
Exciting Students for Systems Programming
Through the Use of Mobile Robots

Alexander Förster
Roboter und Technik
Bremen, Germany

technik-in-die-schule.de

Anna Förster
University of Bremen
Bremen, Germany

afoerster@comnets.uni-bremen.de

Jürgen Leitner
Centre of Excellence
for Robotic Vision

Queensland University of Technology
j.leitner@qut.edu.au

ABSTRACT
In this paper we present our experience teaching Systems Program-
ming in C to undergraduate students1. Additionally to traditional
Unix-like operating system approach, we employed a robotic plat-
form – the e-puck mobile robot – to increase the students’ moti-
vation and improve their learning experience. A robotic platform
provides high attraction for students, making the class stand-out
compared to other courses. Yet it is not only a playground, rather,
the platform allows to present very challenging and sophisticated
real-life programming problems in a tangible way. The chosen
robot provides an open-source operating system with a well struc-
tured programming interface and thus offers a real-world, complex
example of systems programming to the students.

We describe the overall curriculum and the syllabus of the course
itself. Emphasis is put on the design of the in-class and homework
assignments, but the robotic platform is briefly described as well.
Our success is confirmed by the end-of-semester evaluation by the
students, who ranked our course among the top of all bachelor-level
courses.

KEYWORDS
teaching, computer science, systems programming, bachelor, un-
dergraduate

1 INTRODUCTION
Teaching systems or low-level programming at the bachelor level
has developed into a challenging task. Not only are there a variety
of embedded and operating systems available, all with their own
quirks and specialities, but undergraduate students seem to get
most excited these days about web programming, graphical user
interfaces, game programming and lately smartphone program-
ming. In comparison, theoretical computer science, calculus and
low-level programming have a low attraction value and are gener-
ally perceived by students as “boring and outdated”. However, every
experienced computer scientist knows how pivotal this knowledge
is for developing solid programming skills. Only these fields enable
a deep understanding of hardware and software, their close inter-
action and enable high quality, reliable applications. Furthermore,
innovations in both software and hardware often come down to the
use of traditional programming languages, e.g. to develop a new
programming language or to program a sophisticated system, such
as a robot.
1This work has been conducted by the authors while still teaching at the University of
Lugano, Switzerland, in 2011-2013.

In this paper, we present our experience of teaching a bachelor-
level course in Systems Programming using mobile robots. These
robots are very attractive to students for several reasons: they rep-
resent a hot and interesting research area with high future potential
and a taste of science fiction; they offer a real platform for experi-
menting and programming; and last but not least, the developed
applications are highly visible and worth showing to others as they
surely attract the attention of colleagues and faculty. At the same
time, robots are not only playful pals; in fact, they are currently
one of the most challenging real-life hardware systems, employing
numerous sensors and actuators and requiring complex program-
ming.

The Systems Programming course at the Universita della Svizzera
Italiana (USI) in Lugano has been taught in its current form for three
years. It is a 6 ECTS (European Credit Transfer System) course and
aims to teach the traditional topics of the C programming language
[6], with its different standards (C99, C POSIX library), program-
ming tools (compiler, debugger, source code documentation, build
system), and access to operating system functionality (system calls).
The course is loosely following the text book by [4]. However, in-
stead of traditional programming assignments, we extensively use
the e-puck robotic platform [7]. The outlook to program “their own
robot” greatly motivated the students from the very beginning,
enabling them to grasp the importance of each part of the course
and its contents in an enjoyable way.

In the next sections, we first present in more detail the existing
computer science curriculum at USI and the background of our
course (Section 2). Section 3 describes our complete course syllabus,
including the individual in-class and homework assignments and
the timing of introducing the mobile robots. In Section 4 we give
more details about the used robotic platform, the e-puck mobile
robot, while Section 5 discusses the achievements of our course and
the students’ evaluations of it. Section 6 finally concludes the paper.
We believe this paper can be used to re-design other low-level or
systems programming courses by showing what worked for us.
We believe that through the integration of the robot in the second
half of the course we were able to better motivate the students
and significantly increase their learning experience of a topic they
considered “boring and outdated” at the beginning.

