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ABSTRACT

The high cost of processor fabrication plants and approaching physical limits have

started a new wave research in alternative computing paradigms. As an alterna-

tive to the top-down manufactured silicon-based computers, research in computing

using natural and physical system directly has recently gained a great deal of in-

terest. A branch of this research promotes the idea that any physical system

with sufficiently complex dynamics is able to perform computation. The power of

networks in representing complex interactions between many parts make them a

suitable choice for modeling physical systems. Many studies used networks with a

homogeneous structure to describe the computational circuits. However physical

systems are inherently heterogeneous. We aim to study the effect of heterogeneity

in the dynamics of physical systems that pertains to information processing. Two

particularly well-studied network models that represent information processing in

a wide range of physical systems are Random Boolean Networks (RBN), that are

used to model gene interactions, and Liquid State Machines (LSM), that are used

to model brain-like networks. In this thesis, we study the effects of function het-

erogeneity, in-degree heterogeneity, and interconnect irregularity on the dynamics

and the performance of RBN and LSM. First, we introduce the model parameters

to characterize the heterogeneity of components in RBN and LSM networks. We

then quantify the effects of heterogeneity on the network dynamics. For the three

heterogeneity aspects that we studied, we found that the effect of heterogeneity
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on RBN and LSM are very different. We find that in LSM the in-degree hetero-

geneity decreases the chaoticity in the network, whereas it increases chaoticity in

RBN. For interconnect irregularity, heterogeneity decreases the chaoticity in LSM

while its effects on RBN the dynamics depends on the connectivity. For 〈K〉 < 2,

heterogeneity in the interconnect will increase the chaoticity in the dynamics and

for 〈K〉 > 2 it decreases the chaoticity. We find that function heterogeneity has

virtually no effect on the LSM dynamics. In RBN however, function heterogeneity

actually makes the dynamics predictable as a function of connectivity and het-

erogeneity in the network structure. We hypothesize that node heterogeneity in

RBN may help signal processing because of the variety of signal decomposition by

different nodes.
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1

INTRODUCTION

1.1 MOTIVATION

The increasing cost of processor fabrication plants and approaching the physical

limits of silicon-based computers [17, 42] have motivated researchers to look for

alternative computing paradigms, such as molecular computing, quantum com-

puting, amorphous computing [1, 2, 11, 16, 26, 34, 86, 98, 99, 101, 112, 116]. Some of

the recent efforts in natural computing have focused on computing using the intrin-

sic dynamics of physical systems [95]. One of these paradigms is called Reservoir

Computing (RC).

Researchers have been studying the dynamics of systems and categorized the

dynamics into three distinct classes: ordered dynamics, chaotic dynamics, and

complex or critical dynamics [52, 56, 114]. Several studies have investigated the

relationship between the dynamical phase and the computational power of these

simple systems [24,40,63,71,72,79,81].

In the same context, we are interested in computing with existing physical sys-

tems and we would like to find out how certain physical properties of these systems

affect their intrinsic dynamics. Because of the generality of network models to de-

scribe complex physical and real-life systems [13], we model the building blocks

and their interactions of generic physical systems using networks and study their
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dynamics. Three relevant aspects of networks are: node in-degrees, node func-

tions, and the connectivity patterns between the nodes. A great deal of research

in RC systems has focused on using homogeneous random networks to model cor-

tical microcircuits in the brain [74]. These homogeneous networks have identical

nodes, each with the same number of input connections and the same transfer

function. However, real physical systems violate these assumptions and much of

their complex behavior have been attributed to their non-uniformities [20,25,65].

1.2 SYSTEMS VIEW OF THE HETEROGENEITY IN RANDOM

DYNAMICAL NETWORKS

To study the effects of heterogeneity on the network dynamics, we have taken a

systems perspective [66] in framing our questions and analyzing our results. The

systems approach framework to scientific inquiry relies heavily on the observer or

the problem solver and his or her intention. It is the observer who defines the

boundaries of a system by defining the collective properties of a set of interacting

components that is related to problem to be solved. In this view, the observer

would be interested to understand the relationship between the components of

the system and their interactions, and how the properties of these interacting

components affect the systems behavior that he or she would be interested in.

The goal of such a scientific study would be to develop understanding and laws

with predictive power that can give us control over the collective properties of the

system through possible modifications to the systems components that are relevant

within the context of the study.

In this thesis, we have identified the context as the computing with physical

systems. The objects of our study are generic physical systems used in molecular

and brain-like computing. We have accordingly chosen the network models that

include relevant details of the systems that we would like to study. The subject of

our study is how the system or global dynamics is influenced by the heterogeneity
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in the subcomponents, such as the node in-degrees, the node functions, and the

interconnect irregularity. We would like to find the optimal heterogeneity level in

these components that let the system remain in a critical systems dynamics that

is optimal for complex computation.

The purpose of this thesis is to investigate the effects of heterogeneity in the

dynamics of random dynamical networks. We would like to find out how hetero-

geneity in any of the three aspects mentioned above may affects the dynamics and if

there are optimal levels of heterogeneity to achieve critical dynamics in the system.

We choose two well-studied network models with complex dynamics that allow us

to investigate all these aspects of interest in dynamical networks: Random Boolean

Network (RBN) [52] and Liquid State Machine (LSM) [75]. Both of these network

models have been used in the context of reservoir computing [74, 102] and much

literature exists on their dynamical properties [24,30,35,51,69,70,89–92,100,104].

Research in complex networks has so far focused on the heterogeneity in the

in-degrees of the network (see Section 1.3). However in this literature, the hetero-

geneity refers to how many different classes of in-degrees are present. We argue

that the conventional definition of heterogeneity does not capture the diversity

of in-degrees in the network (see Chapter 2). Studies about topological evolu-

tion of RBN have consistently reported emergence of non-trivial in-degrees and

small-world topologies in the networks. However, the relationship between the in-

degrees, the topology, and the dynamics has not been directly studied with respect

to the heterogeneity in the network. We will introduce a more pragmatic measure

of entropy and use it to measure the dynamical and topological aspects of RBN

and LSM networks.
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1.3 RELATED WORK

1.3.1 Cellular Automata

Cellular Automata (CA) are simple homogeneous models of discrete dynamical

systems that despite their simplicity may show complex dynamics. In the late

40’s, John von Neumann [111] introduced CAs as a biologically inspired model

of discrete-state discrete-time dynamical system. The simplest type of CA or

Elementary CA (ECA) [49] consists of a one dimensional lattice of cells, each with

a self-connection and two connections to its immediate right and left neighbors.

Each cell may assume either of the two states “0” and “1.” All cells change their

states at the same time according to a binary function called the CA rule. The

dynamical properties of this system depends on the initial configuration of the

lattice and the CA rule.

Stephen Wolfram [114] pioneered the investigation in local and global dynamics

of the ECA. He classified the space of CA rules into four classes. In finite time,

CA rule classes I and II will end in a fixed-point or cyclic attractors from almost

any initial configuration. Class III rules are very sensitive to initial configuration

and will lead to the strange (chaotic) attractors. Class IV rules show complex

dynamics and one of the rules, i.e., 110, has been proven to be computationally

universal.

Li and Packard [67] studied the structure of the ECA rule space. They orga-

nized the 256 possible rules into 88 equivalence classes according to the internal

symmetries in the rules. Based on the dynamics of the CA, they assigned each

equivalence class to five different dynamical classes of (1) null dynamics, (2) fixed-

point, (3) periodic, (4) locally chaotic, and (5) chaotic. This assignment is not

one-to-one and each rule may belong to many classes in this classification [68].

Wootters and Langton [115] studied the sharp transition in the dynamics of

ECA rule space as a function of λ (homogeneity) of the CA rules. The phase
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transition becomes sharp in the limit of infinite-valued CA. Increasing the number

of local connections pushes this transition towards λ = 0 which suggests that

at infinite range neighborhood the transition vanishes. Langton [63] suggested

that complex computation in ECA occurs at the region of the rule space that

corresponds to the phase transition in λ. This region is called “the edge of chaos.”

However, Mitchell et al. [78, 79] refuted the edge-of-chaos-computation argument

by showing that it is possible to find CA rules in other regions of the rule space

that perform complex computation.

The first method for the automatic design of CAs for parallel computation was

proposed in [77]. This approach used genetic algorithms to evolve CA rules that

could solve the density classification task. However, since this task requires global

information processing it does not suit ECA dynamics since information transfer in

ECA is limited. For finite size CAs, perfect solutions, i.e., CA rules that solve the

task from all initial configuration of the CA, were not found. Analytical derivation

of the CA rules and the initial configuration for the ECA to perform a desired

configuration remains an open problem.

Tomassini et al. [110] investigated the dynamics and performance of ECA with

a small-world topology [113], in which the lattice structure of the CA is ran-

domly rewired into an irregular form. They showed that the small-world property

increases the computational performance and pushes the dynamics of the ECA to-

wards the critical phase. Small-world ECA are examples of dynamical systems with

homogeneous functions and irregular interconnect. This irregular interconnect is

characterized by existence of long distance links between nodes that are physically

far apart. For more details about the network topologies see Section 1.3.4

1.3.2 Random Boolean Networks

Kauffman [52] introduced RBNs as a biologically viable model for gene regulatory

networks. RBNs may be thought of as a generalized CA in which each node—out of
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the total of N—is connected in random to K other nodes. Moreover, in RBN each

node has a different transfer function that is randomly assigned. In other words,

RBN is a heterogeneous counterpart of CA, in which the connections are irregular

and functions are heterogeneous. RBN is also called the NK model because one

can define an ensemble of RBN using just two parameters N and K. Kauffman

himself studied many theoretical aspects of RBNs and their applications in the

context of cell biology an homeostasis. [50,51,53–57,100,103]. Many authors have

contributed to RBN and generalized the RBN into a model, in which the network

nodes have an average of 〈K〉 connections per node [36,37].

Kauffman classified the dynamics of RBNs into three classes depending on the

values of 〈K〉. For 〈K〉 < 2, the networks are likely to find a fixed point or periodic

attractor quickly. Networks of 〈K〉 > 2 will have the chaotic dynamics, in which

the networks will not find an attractor in finite time, or the the attractor will not

have a finite size. At 〈K〉 = 2, the dynamical regimes of the networks show the

maximal variance [56], this dynamical behavior is called the “edge of chaos.” The

median cycle length (number of states in the cyclic attractor) in ordered RBN

scales according to O(e
1
8
log2N), in the complex regime according to O(

√
N), and

finally in the chaotic regime according to O(0.5 × 2N). For small networks, the

cycle length in complex regime scales with N [19].

Derrida and Pomeau [30] devised an annealed approximation method for de-

termining the dynamical regime of the RBNs as a function of 〈K〉 and p, i.e. the

fraction of “1”s in the Boolean function of the nodes.

However, this result applies to a network at the thermodynamic limit, i.e.,

N → ∞. For finite size networks, the Derrida criticality [30] is calculated by

averaging the spreading of the two states of the network that are one Hamming

distance apart after one time step, normalized by the network size [100]. If the

result is equal to 1, then the network is in the complex regime, if it is smaller than

1, the network is in ordered regime, and if it is larger than one the network is in
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the chaotic regime.

Flyvbjerg [35] derived another order parameter for measuring complex dynam-

ics of the network based on the frozen component. In this second method, a

network is said to have complex dynamics if 50% of the nodes of the network

change their state and the other 50% do not.

Many evolutionary approaches have been proposed that may bring any initial

RBN to a critical dynamical regime [22, 40, 55, 70]. The significance of critical

dynamics in complex networks comes from the fact that many biological systems

have been observed to operate at this regime [15,28,29,56,60,64,106]. RBN have

also been used in task solving [8,39,40,76]. RBN has also been used as the reservoir

in RC systems [102].

Serra et al. [96, 97] studied the dynamics of power-law RBNs and found that

these RBNs have fewer attractors than the classical RBNs. They also found that

the transient length and the cycle periods of the attractors are significantly shorter

in power-law RBNs. Darabos et al. [27] conducted a comprehensive study of dy-

namics of RBNs with Poissonian and power-law degree distribution under normal

and noisy update rules.

Mesot and Teuscher [76] showed that Random Boolean Networks (RBN) out-

perform 1-D CA (with neighborhood as large as 7) in density classification. More-

over, they derived an analytical method to deduce the local rules in the network to

perform the task. In this experiment, RBN also performs better than small-world

CA [109].

1.3.3 Liquid State Machines

Liquid State Machines (LSM) were originally introduced as a model of cortical

microcircuits in the brain [75]. The idea is that a system with rich intrinsic

dynamics—called a reservoir—may remember the stimulations by an input sig-

nal. A memoryless output layer may then use the traces of this excitation in the
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reservoir and produces required output. Natschläger and Maass [81] studied basic

information processing capabilities of LSM and found that networks that are able

to compute the functions are the ones maximizing the information stored in the

LSM. Bertschinger and Natschläger [18] extended Derrida’s annealed approxima-

tion to calculate the spreading of perturbation in the LSM state that are due to

changes in the input signals. They parameterized the network as a function of

the connectivity K and the variance of the weights of the connection matrix and

illustrated that only the critical networks are able to differentiate between changes

in the inputs. Boedecker et al. [21], in an attempt to find methods for initializing

suitable LSM, introduced the average state entropy of the network as a measure of

the complexity of the dynamics. Boedecker et al. postulated that a higher average

state entropy results in higher LSM performance. They were able to tune the aver-

age state entropy by adjusting the spectral radius of the weight matrix. However,

their experiment showed that the correlation between the average state entropy

and the LSM performance is task-dependent. Büsing et al. [24] did a very exten-

sive study on LSM. They parameterized the LSMs with the number of states per

computing node, the connectivity, and the variance of the weight matrix. Then,

they showed that for binary nodes, the performance is extremely sensitive to the

connectivity and the sparsity of the weight matrix. As the number of states per

node increases, the sensitivity to connectivity and sparsity in the LSM diminishes.

1.3.4 Complexity and Heterogeneity in Networks

Complex network science is concerned with the study of networks with many nodes

that are connected in non-trivial ways [113]. The study of complex networks has

recently gained much attention from several disciplines [4,9,23,44] and the structure

and function of these networks have been the subject of many studies [20,31,41,64,

82]. Complex networks may represent a wide variety of physical systems with large

numbers of interacting parts, and thus they have been used to model many different
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real-world systems and phenomena [13]. Many interesting properties of complex

networks have been attributed to their in-degree heterogeneity [105]. However,

in the complex systems literature, heterogeneity refers to how close the network

topology is to a star-like network [3, 38, 106]. This entails a scale-free in-degree

distribution. The idea is that that there is no correlation between the node in-

degrees, i.e., a node with many connections might be connected to nodes with just

a few connections. Moreover, in these networks there is a large difference between

the number of connections of highly connected nodes and the rest of the nodes.

