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Hot-wire anemometry measurements have been performed in a 3� 3 wind turbine

array to study the multifractality of the turbulent kinetic energy dissipation. A

multifractal spectrum and Hurst exponents are determined at nine locations

downstream of the hub height, bottom and top tips. Higher multifractality is found

at 0.5D and 1D downstream of the bottom tip and hub height. The second order of

the Hurst exponent and combination factor shows the ability to predict the flow

state in terms of its development. Snapshot proper orthogonal decomposition

(POD) is used to identify the coherent and incoherent structures and to reconstruct

the stochastic velocity signal using a specific number of the POD eigenfunctions.

The accumulation of the turbulence kinetic energy in the top tip location exhibits

fast convergence compared with the bottom tip and hub height. The dissipation of

the large and small scales is determined using the reconstructed stochastic

velocities. The higher multifractality is shown in the dissipation of the large scale

compared with small scale dissipation showing consistency with the behavior of

the original signals. Multifractality of turbulent kinetic energy dissipation in the

wind farm is examined and the effect of the reconstructed flow field via proper

orthogonal decomposition on the multifractality behavior is investigated. Findings

are relevant in wind energy as multifractal parameters identify the variation

between the near- and far-wake regions. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4968032]

I. INTRODUCTION

Comprehension of the complex behavior of the wind turbine wake flow is essential to

achieve high performance and productivity in wind farms. The dissipation of turbulent kinetic

energy and its behavior downstream the turbine is still not fully understood. The major com-

plexity of the wind turbine wake flow lies in the limitation to predict the performance accu-

rately and the lack of ability to identify the activity of the flow scales.1 Although the flow

within the wind farm has been extensively studied experimentally and computationally, a great

portion uses the classical statistical theory to analyze the flow depending on the mean velocity,

shear stress, and flux.2–5

Mandelbrot introduced an alternative approach, fractal system, to investigate flow fields.6 A

fractal system miniaturizes the whole object or signal to similar fine structures that show geo-

metrically (deterministic) or statistically (random) self-similarity. The flow chaosity can also be

identified via fractal structure that characterizes and serves them uniquely as a fingerprint.7

Several strategies, which quantify the specifications of the fractal structures, are proposed, such

as box counting method,8 detrended fluctuation analysis (DFA),9 single summation conversion

(SSC)10 as well as a robust technique known as multifractal wavelet leader (MFWL) developed

by Jaffard et al.11

Fractal analysis is utilized to investigate different types of turbulent flow some of which

are channel flow,12 gravity-capillary-waves,13 and transport in drift-waves.14 In a turbulence

field, it is important to examine the intermittent events in fluctuating the turbulence kinetic

1941-7012/2016/8(6)/063306/19/$30.00 Published by AIP Publishing.8, 063306-1

JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY 8, 063306 (2016)

http://dx.doi.org/10.1063/1.4968032
http://dx.doi.org/10.1063/1.4968032
http://dx.doi.org/10.1063/1.4968032
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4968032&domain=pdf&date_stamp=2016-11-30


energy dissipation, where intermittency implies a singular behavior and a strong gradient in the

flow field signals. Multifractality of the dissipation is proposed by Frisch and Parisi,15 where

the singularity is quantified through the fractal dimensions. Mandelbrot applied the absolute

(Beta) and weighted models to evaluate the multifractality of the energy dissipation.16

Meneveau and Sreenivasan17 presented a fractal model that fits the entire scaling exponents for

the dissipation, and employed the weighted model to construct an artificial signal of the dissipa-

tion. Chamorro et al.18 used a wavelet framework and structure function to quantify the inter-

mittency and scale-dependent correlation of the wind turbine under neutral stratification.

Results showed that the turbine blades amplify the scaling exponents, leading to increase the

intermittency. Ali et al.19 quantified the intermittency in the velocity signals at the wake of

the wind turbine using extend self similarity and compared it with Beta, Kolmogorov, and

She-Leveque models. The results showed the scaling exponents are relatively constant in the

far-wake regions. Fractal analysis is also used in other disciplines such as the social sciences,

geophysics, and medicine.20–25 Zunino et al.26 used the multifractal spectra to observe the

emerging and developed stock markets, where higher multifractality matched the emerging mar-

kets. Morales et al.27 suggested the stability of the financial firms can be evaluated through

multifractal properties.

A fractal system can be categorized as monofractal (homogeneous) or multifractal (hetero-

geneous), and characterized via the power law with real scaling exponents. Monofractal systems

are described by a singular unique scaling exponent, in contrast to the multifractal systems that

are labeled by a continuum of scaling exponents. The contribution of the broad distribution

function and long-term correlations in large and small fluctuations are responsible for the multi-

fractality in time signals.28 Asymptotically, the scaling exponent determines the changes in

time intervals and highlights the process mechanism of the flow field. Applying a range of posi-

tive and negative moments will provide opportunity to highlight the behavior of large and small

fluctuations, respectively.28 Scaling exponents showing different behaviors declare that small

and large fluctuations are scaled differently.29 Therefore, scaling exponents can be utilized in

modeling and predicting the future behavior.

