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COMPUTATIONAL METHODS FOR ASYNCHRONOUS BASINS

IAN H DINWOODIE

Abstract. For a Boolean network we consider asynchronous updates and
define the exclusive asynchronous basin of attraction for any steady state or
cyclic attractor. An algorithm based on commutative algebra is presented to

compute the exclusive basin. Finally its use for targeting desirable attractors
by selective intervention on network nodes is illustrated with two examples,
one cell signalling network and one sensor network measuring human mobility.

1. Introduction

There are three parts to network modeling in the life sciences: 1) build a dynam-
ical model of interacting molecules or other agents using data, statistical learning,
expertise, and literature, 2) classify the realistic attractors or steady state possibili-
ties as uninformative, useful, or undesirable, according to the meaning in the model
of the node values of the attractor, and 3) seek settings or interventions on acces-
sible nodes to guarantee termination in a useful attractor or prevent termination
in an undesirable configuration. This at least is one scenario for applied network
modeling.

This paper gives an example of a 15 node dynamic network of human mobility
variables including cognitive impairment to illustrate step 1). The network is based
on our particular study of household remote sensor data of motion variables related
to human health, a type of data that is sometimes called “life kinetics” data. This
model is given as a realistic computational example for the techniques of this paper
and not as a conclusive model for the medical or biological sciences. We also give
computational methods for problems 2) and 3) that are applied to both a cell
signalling example and the life kinetics model.

Networks in biology and life sciences are modeled as dynamical systems in order
to understand interactions, causal relationships, and evolution. Boolean or on/off
models are the most tractable mathematically and have the most intuitive inter-
pretation. Boolean models continue to be used widely ([15], [20], [23], [24], [27],
[36]). Cancer signalling is a common application, and a growing application area
is aging and Alzheimer’s disease ([9], [19], [26]), which is related to the life kinetics
example of Section 4.2.

To include variability in the timing of the interactions in the network, random
perturbations of the dynamics are of interest ([6], [28], [34], [40], [43]). The ran-
domized dynamics are a special case of “probabilistic Boolean networks” [37].
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2 IAN H DINWOODIE

The randomization techniques are sometimes called “asynchronous” dynamics
to distinguish them from the plain deterministic dynamics where the coordinate
maps are simultaneously or synchronously applied to the present state, mapping
all coordinates or nodes together to the next state. The asynchronous systems are
Markovian, and bring in probabilistic notions of basin of attraction that extend
the traditional definition. Here we will focus on one particular scheme, known
sometimes as “general asynchronous,” in which a node j is selected uniformly at
random for update using its transition or update function fj .

This paper defines precisely the exclusive asynchronous basin in Section 2 as the
set of points that can never leave a deterministic basin under asynchronous updates.
Theorem 2.1 gives useful properties following from the definition, especially one
that no point in the exclusive basin can reach any other attractor. In Section 3 we
describe algorithms based on commutative algebra that compute and analyze the
exclusive asynchronous basin. In Section 4 we apply the algorithms to examples
from the life sciences of 13 and 15 nodes which demonstrate the effectiveness of the
computational tools. The algebraic computations were done in Singular [8], but
other algebra software is also suitable, such as Cocoa [1] and Macaulay2 [14].

2. Exclusive Asynchronous Basin

Consider a state space {0, 1}d, a d-fold product of logical or on/off or high/low
symbols 1 and 0. These will be states or configurations on a network with d nodes.
Let F = (f1, . . . , fd) be a transition map or transition function or update function
on {0, 1}d, where fj : {0, 1}d → {0, 1} is the rule for node j. This map is deter-
ministic, it is the simplified algebraic or logical model of interactions from one time
step to the next and F is often called the synchronous update.

Two common choices for randomizing the timing of the updates in F are “random
node” (recommended by [34] and [43] where it is called “general asynchronous” or
GA), and random order (implemented in [6]). In this work we will only deal with
general asynchronous, which we will call simply asynchronous.

Asynchronous updates proceed by choosing a node or coordinate j ∈ {1, 2, . . . , d}
with the uniform probability distribution, then changing current state
x = (x1, . . . , xj−1, xj , xj+1, . . . , xd) to x′ = (x1, . . . , xj−1, fj(x), xj+1, . . . , xd). The
resulting process x0, X1, X2, X3, . . . is a Markov chain in state space {0, 1}d, starting
at nonrandom initial configuration x0 and with random variables Xn for successive
random states (here we follow the convention that capital letters denote random
variables). The probability that Xn is in a set S will be written:

Px0
(Xn ∈ S).