2 CURRICULUM AND BACKGROUND
USI is the youngest university in Switzerland. It was founded in
1996 and has since then become Switzerland’s most international
university. It is distinctive because of the originality of its degree
curricula, including courses taught fully in English. While relatively

Figure 1: TIOBE Programming Community Index for May
2013 (courtesy: http://www.tiobe.com). Java was the number
one over years andC at the second place.However, in the last
couple of years C is growing and and overtaking the leader-
ship.

contained in size it provides a collegiate, dynamic, and multicultural
atmosphere. The Faculty of Informatics has been the most recent
addition to USI, founded only in 2004. Its Bachelor of Science (BSc)
curricula has been designed to better address the rapidly advancing
and changing field of computer science [5]. To provide a pervasive
view of current information technology (IT) and its developments,
the faculty aims for a continuous integration of application areas
and application-oriented projects into and across traditional courses.
Furthermore, technology and theory are addressed together in the
curriculum to better adapt to the rapidly changing nature of IT.

In the first years of the BSc curriculum at USI, systems program-
ming was taught in a small 2 ECTS (European Credit Transfer
System) course called “Programming in C”. The course was situated
in the third semester, thus the students already had prior experience
with programming, but mainly in Python and Java. The focus of this
course was on teaching ANSI C programming, without the direct
relationship to systems programming or other application areas.
However, these courses were not met with great enthusiasm by the
students, who generally complained about the “uselessness” of this
course, teaching them a “dinosaur” programming language. This
attitude was well understandable, as the students were already able
to program quite complex applications with sophisticated graphical
interfaces, yet were only taught to write simple programs to learn
the C syntax. Compared to modern programming languages which
are also suitable for the systems programming level, C has many
drawbacks [9]. However, it is still broadly used for both historical
and functional reasons. In fact, it recently became again the most
commonly used programming language (see Figure 1). Therefore
the faculty decided to continue teaching C, but started looking at
ways to design a better course for the students.

To improve, one of the authors, while teaching this class, de-
cided to introduce small projects at the end of the course to better

Table 1: Student performance over the semester.

Assignments Average grade
(max 100)

All students 84
Students with robotics projects 94
Students with sensor network projects 97
Students with software projects 73
Midterm exam Average grade

(max 100)
All students 40
Students with robotics projects 70
Students with sensor network projects 65
Students with software projects 51
Project Average grade

(max 100)
All students 77
Students with robotics projects 93
Students with sensor network projects 70
Students with software projects 73
Complete course Average grade

(max 100)
All students 68
Students with robotics projects 82
Students with sensor network projects 76
Students with software projects 58

demonstrate the application fields of ANSI C in modern IT. Over
the years these projects spread over three fields:
• Software programming: small projects, e.g., a math terminal
tool.
• Wireless sensor networks: small projects with the Scatterweb
MSB430 nodes [1, 2].
• Robotics: small projects with the e-puck robot (see Section 4).

Table 1 presents some concrete performance results of the stu-
dents over the semester. However, the total number of students
was 19 (high for the University of Lugano, where typical courses
have 5-20 students most), which makes the results statistically in-
significant. However, it provided us with valuable experience and
motivation.

Table 1 reads as follows. All students completed the same lec-
tures and assignments until the midterm exam. Directly afterwards
they selected a topic for the project and worked in their project
until the end of the semester, when they received a grade for the
project itself and for the complete course (which includes their
grades for assignments, midterm and project). The data in the ta-
ble is organised into the project topic the students have selected
after the midterm. In the midterm exam, the students who later
selected robotics or sensor networks, perfumed equally well. The
others, who later chose the software project, performed worse than
the other two groups. This can be easily explained the other way
around: the weaker students chose a project topic, which they con-
sidered "simpler", because they did not want to invest time and
effort in learning the software architectures and the user interfaces
for robots or sensor networks.

2

http://www.tiobe.com

However, what is most interesting is the development of the two
stronger groups. In the midterm exam, they have shown almost
identically good results. Then, during the project phase, the robotics
group performed extraordinarily well, while the sensor networking
group fell back. This could have two explanations: either the robot
was easier to learn and work with than the sensor nodes or the
motivation is greater. We believe the main reason is the first one,
since working with both types of hardware required similarly steep
learning curves. Thus, pure motivation and fun led the students
to better learning results and better performance. This is also sup-
ported by their final results, which show that the robotics students
perfumed best from all groups.

It is also interesting to compare the students’ performance dur-
ing the assignments and during the project. Especially for weaker
students, who need more advise and support, the assignments are
the better solution than a project.

Given the presented results and taking into account the students’
comments and own ideas, we decided to implement the following
two concepts:

• In-class assignments with teacher support throughout
the whole course, instead of homework assignments and an
individual project.
• Usage of a mobile robot in the in-class assignment to
increase the motivation and the fun factor of the course.