Multifractal analysis is applied to quantify the dissipation in the near- and far-wake

regions. Proper orthogonal decomposition (POD) is utilized to identify the coherent and inco-

herent structures. The reconstruction algorithm of the POD is used to rebuild a new time-series

data based on the amount of the turbulent kinetic energy. The large scale structures and small

scale structures are used separately to reconstruct new flow velocities and thereafter determin-

ing the turbulent kinetic energy dissipation of the reconstructed flow field. The contribution of

the large and small scales to the energy dissipation is tested after applying the multifractal

approach on the reconstructed signal. Thus, the degree of the multifractality of the original and

reconstructed signals is compared to show how the POD changes the composition of the sig-

nals. The paper is organized as follows: in Sec. II, the theoretical formulation of the multifrac-

tal and proper orthogonal decomposition is discussed. In Sec. III, the experimental setup and

measurement locations are presented. In Sec. IV, results are described, illustrating the multifrac-

tal analysis including spectra, Hurst exponents, combination factor, and thereafter the proper

orthogonal decomposition as it pertains to the multifractality analysis of the reconstructed flow

field. Finally, conclusions are presented in Sec. V.

II. THEORY

A. Multifractal formalism

The multifractal analysis can be used to detect the fractal properties and scaling behavior

of the time series data. Dependent on scales, the power law describes the behavior of a quan-

tity, e.g., velocity, energy dissipation, which can be written as

l2

l1

¼ s2

s1

� �a

; (1)
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where l2 and l1 are statistical measures, s2 and s1 are scales, and a is the scaling exponent of

the power law. For generality, the subscripts are dropped from the scales. Depending on time, t,
and scales, s, the degree of singularity in l could be quantified through the H€older exponents,

h(t), as lðt; sÞ / shðtÞ. The distribution of local singularity along the signal can be captured

through the singularity spectrum. The MFWL method is used here to find the structure function

and thereafter the singularity of the signal. In time-frequency domain, the MFWL method

divides the signal into translated and stretched wavelet that should be orthogonal and shows

zero mean fast decaying waveform. In this study, the third order Daubechian wavelet, which is

a family of the orthogonal wavelets, is used as the dilated and shifted version of the wavelet,30

Ws0;i0 tð Þ ¼ W
u� i0

s0

� �
; (2)

where W is the wavelet, s0 and i0 are the dilated and shifted parameter, respectively. The third

order Daubechian wavelet has six non-zero scaling coefficients presenting the support function

of the wavelet, see Table I.

The convolution operation of the signal X(t) is essentially used to find the wavelet leader,

w(i, s), which represents the suprema of the wavelet coefficient, or otherwise expressed as

w i; sð Þ ¼ sup
s0�s

���� 1

Ns

ðþ1
�1

X tð Þ �W u� i0

s0

� �
dt

����: (3)

The scaling function based wavelet leader is obtained by

Sw q; sð Þ ¼
1

Nw

XNw

i¼1

½wði; sÞ�q
( )1=q

; (4)

where Nw is the number of the wavelet leaders and q is the order. Focused based multifractal

analysis introduced by Mukli et al.30 is used in this study to estimate the best exact fit that is

deduced via convergence of the least sum of squared errors, SSE,

SSE ¼
X

q

X
s

½log Swðq; sÞ � HðqÞ � ðlog s� log LÞ � log SwðLÞ�2; (5)

where log and L are the logarithm and largest scale, respectively. The scaling behavior can be

observed through determining the q order Hurst exponent, H(q), that can be obtained via finding

the slope of the regression lines and presents the parameterization of the multifractal structure

of the time series data, Swðq; sÞ / sHðqÞ. The H€older exponents, h, are associated with the multi-

fractal Hurst exponents, H, and scaling exponents, s, as follows:

h ¼
ds qð Þ

dq
¼

d q � H qð Þ � 1
� �

dq
: (6)

The Hurst exponents are used to distinguish the temporal features of the time series data and

identified the degree of multifractality, where a monofractal system shows a constant Hurst

exponent, by contrast the multifractal signals showing a remarkable dependence of the Hurst

exponent on the order, q. Di Matteo et al.31 investigated the multifractality of a wide range of

TABLE I. Daubechian wavelet coefficients.

Coefficients a0 a1 a2 a3 a4 a5

Value 0.33267055 0.80689150 0.45987750 �0.1350110 �0.08544127 0.03522629
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developing and developed markets, and revealed that the second order of the Hurst exponent

can predict the development level of a market. Morales et al.27 utilized the multifractal charac-

terizations as an indicator of financial crises and company stability, and found that the second

order of the Hurst exponent, H(q¼ 2), increases when the financial crises begins. The degree of

multifractality can be also captured through multifractal spectrum, where the width of the multi-

fractal spectrum is also used as an indictor to the multiscaling process.32–34 The singularity

spectrum can be obtained from the Legendre-transformation to the singularity or H€older

exponents,

FðhÞ ¼ inf
q
ðqh� sðqÞÞ: (7)

Ideally, the singularity spectrum is bounded by two limits at q¼61 and shows a concave

function with a parabolic shape. The width and the shape of the spectrum curve contain charac-

teristic information of the tested data set. The parameter Pc¼ hmax fwhm/Fmax is a combination

of the H€older exponent at the maximum multifractal spectrum and the full width at half maxi-

mum of the spectrum, see Figure 1. Pc is used to distinguish the activity of the time series

data.35

B. Proper orthogonal decomposition

To objectively quantify the dominant flow scales, proper orthogonal decomposition tool is

used to decompose the flow into different scales depending on the turbulent kinetic energy.

Lumley36 presented a classical POD technique in the turbulent velocity flow field. Thereafter,

Sirovich37 introduced the snapshot POD to remedy the difficulties of the classical method and

save the computational time by reducing the eigenvalue problem to the number of the snapshot

instead of the physical mesh. The POD approach is used to investigate different flow disciplines

such as wind turbine wake flow,38–40 channel flow,41 and turbulent boundary layer.42 Ukeiley

et al.43 used POD with the multifractal measures to study the flow in the lobed mixer. They

observed that the reconstructed velocity is highly intermittent although the original velocity

exhibits low intermittency.