In theory the process has a probability transition matrix of size 2d× 2d but usually
it is not practical to work with such matrices directly. Our examples have 13 and
15 nodes respectively, giving cardinalities of 8192 and 32768 for the state space size
2d. We hope and expect that the algebraic methods in this paper can be applied on
examples of up to 50 nodes in the future, as symbolic commutative algebra software
gets more powerful.

Let F = (f1, . . . , fd) : {0, 1}d → {0, 1}d be the transition function on Boolean
states {0, 1}d. For a state x, define the limiting set

Ax = ∩∞
k=1 ∪∞

n=k {Fn(x)}



COMPUTATIONAL METHODS FOR ASYNCHRONOUS BASINS 3

where Fn is the n-fold composition of F . The resulting sets, as x varies in the
state space {0, 1}d, are the limiting sets or attractor sets of the system. These are
fixed points or cycles, and every state enters one of them and stays there under
deterministic dynamics F .

Let BA be the usual deterministic basin of attraction for an attractor A, the
points that eventually hit A:

BA := ∪∞
k=1{x : F k(x) ∈ A}.(2.1)

Define the single coordinate updates on a state x = (x1, . . . , xd) by

Fj(x) = (x1, . . . , xj−1, fj(x), xj+1, . . . , xd), j = 1, 2, . . . , d.

Now with B0 = BA, F
−1
j the inverse of Fj , and Bc the complement of a set B,

define the exclusive asynchronous basin of the attractor A by

Bi = Bi−1 \ ∪d
j=1F

−1
j (Bc

i−1), i = 1, 2, 3, . . .(2.2)

Bex,A = lim
i→∞

Bi.(2.3)

Probabilistically, this can be described as

Bex,A = {x : Px(Xn ∈ BA, n = 0, 1, 2, 3, . . .) = 1}.
In words, the points in Bex,A are the states that can never leave the basin of
attraction BA over time under perturbations in the form of asynchronous updates.
The sets Bi are the initial states x0 that keep the initial segment x0, X1, X2, . . . , Xi

in BA, and (2.2) gets them recursively by removing the points from Bi−1 that can
move out of Bi−1 in one initial step. At the end of this section we discuss the
definition further.

Note that B0 ⊃ B1 ⊃ B2 · · · and the domain {0, 1}d is finite so the limit Bex,A

exists, while possibly empty, and will be a fixed point for the set map T :

T (B) := B \ ∪d
j=1F

−1
j (Bc), i = 1, 2, 3, . . .(2.4)

Bex,A = T (Bex,A).(2.5)

Our definition of Bex,A starts with the deterministic basin BA, and this gives
useful properties on keeping the asynchronous dynamics out of other attractors.

Theorem 2.1. If Bex,A is the exclusive asynchronous basin for attractor A then
1) asynchronous or synchronous dynamics starting at any point in Bex,A cannot
reach any point of any attractor other than A, 2) Bex,A contains A if the attractor
A is a fixed point, 3) if Bi = Bi−1 in (2.2), then Bex,A = Bi.

Proof. For 1), let x ∈ Bex,A ⊂ BA. Then Fn(x) ∈ BA, n ≥ 0, and x can never
reach any other attractor under deterministic dynamics F . For the asynchronous
dynamics, (2.5) implies

Bex,A = Bex,A

⋂

∩d
j=1F

−1
j (Bex,A)

and so Bex,A ⊂ ∩d
j=1F

−1
j (Bex,A) and x ∈ Bex,A means Fj(x) ∈ Bex,A, j = 1, ..., d,

in other words Px(X1 ∈ Bex,A) = 1. Thus x stays in Bex,A under single-node
updates, and Bex,A is disjoint from any other attractor since Bex,A ⊂ BA. For 2),
a fixed point for F is also fixed for the asynchronous updates (that is, if A = {x}
and F (x) = x then Fj(x) = x as well, hence Px(X1 = x) = 1) and will never leave
BA. For 3), which means we can stop the iteration as soon as it repeats, observe
that if Bi = Bi−1 then Bi = Bi+1 = Bi+2 = · · · and the limit is Bi. �
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Note that Bex,A may be empty if A is a cycle. A simple example is useful to
understand the definition and its consequences. Consider the state space diagram in
Figure 1 for dynamics given in logical form by f1(x1, x2) = x1 xor x2, f2(x1, x2) =
x1. Here B00 = {00}, and this is also the exclusive basin for the fixed point 00. Now