The course was further extended to 6 ECTS to allow for sufficient
time to complete the in-class assignments. The mobile robots could
not be introduced immediately, but only in the middle of the course,
since some experience with C is needed to get them running.

This new version of the course exists now in the faculty for two
years and has been evaluated both by students and staff as one of
the most attractive courses in the current BSc curriculum.

3 SYLLABUS
The Systems Programming class is a 6 ECTS course with 2 lectures
per week and additional homework [11]. A non mandatory lab —
led by the teaching assistant — is also offered to explain lecture
material in more detail and answer comprehensive questions that
might arise during the homework assignments.

The lectures can be considered traditional topics in systems
programming and programming in C. However, we put special em-
phasis on in-class assignments, where the students can experiment
with the presented theoretical concepts (like memory management,
threads or debugging) under guidance and supervision from the
teacher and teaching assistant. In addition homework assignments
are given to encourage the reuse of the taught subjects in a more
application/project-oriented way. The complete list of assignments
with short descriptions is provided in Table 2. Each lecture of our
course included at least one in-class assignment and every week
an additional homework assignments was given. The homework
was discussed in the lecture during assignment and again after the
submission.

The syllabus is further structured into two main parts: program-
ming in C (including tools, build systems and debugging) and sys-
tems programming with a robot. The first part, as can be seen also
in Table 2, covers traditional programming in C, including advanced

concepts, such as function pointers, multidimensional arrays, dy-
namic memory management, etc. Already in this first part of the
course, it is very important to design the in-class and homework
assignments in an attractive and practical way, so that students are
able to recognise the merits and the need of the C language. This
very often requires thorough preparation of the assignment, such as
debugging an existing program (Lecture 6) or re-structuring a given
program with the help of struct data types (Lecture 8). Further-
more, in order to gradually increase the difficulty and complexity
of the assignments, they need to be built on top of each other, for
example the sequence of in-class and homework assignments about
binary trees starting at Lecture 11 and reaching until Lecture 16.

Another approach we found useful to keep the students engaged
is to offer small “gags”. For example, the homework after Lecture
9 is the implementation of a minimal program interpreter, based
on the esoteric programming language called BrainFuck [8]. This
language has only eight instructions, is Turing complete and is
designed to amuse programmers with its rather unreadable code.

The second part of the course was concentrating on using sys-
tems programming on the mobile robots. At this point the students
were already well acquainted with the necessary prerequisites, e.g.
how to make libraries, makefiles, etc. Therefore programming a
real robot seemed a manageable task, also to themselves. From the
teaching staff’s point of view, the time and effort invested into
preparing the assignments increased further. We had to prepare
a bare-bone programs, which the students were able to complete
in the short time provided for a homework assignment and at the
same time experience the satisfaction of seeing the robot perform
relatively complex tasks. Again, the assignments built on top of
each other by providing insight into the individual functionalities
of the robot: uploading a program via Bluetooth, steering the robot
via remote control, using the IR proximity sensors, flashing LEDs
by configuring hardware timers or by using a timer API, etc. The
final assignment in Lecture 24 was to write a program, where the
robot randomly explores the environment by avoiding obstacles.
Figure 2 presents a screenshot of a video taken by a student (Geor-
gios Samaras) of his final assignment. The full video is available
online [10].

As mentioned before a hands-on lab was also offered in addi-
tion to the lectures. This lab, held once a week, roughly mid-way
between the assignment and its submission deadline, offered the
students the possibility to ask questions about the assignments,
clarify the topics taught in the lectures, and allow for experimenta-
tion with their code and the robot. While the lectures themselves
included many hands-on programming tasks, this aspect had even
more prominence in the lab. It encouraged the students to try vari-
ous approaches to tackle given, or even self-created, programming
tasks or solve small problems. The use of the robot enabled the
students to get instant feedback of their code in a tangible way. This
instant gratification for writing working code, e.g. when managing
to use the infra-red sensors on the robot correctly to avoid obstacles,
spurred them on to try different ways of optimising and further
experimentation.

Additionally to the lectures, assignments and the lab, there were
also a midterm and a final exam. However, these were designed rela-
tively simple and both did not include any robot-specific questions.

3

Table 2: Complete syllabus of our Systems Programming class.

Nr Lecture Topics Hands-on Assignments
1 Systems Programming, C and Unix in the historical context.

Terminal, text editors and IDEs. Basic types, literals, variables,
includes. Unix manual (man) pages.

In-class: Installing compiler and “Hello world” program. Homework:
Modify existing program. Find out lengths of basic data types.