Proper orthogonal decomposition is a mathematical tool that depends on the two-point cor-

relation and identifies the flow scales as a function of the turbulent kinetic energy content. The

decomposition is achieved by detecting a deterministic field presenting the maximum projection

onto the stochastic velocity. The optimal projection between the stochastic velocity and the

deterministic fields, /ðtÞ, can be performed by finding the maximum inner products. This study

follows the POD procedures presented in Ref. 44. The time-series data are partitioned into adja-

cent portions and the number of snapshots, N, is controlled by the total length of the time series

FIG. 1. Theoretical multifractal spectrum.
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data and the time length, Nperiod, at each snapshot. The Nperiod and N are chosen according to

the flow convergence and decorrelation criterions. The kernel of the POD is the covariance

matrix and can be determined as

R t; t0ð Þ ¼ 1

N

XN

n¼1

M tnð ÞMT t0nð Þ; (8)

where Rðt; t0Þ is a temporal correlation between two times t and t0, M is the velocity matrix, and

T is the transpose. The zero-mean fluctuating velocities are used to obtain the kernel of the

POD. Following the Fredholm integral equation, the maximization of the projection can be

achieved in a finite domain, X, as

ð
X

Rðt; t0Þ/ðt0Þdt0 ¼ k/ðtÞ; (9)

where k is the eigenvalue. The eigenvalue problem is used to solve the deterministic function

that takes the following form:

½C�½B� ¼ k½B�; (10)

where [C] and [B] are a relative to the correlation matrix and the basis of eigenfunctions,

respectively. The diagonal matrix, k, is real and non-negative, and corresponds to distinct eigen-

functions. Both eigenvalues and eigenfunctions are arranged in optimal sense. POD modes are

determined by projecting the velocity matrix into the eigenvector space and thereafter normal-

ized with L2-norm to acquire the orthonormality basis,38

/n ¼

XN

n¼1

BnM

XN

n¼1

BnM

�����
�����
: (11)

The trace of the eigenvalue matrix indicates the average of the turbulent kinetic energy and can

be presented in normalized, An, and cumulative, Bn, as

An ¼
knXN

n¼1

kn

; (12)

Bn ¼

Xn

n¼1

kn

XN

n¼1

kn

: (13)

POD has the ability to rebuild the stochastic velocity, where the number of modes used in the

reconstruction operation determines the contained energy of the reconstructed velocity. Using

the POD eigenfunctions, the reconstructed velocity can be built as follows:

~uðtnÞ ¼
XN

n¼1

ð
X

MðtnÞ/nðt0Þ dt0
� 	

/nðtÞ; (14)

where f
Ð
XMðtnÞ/nðt0Þ dt0g is the projection of the velocity field onto POD modes, and presents

the principle coefficients that convey the spectral contribution of the modes.
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III. EXPERIMENTAL SETUP

The experimental tests on an array of horizontal axis wind turbines were performed at the

closed-loop Corrsin wind tunnel at Johns Hopkins University. The dimensions of the wind tun-

nel test section are 10 m, 0.9 m, and 1.2 m in the streamwise, wall-normal, and spanwise direc-

tions, respectively. The entrance of the tunnel is provided by an active grid to generate turbu-

lence. The grid was made of 19 mm diameter aluminum shafts and distributed vertically and

horizontally to seven and five shafts, respectively. The shafts are rotated randomly and individ-

ually via 1/4 hp AC motors. Winglets of 3.18 mm thick aluminum plates are attached to the

rods and arranged as 8 horizontally and 6 vertically. The inlet mean velocity shear profile was

generated using nine strakes of a thick acrylic plate. The strakes were uniformly distributed in

the spanwise direction of the wind tunnel. An atmospheric-like boundary layer was furnished

by adding a 24-grit aluminum oxide sand paper to the ground. Figure 2 presents the schematic

of the experimental setup.

A three-bladed rotor of 12 cm diameter, D, was used as a model of the wind turbine. The

rotors were manufactured from a steel sheet of 0.48 mm thick, and twisted 15� and 10� at the

root and the tip, respectively. Thus, the rotor was attached to 1 cm diameter and 10.7 cm tall

tower. The scale of the current turbine model to the real turbines was about 1:830. Nine wind

turbines models are distributed as 3� 3 array and placed at 1.5D from the sidewalls of the tun-

nel and 3D downstream of the leading edge. The wind turbine array was spaced 7D in the

stream-wise and 3D in the spanwise directions.

To include the effect of the wake accumulation through this analysis, the measurements

that are considered here only behind the center of the third row of the wind farm. The measure-

ments behind the first two rows are disregarded, although the measurements are different. Time

series data of 100 s length were gathered via X-type hot-wire anemometry at 21 vertical and 9

streamwise locations. Downstream locations beginning at 0.5D, and with 1D spacing from 1D
through 8D, and the vertical locations starting at 0.5 cm above the ground moved vertically

with an increment of 1 cm. The hot wire was assembled from two platinum-coated tungsten

wires of 2.5 lm diameter. Time series data were sampled at the frequency of 40 kHz and

refined to 10 kHz using a low-pass filter.

Throughout the experimental tests, the free stream velocity was maintained at a constant

and the homogeneity of the velocity profile in the spanwise direction showed a reasonable devi-

ation of 0.36 ms�1 in mean velocity and 1% in normalized Reynolds stress. It is also noted that

a boundary layer develops in the top wall of the test section, but it is considered negligible as

seen by the wind turbine array. Supplementary details regarding the experimental data, mea-

surement devices, and all statistical analysis can be found in Refs. 2, 19, and 45. This study

focuses on three wall-normal locations named bottom tip, hub height, and top tip at nine down-

stream locations starting from the 0.5D through 8D as shown in Figure 3.