00

10

01

11

Figure 1. Cyclic attractor with empty exclusive basin

the cycle attractor 01 → 10 → 11 → 01 has empty exclusive basin, because any of its
states can transition to 00 with asynchronous updates. For example, 11 → 01 → 00
is possible by updating first coordinate 1 with map f1 then coordinate 2 with map
f2. So 11 can reach 00, and 00 is not in the basin of the cycle attractor as it is a
fixed point, and 01, 10 are similar. Thus there are no states that cannot leave the
basin {01, 10, 11}, and Bex,{01,10,11} = ∅.

This example illustrates also why the iteration (2.2) should start at B0 = BA

in the presence of cyclic attractors, rather than starting with the inclusive basin
Bin,A. Recall that the inclusive basin Bin,A is the set of points that have positive
probability of reaching the attractor A with asynchronous updates. In the above
example, the inclusive basin for the fixed point 00 contains all states, and then the
iteration (2.2) would give the entire state space if B0 = Bin,A, including the cyclic
attractor, as the exclusive basin Bex,A. Thus, if we want to exclude all elements of
other attractors from Bex,A we should start with B0 = BA and not with Bin,A at
(2.2).

Starting with an initial state x0 in Bex,A as defined in (2.3) may not guarantee
reaching the attractor A under asynchronous dynamics (but it does using the origi-
nal deterministic map F ). A simple example is a network in d = 2 where states 00,
11 map to 10 under F , 10 maps to 01, and 01 is fixed. Then the basin B01 for 01
is all four states, as is the exclusive basin Bex,01. But the state 10 cannot reach 01
under asynchronous updates, it can only stay within {00, 11, 10} with single node
updates.

There are a variety of ways to define basins of interest with randomized versions
of deterministic dynamics F , as explained and illustrated in [6] and [35]. Ran-
domized versions can be either totally random or partially random, depending on
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how much of the network is randomized. Then updates can be randomized by
choosing an order randomly or a particular node or subset to update. The totally
randomized method with individual random node updates is recommended in [34]
(and called general asynchronous or GA dynamics) for its realism combined with
computational efficiency, and this is what we use.

The definition (2.3) for the exclusive asynchronous basin is slightly different than
the notion in [34] for general asynchronous dynamics. The definition used in [34] is
the collection of states in the inclusive basin of A that are not in any other inclusive
basin. The two definitions work out the same on the main 6-node example of their
Table 1. They are also the same in the Figure 1 example, where Bex,00 = {00}
and Bex,{01,10,11} = ∅. But in the previous example (in d = 2 where states 00, 11
map to 10 under F , 10 maps to 01, and 01 is fixed), the two notions are different:
definition (2.3) for Bex,01 gives the entire state space {00, 01, 10, 11} since there is
no other attractor basin that the Markov chain could enter, whereas the notion
in [34] would make the exclusive basin equal to {01}, since it is the only point
in the inclusive basin. This example supports the value of (2.3) if synchronous
dynamics are considered primary and the goal is to prevent the dynamics from
entering unwanted attractors under perturbations. The definition in [34] is studied
in [11], the algebraic methods work there as well.

The notion of exclusive basin made precise in (2.3) is computationally efficient, it
has a clear probabilistic interpretation, and it has practical value in applications like
Example 4.2. It gives a robust basin for the purpose of targeting useful attractors.

3. Algebraic Computation

There are three computational problems when trying to target a given attractor
under asynchronous dynamics with node interventions: 1) computing the basin of
attraction BA, 2) computing the exclusive asynchronous basin of attraction Bex,A ⊂
BA, and 3) finding cylinder sets inside Bex,A. A cylinder set C is a set of the form
C = {x : xj1 = a1, . . . , xjc = ac} for particular 0-1 values of a1, . . . , ac. In other
words, certain coordinates are assigned particular values and the others are free.
The fixed coordinates j1, . . . , jc are the targets for intervention – if C ⊂ Bex,A,
then initializing the values of coordinates j1, . . . , jc at a1, . . . , ac for any starting
state x will guarantee convergence to the attractor A under deterministic dynamics
and will prevent entering any other attractor under asynchronous dynamics, by
Theorem 2.1.