2 Control structures, boolean expressions, minimal I/O. In-class: 7 bit to 8 bit encoder and decoder.
3 Declaring and implementing functions (names, In-class: Implement swap function.

parameters, return values). Call by value and addresses (point-
ers).

Homework: Implement a parser as finite-state machines.

4 Arrays and strings. Initialisation, null-termination. Strings as
function parameters. Const declaration.

In-class: Implement string comparison function. Implement get line
function.

5 Characters, character sets, locale, wide characters, multibyte
characters.

In-class: Applying character / wide character functions. Homework:
Implement standard character and string functions.

6 Type of error in programs. Finding and fixing errors. Using the
debugger. Using assertions.

In-class: Debugging a given program.

7 Data structures, enums, typedefs. In-class: Analysing enums in the debugger. Using structs. Home-
work: Using structs as a data-base.

8 Nested structures and unions. Initialisation of structs. Structs
and pointers.

In-class: Structure a given program by using structs.

9 Introduction to pointer programming. Memory system. Arrays
and pointers. Pointer arithmetic.

In-class: Inspecting position of variables in memory. Homework:
Write a program interpreter.

10 Advanced pointers and multidimensional arrays. In-class: Analyse and debug the differences of array of pointers and
array of arrays.

11 Dynamic memory management, malloc and free. In-class: Modify a program with fixed arrays to a tree-based one
with dynamic memory allocation.
Homework: Write your own tail program.

12 Memory management by ownership of pointer. In-class: Implement a linked list structure with access and manage-
ment functions.

13 Pointer to functions. Qsort example. In-class:Modify a program to allow flexible sort order Homework:
Implement a binary tree with unspecific node type.

14 Advanced function pointers. Analysing and simplifying func-
tion pointer declarations.

In-class: Implement a map function.

15 Preprocessor, compilation unit and linker. In-class: Split a large program into files.
Homework: Split the binary tree implementation into header, imple-
mentation and test file.

16 Organizing source code and using build systems. In-class:Write a makefile for the binary tree project.
Midterm exam

17 Files, file handling, streams and dictionaries. In-class:Write your own copy file program.
18 Unix system calls, processes and signal handling. In-class: Handling processes from the terminal.

Homework: Implement your own system function.
19 Signals, core dumps and debugging. In-class: Debug a core dump.
20 Introduction to the robot and its remote control software. In-class: Install remote control software, test the robot.

Homework: Write a program to steer the robot in a quadrangle.
21 Pipes for process communication. In-class: Communicate with the robot over a pipe.
22 Using standard and third party libraries. Creating libraries. In-class: Using readline library and pipes to extend binary programs.

Homework: Create a library from an earlier homework and add
documentation (doxygen and man page).

23 Cross compiler and robot programming. In-class: Install cross compiler and upload firmware to the robot.
24 Writing programs for the robot with an API. In-class: Access the LEDs of the robot.

Homework: Using the proximity sensors of the robot (exploring
randomly the environment, avoiding obstacles)

25 Direct hardware access for robot programming. In-class: Access the LEDs of the robot without the API.
26 Microcontroller timer programming and the robot timer API. In-class: Access the LEDs of the robot with the API timer functions.

Final exam

4

Figure 2: Screen shot of a demonstration of the final home-
work assignment. Each robot should explore the environ-
ment randomly, while it is avoiding obstacles (other robots
and walls).

In general, the complexity level of the assignments was higher than
the exams’.

4 THE ROBOT
As already explained before, we chose to use mobile robots to show
the students some of the applications of Systems Programming
for its high attraction factor. However, it is very important to pro-
vide “one robot for one student” for a successful hands-on learning
experience. Sharing a robot between students usually leaves one
student working with it and the others only observing, which has
the opposite effect. Another crucial aspect for our specific course
was that the robot is programmable in C, supports various levels
of programming, supports the operating system which most of the
students are using (Mac OS X), and allows easy software uploading
without special hardware.

Nowadays, the preferred programming language for many low-
price mobile robots is not C, e. g., the Thymio II (http://www.thymio.
org) uses Aseba, Arduino (http://www.arduino.cc) based robots use
Processing, and other robots are mainly controlled by a personal
computer (iRacer http://www.sparkfun.com) or smartphone (Romo
http://romotive.com, Wheelphone http://www.wheelphone.com).
These robots have often an open source based firmware and an
adequate description of the used hardware. Programming these
robots in C is in generally possible, but not common and thus not
trivial.