To determine the turbulent kinetic energy dissipation, Meneveau and Sreenivasan46 showed

that the square of gradient in only one direction can represent the actual rate of the energy dis-

sipation. Chamorro et al.47 used the second order of the velocity structure function to determine

the turbulent kinetic energy dissipation in the wind farm. They highlighted that the full velocity

gradient is required to acquire an accurate estimate of energy dissipation. Meneveau and

Sreenivasan46 and Chamorro et al.47 used the Taylor frozen field hypothesis to transform the

FIG. 2. Side view of the experiment setup.
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spatial dependence into temporal. In this study, the velocity gradient approach is used to deter-

mine the dissipation as

� � du

dt

� �2

; (15)

where � is the total dissipation, u is the streamwise fluctuating velocity, and t is the time. The

first order of central finite difference is used to achieve the gradients.

IV. RESULTS

A. Multifractal analysis

Figure 4 contains the multifractal spectra of the turbulent kinetic energy dissipations at

bottom tip, hub height, and top tip. The x, y, and z axes represent the normalized streamwise

direction, x/D, singularity spectrum, F(h), and H€older exponent, h, respectively. The singular

spectrum differs greatly depending on the physical locations. Bottom tip shows higher H€older

exponents at 0.5D, where the spectrum lies between 0.7� h� 2. The spectrum transforms

toward moderate H€older exponents at 1D and continues moving asymptotically toward the

small exponents. After 5D, the trend remains stable for the following downstream locations.

The left tail of the spectrum shifts up with the increasing of x/D. In contrast, the right tail

FIG. 3. Schematic of streamwise and wall-normal measurement locations behind the center turbine of the last row in model

wind farm array. Bottom tip (blue circles), hub height (red circles), and top tip (green circles).

FIG. 4. Distribution of the singularity spectrum, F(h), downstream the bottom tip, hub height, and top tip. The x/D is the

streamwise direction and h is the H€older exponent. The colorbar presents the value of F(h). The near-wake regions and far-

wake regions can be identified as (x/D< 3) and x/D> 5, respectively.
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moves down at locations downstream of the turbine. The long right tail reflects the sensitivity

to the small local fluctuations.9,48 At hub height, the multifractal spectrum also moves toward

the higher H€older exponents at x/D¼ 0.5 and 1. Thereafter, the spectrum shifts asymptotically

to lower singularity exponents. The left and right tails of the spectrum show the same trend

that is noticed at the bottom tip. At the top tip, the multifractal spectrum locates at the same

limit of the H€older exponents with a slight deviation at x/D¼ 2 and 3. The left tail of the spec-

trum shows approximately the same level at x/D¼ 0.5–4. Thereafter, the left tail moves up

slightly from the previous location level. The minimum H€older exponent can be used to predict

the complexity of the flow, as highlighted by the Seo and Lyu,49 who concluded that the mini-

mum H€older exponent decreases with a less complex turbulent flow. Following the thought,

here the minimum H€older exponent decreases with increasing x/D, especially at the bottom tip

and hub height locations. Maximum H€older exponents are identified at 0.5D and 1D down-

stream of the hub height and bottom tip, where the interaction between the wind turbine and

the boundary layer is more severe. Macek50 pointed out that the shape of the singularity spec-

trum can be related to the heterogeneity of the energy transfer through scales and the multi-

scaling nature of the energy cascade. In other words, the shape of the spectrum can be used to

reveal if the dissipation is independent of the scales as shown by Kolmogorov51 or it is inter-

mittent. Strong multifractality means high intermittency and the dissipation is fully dependent

on the scales. Here, the near-weak region displays high intermittency events, which is contrary

to observations in the far-wake. Multifractality of the downstream locations might be generated

from the multifractal structures of the near-wake regions that are convected downstream. Thus,

reducing the multifractality of the downstream locations is a result of increasing the Reynolds

number and consequently separation of scales.

Figure 5 presents the Hurst exponent, H, for the same locations shown in the previous fig-

ure. The order, q, is chosen to be between q¼615 with increments of unity. The limits of the

order, q, present the 61 ends of the singularity spectrum.30 The multifractality is identified

through order dependent Hurst exponents. At the horizontal line of the bottom tip, higher Hurst

exponents are encountered at x/D¼ 0.5 and 1, and thereafter for greater x/D, the variations with

the order are reduced. The same trend is noticed at the hub height locations, where the maxi-

mum variations with q occur at downstream locations close to the turbine. The Hurst exponent

distribution at x/D¼ 1 of hub height is higher than the distribution at bottom tip, affirming the

wake effect at hub height as strong and extending a long distance downstream of the rotor. Top

tip locations show different behavior, where all the downstream locations show approximately

the same distribution with the order.

Figure 6 presents the second order of the Hurst exponent, H(q¼ 2), and the combination

parameter, Pc, for the same considered locations. The second order of Hurst exponents are

tested here to characterize and demonstrate changes between the near- and far-wake regions.