A convenient and effective way to do the three computations uses computa-
tional commutative algebra ([7], [21], [32]) and its implementation in packages like
[8]. Although the notion of exclusive asynchronous basin involves probability, the
algebraic calculations are exact, unlike inferences about the basin from data gener-
ated by computer simulation of the asynchronous process. This technology works
with the polynomials that vanish on a set of points (the ideal of the set) rather
than directly with the points themselves (the variety). The ideal-variety correspon-
dence [7] allows one to move between the two and find geometric properties of the
set of points from algebraic properties of the ideal. To use commutative algebra
for dynamics, one must write the dynamics as polynomial functions (see [22] and
[38] for background). For example, the dynamics in Figure 1 would be written
f1(s1, s2) = s1+ s2− 2s1 · s2, f2(s1, s2) = s1 where the s1, s2 are indeterminates for
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a polynomial ring C[s1, s2], technically not the same as state variables x1, x2 which
are merely symbols for unspecified values of 0 or 1.

The remaining parts of this section are about doing the computations described
in Section 2 using commutative rings in algebra software and will be of interest
primarily to people implementing the methods in software.

3.1. Computing BA. Let A be an attractor of interest, with basin of attraction
BA. We will use twice as many indeterminates as the number of coordinates d.
Define the ring of polynomials R := C[s1, . . . , sd, t1, . . . , td] = C[s, t], and define
ideals

I01 = 〈s21 − s1, . . . , s
2
d − sd, t

2
1 − t1, . . . , t

2
d − td〉

Fst = 〈f1(s)− t1, f2(s)− t2, . . . , fd(s)− td〉
Fts = 〈f1(t)− s1, f2(t)− s2, . . . , fd(t)− sd〉
IA = ∩x∈A〈t1 − x1, . . . , td − xd〉.

Define the ideal I1 by

I1 = (Fst + IA + I01) ∩ C[s],

and define recursively a sequence of ideals I2, I3, I4, . . . by

J = (Fts + Ii + I01) ∩ C[t](3.1)

Ii+1 = (Fst + J + I01) ∩ C[s], i = 1, 2, 3, . . .(3.2)

Stop the iteration when dimR/(Ii+ I01) repeats in order to get the polynomials
IBA

that vanish on the basin of attraction BA. This solves the first computational
problem of getting BA. This algorithm is in [13].

3.2. Computing Bex,A. To get the exclusive asynchronous subset Bex,A, we re-
move points algebraically from BA following (2.2). Define ideals in C[s, t] for single
coordinate updates of asynchronous dynamics by

IFj
:= 〈s1 − t1, . . . , sj−1 − tj−1, fj(s)− tj , sj+1 − tj+1, . . . , sd − td〉, j = 1, . . . , d.

Also we will use the notation Is→t for substitution of indeterminates t for s in an
ideal I ⊂ C[s].

The way to compute the ideal of Bex,A is

I0 := IBA
(3.3)

Ji := ∩d
j=1

(

R : I s→t
i−1 + IFj

+ I01
)

∩C[s], i = 1, 2, 3, . . .(3.4)

Ii := Ii−1 : Ji.(3.5)

In words, we get J1 by looking first at the complement of BA with the colon ideal R :
I s→t
0 in next-step variables t, and by adding IFj

we add equations that constrain
the starting variables s to hit the complement of BA with the coordinate update
fj . Adding the ideal I01 is for technical reasons related to variable elimination and
extending solutions (see the Extension Theorem in [7]). Then I1 is the complement
of J1, the points in s variables that do not exit the basin. Stop the iteration when
the ideals Ii repeat, using property 3) of Theorem 2.1, which can be detected by
measuring their size with

dim R/(Ii + I01)
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the vector-space dimension counting the number of points in the 0-dimensional
ideal. If the size of Ii stabilizes at i

⋆ then

IBex,A
= Ii⋆ .

3.3. Finding Control Variables. One purpose of a signalling network model is
to understand causal relationships among the nodes that can be used to target
certain desirable limiting configurations. Examples are in cancer therapy ([24],
[34], [33]) and Alzheimer’s disease ([9], [19]). The effect of node settings is a purely
mathematical one in this section. As discussed further in Example 4.2, the causal
effect of network node interventions in the larger scheme of gathering data and
fitting statistical models to biological data is more complicated.