Larremore et al. [64] has recently used a rigorous mathematical method to link the

network topology to the dynamics of the network.

1.4 MY CONTRIBUTIONS

My contributions during the course of this thesis are:

1. Introducing entropy as pragmatic and generic measure of heterogeneity in

three aspects of networks: node in-degrees, node functions, and interconnect

irregularity.

2. Developing a formal framework for studying in-degree heterogeneity in a

systematic way.

3. Developing a simulated annealing method for evolving in-degree with differ-

ent heterogeneity levels.

4. Describing and formalizing the dynamics of the in-degree under evolution.

5. Formalizing the characteristics of the in-degrees with maximum heterogeneity

levels.

6. Formalizing a framework for studying function heterogeneity.

7. Formalizing a framework for studying interconnect irregularity.
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8. Developing automated software framework for simulating LSM with con-

trolled heterogeneity levels in in-degrees, functions, and interconnect.

9. Developing a high performance GPU-based software framework for studying

RBN dynamics with controlled heterogeneity levels in in-degrees, functions,

and interconnect.

10. Our GPU and MATLAB simulators includes 12000 lines of code.

11. Systematically studying network topology in networks with different hetero-

geneity in in-degrees and interconnect.

12. Systematically studying dynamics in RBN and LSM with different hetero-

geneity levels in in-degrees, node functions, and interconnect.
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2

MODELS AND MEASURES

2.1 MODELS

In the next two subsections we describe two types of random dynamical networks:

RBN and LSM. We use the term random dynamical networks to refer to dynamical

networks that are random in some sense, such as the functions of each node or the

connectivity between the nodes. Since the networks have random connections, it

is possible that some of the connections form recurrent loops ,which result in time

dynamics in the networks.

2.1.1 Random Boolean Network (RBN)

Overview.— Classical random Boolean networks [37] are simple discrete-time

binary dynamical systems that are capable of modeling a wide variety of biologi-

cal phenomena. Kauffman [52], Ashby [10] and many other researchers have used

RBNs to model systems ranging from gene interaction to memory and brain func-

tions. Although RBNs are a Boolean idealization of gene regulatory networks,

they capture a lot of relevant behaviors in real gene regulation. We have previ-

ously showed [39, 108] that we can easily extend RBNs with inputs and outputs,

and use them as building blocks for general purpose computing. In this context,

we think of RBNs as a computing model for self-assembled nanoelectronics.

Structure.— The fundamental unit in a RBN is a node with K input connec-

tions. At any instant in time, the node can assume either of the two binary states

“0” or “1.” The node updates its state at time t according to a K-to-1 Boolean
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mapping of its K inputs. Therefore, the state of a single node at time t+ 1 is only

determined by its K inputs at time t and by one of the 22K Boolean functions used

by the node. Formally, a RBN is a collection of N such binary nodes. For each

node i out of N nodes, the node receives Ki inputs, each of which is connected to

one of the N nodes in the network. In this model, self-connections are allowed.

The network is random in two different ways: 1) the source node for an input

is chosen from the N nodes in the network with uniform probability and 2) the

Boolean function of node i is chosen from the 22Ki possibilities with uniform prob-

ability. Each node sends the same value on all of its output connections to the

destination nodes. We denote the average connectivity in a RBN by:

〈K〉 =
1

N

N∑
i=1

Ki. (2.1)

Because of the randomness in instantiating a RBN, it is common to talk about an

ensemble of RBNs with N nodes and average connectivity 〈K〉. This refers to all

the instantiations of such RBNs. Once the network is instantiated, the collective

time evolution at time t can be described as follows:

xt+1
i = fi(x

t
1, x

t
2, . . . , x

t
Ki

), (2.2)

where xti is the state of the node i at time t and fi is the Boolean function that

governs the state update of the node i. The nodes are updated synchronously, i.e.,

all the nodes update their state according to a single global clock signal.

From graph theoretical perspective, a RBN is a simple directed graph with N

vertices and L = b〈K〉Nc directed edges. Note that L is an integer. Each of the

L edges are picked from the possible N2 possible edges with uniform probability.

This is the classic Erdös-Rényi random graph [33]. An important property of this

class of random graphs is its binomial degree distribution:

P (K = k) =

 N

k

 pk(1− p)N−k. (2.3)
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Figure 2.1: Example of RBN with 18 nodes and 〈K〉 = 2. Input signals are fed

to the network via nodes 1, 2 and 3. One of the nodes (node 18 in this case) is

chosen randomly to read the output.

Here, P (K = k) denotes the probability of a node having K = k incoming connec-

tions and p is the probability of realization of an edge in the graph. Kauffman’s

original model assumes a static environment and therefore Kauffman did not in-

troduce any exogenous inputs to the network [52]. To compute with RBNs, we

introduced I additional input nodes that distribute the input signals to the nodes

in the network [39,108]. These I nodes are not counted as part of the N nodes in

the RBN. However, the source node of Ki links for each node i is randomly picked

from N + I nodes with uniform probability. The average connectivity is calculated

according to Eq. 2.1. Note that the I input nodes themselves do not have any

inputs and are not counted in calculating 〈K〉. The output of the system is read

from one of the N nodes that is chosen with equal probability. To avoid confusion,

we generally refer to our extension with the term Boolean Network (BN) instead

of RBN.

System dynamics.— From the deterministic update of each node together

with the synchronous update in a RBN, it follows that the RBN as a whole also

behaves deterministically; the state of the network at time t+1 is only determined
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by the state of the network at time t. A RBN is made up of N binary nodes,

therefore, the behavior of the system is a trajectory in the N dimensional state

space with 2N possible states. It is possible that different trajectories merge after

some time, but a single state at time t only maps to a single state at time t + 1.

Because of the finite-size state space, the system eventually revisits a state. From

then on, the system enters a cycle of Γ states that repeat in time. Γ is also called

the cycle length. The cycle is called an attractor in the language of dynamical

systems. All the states that the system visits before it enters the attractor are

called transient states. There are many different transient trajectories that can

lead to the same attractor. The subspace of all the 2N states that lead to an

attractor together with the Γ attractor states are called a basin of attraction.

2.1.2 Liquid State Machine (LSM)

Overview.— Reservoir Computing (RC) [47,75] is a computational paradigm

which promotes universal computation using transient dynamics, as opposed to

stable states. The basic idea behind RC is to employ a computational core, the

reservoir, which is operating in a proper dynamical regime to perform temporal

computation, e.g., tracking or control of a dynamical signal. The RC paradigm is

particularly attractive as a model for unconventional computing systems because

it does not make any assumption about the nature of the reservoir network. In

principle, the reservoir can be any system with sufficiently complex dynamics. This

means that any molecular or nano-scale system can in principle be used to build

the reservoir. Figure 1.3.3 shows a schemaitc for an LSM with input and readout

layers.

Structure.— The reservoir is the heart of the RC paradigm. In LSM, the

reservoir is a collection of N interconnected nodes. Unlike in RBN, the state of

a node in LSM is represented by a real number. Each node in the reservoir has

K incoming connections with real valued weights. The reservoir is random in two
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ways: 1) the selection of connection weights and 2) source node of a connection.

The weights are identically and independently distributed from a normal distribu-

tions with mean 0 and variance σ2 denoted by N (0, σ2). The source of K inputs

of a node is selected from the N nodes in the reservoir with uniform probability.

Each node also receives a connection from one of the I input signals connected to

the reservoir. The state of the node i at time t is denoted by xti and is updated in

discrete time steps as follows:

xt+1
i = tanh(

N∑
j=1

wijx
t
j +

I∑
k=1

utk). (2.4)

The weight of the connection from node j to node i is denoted by wij and utk is the

value of the input signal k ∈ {1, . . . , I} at time t. All the nodes in the reservoir use

the same equation to update their state synchronously. For online computation,

the reservoir is extended by a separate readout layer with O nodes. Each node in

the readout layer is connected to each node in the reservoir. The output of the

node o in the readout layer at time t is denoted by yto and is computed according

to:

yto = sign(
N∑
j=1

αjx
t
j + b). (2.5)

Parameters αjs are the weights on the inputs from node j in the reservoir to

node o in the readout layer and b is the common bias for all the readout nodes.

Parameters αj and b can be trained using a pseudo-inverse regression to realize

a target output [45]. In a variation of the LSM called the Echo State Machine

(ESM) the nodes in the readout layer are connected to all the reservoir nodes as

well as the input nodes, and they have recurrent connections to and from other

nodes in the readout layer too [45–48].

System dynamics.— The dynamics of the reservoir forms a continuous tra-

jectory in a N -dimensional state space. The perturbation on the transient dynam-

ics of the reservoir by the input signals can be interpreted by the readout layer to
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input layer readout layer

reservoir

Figure 2.2: Schematic of a reservoir computing system. The input layer delivers

the input signals to random nodes inside the reservoir. The readout layer receives

output signals from random nodes inside the reservoir. The reservoir itself is made

of a collection of computing nodes that are randomly interconnected. The reservoir

creates a representation of the input signals that can be read and classified by the

readout layer. Learning is performed by training only the readout layer nodes and

connections.
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produce a desired target function. In Section 1.3.3 we review some of the related

work that has been done on LSM.

2.2 ENTROPY AND HETEROGENEITY

The measurement of entropy is equivalent to the problem of diversity in a popula-

tion of objects. Rosca [93] used entropy to measure the population diversity in the

context of artificial evolution and showed that entropy is a pragmatic measure of

the diversity of a population. For a generic set of objects A with n total elements

of m distinct classes, we calculate the entropy as follows:

H(PA) = −
m∑
i=1

p(xi) log2(p(xi)). (2.6)

PA is the probability distribution of the objects in set A and p(xi) are the proba-

bility of occurrence of each distinct element xi ∈ A. We use entropy as a measure

of heterogeneity in a sample of numerical objects and justify its use instead of

more common measures of diversity, such as standard deviation and variance. Our

approach is to use entropy as an objective measure of observable diversity in a col-

lection of numerical objects. We call entropy an objective measure since its value

is independent of the values of the numerals in the sample. We say entropy is a

measure of observable diversity to differentiate it from simply the number of dif-

ferent numbers in the sample. Note that although here we use entropy to measure

the heterogeneity in the nodes’ in-degree of a network, entropy is general enough

to be used on a sample of objects that are not numerals.

Heterogeneity in a sample of objects refers to how many different classes of

objects there are in the sample, i.e. m. However, it is misleading to use m as a

measure of heterogeneity because some of the objects might be rare and not be

observed as frequently. For example, let set A be a collection of 100 numbers with

99 “0” and one “1.” A contains two different numbers, i.e., m = 2. But if we

randomly pick five numbers from A, we are mostly going to pick “0”s. In fact, if
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we repeat several times, we are mostly likely to see all “0”s every time. Therefore,

although we really have two different numbers, it is difficult to see them in our

random samples. The observable number of classes m is really much closer to one

rather than two. This observable heterogeneity is exactly what entropy measures.

Entropy measures this observable heterogeneity by weighing different numbers by

their probability of occurrence in the sample. Another way of measuring the het-

erogeneity in a sample of numerals is through measuring the variance or deviation

from the mean of the sample using the variance (σ2) or the standard deviation (σ).

This approach is however impractical to use for a generic measure of heterogeneity

because σ can only be used with a set of numbers and its value depends on the

values of the numbers.

The standard deviation of a set of n numbers A with mean µ is given by Eq. 2.7.

The value of the standard deviation therefore depends on the scale of the numbers

in A, not just the diversity of them. Variance suffers from the same problem since

it is just σ2.

σ =

√√√√ 1

n

n∑
i=1

(xi − µ)2. (2.7)

The entropy of a A, however, solely depends on the probability of the obser-

vations of individual numbers in the set, and not the numerical values. Moreover,

even if the set under study has other objects than numerals, we can still calculate

the probability of each class of objects in the set.

Figure 2.11(b) shows the entropy and standard deviation of a sample of 100

numbers drawn from uniform and normal distributions. Although the distributions

in Figures 2.3(a) and 2.3(c) are identical to Figures 2.3(b) and 2.3(d) respectively,

the values of the standard deviation (σ) varies because the values are in different

orders of 10, i.e. 1, 10, 100, . . . . The entropy (H) of the distributions is scale-

invariant however. In the next section, we see how we can apply entropy to the

in-degree distribution of a network to measure in-degree heterogeneity.
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(a) A = {xi|10 < xi < 11}, uniform.

σ = 0.28377 and H(PA) = 6.64.
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(b) A = {xi|100 < xi < 110}, uniform.
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(c) A = {xi|7 < xi < 13}, normal.

σ = 1.0601 and H(PA) = 6.64.
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(d) A = {xi|70 < xi < 130}, normal.

σ = 10.6008 and H(PA) = 6.64.

Figure 2.3: The standard deviation (σ) and the entropy H of a sample of 100

numbers taken from uniform and normal distributions. We see in the example of

the uniform and normal distributions that the same distribution on different values

result in different σ, but the same H(PA). However, different distributions might

have the same value of H(PA), which means we need to control for the distribution

in our study.
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Figure 2.4: The parameter space we will use for our study include: the power-law

exponent of the connection length distribution α, entropy of the exponential in-

degree distribution, and the standard deviation of the Gaussian distribution for

the coefficient of the hyperbolic tangent function σF .

We can study heterogeneity in network systems in at least three different di-

mensions:

1. Connectivity per node

2. Node function

3. Locality of connections between nodes

Figure 2.4 illustrates these aspects of heterogeneity in network systems. In the

following, we will describe what in-degree heterogeneity means in our study. We
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will develop a formal framework, which allows us to create a homogeneous in-

degree and evolve it through many time steps to reach an in-degree with various

levels of heterogeneity.

2.3 IN-DEGREE HETEROGENEITY

One aspect of structure in a network is the in-degrees of the nodes on the network.

Figure 2.5 shows a simple directed network in which each node has two inputs K =

2. Number of inputs in a node is called the in-degree of that node. The network

nodes are arranged in a 2-dimensional lattice that extends in four directions. To

describe the in-degrees of the network one would create a sequence of the in-degrees

of the nodes in the order of indices given to the nodes. This in-degree sequence

can be converted to a frequency distribution, which is the in-degree distribution

of the network.

The network on Figure 2.5 is an example of a network with homogeneous or

uniform in-degrees, i.e, all the nodes have the same in-degree 〈K〉 = 2 and the

frequency distribution of the in-degrees only has one non-zero element. In net-

works in which the in-degree distribution is non-uniform, different nodes assume

different number of inputs and therefore the in-degree sequence will be a sequence

of many different numbers. We say the in-degree distribution of such network is

heterogeneous. Figure 2.6 shows an example of such a network.