Furthermore, assessing the development and recovery of the flow is also possible. At bottom tip

and hub height, the H(q¼ 2) shows higher values at x/D¼ 0.5 and decreases with increasing

streamwise direction. The second order of the Hurst exponent at x/D¼ 0.5 is approximately two

times higher than the exponent at 8D. The maximum difference in the spatial distribution of the

FIG. 5. Distribution of the Hurst exponent, H, downstream the bottom tip, hub height, and top tip. The q is the order

moment. The colorbar presents the value of H.
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H(q¼ 2) is found at x/D¼ 1 and 2 at the hub height. After 4D downstream, the second order of

the Hurst exponent appears to stabilize although it continues to change slightly after this down-

stream location. At the top tip, a slight increase in H(q¼ 2) after x/D¼ 0.5 is observed, and

thereafter, the exponent becomes constant for the following three downstream locations. After

x/D¼ 4, H(q¼ 2) is equal to the exponent at x/D¼ 0.5 and once again is approximately con-

stant for successive downstream locations. H(q¼ 2) collapses to the same curve at the top tip,

hub height, and bottom tip locations after 4D from the turbine. In general, the second order of

the Hurst exponent shows higher values at the near-wake region especially at hub height and

bottom tip, and thereafter, decreases as the flow recovers. Thus, the stability of the H(q¼ 2)

identifies when the flow has reached an equilibrium state. Following the suggestions of Morales

et al.,27 the results confirm the ability of the H(q¼ 2) to predict the crisis of the flow as one

can see that the highest values are found at the bottom tip and hub height near the rotor, and

H(q¼ 2) decreases when moving away from the rotor. Therefore, parallels between the flow as

it passes through the turbine rotor and stocks during a financial crisis are suggested.

To show the acceptance of the concept of Shimizu et al.35 using the combination factor,

Pc, to measure the activity of the brain, Pc are determined to measure the activity of the dissi-

pation. The result shows a massive decrease (40%–60%) in Pc between 0.5� x/D� 5 down-

stream of the bottom tip and hub height. Top tip regions show dissimilar behavior, where the

combination factor slightly increases between 0.5� x/D� 3 and then decreases at the next two

downstream locations. The combination factor of the top tip becomes constant after 5D down-

stream and approximately collapses with the combination factor of the hub height and bottom

tip. The maximum and minimum combination factors are found at the hub height (strong wake)

and the top tip (weak wake), respectively. The turbulent kinetic energy dissipation is highly

dependent on the Reynolds number;52 consequently, a strong evidence of a connection between

the Reynolds number and the Pc is drawn.

Figure 7 shows the local Reynolds numbers, Rek¼U k/�, based on Taylor-microscale, k,

the stream-wise mean velocity, U, and kinematic viscosity, �. The Taylor-microscale is deter-

mined using frozen field hypothesis52 as

k2 ¼ 2hu2i
1

U

du

dt

� �2
* + : (16)

The figure shows a local Reynolds number variation, where the smallest Reynolds number at

0.5D downstream of the hub height and the largest at 2D downstream of the top tip. The bot-

tom tip and hub height show an increase in the Reynolds number at 0.5� x/D� 5 and then

become approximately constant. The bottom tip, at the regions of 0.5� x/D� 2, shows higher

Rek than at hub height. After the two diameters downstream of the turbine, the hub height

region begins to display a higher Rek in comparison to the bottom tip region as a result of a

FIG. 6. The second order of the Hurst exponent, H(q¼ 2), and combination factor, Pc, at bottom tip (blue squares), hub

height (red circles), and top tip (green diamonds).
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faster recovery in the hub height region. In addition, the effects of the tower propagate down-

stream thus retarding the recovery in this area. The top tip region also shows an elevated Rek at

0.5� x/D� 2, but thereafter decreases, specifically at x/D	 3; however, it becomes constant

after 6D. The maximum variations between the wall-normal locations are found in the near-

wake region and the variations become negligible as one moves away from the rotor. The com-

parison between Pc and Rek demonstrates that increasing the Reynolds number corresponds to a

decrease in the combination factors as shown at the hub height and bottom tip. The top tip

shows consistent behavior between the Pc and Rek, where both the quantities depict a similar

trend. This behavior is attributed to the rapid flow passage and creation of a shear layer at the

top tip where the flow still possesses a relatively large local Reynolds number.1,2 This behavior

also brings to surface questions regarding the relationship between the Reynolds number and

the turbulent kinetic energy dissipation; and if the other components might be important to the

total dissipations.

B. Proper orthogonal decomposition analysis

First, the normalized eigenvalue, An, is presented in Figure 8. For clarity, only the first 20

modes are shown. Bottom tip regions show three different decay styles, the first at the x/D
¼ 0.5 and 1, where the distributions show slow decay and the first 20 modes show small differ-

ences in the energy content. The second two downstream locations show a moderate decay in

the distribution with the first five modes carrying a fair amount of the turbulent kinetic energy.

After 4D, a rapid decay ensues and becomes approximately independent of the downstream

locations, where the same index of the POD mode carries approximately the same amount of

energy. Hub height regions also show three kinds of distributions depending on the downstream

FIG. 7. Taylor microscale based Reynolds number at bottom tip (blue squares), hub height (red circles), and top tip (green

diamonds).

FIG. 8. Normalized turbulent kinetic energy, An, per modes, n, at the considered locations.
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location, where the first two downstream locations show a slow decay and an insignificant dif-

ference in energy content between the modes. The region between the 2� x/D < 6 displays a

moderate change in the energy content with increasing the index of the modes and the highest

amount of energy are held in the first five modes. The last two downstream locations show the

same eigenvalue distribution, where the first mode holds a remarkable amount of energy and

the fast decay begins from the second mode until the tenth POD mode. After the tenth mode,

there is a negligible difference in the energy content in the POD modes. The top tip exhibits

approximately the same decay distributions, where the largest differences between the POD

modes are found in the first ten modes and then the difference becomes travailed. The turbulent

kinetic energy of the first mode increases with moving downstream, where the smallest and

highest energy corresponding to the first mode are found at x/D¼ 0.5 and x/D¼ 8, respectively.

This is due to the morphing of the flow structure from a strong wake to a quasi-recovered flow.