Ways to find control variables, or nodes for intervention, are developed in [3].
One way is to find the prime decomposition (see [7]) of the ideal IBex,A

which is the
algebraic way to find simple cylindrical subsets of the variety Bex,A. To summarize
Theorem 2.2 of that work, we do three things to IBex,A

: 1) reduce or divide a

standard basis for IBex,A
by I01 to get Ī, 2) compute the radical of Ī, say

√
Ī, 3)

compute the primary decomposition of
√
Ī and look for components using variables

that can be controlled.
The idea behind why this method works is as follows. Suppose the cylinder

C = {x ∈ C
d : xj1 = a1, . . . , xjc = ac} ∩ {0, 1}d is contained in the basin Bex,A.

The ideal for the irreducible set {x ∈ C
d : xj1 = a1, . . . , xjc = ac} is prime, say

P , and the ideal for {0, 1}d is I01 defined previously in Section 3.1. So we have
inclusions

Bex,A ⊃ {x ∈ C
d : xj1 = a1, . . . , xjc = ac} ∩ {0, 1}d,

IBex,A
⊂ I{x∈Cd:xj1

=a1,...,xjc=ac}∩{0,1}d = P + I01

using that the ideal of the intersection of these sets (varieties more precisely) is the
sum of their ideals. Then reducing the generators for IBex,A

to get Ī leads to Ī ⊂ P

and since P is prime we get
√
Ī ⊂ P . Then the prime ideal P = 〈sj1 −a1, . . . , sjc −

ac〉 in the ring C[s] will show up in the prime or minimal decomposition ∩jPj of

the radical ideal
√
Ī. The details are in Theorem 2.2 of [3].

For the simple example in Figure 1, the three calculations would go as follows.
Starting with basin B = {00}, its ideal IB = 〈s1, s2〉, the polynomials whose
roots define x1 = 0, x2 = 0. Then Iex,B = IB since 00 is a fixed point for both
deterministic and asynchronous dynamics, and Iex,B = 〈s1, s2〉. Finally, reducing
Iex,B by I01 does not change anything because s1, s2 are not divisible by s2j − sj .
Finally, the prime decomposition is nearly trivial, since the ideal 〈s1, s2〉 is already
prime and it corresponds to the cylinder x1 = 0, x2 = 0, just a single point.

A more illustrative example of the algebra is one where a hypothetical exclusive
basin Bex,A = {000, 001, 010} is a union of two cylinder subsets 00* and 0*0,
with intersection the single point 000. This set has ideal given by IBex,A

= 〈s23 −
s3, s2s3, s

2
2 + s2s3 − s2, s1〉. Then reducing the generating elements of IBex,A

by I01
and computing the radical gives ideal 〈s1, s1s3〉, which has prime decomposition
P1 = 〈s1, s3〉, P2 = 〈s1, s2〉, corresponding to 0*0 and 00* respectively.
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4. Examples

Our two applications for illustrating the methods come from the life sciences. The
first cell signalling example starts with dynamics from published sources, whereas
the second involves a first step of statistical modeling using modern learning tech-
niques described for example in [16]. We used the software BoolNet [29] to draw
wiring diagrams, where green (light) edges mean activation and red (dark) edges
mean inhibition, and to draw the state space diagram of Figure 1. We also used
it to check calculations on attractors. BoolNet uses a concise and intuitive logical
notation for coding functions: & codes for “and”, | codes for “or” and ! codes for
“not.” In Figure 2, the first line “NOS, Ca2” means that the first node is called
NOS, and its update has a value given by the current value of the calcium node
Ca2. Then the function for coordinate 1 is f1(x) = x11, since Ca2 is node 11. For
node 11, we have f11(x) = x9 · (1− x10).