Many authors have studied the properties of networks with different in-degree

distributions [12,32,59,84,85,113]. The in-degree distribution strongly affects the

topological properties of the network and results in small-world [113] and scale-

free [12] phenomena, in addition to influencing dynamical processes that may occur

on the network.

During the course of this thesis, we developed a framework to produce networks

with particular in-degree heterogeneity. In this section, we first introduce and

justify the use of entropy as a measure of in-degree heterogeneity. We then explain
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Figure 2.5: A network with homogeneous or uniform in-degrees, where each node

has two inputs 〈K〉 = 2. The numbers on the first row are the given node indices.

In-degree sequence is the sequence of in-degrees ordered according to the indices of

the nodes in the network. In-degree distribution refers to the frequency distribution

of the in-degrees in the network.

the challenges in the systematic study of in-degree heterogeneity and introduce the

framework we developed.

From here on, we use the entropy when we talk about the heterogeneity in

in-degrees of nodes in a network as follows. For a directed network G = {V,E},
where V is the set of nodes in the network and E is the set directed links between

the nodes, we define the degree sequence ψ as the set of the in-degrees for nodes in

V . We indicate the entropy of ψ byH(Pψ), where Pψ is the probability distribution

that the node i has in-degree Ki. For any distribution, the value of the entropy

is maximum if the values are uniformly distributed. The minimum value of the

entropy of a distribution is 0 and occurs in a distribution in which only one possible

value is realized. For example, if all the values in set A are “1,” then the entropy of

the set A is H(PA) = 0 bits. If the set is A = {1, 2, . . . , 100}, then H(PA) = 6.6439
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Figure 2.6: A network with heterogeneous (or non-uniform) in-degrees, where each

node i has a different number of inputs Ki. The numbers on the first row are

the given node indices. In-degree sequence is the sequence of in-degrees ordered

according to the indices of the nodes in the network. In-degree distribution refers

to the frequency distribution of the in-degrees in the network.

bits.

In section 2.3.1 we discuss the problem in a controlled study of H(Pψ) and its

possible ramifications. We will explain that choosing a distribution is necessary

when we study the properties of networks with various H(Pψ). However, we are

interested in studying the effects of heterogeneity of in-degree distribution on the

network dynamics, which is highly influenced by the average connectivity of the

network. Therefore, as we change the heterogeneity in the network, the average

connectivity should remain fixed. As we will see, changing the entropy while

controlling the mean of a distribution is a non-trivial problem.

2.3.1 Entropy and In-degree Distribution

A systematic study of the network dynamics as a function of H(Pψ) imposes a

challenge on the way we can construct our experiments. The dynamics of network
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are heavily influenced by the average connectivity per node 〈K〉 in the network

(see Chapter 1.3.2). Therefore, in our study of network dynamics, 〈K〉 is one of

the parameters that needs to be controlled.

In other words, we need to choose a model for our in-degree sequence ψ as to

control the entropy H(Pψ) and the connectivity 〈K〉 independently. A Gaussian

distribution is the only distribution which allows us to vary the entropy and the

mean of the distribution independently. The entropy of a Gaussian distribution

depends only on the standard deviation of the distribution. Since in-degrees in

a network are all positive integers, moving away from a completely homogeneous

in-degrees with entropy 0 to a completely heterogenous in-degrees in a uniform dis-

tribution without changing the mean becomes impossible. A pragmatic approach is

to start from a network with homogenous in-degrees and incrementally change the

in-degrees using a stochastic hill climbing algorithm to maximize the entropy [61].

We then use the snapshots of the in-degrees throughout the hill climbing to use in

our experiments. Similar approaches have been used to study the small-world and

spatial networks [62, 87, 113]. We use the configuration model [85] to sample the

graphs with an arbitrary in-degree sequence and study their dynamics and other

properties. This is done by first creating an in-degree sequence and randomly

choosing source nodes for each node in the in-degree sequence according to their

predefined in-degree.

In the next section, we will propose a model to systematically create in-degree

sequences with various entropies. This model treats the in-degree sequence itself as

a dynamical system. Section 2.3.2 describes the details of our simulated annealing

algorithm. We will later see the consequences of this approach and its connection

to other physical phenomenon studied in statistical physics.
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2.3.2 In-degree Sequence as a Dynamical System

In this section, we describe the details of the dynamical model that we will use

to generate in-degree sequences with various entropies. This model is dynamical

in the sense that the object of the model, the in-degree sequence, changes in

time to maximize the entropy. We previously explained that to study in-degree

heterogeneity, we need a dynamical model to generate in-degree sequences starting

with zero entropy and evolve the sequence towards the maximum possible entropy.

The object that undergoes the time evolution here is the in-degree sequence ψ.

This is a sequence of in-degrees for each node in a network with N nodes and

L links ψ = {xi|0 < xi < Kmax, 1 < i < N}. If the network has an average

connectivity 〈K〉 = K, that is integer, the starting condition of the process is where

all the nodes in the network have the same in-degree and thus ψ = {K,K, . . . ,K}.
This sequence correspond to a class of networks with completely homogeneous in-

degrees, and thus H(Pψ) = 0. We form a partition function for our simulation as

follows:

Z =
∑
{ψ}

e−
H(Pψ)

T . (2.8)

H(Pψ) takes the form of a Hamiltonian, which will be evaluated for the set of

all the possible in-degree sequences {ψ}. ψ is the in-degree sequence, which is

the dynamical variable, we will be sampling during our simulations to generate

in-degree sequences we need for our study. Each simulation step consists of:

1. Mutate ψ by randomly choosing a node with positive in-degree and decreas-

ing its in-degree by 1.

2. Randomly choosing another node with in-degree < Kmax and increasing its

in-degree by 1.

3. Evaluate the new H(Pψ) and calculate ∆H(Pψ).
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4. If δH(Pψ) ≥ 0, accept the new sequence, otherwise accept the sequence with

probability e−
δH(Pψ)

T .

This process is equivalent to the Metropolis algorithm for Monte Carlo simulations

[61] and samples the space of ψ without bias to generate a series of in-degree

sequences with increasing entropy. The assumption here is that the system under

time evolution is ergodic and eventually reaches an equilibrium. We will see in the

next section that the in-degree sequence behaves as expected and therefore this

methodology is valid in this study. In Section 2.3.3 we will show the results of this

simulation and examine the generated sequences more closely. We will see that in

fact the process will lead into a stationary state in entropy and distribution of the

in-degrees.

2.3.3 Evolution of In-degree Sequence

To systematically study the heterogeneity of in-degrees in the network and its

effects on the dynamical properties of the networks, we defined the entropy of

the in-degree sequence of the network. In addition we proposed a simple model

which lets us generate a series of in-degree sequence with increasing entropy. The

process takes an initial in-degree sequence of N nodes with a specified average

connectivity 〈K〉 and treats the sequence as a thermodynamical system undergoing

time evolution towards equilibrium state at maximum entropy.

Figure 2.7(a) illustrates the value of the H(Pψ) as the sequence undergoes time

evolution towards maximum entropy. The process rapidly increases entropy and

reaches stationary state at which the value of the entropy fluctuates around a mean

close to the maximum entropy for an ideal truncated exponential distribution with

mean 2 (see Section 2.3.5). This maximum value is ≈ 2.7. The fluctuation in the

final value is due to the probabilistic nature of the mutation moves during the time

evolution at finite temperature. At high temperature this fluctuations maximizes

due to equal probability of the accepted mutations. To reach a truly stationary
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Figure 2.7: (a) Entropy of in-degree distribution of the network that is undergoing

random mutation. The plot corresponds to a single run. We see a rapid increase

followed by a fluctuating stationary period, which corresponds to the equilibrium

in-degree distribution. In this equilibrium the fluctuations in the entropy is due

to random nature of the mutation, but on average the value of the entropy is

constant and its trend is stable. The average in-degree 〈K〉 = 2, N = 100, and

average maximum value of the entropy reached is Hmax = 2.7073. (b) Entropy

of in-degree distribution of the network that is undergoing random mutation at

low temperature T = 0. We see a rapid increase followed by a constant entropy

period, which corresponds to the equilibrium in-degree distribution. The average

in-degree 〈K〉 = 2, N = 100, and average maximum value of the entropy reached

is Hmax = 2.7299.
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entropy value, we may use a very low temperature, i.e., T = 0. Figure 2.7(b)

shows the same experiment with zero temperature leading to a stable value of the

entropy.

A peculiar aspect of these results is that the maximum entropy achieved in the

simulation is lower than the expected entropy of a uniform distribution, where the

values may vary between 0 and Kmax. In our simulations we set Kmax = 10. This

means that the maximum value for the entropy for a uniform distribution should

be Hmax = log2(10) = 3.32. However, in our simulations we observe that Hmax ≈
2.7. In section 2.3.4, we will see that this discrepancy is due to thermodynamic

effects that gives rise to exponential in-degree distribution instead of of the uniform

distribution.

2.3.4 Maximum Entropy Distribution

The dynamical model we proposed to maximize the entropy of the in-degree se-

quence of the network results in sub-optimal values (see Figure 2.7(b) and Sec-

tion 2.3.3). We know the highest entropy for any distribution is when the distribu-

tion is as flat as possible (see Section 2.3.1 and Section 2.2). We would naturally

expect to see a uniform distribution if we convert the in-degree sequence after

the evolution to its frequency distribution. On the contrary, when we look at the

in-degree distribution after the evolution, we see a very rapidly decreasing distri-

bution (Figure 2.8) that is very close to a standard exponential distribution of the

form:

P (x) = λe−λx. (2.9)

The parameter λ is the inverse of the mean of the distribution. The standard

exponential distribution is defined on the support set S = [0,∞). To calculate

the entropy of this distribution we take the expected value of the log2(P (x)) as

follows:
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Figure 2.8: Equilibrium in-degree distribution for maximum entropy networks after

evolution. 〈K〉 = 2. The resulting distribution looks similar to an exponential

distribution.
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H(Pψ) =− 〈log2 P (x)〉

=

∫ ∞
0

P (x) log2 P (x)dx

=

∫ ∞
0

λe−λx log2(λe
−λx)dx

=1− log2 λ.

(2.10)

The entropy of the distribution for 〈K〉−1 = λ = 1
2

is H(Pψ) = 1 − log2(
1
2
) = 2.

This value is still significantly different from our calculation of Hmax ≈ 2.73 as

shown in Section 2.3.3.

The difference between the entropy of the evolved distribution and the entropy

of the standard exponential distribution is due to the known effects of truncated

exponential distribution [43]. In our case, the support for the truncated exponential

is S = {x|0 ≤ x ≤ Kmax}. The truncated exponential distribution is defined as

follows:

P (x) =

 ae−bx : x ∈ [0, Kmax]

0 : otherwise

The parameters a and b must be calculated by fitting to empirical data. Since this

distribution is an empirical distribution, the solution to the maximum entropy

problem must be investigated through simulation. This not only does not change

the validity of the framework that we proposed here to study the heterogeneity in

networks, but also supports the fact that this study must be carried out experimen-

tally and is beyond any analytical analysis. We will study the parameters of the

truncated exponential and the entropy of the truncated exponential distribution

as a function of 〈K〉 and Kmax in Section 2.3.5.

2.3.5 Truncated Exponential Distribution

For our purposes, we need to know if the entropy value is a predictable quantity

as a function of the number of mutations in the system. We define the truncated
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exponential distribution over the support set S = [0, Kmax] as follows:

P (x) =

 ae−bx : x ∈ [0, Kmax]

0 : otherwise

To understand the behavior of this distribution we have to fit the parameters a

and b.

Kmax is a reasonable limit for the maximum connections per node and depends

on the particular application. Many studies that use RBN or other dynamical net-

works use a maximum number of connections per node for two reasons: restricting

the size of the look-up table of RBN [92] and limitations in the number of con-

nections per node due their maintenance cost in biologically inspired networks [7].

We will need these results to have a formal way of predicting the shape of the

in-degree distribution in maximally heterogeneous systems. We will use the pro-

cedure described in Section 2.3.2 to maximize the heterogeneity of the in-degree

distributions with average in-degree of 0 < 〈K〉 < 8 and 8 ≤ Kmax ≤ 16. We

fit the exponential distribution to the data from the maximum entropy distribu-

tion from our simulations and calculate a, b, and the entropy H(Pψ) for these

final distributions. We denote the exponential parameters using a(〈K〉, Kmax) and

b(〈K〉, Kmax).

Figure 2.9(a) shows the interpolant fit of the average calculated, i.e., a(〈K〉, Kmax).

In exponential distributions, a(〈K〉, Kmax) is the probability of K = 0, i.e., num-

ber of nodes with no input connections. In terms of the structure of the networks,

a(〈K〉, Kmax) directly determines the size of the frozen component [35, 53] in the

networks. The frozen component of the network are the nodes with fixed values as

the network runs. Indirectly, a(〈K〉, Kmax) also determines the size of the relevant

component [14,58], i.e., the number of nodes that are mutually reachable from one

another through one or more transient nodes, and therefore affect their own state

over time. It is expected that for sparse networks, i.e., as 〈K〉 decreases, the frozen

component grows and the connected component shrinks. Moreover, we see that
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Figure 2.9: The mean and standard deviation of the coefficient a in the truncated

maximum entropy distribution of the form ae−bx.

an increase in Kmax also results in an increase in a(〈K〉, Kmax). This is because

smaller Kmax force the mutation process to distribute the links in the network

more evenly. As Kmax increases, however, some nodes may attract more connec-

tions and therefore the number of connections to be distributed among the rest of

the nodes decreases. To determine how accurate the values of a(〈K〉, Kmax) are,

we plot the standard deviation of these values σa(〈K〉, Kmax) in Figure 2.9(b). We

observe that for sparse networks with connectivity 〈K〉 < 4, the most predictable

values of a(〈K〉, Kmax) with standard deviation zero occurs at 〈K〉 = Kmax
2

.

Next, we investigate the values of the decay b(〈K〉, Kmax). This decay values

determine the shape of the exponential distribution after the maximization of the

entropy. In particular, b(〈K〉, Kmax) determines how sharply the values of the dis-

tribution decreases, which results in lower entropies H(Pψ). Figure 2.10(a) shows

b(〈K〉, Kmax). For a large interval of connectivity 2 < 〈K〉 < 6 and maximum

in-degree Kmax > 10, b(〈K〉, Kmax) does not show any abrupt change, meaning

that the shape of the underlying in-degree distribution and therefore its entropy



33

2
4

6
8

10

12

14

16

−3

−2

−1

0

1

2

3

K
max

〈K〉

m
e
a
n
 b

(a) mean b

2
4

6
8

10

12

14

16

0

0.05

0.1

0.15

0.2

0.25

K
max

〈K〉

s
td

e
v
 b

(b) standard deviation of b

Figure 2.10: The mean and standard deviation of the coefficient b in the truncated

maximum entropy distribution of the form ae−bx.

