SPF adequately predicts the crash frequencies observed in 2013. 

D.1.4  Temporal Transferability of KAB Crashes SPF 

The first comparison the research team performed was between the actual marginal distribution 
of KAB crashes in 2013 and the distribution of site frequencies predicted from the KAB SPF. 
Figure D.5 shows this comparison.  
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Figure D.5: Marginal Distribution of KAB Crashes Compared to the KAB SPF Predictions 

The research team concluded that the data collected for 2013 is adequately described as a whole 
by the KAB SPF predictions for 2013, since Figure D.3 shows an approximate fit. Next, the 
research team examined the difference between the individual model predictions and the 
corresponding crash frequencies, similar to the comparisons for Total Crashes. Figure D.6 shows 
this result. 

 
Figure D.6: Observed vs. Predicted KAB Crash Frequencies by Site for 2013 
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Figure D.6 shows that the deviations of actual number of crashes per site in 2013 are as expected 
when assessing the KAB SPF predictions. That is, only two sites had crash frequencies outside 
of the shaded zone. This observation indicates that 96 percent of the validation sites have crash 
frequencies in the zone where 95 percent of sites are expected. However, this figure also shows a 
limitation of the KAB SPF: a trend to over-predict crashes whenever the prediction exceeds 1.5 
KAB crashes per year (i.e. all four sites with predictions larger than this threshold are below the 
1:1 slope line). The research team proceeded to construct a similar graphic using predictions 
derived from the severity model in combination with the SPF for total crashes, the recommended 
method when the SPFs and severity model were originally developed. For comparison, Figure 
D.7 shows these new predictions next to the predictions from the KAB SPF alone already shown 
in Figure D.6. 

 

 
Figure D.7: Comparison of KAB Predictions Using Alternative SPFs 

A comparison of the number of sites within the shaded area indicates that both models have very 
comparable overall prediction capabilities (respectively 96 and 94 percent of all sites within the 
zone with 95 percent frequency of sites expectation). However, this figure shows two clear 
advantages of using the Total Crash SPF combined with the Severity Model: (1) the shaded area 
is narrower than for the KAB SPF alone, which indicates more precision associated with the 
predictions from the Severity Model and Total SPF; and (2) the over-prediction problem for 
predictions equal to or greater than 1.5 associated with the KAB SPF is dissipated when using 
the combined Severity/Total Crashes prediction. Given these advantages, the research team 
concludes that KAB crashes should be predicted using the Severity Model in combination with 
the Total Crashes SPF instead of using the KAB SPF alone. 
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D.2  SPATIAL AND SPATIAL-TEMPORAL 
TRANSFERABILITY ASSESSMENTS 

Similar to the temporal validation, the research team acquired detailed geometric data for a new 
set of 35 randomly-selected intersections by using the same selection procedure that resulted in 
the 73 intersections used for SPF development. Appendix F summarizes these individual 
intersections. The AADT values for these new sites were acquired or estimated in a similar way 
to the original 73-site sample. The research team collected crash data for years 2010 through 
2013. This range of years includes 2013 in addition to the same period used in the SPF 
development. Therefore, the resulting dataset allows the assessment of spatial and spatial-
temporal transferability of the SPF models. Because of the random selection, the validation set 
includes a variety of characteristics representative of typical conditions for signalized 
intersections in Oregon. For reference, Figure 3.2 (in Section 3.1.3) shows the location of the 
validation sites. 

The research team acquired and matched crash data to the validation intersections in the same 
way as previously described (using the newly developed IR threshold procedure). The next 
section briefly describes this procedure. 

D.2.1 Preparation of Data for Spatial and Spatial-Transferability Assessments  

A total of 1187 crashes occurred from 2010 to 2013 in the vicinity of the 35 intersections in the 
validation dataset. In this case, the definition of “vicinity” includes a distance equal to or shorter 
than 600 ft at each intersection (300 ft upstream and 300 ft downstream), since a detailed 
analysis using Maximum IFAs was not developed for the spatial validation dataset. Out of the 
1187 crashes, 712 were located within a radius of 300 ft, leaving 475 crashes to be examined for 
TCD indicators. After querying the 475 crashes for TCD indicators, only 171 crashes had codes 
indicating signalized-intersection TCDs (i.e. Advanced Flashing Beacons, Left or Right turn 
Signal, or Traffic Signal). However, most of these crashes were related to other signalized 
intersections/driveways in the vicinity of the study sites. The research team could identify only 
11 additional applicable crashes out of the 171 crashes evaluated that were located beyond 300 ft 
of the study sites. In total, there were 723 crashes available for the spatial and spatial-temporal 
transferability evaluation. 

D.2.2 Characteristics of Filtered Dataset for Spatial-Transferability and Spatial-Temporal-
Transferability Assessments 

Similar to the modelling phase, data completeness varied depending on the variables to be 
evaluated for each function under evaluation (i.e. the same variables used in the recommended 
SPFs and severity model). The largest dataset containing all the variables in any of the functions 
developed (both SPFs and the severity model) consisted of 80 site-years from 20 intersections. 
Table D.2 shows the summary statistics for this complete dataset.  