The near-wake regions experience the effect of the turbines, where the coherent structures of

the upstream flow are severed by the rotor blades, leading to the decrease in the size of these

structures, in other words structures of small integral length scales. In contrast to the far-wake

regions, the flow be more coherent as a result of the entrained flow from the above canopy (cf.

Cal et al.,2 Ali et al.,5 and Melius et al.45). Based on wall-normal locations, the first modes at

the top tip show the largest energy content compared with hub height and bottom tip especially

in the near-wake region, 0.5� x/D< 3. This result is due to the top tip being located near the

canopy layer, where the residing coherent structures in the flow are entrained as a result of the

Reynolds shear stress. The hub height displays higher energy in the first mode than bottom tip

at 0.5D and 1D downstream of the rotor. Vortical activity in these results points towards this

behavior. Aseyev and Cal53 identified the vortex content using vorticity, swirl strength, Q-

criteria, D-criteria and k2-criteria, and the results showed that the bottom tip manifests the high-

est activity compared with hub height and top tip in the near-wake region. The regions, 3� x/

D< 6, also show the highest energy content in the first mode at the top tip. However, the bot-

tom tip shows slightly higher energy in the first mode than hub height and as expected the vor-

tices become much weaker after 3D. The bottom tip shows a fast recovery in comparison to the

hub height.

Figure 9 tracks 50% of the cumulative energy, Bn. The largest difference between the wall-

normal locations in terms of the required modes is identified at the 0.5 D downstream the rotor,

where the bottom tip requires 23 modes, in contrast to the hub height and top tip that require 9

and 5 modes, respectively. The required modes to acquire this percentage of the energy are

reduced when moving downstream as a result of the entrainment mechanism that provides the

rotor region with the large structures from the region above the canopy. Top tip region requires

less number of modes compared to the other two locations at the 0.5� x/D� 2, and thereafter,

the three wall-normal locations show similarity in the required modes to capture this percentage

of energy. Interestingly, the top tip regions need only 4 or 5 modes as a result of the energy

content in the first five modes is approximately independent on the downstream location. The

amount of energy contained in individual modes tends to be larger for those in the far-wake

when compared to the near-wake. Furthermore, the extent of scales contained in the near versus

far-wake is rather different as the integral scale is approximately 5 times larger in the far-wake

at x/D¼ 5.

Figure 10 displays 75% of normalized successive energy, where the bottom tip necessitates

more modes than the hub height and the top tip between 0.5� x/D� 4, whereas the top tip

demands the least out of the considered vertical locations. After 4D, the required modes

become independent on the wall-normal and streamwise locations. Top tip regions show

approximate similarity at x/D> 1 where the number of modes is approximately unchanged.

Downstream the hub height, the required modes show a slow change and become approxi-

mately constant after 4D. The rapid variations between the downstream locations are found at

the bottom tip especially at 0.5� x/D� 4. After 5D downstream of the bottom tip, the variation

between the locations is negligible.

To capture 95% of energy, the bottom tip demands more modes compared to other two

locations between 0.5� x/D� 5, with successive downstream locations demanding less modes
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than the hub height. The top tip also shows less required modes than the bottom tip and hub

height with the exception of x/D¼ 0.5, as shown in Figure 11. Even though for 50% and 75%,

the top tip required less modes than the hub height and bottom tip; at 95%, it requires the most

modes, surpassing the other locations. This points towards the importance of the small scales

and/or energy content at high mode numbers. Two different regimes are identified at the top

tip, the first is noticed at the region of 0.5� x/D� 3, where the required mode decreases with

increasing x/D and shows a significant variation in the number of the modes. The second

regime begins after 3D, where the amount of required modes increases with increasing x/D and

the rate at which it increases continues in the limit of 66–68 modes. This behavior is attributed

to the embedded tip vortices in this area. The oscillation that is observed in Figure 6 after

x/D> 5 is due to the exchange in energy of the small scales. Through the different percentages

of the successive energy, it is of interest to show that the bottom tip shows rapid change depen-

dent on the mode requirement compared with the hub height that shows small or slow variation

in downstream locations.

C. Multifractal analysis of the reconstructed flow field

In combining the multifractal framework of the turbulent kinetic energy dissipation with

proper orthogonal decomposition of the stochastic signals, a reconstruction of the velocity is

sought out to show the dissipation. Reduced order techniques depend on the energy cascade,

where the energy flows from the low index POD eigenfunctions to the higher index.54 Dividing

the velocity into large and small scales facilitates the ability to understand how the scales

FIG. 10. Corresponding modes for 75% reconstruction of the turbulent kinetic energy.

FIG. 11. Corresponding modes for 95% reconstruction of the turbulent kinetic energy.

FIG. 9. Corresponding modes for 50% reconstruction of the turbulent kinetic energy.
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dissipate and differ from the original signal in terms of the multifractal characteristics. The sto-

chastic velocity can be reconstructed using the specific number of the eigenfunctions and the

projection of the velocity on the POD modes. Here, streamwise velocities are rebuilt from the

large and small scales, considering the first 20 modes (referenced as large scale) carry a large

percentage of the energy as previously explained in Figure 8 and the rest (referenced as small

scale) contain the small scales in the finite domain. The reconstructed streamwise velocities are

fed into dissipation equation in order to determine the turbulence kinetic energy dissipation,

thereafter applying the multifractal algorithm. For the rest of the analysis, it will be considered

that the large and small scale velocities that are fed into dissipation equation are referenced as

the large scale dissipation and small scale dissipation, respectively.