H(Pψ) does not vary abruptly. The value of b(〈K〉, Kmax) also shows very small

fluctuations (Figure 2.10(b)). General properties of the the entropy of the max-

imally heterogeneous in-degree distribution can be derived from the behavior of

b(〈K〉, Kmax). For 〈K〉 < 2, we expect to see very low entropy values, meaning that

very sparse networks have invariably low in-degree heterogeneity. For the regions

of b(〈K〉, Kmax) where the values are stable and positive, we expect high values of

the entropy of the in-degree distribution and therefore maximum heterogeneity in

the in-degrees. As 〈K〉 → Kmax, the value of b(〈K〉, Kmax) peaks sharply. This

implies a sharp decay in the underlying in-degree distribution resulting in very low

entropy and therefore low heterogeneity.

Figure 2.11(a) showsH(Pψ) for the maximum entropy exponential distribution,

i.e., after the mutation of the in-degrees as a function of 〈K〉 and Kmax. This result

is in agreement with our expectation from the values of b(〈K〉, Kmax). For Kmax <

10, we observe large changes in the heterogeneity of the in-degree distributions as

a function of 〈K〉. In fact, the entropy looks like an inverse quadratic with its
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Figure 2.11: Mean and standard deviation of the entropy of the truncated expo-

nential distribution ae−bx.

maximum at 〈K〉 = Kmax
2

. For Kmax > 10, the entropy value only increases as 〈K〉
increases. We also observe that most heterogeneous in-degree distributions happen

when 〈K〉 = Kmax
2

, which coincides with the values for which a is most predictable.

We see however that as 〈K〉 and Kmax increase, the value of the entropy shows

more fluctuations in the calculated mean (Figure 2.11(b)). For our experiments

in the rest of this thesis, we use Kmax = 30 for LSM and Kmax = 6 for RBN.

However, the findings about the entropy of the heterogeneous systems can tell us

how reliable our results will be. This is important since we will be presenting the

dynamical measures of the network as a function of H(Pψ).

2.3.6 Discussion

In the context of complex systems study, heterogeneity in networks introduces

analytical intractability in the study of systems level behavior. This intractability

pushes the rigorous study of heterogeneous networks into the realm simulation.

The study of complex networks through simulations has the advantage that we
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can finely control the parameters of interest.

We introduced three dimensions of the heterogeneity in complex networks and

proposed entropy as a unified measure of heterogeneity. The three dimensions of

the heterogeneity are: 1- the in-degree distribution, 2- the functions of the nodes,

and 3- locality of the interconnect. We identified the two limiting case of in-

degree distribution on the heterogeneity axis: uniform and exponential in-degree

distribution.

We proposed a simple mutation schema that can evolve a uniform in-degree

distribution into an exponential form. Furthermore, we justified why the exponen-

tial in-degree distribution is a viable choice for the limiting case of a maximally

heterogeneous in-degree distribution. It is possible in a directed evolution that

the heterogeneity of the in-degree distribution increases from zero for the uniform

distribution to a distribution with an arbitrary shape. However, in the context of

self-assembly of a system in a noisy environment, the evolution of the in-degree

distribution is dictated by the principles of equilibrium statistical physics and the

most likely distribution for systems in the equilibrium. This implies that the

only reasonable way to systematically study the heterogeneity in the in-degree

distribution is to start from a uniform distribution and to evolve the distribution

randomly, in which case the average final in-degree distribution after a sufficiently

large number of evolution steps is an exponential in-degree distribution. This ex-

ponential in-degree distribution falls under the category of truncated exponential

distribution. We formalized our definition of the truncated exponential in-degree

distribution and systematically studied the properties of this distribution as the

system undergoes natural time evolution.

2.4 FUNCTION HETEROGENEITY

In this section we describe the function heterogeneity in RBN and LSM. Despite the

difference in the nature of functions in the RBN and LSM, we will see how entropy
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allows us to have a unified vocabulary to talk about function heterogeneity in the

network. We will lay out the framework using which we will study the dynamics

of RBN and LSM as a function of heterogeneity of their node functions.

In RBN, node functions are Boolean look-up tables randomly. For each node

i, the function is chosen from the available functions to the node based on the

number of input connections of the node Ki. To study the function heterogeneity

in a meaningful way, we only consider homogeneous in-degree RBNs, in which

the set of available functions to pick from is the same for all the nodes. We first

pick a random function and assign it to all the nodes in the RBN. We will then

replace the function of nodes randomly with the other functions picked from the

set of available functions. Each time we repeat the replacement the entropy, and

therefore the heterogeneity, of functions in the network increases. However, we

have to make sure that the new functions have the same bias p as other functions

in the network. This is because the average p influences the dynamics, and we

would like to control for these effects. We measure the entropy of the functions on

the network by calculating the propability of occurance of each function.

In a LSM network with hyperbolic tangent transfer functions [24], one can

extend the definition of function heterogeneity in two ways:

1. Each node can have different hyperbolic tangents, e.g., with different slopes.

2. The slopes of hyperbolic tangents are distributed around a mean according

to a probability density function.

So far, all the research in the LSM community has been dedicated to networks

in which all the nodes have the same transfer function, e.g., hyperbolic tangent

(see [24] and references therein). The equation of the hyperbolic tangent function

is of the following general form:

tanh(ax) =
e2αx − 1

e2αx + 1
(2.11)
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Figure 2.12: Hyperbolic tangent for different values of parameter α. The general

form of the equation for hyperbolic tangent is tanh(ax) = e2αx−1
e2αx+1

. We model the

heterogeneity as variations in the parameter α. The plot illustrates the hyperbolic

tangents for α ∈ {−3,−2,−1,−0.5,−0.25, 0.25, 0.5, 1, 2, 3}.

Motivated by bottom-up self-assembled systems, we can think of LSM networks in

which each node has a different function. In a simple case, we can assume that all

nodes still have a hyperbolic tangent function, but each function has a different

value for the parameter α (Figure 2.12). The dynamics and performance of such a

system has not been studied. Moreover, we can introduce the variability in α as a

design variation. To do so, we build networks in which the parameter α assumes

a distribution around a mean αµ. For instance, α could be distributed according

to a normal probability density function with the mean µ and the variance σ2 as

follows:

N (µ, σ2) =
1√

2πσ2
e
−(x−µ)2

2σ2 . (2.12)

Figure 2.13 shows the curves for N (1, σ2), where σ ∈ {0.01, 0.1, 0.4, 0.8, 10}.
As σ → ∞, the distribution becomes more uniform. Since we draw the values

of α in Eq 2.11 from this distribution, we have a control parameter that can

change the diversity of the hyperbolic tangents in the network. A similar method
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Figure 2.13: Curve of the normal distribution for zero mean (µ = 1) and differ-

ent standard deviation, σ ∈ {0.01, 0.1, 0.4, 0.8, 10}. The equation for the normal

distribution is N (µ, σ2) = 1√
2πσ2

e
−(x−µ)2

2σ2 .

is used in [24] to control the distribution in the weight matrix of the LSM. In

order to have a uniform way of characterizing heterogeneity, we continue with the

entropy to measure the variability in the distribution. This allows us to use a

single heterogeneity parameter to characterize the variability in any distribution.

For continuous distributions, however, the entropy is defined as:

H(X) = −
∫
X
f(x)log2f(x)dx, (2.13)

where f(x) is the probability density function and X is the support of the distri-

bution. Consequently, the entropy of N (µ, σ2) in Eq. 2.12 is calculated as:

H(N (µ, σ2)) =
log(2πeσ2)

2
. (2.14)
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2.5 INTERCONNECT IRREGULARITY

By interconnect irregularity we mean how local or global the connectivity between

nodes is. This definition assumes the existence of spatial location of the nodes in a

network. The definition of networks in the classical RBN and LSM does not include

any space. Here, we redefine the networks used in LSM and RBN and consider

spatial embedding for the network. We assume networks that are embedded in

a 2-dimensional Euclidean space. First, we arrange the nodes of the network on

a 2-dimensional lattice with typical distance L = 1. The typical distance is the

distance between two adjacent nodes along one dimension. We then calculate the

distance matrix DM = rij. rij is the Euclidean distance between node i and j.

The probability of a link between node i and j of length lij will be a function of

this distance matrix:

Plij = F (rij). (2.15)

We will see in Chapter 5 that since we are interested in physical realizability

of self-organized networks, we follow a power-law model F (x) = x−a for our link

distribution [87]:

Plij = r−aij . (2.16)

This model does not conflict with the way we impose a particular in-degree

sequence ψ on the network and we are able to combine any in-degree sequence with

any interconnect irregularity schema F (x). A similar method was used in [23] to

combine different in-degree distribution and spatial embedding schema. Consistent

with our other measures of heterogeneity, we continue to use the entropy of the

distribution of the wire lengths H(PL), where L is the sequence of the wire lengths

{lij} in the network.
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(a) α = 2 (b) α = 0

Figure 2.14: Power-law distribution for connection length. The nodes are placed

on a mesh with a unit distance between two horizontal and vertical neighbors.

(a) Probability of a connection between node A and node B with distance r is

proportional to r−α. (b) For α > 0, the length distribution will be biased toward

short range connections. For α = 0 the link probability is independent of distance

between the source and the destination nodes.

2.6 MEASURES OF THE NETWORK DYNAMICS

To study the effects of heterogeneity on the dynamics of networks, we use a num-

ber of well-known measures, including: Derrida measure, damage spreading, and

kernel quality. Each one of these measures interprets the dynamics of the network

differently and measures different aspects of the dynamical regime. We formally

introduce these measures and describe what they mean.

2.6.1 Derrida Measure

A long standing problem in analyzing the dynamics of incredibly simple systems,

such as RBN and CA, is the intractability of the future system state. Derrida

made an assumption that after each time step of state update, all the connections

on a RBN network will be rewired and all the node functions will be replaced by

another randomly chosen function. This assumption makes it possible to ignore

dynamical attractors in the RBN and ask the simple question: “At what rate do
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two different states of the system diverge or converge?” The fundamental result of

Derrida’s work is an equation that calculates the divergence between two states of

the network after one update [30]:

dt+1 =
1− (1− dt)K

2
. (2.17)

Here, the assumption is that all nodes in the network have the same in-degree

K = 2 and the probability of the random Boolean functions on the nodes to output

a “1” is p = 0.5. If one changes the bias from p = 0.5 to a higher or lower value,

the system becomes spontaneously ordered. In such systems, higher connectivity

is needed to achieve critical dynamics. This sensitivity to p poses challenges to

study the function heterogeneity and its effects on the network dynamics. We

will restrict ourselves to only limited cases in which we can control the bias and

function heterogeneity independently (see Chapter 4). Derrida also proposed that

this could be extended to networks with a heterogeneous in-degree distribution as

follows:

dt+1 =
∑
K

p(K)
1− (1− dt)K

2
. (2.18)

p(K) is the probability of the node with in-degree K. Figure 2.15 shows the analyt-

ical and experimental result for Derrida’s formula for networks of various in-degree

distribution with average connectivity 〈K〉 = 2. Sometimes this plot is called Der-

rida curve. For heterogeneous RBN, the results from the annealed approximation

(AA fixed) matches closely with the experimental data (Sim fixed). However, for

Poisson graphs, the agreement between prediction (AA Poisson) and experiment

(Sim Pos) diverges. The analytical calculation predicts that the curve should be

lower than the curve than for homogeneous RBN,i.e., theoretical result predicts

that in Poisson RBN the dynamics is more ordered than the homogeneous net-

works. In contrast, the experimental data shows the curve for the Poisson networks

is actually higher than the homogeneous RBNs, which means that the dynamics
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Figure 2.15: Analytical and experimental data for Derrida curve for RBNs with

different in-degree distributions.

is richer. For networks with exponential in-degree distribution, the analytical re-

sult shows an even lower curve than for Poisson networks meaning the dynamics

is predicted to be poorer. Again, the experiment shows that network dynamics

for exponential networks is richer than for the Poisson networks. The analytical

results qualitatively and quantitatively mispredict the dynamics of the network.

The entropy of the in-degree distribution for the exponential networks is higher

than the binomial networks. Therefore, the analytical solution predicts that in-

creasing the heterogeneity in the RBN in-degree will result in poorer dynamics.

In Chapter 3.1 we will see how different in-degree distributions affect the dy-

namics of Derrida measure and how close the empirical results are to the analytical

calculations.

2.6.2 Damage Spreading

In section2.6.1 we introduced the Derrida measure for RBN dynamics. Derrida

measure predicts how fast a perturbation in a single node spread to other nodes
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1 N = 100, 〈K〉 = 2 simulation
N = 100, K = 2 simulation
〈K〉 = 2 AA
K = 2 AA

Figure 2.16: Derrida curves for simulated systems and the annealed approximation

model. The simulation and theoretical prediction for damage spreading in RBN

with exactly 〈K〉 = 2 connections per node agree closely. For networks with

average connectivity 〈K〉 = 2 and a Poisson in-degree distribution, the prediction

of the annealed model and the simulation diverge. The annealed model predicts a

frozen dynamics for Poisson networks while simulations show the system is chaotic.

in one time step. This measure does not account for limit cycles in the network.

To measure how perturbation spreads in a real RBN with limit cycles over a long

period of time one could measure damage spreading in RBN. The damage spreading

in discrete networks is very similar to the concept of the Lyapunov exponent in

continuous dynamical systems. We measure the damage spreading by calculating

the divergence between two states that differ only in 1 bit, in the initial state, over

long time. To calculate this, we create an RBN and randomly assign an initial

state to it. We then create an exact copy of the RBN with the same initial state,

but we choose a random node on the duplicate network and flip its state. The
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difference in the initial state of these two RBNs is thus 1 bit. We then run the

two networks for a long time T and measure the number of different node states

in the final state. This is the Hamming distance between the final state of the two

networks. We repeat this measurement over many networks and initial states and

calculate the average as follows:

d̄ =
1

z

1

c

∑
i∈G(N,〈K〉)

∑
j∈IC

di,j(T ). (2.19)

di,j(T ) is the difference (in bits) between the states of the two copies of the network

after T time steps for network i and initial state j. c is the number of initial states

IC, and z is the number of networks with size N and connectivity 〈K〉 used for

simulations.

2.6.3 Lyapunov Exponent for LSM

The Lyapunov exponent λ is the classical way of measuring the chaotisity in a

dynamical systems [24]. Formally, the Lyapunov exponent is defined as follows [24]:

λ = lim
t→∞

1

t
ln

(
H(t)

H(0)

)
. (2.20)

H(t) is the Hamming distance of the two networks at time step t. Calculating this

value for infinite time is intractable but it has been known that this value can be

approximated by calculating the damage spreading for one time step as in [24].