As shown in Table D.2, the yearly average of total crashes in the validation subset was 5.36, very 
close to the 5.74 crashes per year in the complete dataset in the modelling stage. There was also a 
very similar proportion of MV crashes (394 MV crashes out of 429 total crashes). The 
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descriptive statistics are similar to those shown in Table 5.4; however, the range of minor AADT 
is limited in the validation dataset by the maximum value of 9898 vpd. In the modelling dataset, 
the maximum AADT for the minor road was 23,316 vpd. However, this is not a serious issue, as 
the validation range is contained in the range represented in the modelling dataset, suggesting 
that the models should have predicting power over the validation dataset. The only limitation is 
that the analysis will not be representative of the spatial and spatial-temporal transferability for 
sites with minor road AADT values larger than 10,000 vpd. Figure D.8 shows the correlations 
between the variables of interest and the different types of crashes. 

Table D.2: Yearly Statistics for Complete 2010-2013 Dataset for Spatial and Spatial-
Temporal Validations 

Variable Description Mean Std.Dev Min Max Total N 

Total Crashes All crashes 5.36 3.26 0 15 429 80 

MV_Crashes 
Multiple vehicle 

crashes 
4.93 3.17 0 12 394 80 

KAB_Crashes 
Fatal and 

serious injury 
crashes 

0.7 0.82 0 3 56 80 

MV_KAB_Crashes 
Severe crashes 
with multiple 

vehicles 
0.46 0.75 0 3 37 80 

MjAADT 
Major AADT 

(vpd) 
18,186.46 8136.85 6501 38,266 - 80 

MnAADT 
Minor AADT 

(vpd) 
5780.60 2298.69 1750 9898 - 80 

MjSpLimMax 
Major Speed 
Limit (mph) 

33.5 8.73 20 45 - 80 

MnSpLimMin 
Minor Speed 
Limit (mph) 

28 7.70 15 45 - 80 
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Figure D.8: Correlations Between Variables in Complete 2013 Dataset 

With an exception of the minor road AADT, the correlations depicted in Figure D.8 demonstrate 
very similar relationships to those observed in the initial modelling dataset. The next section 
describes the spatial transferability evaluations of the SPFs and Severity model for the new 
dataset for the period 2010-2012.  

D.2.3 Spatial Transferability of Total Crashes SPF 

In a manner similar to the temporal transferability assessment, the research team calculated the 
SPF predictions for 2010-2013 at each site in the database of new sites and constructed the 
expected marginal distribution of crashes from these predictions.  Figure D.9 shows a 
comparison between the theoretical and observed marginal distributions of crashes for the new 
set of sites. A Chi-Squared Goodness-of-Fit test indicates that the distribution of sites by their 
crash frequencies for 2010-2012 corresponds very well to what would be expected from the 
developed SPF for total crashes (at a 0.05 significance level). 
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Figure D.9: Theoretical and Observed Marginal Distributions of Sites by Total Crash 

Frequencies: Spatial Validation Sample for 2010-2012 

The research team then examined the spatial validation to determine the difference between the 
model predictions and the corresponding crash frequencies. Figure D.10 demonstrates this 
comparison graphically. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 +

Number of Yearly Total Crashes in 2010-2012

F
re

q
u

e
n

cy
 o

f 
S

ite
-Y

e
a

rs

0
2

4
6

8
1

0

  p-val=  0.378 , df= 14

Observed

Predicted



 

D-13 
 

  
Figure D.10: Observed vs. Predicted Yearly Crash Frequencies for 2010-2012 at Spatial-

Validation Sample 

As before, the shaded region defines an area where 95 percent of all site-years are expected to 
have their observed crash frequencies. Figure D.10 demonstrates that 98 percent of all site-years 
have frequencies in this region. This result indicates that the Total Crash SPF predicts adequately 
the crash frequencies of additional sites for years 2010-2012. 

D.2.4 Spatial Transferability of KAB Crashes SPF 

Figure D.11 shows the first evaluation for the KAB SPF. This figure represents the comparison 
between the actual marginal distributions of KAB crashes in 2010-2012 for the spatial validation 
sample to the distribution of frequencies predicted by the KAB SPF. 
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Figure D.11: Theoretical and Observed Marginal Distributions of Sites by KAB Crash 

Frequencies: Spatial Validation Sample for 2010-2012 

This figure indicates a good correspondence between the sites in the spatial validation sample 
and the sites used for developing the KAB SPF in terms of their crash frequencies. The research 
team then examined the difference between individual model predictions and the corresponding 
crash frequencies, similar to the comparisons for total crashes (see Figure D.12). 