We have around 25 e-puck robot at our institute, which were
enough for the amount of students in our Systems Programming
class. The e-puck robot is a small-size mobile robot developed at
EPFL, Switzerland, for educational and research purposes [7]. The
robot is also available in various simulators, e. g. Webots [3]. The
robot is available in Europe from GCtronic (http://www.gctronic.
com/), in Japan from AAI Japan (http://www.aai.jp/) and in North
America from AAI Canada (http://www.aai.ca/). The robot is fol-
lowing completely the open source and open hardware paradigm.
More information and documentation can be found at its main web
site at http://www.e-puck.org/. The page contains the complete

Figure 3: The e-puck robot with its components. It is a small,
but complex robot with a lot of components. Additional
parts can be added to the robot, e.g., in this picture a loud-
speaker is included.

PCB layout, BOM, links to the software repository and developer
mailing list, where user questions are usually answered quickly by
the community.

The robot is equipped with a lot of sensors to gather feedback
from the environment. It can also communicate with a host com-
puter or other (e-puck) robots (see Figure 3). Additionally, it is pos-
sible to plug-in specialised modules on top of the robot to extend its
capabilities. The Gumstix Overo COM (https://www.gumstix.com)
adaptor board, for example, allows to install a complete Linux sys-
tem on the e-puck. During the Systems Programming course we
used the accelerometer, microphones and infra-red proximity sen-
sors to collect environmental information, while the LEDs and
motors were used to interact with the environment. The runtime
of the robot on a single charge is approximately four hours before
the battery has to be exchanged or recharged.

The default e-puck robot firmware allows to control the robot
remotely via an IR remote control and via Bluetooth, using the serial
port profile (SSP). The latter allows to communicate with the robot
with a standard terminal program or any programming language
which supports Bluetooth/TTY communication. The boot loader
of the e-puck robot also permits firmware updates via Bluetooth
with a small upload program, available for download for the major
operating systems from the website. The standard firmware is open
source, well documented and easy to understand. In our experience
a student was able to compile and upload his/her own modified
firmware within only lesson. The GNU based cross-compiler tool
chain MPLABÂő XC 16, which provides the capability to develop
code for the robot on a standard PC, is available for download from
the company’s web site (http://www.microchip.com/).

5 STUDENT SATISFACTION AND
EVALUATION

Evaluation of our approach is not trivial in our context. The main
problems are of bureaucratic nature, since full evaluation of courses
and the grades of the students are only available to the teacher.
However, we took over the course only in 2011 and introduced

5

http://www.thymio.org
http://www.thymio.org
http://www.arduino.cc
http://www.sparkfun.com
http://romotive.com
http://www.wheelphone.com
http://www.gctronic.com/
http://www.gctronic.com/
http://www.aai.jp/
http://www.aai.ca/
http://www.e-puck.org/
https://www.gumstix.com
http://www.microchip.com/

immediately the mobile robots, which renders it impossible to com-
pare the performance of the students numerically. Furthermore, the
course’s volume was increased at the same time from 3 ECTS to 6
ECTS and new topics were introduced.

However, we believe motivation and excitement of the students
is the first step to learning success. Thus, here we will present a
qualitative evaluation of the course from the students, trusting that
this impacts significantly their willingness to invest time and effort
into the course and its learning objectives.

After introducing the projects into the old course a clear increase
of participation and motivation within the students was visible
(see Section 2). During the project phase the students working
with the robots were the most motivated ones and invested most
of their free time to bring the project forward and beyond the
proposed project goal. Also in discussions after the project the
robotics project students were the most excited ones, rating the
whole course experience very high.

The first feedback from the new Systems Programming course
in 2011 was quite positive. Of course, in this first year the flow of
the lectures was not optimal and some of the assignments were not
prepared in the detail we would have liked, allowing us to improve
in the following year. One of the assignments, programming a
simple shell terminal, was dropped in the second year, as it turned
out to be too difficult and too ambitious for the given timeframe.
It was reduced to programming the system function. Furthermore,
we have moved the introduction of the robot from Lecture 22 to
Lecture 20, thus before introducing third-party libraries. In the third
year, we moved the robot even earlier to lecture 18. This is possible,
as the first “Hello World” examples for the robot are simple and
do not require more experience with libraries than using, e.g., the
C standard library. However, although we tried, moving the robot
even earlier in the lectures is hardly possible.