Similarly we calculate λ as follows:

λ = ln

(
H(1)

H(0)

)
, (2.21)

where H(0) = 1. In ordered systems λ < 0 and in chaotic systems λ > 0. Systems

with λ = 0 are on the edge between order and chaos and have complex dynamics.

For practical reasons, however, in cases where H(1) = 0, the value of λ = −∞.

We cannot include these values to calculate averages and therefore we omit these



45

cases for λ calculations. This causes λ for ordered systems to be slightly above 0.

However, this will not affect our results because we will be always comparing the

values with H(1) and values of λ for chaotic systems.

2.6.4 Network Topology Measures

To understand the effects of in-degree heterogeneity and interconnect irregularity

on the dynamics of RBN and LSM, one should first be mindful of the way these two

aspects of heterogeneity affect the topology of a network. Structure and function

of the networks have been the subject of many studies and several measures have

been proposed to capture different topological aspects of the networks [4, 20, 82].

A survey of most relevant network measures for complex dynamical networks is

compiled by Rubinov and Sporns [94]. Three fundamental network measures char-

acterize functional integration, functional segregation, and modularity in complex

networks. We study how these measures change with the connectivity of the net-

work for different in-degree and interconnect heterogeneity. These measures are as

follows [94]:

Functional integration.— Characterizes the ability of the network to

combine local information from distributed regions of the network. In other words,

functional integration determines how easily different parts of the network can

communicate. Functional integration can be measured using characteristic path

length L. L is defined as the average shortest path length in the network between

all pairs of nodes.

Functional segregation.— Refers to the ability of a network to perform

specialized processing within highly connected groups of nodes in the network. The

existence of functional segregation in the network is indicative of the ability of the

network to decompose information processing into functional parts each of which

is carried in appropriate regions of the network. The most important measure of

functional segregation is local clustering coefficient. Clustering coefficient is the
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fraction of triangles around a single node averaged over all nodes in the network.

Modularity.— Modularity is a more sophisticated segregation measure,

which can characterize how cohesive highly connected groups of nodes are in the

network. This is quantified by measuring Q, which indicates the balance between

the links within a group of nodes compared to links in between groups of nodes.

This measure indicates how well different functional parts of the network commu-

nicate and share information. Completely random networks with no modularity

will have Q = 0 and in completely modular networks Q = 1.
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3

IN-DEGREE HETEROGENEITY

In this chapter, we study the effects of heterogeneity on the dynamics of RBNs

and LSMs. We start by measuring the dynamics in the networks using the Derrida

measure and the Lyapunov exponent. We then incrementally increase the hetero-

geneity of the in-degrees in the network and investigate how this heterogeneity

affects the dynamics. We will compare our results with existing results in the

literature.

3.1 DYNAMICS OF RANDOM BOOLEAN NETWORKS

3.1.1 Derrida Curve and Maximum Entropy In-Degree Distribution

We begin our study of the critical dynamics in the RBN by calculating the Derrida

curves for systems with maximum heterogeneity in their in-degree distribution.

To do so, we evolve networks of different average connectivity 〈K〉 as discussed in

Section 2.3.2 to achieve a maximum entropy in-degree distribution.

Figure 3.1 shows the Derrida curves for RBNs with a maximum entropy dis-

tribution with average connectivity 〈K〉 = 1.0, 1.5, and 2.0. We see that in RBNs

with maximum entropy distribution, the Derrida curves with 〈K〉 = 1.0 and 2.0

seems very similar compared to homogeneous systems (compare with Figure 3.2

and Figure 3.3). The significant difference is that for maximum entropy RBN, the

Derrida curve for networks with 〈K〉 = 2 lies above the identity line. This means

that the RBN is in the chaotic regime and perturbations in the system spread

quickly. These systems are suboptimal for robust adaptive information processing
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Figure 3.1: Derrida curve for 〈K〉 = 1.0, 1.5, and 2.0 for RBN with maximum

entropy in-degree distribution. We see that both 〈K〉 = 1.5and 2.0 are in the

chaotic regime and 〈K〉 = 1.0 is in the critical regime.

because any noise in the system spreads in the network and damages the infor-

mation that the network needs for computation. The Derrida curves for RBNs

with average connectivity 〈K〉 = 2 are also very close to the identity line but still

below. This means that heterogeneous RBNs, even when in the ordered phase,

show critical dynamics and are suitable for complex computation.

A natural question to ask is how the heterogeneity changes the Derrida curve

for RBNs with different average connectivity 〈K〉. We answer this question in the

next section.

3.1.2 Change in Derrida Curve

In our preliminary study (see Section 3.1.1), we saw how the maximum hetero-

geneity in-degree distribution affects the dynamics of the RBN. Here, we will see

how the Derrida curve for the networks of different average connectivity changes
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Figure 3.2: The Derrida curve of RBN with N = 100 and 〈K〉 = 1.0 for different

number of evolutionary time steps. Higher time steps result in more heterogeneous

in-degrees. The higher the in-degree heterogeneity, the richer the network dynam-

ics. Curves below the identity line are in ordered regime, and curves above the

identity line are in chaotic regime. The closer a curve to the identity line is, the

closer the dynamics is to the critical dynamics.

as the in-degree distribution evolves from a completely homogeneous state to a

maximally heterogeneous one.

To perform this study, we create an initial population of networks with a ho-

mogeneous in-degree distribution and evolve their in-degree until we reach the

maximum entropy in-degree distribution as discussed before. At each step of the

in-degree evolution, we calculate the Derrida curve for the network. Figure 3.2

shows the Derrida curve of a network with 100 nodes and an average connectivity

of 〈K〉 = 1.0. This plot shows the fraction of perturbed nodes in the network at

time step t+1, i.e., dt+1 as a function of fraction of perturbed nodes at time t, i.e.,
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dt. The curve corresponding to tmax = 0 shows the Derrida curve for the initial ho-

mogeneous network. We see that for higher number of mutations on the in-degree

sequence, the Derrida curve shifts higher and higher and gets closer to the identity

line, i.e. dt+1 = dt. This means that the dynamics of the network is getting closer to

the critical dynamics. For homogeneous systems, any size of damage at time t will

start to fade on the next time step. As the in-degree distribution evolves towards

a more heterogeneous distribution, the number of nodes with K > 1 increases.

These nodes accept incoming perturbations from many nodes and redistribute it

to the network. This causes the damage dt at any time step to be amplified and

thus the system exhibits critical dynamics. The in-degree heterogeneity increases

the ability of the networks to redistribute signals more effectively.

Figure 3.3 shows the Derrida curve for a network 100 nodes with average con-

nectivity 〈K〉 = 2.0. We see a general trend of upward shift in the Derrida curve

as the in-degree distribution evolves toward maximum entropy distribution. How-

ever, this change is more subtle at first, but includes a jump somewhere between

time steps 100 and 500. After 500 mutations, the changes in the Derrida curve

becomes very slight again. Evidently, the rate of change in the Derrida curve as a

function of evolution time is also a function of average connectivity in the network.

We take our investigation one step further and study how does the Derrida curve

changes as the entropy of in-degree distribution increases. We first have to isolate

an essential aspect of the Derrida curve which identifies the critical dynamics in

the network, namely dt+1

dt
. When this quantity is below 1, the dynamics is in the

ordered regime because the perturbations in the systems die out over time. For

values above 1, any perturbation in the network spread to all the nodes over time

and interfere with the local processes in different clusters of nodes. This is why

these networks are not suitable for information processing. For networks in which

dt+1

dt
=1, the perturbations remain the same over time. We calculate this fraction

over time as a function of the in-degree distribution in the network for networks



51

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d
t

d
t+

1

 

 

t
max

=0

t
max

=10

t
max

=50

t
max

=100

t
max

=500

t
max

=1000

Figure 3.3: The Derrida curve of RBN with N = 100 and 〈K〉 = 2.0 for different

number of evolutionary time steps. Higher time steps result in more heterogeneous

in-degrees. The higher the in-degree heterogeneity, the richer the network dynam-

ics. In this case, the system is already in critical regime. The higher heterogeneity

pushes the system into the chaotic region. Curves below the identity line are in

ordered regime, and curves above the identity line are in chaotic regime. The closer

a curve to the identity line is, the closer the dynamics is to the critical dynamics.

with different average connectivity 〈K〉.
Figure 3.4 shows the dt+1

dt
as a function of time throughout the evolution of the

in-degree distribution in the networks for network of average connectivity 〈K〉 =

1.0, 2.0, and 3.0. For networks with average connectivity 〈K〉 = 1.0, the fraction

increases rapidly at first and then levels right below the dt+1

dt
= 1 with no change.

For 〈K〉 = 2.0, the fraction dt+1

dt
goes over the values 1 after only t = 50 evolution

time steps in the in-degree distribution and reaches a stationary level near t =

500. For 〈K〉 = 3.0, the value of the fraction starts from above 1.4 and after

a little increase reaches the stationary value of the dt+1

dt
= 1.58 at about t = 500
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Figure 3.4: The change in dt+1

dt
as a function of numbers of time steps. The closer a

system is to dt+1

dt
= 1 the richer the dynamics. We observe that high heterogeneity

in RBN makes the dynamics of ordinarily ordered systems, i.e., 〈K〉 = 1.0, richer

while pushing the dynamics of critical systems, i.e., 〈K〉 = 2.0, into the chaotic

regime.

evolutionary time steps. According to this data, the higher the average connectivity

the less significant the change in the dt+1

dt
over time. Also, the most significant

change occur for 〈K〉 = 1.0, where the normally ordered system gets closer to

the critical dynamics and 〈K〉 = 2.0 where the normally critical network shows

chaotic behavior after a few evolutions in the in-degree distribution. Figure 3.4

shows very clearly how the dynamics change as the in-degree distribution becomes

heterogeneous and at what rate this change happens. According to this plot, the

sparser the network, the more sensitive it is to changes in the heterogeneity in the

in-degree distribution.

Next, we directly measure the fraction dt+1

dt
as a function of entropy of the in-

degree distribution in the network. Figure 3.5 shows the result of this measurement
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Figure 3.5: The change in dt+1

dt
as a function of entropy of in-degree distribution.

The closer a system is to dt+1

dt
= 1 the richer the dynamics. We observe that

high heterogeneity in RBN makes the dynamics of ordinarily ordered systems, i.e.,

〈K〉 = 1.0, richer while pushing the dynamics of critical systems, i.e., 〈K〉 = 2.0,

into the chaotic regime.

for systems of N = 100 nodes and average connectivity 〈K〉 = 1.0, 2.0, and 3.0. We

see that for 〈K〉 = 1.0, the ratio dt+1

dt
starts increasing. The rate of this increase

speeds up as the entropy of the in-degree indstribution H(Pψ) increases. This

increase finally stops right below the critical dynamics dt+1

dt
= 1. For RBNs with

〈K〉 = 2.0 the picture his quite different. At first there is no significant change in

dt+1

dt
. Near H(Pψ) = 1.8, dt+1

dt
approaches 1, at which point the becomes chaotic

for dt+1

dt
> 1.8. The increase in dt+1

dt
speeds up after the system enters the chaotic

phase and stops maximum entropy value. Finally for 〈K〉 = 3.0, the system shows

constant dt+1

dt
for higher values of H(Pψ). For H(Pψ) > 2.5 the fraction dt+1

dt
shows

a sudden increase and stops when the in-degree distribution reaches the maximum

entropy.
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These findings might at first be puzzling. However, we showed previously (Fig-

ure 3.4) how the entropy production rate changes in the system under evolution.

The entropy of the in-degree distribution shows a very rapid increase at first and

quickly reaches the stationary value that corresponds to the entropy of the equi-

librium distribution. We take these findings one step further to find the optimal

connectivity for the maximally heterogeneous systems for which dt+1

dt
= 1.

According to these results, systems with 〈K〉 = 2.0 and homogeneous in-degrees

are actually subcritical. With the increased heterogeneity in the in-degrees the

system becomes more and more critical. These systems become chaotic for val-

ues of H(Pψ) > 1.8. For ordered systems with 〈K〉 = 1.0 with homogeneous

in-degrees the dynamics is completely ordered until the system reaches the maxi-

mum entropy in the in-degree, at which point due to effective signal transfer in the

system, the network dynamics become critical. Therefore, systems that are tradi-

tionally thought of as ordered can actually show critical behavior if one introduces

heterogeneity in the in-degree distribution of the system.

3.1.3 Optimal Connectivity in Heterogeneous RBN

In this section, we study how heterogeneity affects the critical connectivity 〈K〉 =

Kc of the network, i.e., we find an optimal connectivity for which dt+1

dt
= 1. The

perturbations in these systems do not die out or spread and therefore they are

optimal for information processing. We start with populations of the networks with

average connectivity 1.00 < 〈K〉 < 1.30 with 0.01 increments. We evolve the in-

degree sequence of each network in the population until it reaches the equilibrium

in-degree distribution and then we calculate dt+1

dt
. Figure 3.6 shows the value of dt+1

dt

as a function of 〈K〉. We find that for Kc=1.157, the ratio dt+1

dt
=1, which means

that the system is at the edge of chaos. This is the value of critical connectivity

for RBN with maximum entropy in-degree distribution. This values is very close

to 1.0. If one defines the cost of building such a system by the average number of
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Figure 3.6: Critical connectivity 〈K〉 = Kc = 1.157 for which dt+1

dt
=1 for RBNs with

maximum entropy in-degree distribution. For fully heterogeneous RBN the critical

connectivity is much lower than that of homogeneous systems, i.e., Kc = 2.0.

connections per node, one would reduce the cost of building a network with critical

dynamics by increasing heterogeneity in the in-degree distribution of the network.

3.1.4 Damage Spreading and Heterogeneity

Rohlf et al. [92] investigated the damage spreading (see Section 2.6.2) in Boolean

and threshold networks at the sparse percolation limit. They found that there

exists a critical average connectivity 〈K〉 = Ks at which damage spreading in the

network becomes independent of the system size N . Lu and Teuscher [73] extended

this result to spatial and small-world networks. We further investigate the effects

of the damage spreading in networks with heterogeneous in-degree distribution.

The significance of this regime is in scalability of these systems. The informa-

tion processing in these systems is more reliable and predictable. Such systems
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Figure 3.7: Damage spreading in RBN of N = 100 and N = 200. The in-degree

distribution is Poissonian. We see that information processing and noise damp-

ening in Poisson networks is at the connectivity 〈K〉 ≈ 1.8. This connectivity

balances the communication and resilience of the network.

maximize the information transfer in the network while minimizing the effects of

unnecessary perturbation, such as noise.

Figure 3.7 shows the result of these simulations for RBNs of size N = 100 and

N = 200. Here, T = 100, c = 100, and z = 100. The resulting d̄ is averaged over

100 runs.