0 1 2 3 +

Number of Yearly Total Crashes in 2010-2012

F
re

q
u

e
n

cy
 o

f 
S

ite
-Y

e
a

rs

0
2

4
6

8
1

0
1

2

  p-val=  0.8672 , df= 3

Observed

Predicted



 

D-15 
 

   
Figure D.12: Observed KAB Crash Frequencies vs. KAB SPF Predicted Frequencies for 2010-

2012 

This figure shows the same limitation of the KAB SPF identified in the temporal transferability: 
a trend to over-predict crashes after a certain threshold. In this case, the approximate threshold is 
a prediction greater than or equal to 1.6 KAB crashes per year. The research team computed the 
predictions derived from the severity model in combination with the SPF for total crashes for 
comparison, similar to the previous temporal transferability. Figure D.13 shows a comparison of 
how this method performs, as well as the same result shown in Figure D.12. 
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Figure D.13: Comparison of KAB Predictions Using KAB SPF and the Probability-Based 

Severity Model 

The conclusions one can extract from Figure D.13 are similar to those that can be extracted from 
Figure D.7. There are two clear advantages of using the Total Crash SPF in combination with the 
Severity Model: (1) more precision associated with these predictions; and (2) the over-prediction 
problem associated with the predictions of the KAB SPF tends to disappear. 

D.2.5 Spatial-Temporal Transferability of Total Crashes SPF 

The final validation analyses performed by the research team compared the predictions of the 
SPFs and Severity Model to the 2013 crashes collected as part of the new validation dataset. 
These comparisons are expected to yield the largest deviations from the predictions since the 
crashes and the predictions have no spatial or temporal commonality (i.e. crashes come from 
different sites for a different time period). 

Although Figure D.14 shows a certain degree of discrepancy, a Chi-Squared Goodness-of-Fit test 
fails to reject the hypothesis that the observed and predicted distributions are equal (p-value of 
0.9154 on 12 degrees of freedom). 
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Figure D.14: Theoretical and Observed Marginal Distributions of Sites by Total Crash 

Frequencies: Spatial-Temporal Validation Sample 2013 

Figure D.15 examines the difference between the model predictions and the corresponding crash 
frequencies at each site. It is clear from this figure that crash frequencies are within the area of 
95 percent of expected frequencies. This demonstrates that the initial Total Crash regression 
model performed well for different time periods as well as for different locations. 
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Figure D.15: Observed vs. Predicted Yearly Crash Frequencies for 2013 at Spatial-Temporal-

Validation Sample 

The next section describes the findings for the spatial-temporal validation of the alternative 
models to predict KAB Crashes. 

D.2.6 Spatial-Temporal Transferability of KAB Crashes SPF 

A comparison between the marginal distribution of site frequencies predicted from the KAB SPF 
and the distribution of KAB crashes in the spatial-Temporal validation sample for 2013 reveals a 
very close correspondence (see Figure D.16).  
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Figure D.16: Theoretical and Observed Marginal Distributions of Sites by KAB Crash 

Frequencies: Spatial-Temporal-Validation Sample for 2013 

A Chi-Squared test fails to reject the hypothesis that the sites in the spatial-temporal validation 
dataset are associated with a different population than that described by the KAB SPF 
predictions (0.8672 p-value on three degrees of freedom). Next, the research team examined the 
differences between the individual predictions and observed crash frequencies at each site (see 
Figure D.17). 

0 1 2 3 +

Number of Yearly Total Crashes in 2013

F
re

q
u

e
n

cy
 o

f 
S

ite
s

0
2

4
6

8
1

0
1

2

  p-val=  0.8672 , df= 3

Observed

Predicted



 

D-20 
 

 
Figure D.17: Observed KAB Crash Frequencies vs. KAB SPF Predicted Frequencies for 2013 

The number of sites with frequencies that would be considered typical, based on the KAB SPF 
predictions, is the lowest for this test (i.e. 90 percent actual frequency, compared to 95 percent 
expected frequency). This proportion, though it performed worse than the previous models, is 
still an acceptable threshold for the intended use of the KAB SPF. Additionally, it appears that 
the overprediction issue found in other tests is not so prominent in this case. 

   
Figure D.18: Comparison of KAB Predictions Using KAB SPF and Severity Model on Spatial-

Temporal-Validation Sample 
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The comparison in Figure D.18 shows the same trends observed in previous comparisons: it is 
preferable to predict KAB Crashes using a combination of the Total Crashes SPF and the 
Severity Model, because the predictions tend to be more precise. However, in terms of Spatial-
Temporal Transferability, the performance of both this method and the use of the KAB SPF 
seem to be untarnished by the overprediction issue detected in previous analyses. 



 

 
 

 

 


	Portland State University
	PDXScholar
	8-2015

	Improved Safety Performance Functions for Signalized Intersections
	Karen Dixon
	Christopher Monsere
	Raul Avelar
	Joel Stephen Barnett
	Paty Escobar
	See next page for additional authors

	Let us know how access to this document benefits you.
	Citation Details
	Authors


	Microsoft Word - SPR756_FINAL_LP_081015.docx