4.1. Cell Signalling Network. The first example is a signalling network from
Table 1 of [34]. The network models the agents (enzymes, proteins, and small
molecules) that are involved in signalling stomatal closure in a cell. The closure
is a function of the calcium node Ca2 and is not actually present in the coding of
Figure 2. The wiring diagram is in Figure 3. The meanings of the names of the
nodes in Figure 2 are given in Figure 1 of [35].

targets, functions
NOS, Ca2
NO, NOS
GC, NO
ADPRc, NO
cADPR, ADPRc
cGMP, GC
PLC, Ca2
InsP3, PLC
CIS, (cGMP & cADPR) | InsP3
Ca2ATP, Ca2
Ca2, CIS & (!Ca2ATP)
KAP, !Ca2
KEV, Ca2

Figure 2. Stomatal Closure Dynamics in BoolNet Notation

The Boolean network has one fixed point 0000000000010 in which node 11 Ca2
is off (implying no stomatal closure) and two cycles of length 4. The fixed point
has deterministic basin of size 108, and an exclusive asynchronous basin of size 56,
composed of two cylinders x1 = x2 = x3 = x6 = x7 = x8 = x9 = x11 = 0 and
x1 = x2 = x4 = x5 = x7 = x8 = x9 = x11 = 0 each of size 32, and overlapping in 8
points. The computer time to get the synchronous basin was .060 seconds, whereas
the asynchronous basin required 74.420 seconds (Intel x86-64 processor i7-3770 at
3.40GHz) and memory use was under 2 Gbytes always.

Any of the 8136 = 213 − 56 points outside of its exclusive basin has a positive
probability of entering the deterministic basins of the two cycles under asynchronous
dynamics. Both cycles show oscillatory behavior in the Ca2 node, and oscillation
is of special interest to biologists [35].
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NOS

NO

GC

ADPRc

cADPR

cGMP

PLC

InsP3

CIS

Ca2ATP Ca2

KAP

KEV

Figure 3. Wiring Diagram for Stomatal Closure Signalling Dynamics

One cycle shows oscillation in all 13 nodes:

1000001011001

0100000100010

0011000010010

0000110000110

For this cycle, analysis of the deterministic dynamics gives 24 cylinder subsets of
the basin that move to the cycle, involving 5 or 6 nodes. For example, the first one
is x1 = 0, x4 = 0, x7 = 0, x10 = 1, x11 = 1. Thus, any point with these initial values
on nodes 1, 4, 7, 10, and 11 (NOS off, ADPRc off, PLC off, Ca2ATP on, Ca2 on)
will move to this attractor. Note that the values on these nodes will change over
time, as they must since the attractor shows oscillation on all nodes. The exclusive
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asynchronous basin is empty, meaning that changing the dynamics with random
node updates will allow the system to move into other attractor basins with positive
probability.

A second cycle is fixed in the CIS node 9:

1100001111001

0111000110010

0011110010110

1000111011101

Here the deterministic dynamics give 16 subcylinders of the basin, with some
two-node sets like x7 = 1, x11 = 1. Again, the exclusive asynchronous basin is
empty.

The empty asynchronous basins show the network is fragile in the sense that
randomized dynamics can change the limiting behaviour significantly with positive
probability, a property also noted in [6].

4.2. Life Kinetics Network. Our second example involves longitudinal data from
in-home motion sensor recordings. This data was generated by the Intelligent Sys-
tems for Assessing Aging Changes (ISAAC) study [18], an aging study conducted
by the Oregon Center for Aging & Technology (ORCATECH) at OHSU. The par-
ticular data set involved 153 people, 197 homes, and spanned the time period May
2007 to February 2014. Our data file recorded summary data for each day, for
each residence. The variables to be measured and computed were determined by
ORCATECH based on expertise and current research including [2], [17], [30], where
variables like the number of transitions from one room to another, or the time spent
out of house, were shown to be relevant. It is known that variability of quantities
like walking speed is important, so we also had measures of dispersion like the
standard deviation of walking speed over each day, and the coefficient of variation
of walking speed (standard deviation divided by mean) on each day to normalize
for subject differences. The data is observational and not controlled experimental
data, as variables like “walking speed” were not applied in a randomized way to
subjects. So dynamical patterns in the data found with statistical learning meth-
ods are comparable to correlations, and causal effects can only be determined with
further study.

A variable of interest is the binary variable MCI (mci) which codes for mild
cognitive impairment. While MCI is not the same as Alzheimer’s disease, the two
are related [31]. One goal is to understand the predictive roles of other behavioural
variables. In particular, it would be useful to know if interventions may be possible
on some variables to reduce the risk of future MCI.