The study of damage spreading is important to understand the scalability of

information transmission and noise propagation in network systems. We can ex-

tend this study to heterogeneous networks with different in-degree distribution and

study the change in the value of Ks. In addition, we can investigate the value of the

Ks as a function of H for a fixed system size. In previous sections we observed that
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as the in-degree distribution moves from a homogeneous form to a heterogeneous

form, the critical connectivity Kc that separates the ordered and chaotic regimes

goes below 2. This Derrida measurement is in a sense the rate at which two nearby

states diverge. Therefore, we expect that the divergence of the damage in the long

run will be also affected by this rate. Here, we study the damage spreading in ho-

mogeneous networks, Poissonian networks, and exponential networks. Figure 3.8

shows the damage spreading of these networks for N = 100 and N = 200 as a

function of 〈K〉. We find that as the heterogeneity in the in-degree distribution

increases, the value of Ks decreases slightly. However, we cannot easily detect this

effect. Therefore, over long run for static inputs, the effect of heterogeneity in the

damage spreading of the network is negligible.

3.2 DYNAMICS OF LIQUID STATE MACHINE

Now we extend our study of network dynamics to Liquid State Machine, (LSM).

We use two different measures to study the dynamics of the LSM for networks

with heterogeneous in-degree distribution:

1. The damage spreading rate H.

2. The Lyapunov exponent λ.

3.2.1 Lyapunov Exponent and In-degree Heterogeneity

In this section we study the damage spreading and Lyapunov exponent of LSMs

with heterogeneous in-degree distributions. To create heterogeneous in-degree net-

works we start from a homogeneous in-degree networks and we mutate for many

time steps t as described in Chapter 2. For each mutation in the in-degree we

calculate the damage spreading H and the Lyapunov exponent λ as described in

Chapter 2. We average the results over 1,000 networks and initial states. The error
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Figure 3.8: Damage spreading in homogeneous networks, Poissonian networks, and

exponential networks for N = 100 and N = 200. Over long run for static inputs,

the effect of heterogeneity in the damage spreading of the network is negligible.

bars are calculated using the standard error: SE = σ√
n
, where σ is the standard

deviation of the sample and n is the sample size.

H and λ are both measures of dynamics in dynamical systems. Systems with

H < 1 or λ < 0 are in the ordered regime while for H > 1 and λ > 0 the systems

are in the chaotic regime.

Figure 3.9 shows the rate of spreading of a smallest admissible damage, i.e. 1

bit, in the state of the LSM in one time step for a network of N = 100 nodes and

average connectivity 〈K〉 =1 (blue), 2 (red), 5 (black), 10 (green). We observe
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Figure 3.9: Damage spreading in networks with heterogeneous in-degree distribu-

tion as a function of number mutation in the in-degree distribution t. 〈K〉 = 1.0

(blue), 〈K〉 = 2.0 (red), 〈K〉 = 3.0 (black), 〈K〉 = 4.0 (green). High in-degree

heterogeneity result in poorer dynamics in LSM.

for homogeneous networks, i.e. t = 0, the spreading rate H = 0 is the same for

networks of 〈K〉 = 1 and 〈K〉 = 2. By t = 100 time steps, H for networks of

connectivity 〈K〉 = 1 drops to H = 0.5 and remains constant. For 〈K〉 = 2 the

H = 0 for t = 0 and over 500 time steps of mutations the H slowly decreases to

H ≈ 0.75. For 〈K〉 = 5 and 10 H is nearly constant for all time steps t. Figure 3.10

shows the Lyapunov exponent of heterogeneous networks of connectivity 〈K〉 =

1, 2, 5, and 10. The same behavior we observed for H appears in the Lyapunov

exponent but in a quantitatively different way. One strange aspect of Figure 3.10

is that for the ordered regime, where H < 1, the Lyapunov exponent becomes
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λ > 0. As we explained before, λ is the logarithm of the rate at which damage

propagates in the system. Therefore, ordered system, must have λ = 0. However,

we see that for all heterogeneity levels, λ > 0, even for systems with average

connectivity 〈K〉 = 1. This is because the λ calculation depends on H as follows

(see Chapter 2):

λ = ln(H). (3.1)

If H = 0 then ln(H) → ∞, and we are unable to average over the value of λ. In

our simulations we omitted all instances in which λ→∞. This causes the average

to show slightly higher values for ordered systems.

For highly connected networks, i.e., 〈K〉 > 2, the damage spreading is H > 1,

which implies that the system is in the chaotic regime and suboptimal for complex

computation. At this regime, damage spreading is independent of the number of

mutations in the in-degree distribution and the increase of entropy and therefore

the heterogeneity in the in-degree distribution. For 〈K〉 = 1 and 2, we see that

the damage spreading H and the Lyapunov exponent λ decreases with increased

heterogeneity in the network. This decrease is more pronounced for 〈K〉 = 1 with

a sudden drop from t < 100 and then a constant value for t > 100. At this

connectivity level the homogeneous LSM shows complex dynamics and as the in-

degree distribution becomes more and more heterogeneous the system goes into

the ordered regime.

3.3 CONCLUSION

We studied the network dynamics in LSM and RBN using the Derrida measure and

the Lyapunov exponent. We observed for RBN, the higher heterogeneity in the

system result in richer dynamics. RBNs that are in ordered regime, i.e. 〈K〉 < 2,

will have a critical dynamics using maximally heterogeneous in-degree distribution.

RBNs that have critical dynamics using homogeneous in-degree distribution will
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Figure 3.10: Lyapunov exponent in networks with heterogeneous in-degree distri-

bution as a function of number mutation in the in-degree distribution t. 〈K〉 = 1.0

(blue), 〈K〉 = 2.0 (red), 〈K〉 = 3.0 (black), 〈K〉 = 4.0 (green). High in-degree

heterogeneity result in poorer dynamics in LSM.

be pushed to the chaotic regime with heterogeneous in-degree distribution. These

result agree with the results previously reported in [96].

For LSM on the other hand, the higher heterogeneity in the in-degree distribu-

tion will result in poorer dynamics since the systems will be pushed into the ordered

regime. Similar results has been observed in [64], where the more heterogeneous

in-degrees result in lower dynamical range on network of coupled oscillators.
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4

FUNCTION HETEROGENEITY

4.1 FUNCTIONHETEROGENEITY IN RANDOMBOOLEANNET-

WORK

In this chapter, we study the effects of function heterogeneity on RBN dynam-

ics. We use the Derrida measure to calculate how it speeds up or slows down

the divergence of two close states. RBN dynamics are heavily influenced by the

average connectivity in the network 〈K〉 and the bias p. p is the fraction of “1s”

in the look-up table of the functions averaged over all the nodes in the network.

Many analytical and experimental works have studied how 〈K〉 and p affects the

dynamics of RBN [5, 6, 30, 51, 80, 88, 100]. This body of work establishes that bias

p, and a closely related concept of canalization, cause stability in the dynamics

of RBN. Canalization refers to situations when the output of a Boolean function

is determined completely by the value of one of its inputs. There is an indirect

relation between p and canalization in which the higher p, the more canalizing the

functions are, and thus the network dynamics become more stable. This connec-

tion between p and the dynamics poses a serious challenge in studying the effects

of function heterogeneity on network dynamics. Additionally, in networks with

heterogeneous in-degree distribution, where each node with a different number of

inputs K may only accept 22K functions, introduces more difficulty in consistently

controlling p. Therefore, we need to restrict ourselves to be able to easily control

for the type of node functions.

To study RBN dynamics as a function of heterogeneity we must control for
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Figure 4.1: NAND function. The decimal value of the function is 0× 23 + 1× 22 +

1× 21 + 1× 20 = 7.

the bias p. We narrow this study to 〈K〉 = 2 for networks with homogeneous

in-degree distribution. There are 222 = 16 functions of five possible values of

p = 0, 0.25, 0.5, 75, 1. We typically call the functions by the decimal value of the

output column in the look-up table function, where the first line of the look-up

table is the least significant bit and the last line is the most significant bit [114].

Figure 4.1 shows the NAND function of two input bits A and B. The decimal

value of the function is 0× 23 + 1× 22 + 1× 21 + 1× 20 = 7. The bias of NAND

function is p = 0.75. There are 4 different functions with this bias: 7 (NAND), 11,

13, and 14 (OR). Homogeneous RBN with NAND functions are of interest because

of universality of NAND function. Networks of NAND have been proposed before

by Turing and studied by Teuscher [107].

Here we study the Derrida measure of the RBN networks with homogeneous

functions 7, 11, 13, and 14. We picked these functions because they all have

identical bias, i.e., p = 0.75. For each class of networks we gradually add the other

three types of functions uniformly to increase the heterogeneity and measure the

dynamics. For example, for networks with homogeneous functions of NAND we

replace three node functions by functions 11, 13 , and 14. In a network of 100

nodes, we can repeat this process 25 times to achieve a heterogeneous network in

which there are 25 nodes with each function 7, 11, 13, and 14. Note that during

this process, the bias p of the network remains constant while the entropy of the
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Figure 4.2: Derrida curves for RBN networks of uniform in-degree with K = 2 and

bias p = 0.75 using network functions that are homogeneous, i.e., H(PF) = 0, and

heterogeneous, i.e., H(PF) = 2.05.

function distribution H(PF) increases from 0 to 2.05 bits, which is the entropy

of the maximally heterogeneous function distribution with fixed p = 0.75. We

average the result over 1,000 runs.

Figure 4.2 shows the Derrida curves for networks with homogeneous (blue)

and heterogeneous (red) functions. We know from the properties of the Derrida

curve that if the curve lies above the identity line, the system is chaotic. The

curves below the identity line correspond to ordered systems and curves that are

tangent to the identity line correspond to critical systems at the edge of chaos. The
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perturbation in the critical systems will not die out or spread out, and therefore

these systems are said to be optimal for information processing. Derrida’s annealed

approximation (see Chapter 2) predicts that for systems with K = 2 and p > 0.5,

the dynamics should be more stable and therefore the Derrida curve for these

systems should lie below the identity line. The annealed approximation does not

assume any particular distribution of the functions in the network as long as the

functions on average have a given bias p. However, here we see that in RBNs

with homogeneous functions, depending on the type of functions on the nodes, we

have three different regimes: chaotic for function 7, ordered for function 14, and

critical for functions 11 and 13. In all cases, as the heterogeneity in the functions

increases, the dynamics of the network approaches the critical regime and at the

maximum heterogeneity, i.e., H(PF) = 2.05, the dynamics becomes critical. There

is a paradox between this result with the prediction of the annealed approximation:

that is,, the system is critical according to the experiment. However, the bias of

the system is p = 0.75, which means at connectivity 〈K〉 = 2, it should be in

the ordered phase. However, the heterogeneity seem to reduce the three different

possible to just a single critical phases and therefore the system is more predictable

with increased function heterogeneity.

We repeat this experiment with RBNs with 〈K〉 = 2 with homogeneous in-

degree distributions, and homogeneous functions with bias p = 0.5. These systems

are of interest because networks with 〈K〉 = 2 and p = 0.5 are predicted to be crit-

ical, regardless of the distribution of the functions. There are 6 Boolean functions

with p = 0.5 with two inputs: 3, 5, 6, 9, 10, and 12. To create heterogeneous func-

tions on these networks we start from network with functions that are uniformly

one of the listed functions with p = 0.5 and we repeatedly replace the node func-

tions with other functions not present in the network for maximum of 16 times.

This will result in a network with the identical bias p = 0.5 and a maximally

heterogeneous functions with H(PF) = 4.96.
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Figure 4.3 shows the Derrida curve for homogeneous function RBNs with the

named functions and their heterogeneous counterparts. We see that for functions

3, 5, 10, and 12, the dynamics of homogeneous system lies completely on the

identity line while the heterogeneous networks show slightly chaotic dynamics. For

functions 6 (XOR) and 9 (XOR), both heterogeneous and homogeneous systems are

completely chaotic. In these two types of networks, the number of original functions

6 and 9 is 4 units larger than the other functions when the network approaches

maximum function heterogeneity. However, we see that this slightly higher number

of functions 6 and 9 actually dominate the dynamics of the network and therefore

the heterogeneous networks do not show much difference in the dynamics from

the homogeneous networks. This means that for p = 0.5, the dynamics are very

sensitive to the type of the functions and not just the bias p = 0.5.

Considering the 10 different homogeneous networks that we observed, we con-

clude that the dynamics of RBN are heavily influenced by the exact type of the

functions present in the networks. Some functions such as XOR and XOR com-

pletely influence the dynamics of the networks even if their number is slightly

higher than the other functions in the network. These findings show that although

the annealed approximation does not depend on the exact function to predict the

dynamics of the network, the type of functions present in the network influence

the dynamics heavily. Without the presence of all the available functions in the

network, the dynamics will be unpredictable. Therefore, from the point of view of

self-assembled systems, it is absolutely crucial that the system contains all variety

of the functions to have a reliable dynamics. Function heterogeneity is therefore

beneficial for self-assembled RBNs.

4.2 FUNCTIONHETEROGENEITY IN LIQUID STATEMACHINES

In this section we show how the heterogeneity in the functions of the LSM affect

the dynamics of the system using the damage spreading measure H, the Lyapunov
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exponent λ, and the generalization rank. Normally, all LSMs are built using a

nonlinear function in the nodes inside the reservoir, such as a hyperbolic tangent

or a sigmoid. Usually all the nodes have the exact same function. In this study,

we introduced a coefficient α in the hyperbolic tangent function. We introduce the

heterogeneity in the functions by drawing α from a normal distribution with a mean

αµ = 1 and various standard deviations ασ. Here, we fix αµ and systematically

vary the standard deviation of the distribution for 0 ≤ ασ ≤ 5. We then simulate

100,000 networks and initial conditions to calculate the H and λ and study the

effect of function heterogeneity on the dynamics of the network. The error bars

are calculated using the standard error SE = σ√
n
, where σ is the sample standard

deviation and n is the sample size. We find that the function heterogeneity does

not have any effect on the dynamics of the LSM. In other words, the LSM dynamics

is independent of the heterogeneity in the functions.

4.2.1 Lyapunov Exponent and Function Heterogeneity

Here we study the damage spreading H and the Lyapunov exponent λ of the LSM

as a function of heterogeneity in of the functions in the network. We study H and

λ for networks with uniform, exponential, and binomial in-degree distributions.

Figure 4.4 shows the damage spreading H as a function of ασ, the standard

deviation of the coefficients α in the network. The network has a Poissonian in-

degree distribution. For a fixed connectivity 〈K〉, H is constant for all values of

ασ. The single step damage spreading is thus independent of the heterogeneity in

the function of the system.