Figure 12 compares the original and reconstructed velocities at 0.5D and 8D downstream

of the bottom tip. For clarity, the figure presents only 0.1 s of the 100 s total length of the time-

series data. The reconstructed velocity from the large scale modes passes over the original sig-

nal without taking the shape of the fluctuation. By contrast, the small scales exactly converge

to the shape of the original velocity.

The multifractal spectra of the dissipation of the reconstructed signal from the first 20 POD

modes are presented in Figure 13. Although the energy level of the first 20 modes is dependent

on the downstream and wall-normal locations, the singularity spectrum exhibits approximately

similar distribution throughout the downstream locations and the multifractality is moved to a

FIG. 12. Streamwise fluctuation velocity at 0.5D and 8D downstream of the bottom tip. Original signal (–), the recon-

structed velocity from the first 20 POD mode (blue lines), and next 460 modes (orange lines).

FIG. 13. Distribution of the singularity spectrum of the large scale at the considered locations.

063306-13 Ali, Kadum, and Cal J. Renewable Sustainable Energy 8, 063306 (2016)



null H€older exponent. As explained in Sec. IV A, when the minimum H€older exponent is

reduced, the complexity of the signal is reduced as well, thus the reconstructed signal is less

complex than the original signal. This is a consequence of reducing the interaction between the

small and large scales.

In Figure 14, the singular spectra of the small scales are identified, where they display

approximately the same trend that is observed on the spectra of the original signal, see

Figure 4. The bottom tip displays a multifractal spectrum showing higher H€older exponents

at x/D¼ 0.5 and 1, and subsequently, the distributions contain relatively lower H€older expo-

nents. The spectra, after 3D downstream of the bottom tip, become approximately indepen-

dent of the spatial locations. A similar behavior is observed at the hub height region, where

the highest H€older exponent is reached at the spectrum of 0.5D. At the top tip, all spectra

distributions are located at the same limits of the H€older exponent.

To examine the difference between the original signal and the reconstructed signals, the

multifractal spectra are overlaid as illustrated in Figure 15. Three different downstream loca-

tions are chosen to verify the consistency or inconsistency between signals located at x/D¼ 0.5,

3, and 8. The major differences are noticed between the signals at the 0.5D downstream of the

bottom tip and hub height, where the original signal moves toward the highest H€older exponent

direction and the large scale signal moves toward the minimum H€older exponent. The singular-

ity spectrum constructed via small scales lies between them. A slight variation between the

FIG. 14. Distribution of the singularity spectrum of the small scale at the considered locations.

FIG. 15. Singularity spectrum of the bottom tip, hub height, and top tip at 0.5D, 5D, and 8D. Original (red circles), large

scale (blue squares), and small scale (green diamonds) signals.
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small scale and the original signals is observed at the top tip. Thus, the variations between the

small scale and original signals decrease with increasing the downstream locations.

Interestingly, the right tail of the large scale and small scale spectra are approximately coinci-

dent with the original distribution, especially at three and eight diameters downstream the tur-

bine. The right tails of the three signals are coincident at the top tip and contain small variation

at the bottom tip and hub height. For the left tails, the large scale signal deviates far from the

original signal while the small scale signal carries moderate variations.

Figure 16 outlines the Hurst exponents determined from the original, large scale and small

scale dissipations. The large scale dissipations show more multifractal structures than the other

two signals, where the largest difference between the maximum and minimum orders, q¼615,

is found in the large scale signals at hub height, bottom tip, and top tip locations. Half diameter

downstream of the bottom tip and hub height, the largest deviations in the Hurst exponents’ dis-

tribution occur, where the original dissipation is shifted to the highest exponent and the large

scale dissipation is towards the smallest exponent. Thus, the small scale dissipation is located

between them. The Hurst exponent distribution of the small scale dissipation becomes closer to

the original signal moving further downstream. The top tip regions show the same multifractal

structure and the Hurst exponents of the three signals are approximately independent of the

location downstream the rotor. Furthermore, the three dissipation signals, with an exception

0.5D downstream of the hub height and bottom tip, are coincident for all negative moments

and the difference is only in the positive orders. In general, the multifractal structures increase

with the reconstructed signals and this result is consistent with the result found in Ref. 43,

where the POD increases the multifractality of the velocity signal.

Figure 17 presents the second order of the Hurst exponents and the combination factor of

the large scale and small scale dissipation. The second order of the Hurst exponents of the large

scale is approximately constant where the deviation of order, Oð10�2Þ, is observed. Therefore,

the second order of the Hurst exponents is independent of the downstream and the wall-normal

locations. The small scale dissipations follow the same trend that is noticed in the dissipation

of the original signal as shown in Figure 6. The bottom tip and hub height exhibit decrease in

the H(q¼ 2) with increasing the downstream location, and reach an approximately constant

value after x/D¼ 3. Top tip shows a slight increase in the H(q¼ 2) at 1D and 2D and then

FIG. 16. Hurst exponents of the bottom tip, hub height, and top tip at 0.5D, 5D, and 8D. Original (red circles), large scale

(blue squares), and small scale (green diamonds) signals.
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decreases while oscillating around the constant value of 0.62. Downstream locations show the

largest combination factor, Pc, of the large and small scale dissipations at the hub height. The

bottom and top tips alternate having the largest Pc while moving downstream, for example, at

the region of 0.5� x/D� 2, the small scale dissipation at the bottom tip exceeds the dissipation

at the top tip, whereas at 3� x/D� 5 the trend is reversed. The dissipation at the bottom tip

displays different trends in large and small scale signals, where the large scale exhibits increas-

ing of the Pc at the region 0.5� x/D� 3 and then begins decreasing with increasing down-

stream distance. The region between 6� x/D� 8 displays approximately the same combination

factors. By contrast, the small scale dissipation signal exhibits decreasing in the Pc at the region