Let us say why a Boolean network model may be useful for this data. A Bayes
network can be used to model dependencies in multivariate data, but the model
is static and it does not help to understand the predictive role of variables related
to MCI months in advance. In the work [5], the predictive role of walking speed
years in advance on MCI was established using change point methods, statistical
methods which are related to on/off signalling. But [4] emphasizes that monother-
apeutics (therapies focusing on one variable) have been ineffective, and presents
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a new therapeutic system involving over twenty actions designed to modify be-
haviour variables like sleep and exercise, variables which also appear in some form
here. The Boolean network method can give an enhanced understanding on how
combinations of interventions have signalling effects over time. It is one of the
simplest ways to understand multivariate signalling over time, our main goal. The
methods of survival analysis are also applicable, but they are not able to capture
cyclic behaviour of MCI in some individuals. It is possible to extend the techniques
of this paper to predictive variables with more levels than two [10]. Finally, many
statistical methods are useful for understanding multivariate longitudinal data and
the Boolean model that we use here is just one tool.

A large scale evolving study like ISAAC will have challenging statistical issues.
About 16% of the entries are missing in our working data file of 43 Megabytes, and
outliers are present due to imperfect sensor readings. The reasons why we consider
our fitted model in Figure 4 only a first step in understanding the dynamics of the
data are: 1) our missing data procedure is crude, 2) tree classification methods are
known to be sensitive to small changes in the data, and 3) the best time lag for
regression is not established.

Now we describe the statistical procedure that gave the estimated dynamics of
Figure 4. First, the data was revised by removing the few records with missing
MCI value or missing subject identifying number. Then other missing values were
imputed with the function na.roughfix of the randomForest package [25]. This is
a very crude tool for missing data, but the more sophisticated function rfImpute

would not handle so much data with only 32 Gigabytes of computer memory. A
more refined analysis in the future should improve this step. Then, after imputing
to get complete data, we used the variable importance feature of the randomForest
package to rank the variables for inclusion in the final model. This method essen-
tially looks at how much worse prediction with cross validation becomes when the
variable is removed from the model (see p. 593 of [16] p. 593 for a detailed de-
scription). From approximately 30 variables, we chose 15 including the MCI value.
Many of the variables are continuous, so it is necessary to discretize into high/low
or on/off values for a Boolean network. Rather than using quantiles or other meth-
ods that are unrelated to signalling or prediction, we used a new predictive method
that is based on random forests. For this, we get 500 classification trees from the
randomForest command predicting MCI on one day from the predictor values on
the previous day. Then we examined each tree for the value of the first split on
each predictor variable. The cutoff or threshold for on/off was the mean of the 500
values of the first split (each of the 500 trees split every predictor variable in its
partition of the domain for building a function y = f(x1, . . . , x14), where y is a
binary code for MCI). The variable definitions are in Table 1.

Then finally tree classification was implemented on the resulting binary variables.
For the tree classification, we used the R package rpart [39]. This procedure is
described in [16] and is different than the interpolation method of [42]. Converting
the trees to algebra was done as in [12]. The wiring diagram in Figure 5 is a graphi-
cal representation of Figure 4, where green arrows indicate an effect of switching on
or up (activation) and red arrows represent switching off or down (inhibition). The
wiring diagrams are slightly ambiguous because of interaction effects. The arrow
shows the direction of the effect in time.
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Table 1. ISAAC Study Variable Definitions

numtrans number of transitions between rooms, normalized to mean 1.0 in home
numfir number of sensor firings in the home, normalized to mean 1.0 in home
oohhours estimate of the number of hours the participant spent out of home
timeasleep total time asleep (minutes)
ttib total time in bed (minutes)
waso time awake after sleep onset (minutes)
sleeplatency total sleep latency (minutes)
sleeplivroom time asleep in living room (minutes)
compuse total computer use (minutes)
numwalks number of walks (count)
meanws mean walking speed (cm/s)
wsq3 upper quartile of walking speed (cm/s)
wscv coefficient of variation of walking speed
wssigma standard deviation of walking speed (cm/s)
MCI mild cognitive impairment diagnosis with the Jak criteria (binary indicator)

The Boolean dynamical system from statistical learning is in Figure 4. This
model is one that is consistent with many observed interactions among variables
related to aging, but should not be taken as a final analysis. It has 52 attractors,
including 7 steady states and 45 two element cycles. Six of the steady states have
MCI off, so these are interesting and useful as targets, as are the 33 cycles in which
MCI is off.