Figure 4.5 shows the Lyapunov exponent λ of the system for Poisson networks

of size N = 100 for average connectivities 〈K〉 = 1, 2, 5, and 10. Again we see

that λ is independent of ασ for fixed connectivities. We need to remind the reader

that LSM with 〈K〉 = 1 (blue) are in the ordered regime because H < 1 (see

Figure 4.4), but because we omitted λ = −∞ from our calculations, the average
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Lyapunov exponent is λ > 0.

We plot the damage spreading H for LSM of size N = 100 and connectiv-

ity 〈K〉 = 1, 2, 5, and 10 with exponential in-degree distribution in Figure 4.6.

Once again, we find that the damage spreading is independent of the function

heterogeneity for fixed connectivity 〈K〉. However, we find that the networks with

exponential in-degree have lower values of H than the binomial in-degree for the

same values of connectivity 〈K〉. This result is consistent with the previous conclu-

sions in the last chapter that increased heterogeneity in the in-degree distribution

pushes the network dynamics towards the ordered regime.

Finally we plot the Lyapunov exponent λ for exponential in-degree distributions

in Figure 4.7. λ is also independent of the function heterogeneity in exponential

networks for fixed connectivity 〈K〉. The values for λ are lower than that of

binomial networks with the same 〈K〉.
To complete this study, we show the H and λ for LSM with heterogeneous func-

tions and homogenous in-degrees (uniform in-degree distribution). It is important

for us to verify the effects of function heterogeneity in the networks with various

in-degree distribution. At least for the extreme values of in-degree heterogeneity,

the uniform and the exponential in-degree distributions. We saw that the topolog-

ical properties of the networks varies dramatically with the in-degree distribution.

This difference might cause the collective dynamics of the network to manifest

properties in networks with one in-degree distribution that are completely hidden

in other in-degree distributions.

Figure 4.8 shows the damage spreadingH in the network with uniform in-degree

distribution for connectivity 〈K〉 = 1, 2, 5, 10. We observe that the H is indepen-

dent of the function heterogeneity for fixed 〈K〉 for homogeneous networks as well.

The Lyapunov exponent λ has the same characteristic that it is independent of

the function heterogeneity for fixed 〈K〉.
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We observe that for binomial networks, homogeneous networks (uniform in-

degree distribution), and heterogeneous networks (exponential in-degree distribu-

tion), damage spreading and the Lyapunov exponent are completely independent

of the function heterogeneity ασ.

Apart from the independence of the H and λ of function heterogeneity, there

are two observations in these results that are worth addressing. We see that the

values for H and λ for networks with uniform in-degree distributions, 〈K〉 = 1 and

2 collapse onto one single line (Figure 4.8 and Figure 4.9). On the other hand, for

exponential networks and the Poisson networks, these values are far part, albeit

both in the ordered regime (see Figure 4.4-4.7). In Chapter 3 we saw a similar

effect for networks with 〈K〉 = 1 and 2. For both 〈K〉 = 1 and 2, the homogeneous

networks showed the exact same value of H and λ. As we increased the entropy

of the in-degree distribution, the values for H and λ for these two connectivity

level diverged. While the value of both H an λ decreased slightly for 〈K〉 = 2,

the networks with 〈K〉 = 1 showed a sharp decrease in the values of the damage

spreading H and Lyapunov exponent λ. This means that the dynamics of the

networks with connectivity 〈K〉 = 1 is very close to the critical dynamics when

the in-degree distribution is uniform. As the in-degree becomes more and more

heterogeneous, these networks are pushed into the ordered phase and the values

of H and λ decrease rapidly. Here we see the same effect for all values of ασ.

A second key observation is that for all values of ασ, the values of H and λ are

lower for exponential networks and binomial networks than that of homogeneous

networks with uniform in-degree distribution. The increase in entropy of the in-

degree distribution pushesH and λ for all connectivities toward the ordered regime.

This conclusions is also consistent with the results from RBNs (see Chapter 3).
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4.3 CONCLUSIONS

In this chapter, we studied the dynamics of RBN and LSM with heterogeneous

functions. In the case of RBN, the homogeneous functions reduce the RBN to a

CA with irregular connectivity. The dynamics of such RBN is completely defined

by the functions in the system and does not take influence from p and 〈K〉. As

the mixing of different functions in the RBN increases the dynamics of RBN be-

comes more predictable using p and 〈K〉. However, we hypothesize that RBN with

heterogeneous functions are more suitable for task solving than their homogeneous

counterparts in critical regime. This is because the diversity of functions in the het-

erogeneous RBN help the RBN to decompose features of any input signal in many

different ways. This results in better feature extraction ability in heterogeneous

RBNs. This hypothesis can be tested in future explorations.

In LSM, we observe that the dynamics is independent of the function hetero-

geneity for all connectivity levels, and heterogeneity levels in the in-degree dis-

tribution. This fact implies that LSM networks show a high resiliency against

damage to their functions. We hypothesize that LSM networks may be suitable

for information processing in harsh environment in which the node functions might

be damaged. Testing this hypothesis is beyond the scope of this thesis and is left

for future work.
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Figure 4.3: Derrida curve for RBN networks of uniform in-degree with K = 2 and

bias p = 0.5 using network functions that are homogeneous, i.e. H(PF) = 0, and

heterogeneous, i.e. H(PF) = 4.96.
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Figure 4.4: Damage spreading H in the LSM with binomial in-degree distribu-

tion and heterogenous functions with 〈K〉 = 1 (blue), 〈K〉 = 2 (red), 〈K〉 = 5

(black), 〈K〉 = 10 (green). Damage spreading in LSM is independent of function

heterogeneity in all connectivity levels.
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Figure 4.5: Lyapunov exponent λ in the LSM with binomial in-degree distribution

and heterogenous functions with 〈K〉 = 1 (blue), 〈K〉 = 2 (red), 〈K〉 = 5 (black),

〈K〉 = 10 (green). Dynamics of LSM is independent of function heterogeneity in

all connectivity levels.
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Figure 4.6: Damage spreading H in the LSM with exponential in-degree distribu-

tion and heterogenous functions with 〈K〉 = 1 (blue), 〈K〉 = 2 (red), 〈K〉 = 5

(black), 〈K〉 = 10 (green). Damage spreading in LSM is independent of function

heterogeneity in all connectivity levels.
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Figure 4.7: Lyapunov exponent λ in the LSM with exponential in-degree distri-

bution and heterogenous functions with 〈K〉 = 1 (blue), 〈K〉 = 2 (red), 〈K〉 = 5

(black), 〈K〉 = 10 (green). Dynamics of LSM is independent of function hetero-

geneity in all connectivity levels.
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Figure 4.8: Damage spreading H in the LSM with uniform in-degree distribu-

tion and heterogenous functions with 〈K〉 = 1 (blue), 〈K〉 = 2 (red), 〈K〉 = 5

(black), 〈K〉 = 10 (green). Damage spreading in LSM is independent of function

heterogeneity in all connectivity levels.
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Figure 4.9: Lyapunov exponent λ in the LSM with uniform in-degree distribution

and heterogenous functions with 〈K〉 = 1 (blue), 〈K〉 = 2 (red), 〈K〉 = 5 (black),

〈K〉 = 10 (green). Dynamics of LSM is independent of function heterogeneity in

all connectivity levels.
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5

INTERCONNECT IRREGULARITY

5.1 NETWORK LOCALITY

In conventional LSM and RBN the network structure is a spaceless entity, i.e., in

these networks, there is no distance between the nodes and the connections have no

length. However from an engineering perspective, we are interested in the physical

realizability of RBN and LSM networks. In this chapter, we introduce spatial LSMs

and RBNs by embedding the underlying network of in a 2-dimensional lattice. A

similar approach has been used in [23,73,87] to study the critical behavior of small-

world and spatial dynamical networks. As described in Chapter 2, we embed the

network nodes on a 2-dimensional lattice with the typical length l = 1. We then

wire the nodes together according to a pre-defined in-degree sequence ψ so that the

probability of a link between nodes i and j is a function F of the distance matrix

DM = {rij} [23]. This will give rise to a sequence of wire lengths La for every

value of a. Consistent with the heterogeneity in the functions and the in-degree

distribution, we choose to measure the interconnect irregularity using the entropy

of the distribution of the wire lengths H(PLa).

The form of F depends on a particular application. We are interested in the

physical realizability of self-organized networks. It has been shown that in self-

organized networks the length distribution between nodes follows a power-law [87].

Therefore, we follow the same model and use a power-law, i.e., F (lij) = r−aij to

define our wire length distribution:

Plij = r−aij . (5.1)
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Figure 5.1 shows the wire length probability distribution PLa for different values

of a and K = 1, 2, 3, and 4. For a = 0.0, we have Plij = r0.0ij = 1 and therefore

the connection between any two pairs of nodes is independent of their distance.

Thus the distribution PLa takes the form of a Poissonian distribution. Entropy of

this distribution is H(PLa) ≈ 3.3. As we increase a, the probability distribution

becomes skewed to the left and for a ≥ 1 takes the form of a power-law. The

entropy of the distribution decreases as power-law distribution becomes sharper.

For a = 4, the entropy of the wire length distribution H(PLa) ≈ 1.25.

Figure 5.2 shows entropy of the wire length distribution H(PLa) as a function

of a for network size N = 100 and connectivity K = 1, 2, 3, and , 4 for networks

with uniform in-degree distribution. The entropy values are averaged over 1000

networks. We observe that for all the K values the entropy curves are the same

qualitatively and show the same behavior. For K = 1, the entropy values are

smaller than entropies for K > 1, however, the difference is smaller than 0.1

and does not have any significant effect in our study. Moreover, H(PLa) is just

a function of the probability distribution of the wire lengths. The change in K

only changes the number of available wires N ×K on the network and not their

distribution. As N and K increase, N ×K approaches the thermodynamic limit

and thus wire length distribution becomes ideal. The difference between this wire

length distribution for lower values of N ×K therefore is not fundamental. Thus

for our purpose, H(PLa) is independent of K.

From the perspective of heterogeneity, we see thatH(PLa) and a have an inverse

relation, i.e., the maximum and the minimum of H(PLa) coincide, with the lowest

and highest value of a respectively. This means that for a we have the most

heterogeneous system and for a = 5 we have the most homogeneous system in

terms of wire lengths.

From the locality point of view, for a = 0, we have all the different connec-

tion lengths realized independently and therefore the network looses the spatial
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relationship. Such a network is equivalent to the Erdös-Rényi random graph. For

a → ∞, the connections are all local and therefore we have a completely ordered

lattice of connections. For finite positive values of a, the connectivity is small-

world, in which there are combination of long-range and short-range connections.

Our view of heterogeneity here is not shared by all authors [106]. If one is inter-

ested in simply the cardinality of different wire lengths, the power-law distribution

would provide the most heterogeneous distribution. However as we described in

Chapter 2, having numerous wire lengths does not mean that in any practical ap-

plication we observe the diversity of different lengths. Therefore, in our study, the

power-law distribution signifies a homogeneous system and, Poissonian wire length

distribution is the heterogeneous system.

5.2 NETWORK TOPOLOGY

A dominant factor in network dynamics is the structure or the topological prop-

erties of the network. We previously saw that many of the dynamical properties

of the network can be explained using the effects of heterogeneity in the topo-

logical properties of the network. It is through this topological effects that the

heterogeneity influences the dynamics of the network. In this section, we first

study the effects of the wire length heterogeneity in the relevant topological mea-

sures of the network. We then derive some expectations about how these measures

should affect the dynamics of the network as a function of the entropy of the wire

length H(PLa). In the next section we show the result of the dynamics and draw

a connection between the results and network measures.

One of the most important and the most studied network measures is the

local clustering coefficient in the network [94]. This measure is calculated for

each node on the network. This measure indicates how closely adjacent nodes in

a network are connected together (see Chapter 2). This measure is particularly

important for dynamical processes on the networks. In a neighborhood of a network
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where the nodes have high clustering coefficient, the information percolates from

many different paths and might interfere with itself. Figure 5.3 shows the average

local clustering coefficient for networks of size N = 100 and connectivity K =

1, 2, 3, and , 4 as a function of a and H(PLa). For random networks, i.e. a = 0 and

H(PLa) = 3.25, the mean clustering coefficient is minimal. This is a well-known

effect and not surprising since the probability of nodes being connected together

is independent of nodes’ distance. For local networks on the other hand, i.e. a = 5

and H(PLa) = 1, the clustering coefficient is at it is maximum 0.2 for K = 1

networks and near maximum 0.6 for K > 1. This means the ability of information

transfer in clusters of nodes decreases linearly as the heterogeneity of wire lengths

increases. This may imply that wire length heterogeneity imposes order on network

dynamics.

Another well-studied measure is the average shortest path [94]. This measure

indicates on average how easily pairs of nodes can be reached from each other by

traveling through the network. The shorter this distance is, the faster a signal

can spread in the network and therefore information propagation is more efficient.

Figure 5.4 shows the average shortest path for networks of size N = 100 and

connectivity K = 1, 2, 3, and 4 as a function of a and H(PLa). This behavior of the

average shortest path is more complex than the clustering coefficient. For K = 1

(blue), we observe that for random networks, i.e., a = 0 and H(PLa) = 3.25, the

average shortest path length is at its maximum (≈ 7) and decreases quadratically.

As the wire lengths become more homogeneous and the connections become more

local, the average shortest path decreases and reaches the minimum value, i.e., 2

for completely homogeneous system H(PLa) = 1. This is because for 〈K〉 = 1,

the network is very sparse and the formation of strongly connected components

only occurs in highly local networks. On the other hand, for 〈K〉 > 1, the average

shortest path decreases as the wire length becomes more and more heterogeneous

and reaches its minimum for H(PLa) = 3.25. Note that 1 ≤ H(PLa) ≤ 3.25 is
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the absolute range for wire length heterogeneity in this study and therefore the

maximum and minimums of the average shortest path are the global maxima and

minima. A naive interpretation is that for 〈K〉 = 1, increased heterogeneity in the

wire length should make this system more chaotic, whereas for K > 2, increased

heterogeneity should impose order. In the next sections, we will see how the average

shortest path actually influences the dynamics.

A closely related measure to the clustering is the Q value introduced by New-

man [83]. This value is a measure of cohesiveness of modules in the network. For

random networks with no modules this value should be very low or zero and for

highly modular networks Q should be large and close to 1. Figure 5.5 shows the

Q value for networks of size N = 100 and connectivity K = 1, 2, 3, and 4 as a

function of a and H(PLa). As expected for local networks of all connectivities,

i.e., H(PLa) = 1, the Q value is at its maximum and drops as the heterogeneity

increases. For random networks, i.e., H(PLa) = 3.25, Q is at its minimum, imply-

ing that the observed modules in the network are not very cohesive. This usually

means that the nodes in the modules, have a lot of links to other nodes in other

modules and therefore the modularity is weak. In principle the behavior of the

Q value should track the behavior of the local clustering coefficient. In fact, we

see that the qualitative behavior of Q as a function of H(PLa) (Figure 5.5(b)) is

very similar to how the clustering coefficient changes as a function of the entropy

(Figure 5.3(b)). For K = 1 we see a completely linear decrease of Q and the clus-

tering coefficient as heterogeneity increases. For K > 1, both Q and the clustering

coefficient show a sharper and non-linear decrease with increasing heterogeneity.