0.5� x/D� 3 and then it becomes constant. Downstream of the hub height shows that the large-

and small scale dissipations coincide in conduct, where both dissipations decrease while moving

downstream from the rotor and then become approximately constant after 5 diameters down-

stream. However, both dissipation signals show a minute increase in the Pc at a 6 diameter

downstream. The large scale dissipation signal shows increasing Pc at 1 and 2 diameters down-

stream of the top tip, and oscillates around the Pc
 0.52. Similarly, the small scale dissipations

also show increasing Pc between the 1D and 3D downstream and then decreasing until the 8D
location, where there exists a slight increase in the Pc. Furthermore, between 6 and 7 diameters

downstream of the top tip, both large- and small scales show a noticeable change in the combi-

nation factor compared with the other neighbor locations.

V. CONCLUSION

Hot-wire anemometry data gathered in a wind tunnel experiment were used to study the

multifractal characteristics of the turbulent kinetic energy dissipation behind the center turbine

in the exit row of a wind turbine array. Focused-based multifractal wavelet leader is used to

quantify the singularity spectrum, Hurst exponents, and the combination factor as dependent on

the spatial locations. The strength of the multifractal system is determined through the singular-

ity spectrum and Hurst exponents. The hub height and bottom tip contain high multifractality,

especially 0.5D and 1D downstream of the rotor. The multifractality decreases as the down-

stream distance is increased. Top tip regions display a unified behavior of the multifractal struc-

ture, where the spectra are located approximately at the same limit of the H€older exponent.

Although the three wall-normal locations reveal the multifractality at the nine downstream posi-

tions, the top tip exhibits a reduced multifractality compared to the hub height and bottom tip,

especially in the near-wake region. Thereafter, the three locations approximately converge in

their multifractal distributions. The Hurst exponents also exhibit the same behavior shown in

the singularity spectrum, where the maximum exponents are found at 0.5D and 1D downstream

FIG. 17. The second order of the Hurst exponent, H(q¼ 2), and combination factor, Pc, at: bottom tip-large scale ((blue

squares), bottom tip-small scale (blue triangles), hub height-large scale (red circles), hub height-small scale (red crosses),

top tip-large scale (green diamonds), and top tip-small scale (green stars).
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of the hub height and bottom tip. The top tip region contains small variations in the order based

Hurst exponent. The second order of the Hurst exponent displays higher values at the hub

height and the bottom tip, especially at near-wake regions. In accordance with another behavior,

after 5D, the same exponents are yielded. The H(q¼ 2) is used as an indicator about the flow

state and its development, which in this case pertains to a wake or a kind of recovered flow.

The combination factor, Pc, also exhibits the same trend that is observed in the H(q¼ 2). Based

on the multifractal parameters, the far-wake regions are characterized by approximately con-

stant singular spectrum and low multifractality or intermittency. In contrast, the near-wake

region that is characterized with high multifractality are induced by the rotor and propagated

downstream the wind turbines. The degree of multifractality correlates with the degree of per-

turbation in the flow. Therefore, multifractal parameters can efficiently distinguish between the

near- and far-wake regions and reveal the wake propagation. In addition, the power production

that is highly affected by the flow state can be in correlation with the combination factor, where

both can predict the activity of the flow field.

Snapshot proper orthogonal decomposition is used to detect the coherent and incoherent

structures in the flow field. The turbulent kinetic energy is presented as normalized energy per

mode, An, and a cumulative energy, Bn. The first mode at the top tip carries higher turbulent

kinetic energy than the bottom tip and hub height. Thus, the amount of energy per mode is

approximately independent at the locations downstream of the top tip. The minimum amount of

the energy in the first mode is found at the 0.5D and 1D downstream of the hub height and bot-

tom tip which also show the slow drainage energy. Comparing the three wall-normal locations

in the near-wake regions, the top tip shows a fast convergence profile of the successive energy.

In contrast, the far-wake regions show approximately the same convergence profile.

Stochastic velocities are reconstructed using the POD eigenfunctions and then applying the

multifractal analysis to measure the impact of the changing of the flow structures on the multi-

fractality. The singularity spectrum of the large scale dissipation shows the same distributions

and is independent of physical location. In contrast, the multifractal spectrum of the small scale

dissipation shows approximately the same behavior of the original signal. The three original

signals are overlaid with the large and small scale signals to test the multifractality. The result

shows that the three signals coincide at the right tail of the spectra and the deviation happens

only at the left tail. However, the three signals show maximum differences at 0.5D downstream

of the bottom tip and hub height. Thus, the deviation between the small scale and original sig-

nal dissipation decreases with the moving downstream of the rotor. The Hurst exponents con-

firm the result that is noticed in the singularity spectrum. The H(q¼ 2) is approximately con-

stant for the dissipation of the large scale at the hub height, bottom and top tips. In contrast,

the small scale dissipations decrease in the H(q¼ 2) for x/D< 3 downstream of the hub height

and bottom tip, and become constant thereafter. The main goal of the current study was to

determine the multifractality of the turbulent kinetic energy dissipation in the wind farm. The

second order Hurst exponent and the combination factor as shown in this study have the ability

to demonstrate the changes between the near- and far-wake regions, predict the developed and

developing flow, and show the activity of the energy dissipation. Therefore, these can be useful

to determine the maximum energy producing spacing between the wind turbines and used as

design criteria for wind farm sitting besides the produced power and economic constraints.

Further studies can investigate the effects of the thermal stratification on the multifractal char-

acteristics and flow structures.
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