targets, functions
1 mci, !wsq3 & !compuse & (!waso & sleeplivroom | waso)
2 numtrans, numfir
3 numfir, !numtrans & (!sleeplivroom & !wsq3 | sleeplivroom) | numtrans
4 oohhours, !ttib & (!sleeplivroom & (numfir & numwalks | !numfir) | sleeplivroom)
5 wsq3, !meanws & !numwalks & !mci | meanws
6 meanws, wsq3 & (wscv & wssigma | !wscv)
7 numwalks, wssigma & !wscv
8 wscv, wssigma & (!meanws | meanws & mci )
9 ttib, timeasleep
10 wssigma, wscv & meanws
11 timeasleep, ttib
12 sleeplivroom, timeasleep & !ttib
13 waso, sleeplatency & ttib
14 compuse, !mci & wssigma
15 sleeplatency, waso & ttib

Figure 4. Life Kinetics Dynamics in BoolNet Notation

One of the interesting steady states is 01101 10000 00000, with coordinate labels
in the order of Figure 4. Thus MCI has value 0, which is a desirable configuration.
The deterministic basin has size 3456, whereas the exclusive asynchronous basin has
size 960. Such a significant reduction in size is expected, as this was observed in
[34] and [35]. The computational time in Singular [8] (version 3-1-6) is considerably
higher for the asynchronous basin. On a desktop computer (32 Gbytes of memory,
Intel x86-64 processor i7-3770 at 3.40GHz), the synchronous basin BA took 2.320
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Figure 5. Wiring Diagram for Life Kinetics and Cognitive Impairment

seconds of computing time, whereas the exclusive asynchronous basin Bex,A took
1090.100 seconds. The computer memory use for the asynchronous basin calculation
was less than 2 Gbytes throughout the computation. The basin Bex,A is the union
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of five intersecting cylinder subsets:

C1 = {x : x2 = 1, x3 = 1, x8 = 0, x9 = 0, x10 = 0, x11 = 0}
C2 = {x : x2 = 1, x3 = 1, x6 = 0, x9 = 0, x10 = 0, x11 = 0}
C3 = {x : x1 = 0, x2 = 1, x3 = 1, x5 = 1, x6 = 1, x8 = 0, x9 = 0, x11 = 0}
C4 = {x : x2 = 1, x3 = 1, x5 = 1, x6 = 1, x8 = 1, x9 = 0, x10 = 1, x11 = 0}
C5 = {x : x1 = 0, x2 = 1, x3 = 1, x5 = 1, x6 = 1, x9 = 0, x10 = 1, x11 = 0}

Cylinders C3 and C5 use node 1 (MCI) so these are of no practical use for interven-
tions. However C1 may be useful: it says if we initialize numtrans at high, numfir at
high, wscv low, ttib low, wssigma low, and timeasleep low, then the system will lead
to this steady state deterministically and will not lead to any attractor with MCI
on under asynchronous dynamics. The six nodes for this intervention are known to
be related to MCI individually, but this new analysis gives the precise combination
of settings that will turn MCI off over time. The results are consistent with current
knowledge. One can study all steady states to seek the most practical nodes for
intervention. All of the 33 cycle attractors have empty asynchronous basins.

5. Conclusions

We have defined an exclusive asynchronous basin in order to eliminate initial
states from a deterministic basin of attraction that could move to unwanted at-
tractors under uncertainty in the timing of the node updates. Variations on the
definition are possible by changing the initial set B0 in the iteration. Algebraic com-
putational methods are given. Altogether, for Boolean networks of up to around
15 nodes, the methods give a way to find node interventions that will set an initial
state moving towards a desired limiting state even under random perturbations of
a model.

The examples show that analyzing asynchronous dynamics is more demanding
computationally than a deterministic analysis. Still, existing symbolic computa-
tional algebra software is sufficient for precise geometric calculations needed to
understand network control variables on real examples. While other computational
methods exist for finding deterministic and asynchronous basins, the algebraic ge-
ometry is especially good for finding combinations of node settings that target a
given attractor in the presence of randomized dynamics. Calculations on a 15 node
network use a space of polynomials with 30 indeterminates and this works well in
practice. An interface between a package like BoolNet [29] directly to Singular [8]
would be convenient and not difficult.
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