Therefore, with higher connectivity the networks lose their module features faster

as the system become heterogeneous in wire lengths.
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5.3 DYNAMICS OF RANDOM BOOLEAN NETWORKS

We have seen in Chapter 4 and Chapter 5 that the RBN dynamics are sensitive

to both heterogeneity in the in-degree distribution and the function heterogeneity.

Here we study the dynamics of RBN for conventional RBN networks with ho-

mogeneous in-degree distributions as a function of the entropy of the wire length

distribution H(PLa). Damage spreading in RBN has been studied and it has been

known that for local networks the dynamics are chaotic [73]. As the network be-

comes more small-world, the dynamics becomes critical. In addition, small-world

networks in both RBN and CA improve the computational performance of the

network in solving the density task [76, 110]. We investigate this phenomena by

studying the dynamics of the RBN as a function of H(PLa) and we will show how

the small-world effect regulates the dynamics in the network.

To study the dynamics we use the Derrida measure to calculate how fast the

damage spreads in the RBN. We experiment with networks of average connectivity

〈K〉 = 1.0, 1.5, 2.5, and 3.0. Initially all the network samples have random connec-

tivity with a = 0 and are therefore equivalent to random networks. We vary a and

calculate the entropy of the distribution of the wire length. We average the results

over 1,000 runs and express the result in terms of the entropy values. We express

the result as how the logarithm of dt+1

dt
changes with H(PLa). For chaotic net-

works, log(dt+1

dt
) > 0, for ordered networks, log(dt+1

dt
) < 0, and for critical networks,

log(dt+1

dt
) = 0.

The plots in Figure 5.6 show the summary of our findings for RBN with dif-

ferent average connectivities. We see that for 〈K〉 > 2, the networks are chaotic

as expected and for 〈K〉 < 2 the networks are in the ordered regime. Moreover

for ordered networks the dynamics become more ordered as the heterogeneity in-

creases. On the other hand, for chaotic networks, as the heterogeneity increases,

the network becomes more chaotic. In both chaotic and ordered networks the
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heterogeneity in the wire lengths pushes the networks even further away from the

desirable critical regime.

5.4 DYNAMICS OF LIQUID STATE MACHINES

In this section we study how the heterogeneity in the wire length affect the one time

step divergence H and the Lyapunov exponent λ in liquid state machines. So far we

have seen that the in-degree heterogeneity makes the LSM dynamics more ordered

whereas the function heterogeneity does not have any effect on the dynamics. Here

we use LSM networks of size N = 100 and connectivity K = 1, 2, 3, and 4 with

homogeneous in-degrees and functions. We study the dynamics by calculating H

and λ for LSM with 0 ≤ a ≤ 5. We average the results over 1,000 samples.

Figure 5.7(a) shows the average H as a function of a (a) and H(PLa) (b).

Data for networks of K = 1, 2, 3, and 4 is plotted in blue, black, magenta, and

red respectively. The error bars represent the standard error. We observe that

aside from small fluctuations, the value of H is constant and independent of a

and H(PLa). Both K = 1 and K = 2 networks have identical values very close

to H = 1, which means according to H, these systems are in the critical phase.

For K = 3 and 4, H > 1, and therefore these systems are chaotic. We see that

the connectivity K does play a significant role in the chaotisity of the network

measured by H, but not by the heterogeneity of the wire lengths.

Figure 5.8(a) shows the Lyapunov exponent λ for the same samples of LSM

networks described above. We see that λ can differentiate between the network

dynamics of networks with different wire length heterogeneity (Figure 5.8(b)). For

all K, a higher heterogeneity imposes order on the network dynamics. We see that

λ decreases linearly with H(PLa).

It is unintuitive that more heterogeneous wire lengths cause more ordered dy-

namics. Petermann et al. [87] studied the relationship between a and the node

connectivity in lattice and small-world networks. They argued that for positive
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values of a the network becomes more small-world. This small-world regime is

characterized by a high clustering coefficient (feature of local network) and a low

average path length (feature of random networks) [113]. The improved naviga-

bility in small-world networks is therefore attributed to the existence of different

connection length scales rather than just a small average path length. Lu and

Teuscher [73] investigated the relation between the small-worldness and the dam-

age spreading and showed that the damage spreads faster in local networks. This

is due to high clustering between nodes in networks with local connections that

percolate damage in local neighborhoods quickly. These findings agree with our

results.

For a = 0, the network is completely random and has the maximum heterogene-

ity in the wire lengths. Networks of this type have a very short average path length

and a very low clustering. The perturbation in one area might quickly spread in

the entire network, since the percolation spreads in all different routes, they might

cancel each other’s effect. This results in lower damage spreading values for fixed

K. For positive values of a, both clustering increases and Q decreases which im-

plies highly connected modules in the network forms. But these modules are also

connected to other modules across the networks meaning that any perturbation

both spreads in the modules and between modules. Homogeneity in wire length,

therefore, result in richer and perhaps chaotic dynamics.

It is interesting that both for in-degrees and wire length, more heterogeneity

in the network imposes order in the dynamics. Can we find out what the optimal

connectivity Kc is for minimum and maximum heterogeneity in the wire lengths?

That is, at what 〈K〉 = Kc the system dynamics becomes critical, i.e., λ = 0.

Figure 5.9 shows the Lyapunov exponent as a function of 〈K〉 for networks of

size N = 100 with homogeneous in-degree distributions. The red curve shows

for local networks with homogeneous wire length distributions and the blue curve

random networks with a maximal heterogeneous wire length. The postulation that
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heterogeneity imposes order on the network becomes clear in this plot. We can

calculate the exact critical connectivity 〈K〉 = Kc for which λ = 0. For the interval

2 ≤ 〈K〉 ≤ 3, the change in λ is linear. Using linear regression, we can fit the linear

model:

λ(〈K〉) = a〈K〉+ b. (5.2)

For random networks, i.e.,H(PLa) = 3.25 (blue), a = 0.12 and b = −0.35. For local

networks, i.e., H(PLa) = 1 (red), a = 0.13 and b = −0.34. We therefore calculate

the critical connectivity for random networks with homogeneous in-degree and

heterogeneous wire lengths as:

Kheterogeneous
c = 2.91. (5.3)

The critical connectivity for local networks with homogeneous in-degree and ho-

mogeneous wire lengths is:

Khomogeneous
c = 2.61. (5.4)

Since the heterogeneous wire length networks are more ordered, they need a higher

connectivity to achieve critical dynamics in the system. If one wants to build such

a network, one would need more connections per node on average, which increases

the direct relation between connectivity per node and cost.

5.5 CONCLUSIONS

We investigated the dynamics of RBN and LSM as a function of heterogeneity

in the wire lengths. For RBNs, the higher wire length heterogeneity results in

richer dynamics, where RBN is pushed towards the critical regime. For LSM, the

chaotic systems are pushed towards the critical region as the wire length hetero-

geneity increases. Critical systems, however, become more ordered and therefore

not suitable for computation.
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Figure 5.1: Wire length probability distribution PLa for a ∈
0.0, 0.5, 1.0, 2.0, 3.0, 4.0.
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Figure 5.2: Entropy of the wire length distribution H(PLa). The entropy of the

wire lengths shows a second order phase transition behavior, in which for global

networks the entropy is maximal while it shows a sudden decrease for more locally

connected networks. Global networks are more heterogeneous and local networks

are more homogeneous with respect to the wire lenghts.
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Figure 5.3: Average local clustering in the networks as a function of a(a) and

H(PLa)(b). Blue curve is K = 1, black curve is K = 2, magenta curve is K = 3,

and red curve is K = 4.
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Figure 5.4: Average shortest path length L in the networks as a function of a(a)

and H(PLa)(b). Blue curve is K = 1, black curve is K = 2, magenta curve is

K = 3, and red curve is K = 4.
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Figure 5.5: Average modularity Q value in the networks as a function of a(a) and

H(PLa)(b). Blue curve is K = 1, black curve is K = 2, magenta curve is K = 3,

and red curve is K = 4.
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Figure 5.6: Dynamics of RBN with different connectivity as a function of entropy

of wire length distribution. Increasing heterogeneity in the networks pushes the

RBN dynamics towards more critical region causing richer dynamics suitable for

information processing.
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Figure 5.7: Damage spreading H as a function of a (a) and H(PLa) (b). Damage

spreading does not show any effect due to heterogeneity of the wire lenghts.
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Figure 5.8: Lyapunov exponent λ as a function of a (a) and H(PLa) (b). Dynamics

of LSM become poorer as the heterogeneity of the wire lengths increase. Chaotic

systems are pushed towards critical regime while the critical systems are pushed

towards ordered regime.
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6

CONCLUSIONS

In this thesis, we conducted a systems study of the effects of heterogeneity on

the dynamics of random dynamical networks. We carried this study within the

framework of systems approach to identify the context and the problem domain,

and to analyze the problem statement. Using our insight, we then chose two models

to continue our study. Although the models in this study are much simplified,

they carry the essential systems behavior pertinent to our study. Moreover, both

models consist of relevant components that we investigated to achieve the goal

of this study, that is to understand the relationship between the changes in the

systems behavior with respect to the changes in the properties of the components.

A summary of this study, our methods, and the results is presented here.

This study was motivated by the need for alternative computing paradigms.

These novel computing paradigms must be both cheap to make and programmable.

One approach that has recently gained much attention is called reservoir comput-

ing. In reservoir computing, one would stimulate an excitable physical system

and then interpret the intrinsic dynamics of the system to produce the desired

output for the computation. Since this approach relies only on the dynamical

behavior of physical systems, in principle, any system could be used to imple-

ment this paradigm. Specifically, reservoir computing is suitable to compute with

self-assembled molecular and nanoscale devices.

The focus of research in reservoir computing is finding systems with suitable

dynamic for computation. The dynamics of any physical system can be attributed

to its interacting parts. Therefore, a scientific study of reservoir computing in
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physical systems using a systems perspective lend itself to employing dynamical

network models. Network models make it possible to study the global systems

behavior with respect to the interacting components of the system. The property

of interest in our study was the heterogeneity in the components of the system

and their interactions. The global dynamics of the system in dynamical networks

depend on change in the node state from each point in time to the next. For

each node, the change in the state is governed by the node’s transfer function.

The output of the node function in turn depends on the interaction between the

state of other nodes in the previous time step. Our aim was to study how the

heterogeneity of the node functions, the in-degree of the nodes, and the wire lengths

of the connections between the nodes affect the systems dynamics.

We chose two classical dynamical network models called random Boolean net-

work (RBN), which is a model of gene regulatory networks, and liquid state ma-

chine (LSM), which is a model of cortical microcircuits. Both models have been

used to implement reservoir computing. Most of the work in reservoir computing

use the homogeneous networks. However, homogeneity in real physical systems is

rare to find. We bridge the gap in this research by systematically introducing het-

erogeneity in the networks and study how this heterogeneity affects the systems’

dynamics.

In this thesis we aimed at understanding the effects of heterogeneity on the

dynamics of two network models, LSM and RBN, which represent a class of physical

systems. We introduced entropy as a generic measure of heterogeneity for complex

networks, which can measure heterogeneity in any aspect of a network describable

using a nominal variable. For our purpose, we investigated heterogeneity in the

node functions, the node in-degrees, and the wire lengths. We showed that entropy

is predictive of the effects of heterogeneity on the dynamics of the network. Our

findings in the course of this thesis is summarized in Table 6.1. For comparison
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we have also included existing results in the literature on the effects of the in-

degree heterogeneity on the dynamics of coupled oscillators (compared to LSM)

and scale-free RBNs (compared to our RBN).

In LSM, heterogeneity in node in-degree and wire lengths result in poor system

dynamics. This implies that for LSMs systems with high a level of heterogeneity

in the in-degrees and the wire lengths, the critical connectivity to reach the critical

dynamical regime increases. This increased connectivity will compensate for the

imposed orderly behavior induced by the heterogeneity on the network. The node

function heterogeneity has no effect on the dynamics of the LSM. This might be

due to the weighted nature of the connections and the insensitivity of the collective

dynamics to the exact value of the derivative of the node functions in LSMs. This

will require more in-depth study of these networks.

For RBN, we observe that the in-degree heterogeneity and the wire length

heterogeneity lead to richer dynamics. We observed that function heterogeneity

in RBNs result in predictably richer dynamics. If one can choose the functions

of all the nodes accurately, it is possible to construct RBNs with homogeneous

functions with rich dynamics as well. However, we hypothesize that since for

online computation using RBN each node may act as a filter to decompose external

inputs, RBNs with heterogeneous functions may outperform homogenous RBNs.

Our result in in-degree heterogeneity in both RBN and LSM agrees with exist-

ing result on the dynamics of similar networks. We have extended the results in

the study of heterogeneity in the RBNs and LSM beyond the in-degree heterogene-

ity and studied the dynamical effects of function heterogeneity and interconnect

locality.

This work opens up the door to many future exploration. The real cause

behind the effects of heterogeneity in network structure and functions need in-

depth study. Furthermore, we need to investigate if in real-world computations

the heterogeneous networks outperform the homogeneous ones, as predicted by
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LSM Oscillators RBN SF RBN

het. hom. het. hom. het. hom. het. hom.

in-degrees poor rich poor rich rich poor rich poor

functions no effect no effect n/a n/a rich unpredictable n/a n/a

interconnect poor rich n/a n/a poor rich n/a n/a

Table 6.1: This table summarizes the effects of heterogeneity in different aspects

of RBN and LSM on the richness of dynamics. We compared our LSM results to

the result for coupled oscillator networks [64]. We also compared our RBN results

to scale-free RBNs [5, 96]. Our result in the dynamical richness of the network

for heterogeneous and homogeneous networks agree with the existing studies on

similar networks.

the richer dynamics discovered in this study.

In the future, we may extend this work by rigorously studying the predictive

power of the entropy measure as an indicator of heterogeneity, over systems dy-

namics and network properties. We might be able to use the rich literature of

information theory to determine the information transfer between the entropy of

the network components and the network dynamics. Furthermore, we can bridge

the gap between pure theoretical analysis and study the computational power by

training the RBN and LSM reservoirs to solve task and find if the results of our

study can correlate with the actual task solving capability of RBN and LSM.
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