5.1 Official cours evaluation
In the new evaluation system in 2012, students had to fill out an
online course evaluation form, before they receive their grades
for individual courses. In these evaluations the Systems Program-
ming course ranked 4th out of the 19 bachelor courses, including
highly-liked courses, such as, web/game programming projects (see
Figure 4). In 2013, it ranked even 3rd. The third rank is clearly an
improvement for a course whose main content was seen as an old,
outdated programming language class with historic restrictions, pit-
falls and without modern concepts like object orientation, dynamic
memory management, or integrated programming environments.

The ranking of all courses was based on the mean calculated
for eight questions asked in the evaluation. The students had to
give grades for questions, such as “The teaching material helped
me learn this course.” and “The teacher was effective in showing
how the subject matter is relevant to everyday life.”, based on how
much they agreed or disagreed with the statements. Additionally
to numerical grades in the questionnaire for the course evaluation
the students had the opportunity to give further comments on the
course. Unfortunately, not many students used this chance and left
the answer blank. Here are two full responses we received:

Lectures were interesting and quite entertaining at
the same time! The homework assignments were also

AnswersRanking mean = 7.43

0

5

10

15

20

25

30

35

4,0

5,0

6,0

7,0

8,0

9,0

10,0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Comparing�Rankings�FT�2013
(Bachelor�Courses)

RANKING mean�=�7.99 #�answers

Figure 4: Ranking of the bachelor courses held during the
fall 2012 (top) and fall 2013 (bottom) semester. The Systems
Programming course was ranked 4th resp. 3rd best by the
students.

very interesting. In-class assignments were helpful.
Both the professor and the TA were very nice, helpful
and explained everything clearly.
I really liked working with the robot. I would sim-
ply suggest improving a bit on the organisation such
as having the homework instructions available on
icorsi [http://www.icorsi.ch, the online course plat-
form used in the university; note from the authors]
separately from the slides. And be a bit more clear
about the program’s structure and during lecture as-
signments. (At some point it felt like everyone was
lost for a minute.)

In general, we are very satisfied with the evaluation from the
students and we will further improve individual assignments to
better meet their interests and needs.

5.2 Internal course survey
Additionally to the official evaluation of the course, we also asked
the students somemore content-related questions, which the official
evaluation cannot cover. We were mainly interested in the view
of the students, which parts they found most useful and which
they believed are not necessary. We used these answers to either
optimise the presentation of some topics, which the students did

6

http://www.icorsi.ch

can be removed 5 31%

much less 0 0%

less 1 6%

same 4 25%

more 6 38%

much more 0 0%

can be removed 0 0%

much less 0 0%

less 1 6%

same 8 50%

more 7 44%

much more 0 0%

can be removed 0 0%

much less 0 0%

less 1 6%

same 7 41%

more 5 29%

much more 4 24%

C is still a popular programming language, an informatics student has to know it 15 31%

C is a classical programming language with a long history. Every computer scientist should know it. 13 27%

C is THE programing language for hardware near programming. 8 17%

Pointers are a cool concept for efficient programming. Why haven't I heard about it before? 6 13%

C is a dinosaur. Computers are fast enough nowadays to compensate the overhead of languages like Java or Python 2 4%

Other 4 8%

Programming on the terminal shows fundamental concepts. IDEs hide important things behind a GUI.

Programming on the terminal gives more control about the compilation process and allows to find errors faster.

Programming on the terminal works on all systems, but all systems have different IDEs which I do not want to learn all.

Embedded Systems, uC programming [Course content]

Robots [Course content]

C programming language

Terminal based developing

can be removed 2 12%

much less 1 6%

less 4 24%

same 6 35%

more 4 24%

much more 0 0%

can be removed 0 0%

much less 0 0%

less 0 0%

same 10 59%

more 5 29%

much more 2 12%

can be removed 0 0%

much less 1 6%

less 0 0%

same 9 53%

more 6 35%

much more 1 6%

can be removed 0 0%

much less 0 0%

less 1 6%

same 7 41%

more 9 53%

much more 0 0%

can be removed 5 31%

much less 0 0%

less 3 19%

same 6 38%

more 2 13%

much more 0 0%

Standard unix editors (vi and emacs) [Course content]

Kernel and driver programming [Course content]

Design of the Unix operating system [Course content]

Modern systems programming languages (C++, objective C) [Course content]

Other computer systems (e.g. MS Windows) [Course content]

Other (exotic) computer systems (e.g. Mainframes) [Course content]

I like the in-class assignments, because they give me time to think and reflect 10

I like the in-class assignments, because they give me training with feedback and assistance 14

I like the in-class assignments, I learn tips and tricks during the in-class assignments which cannot be taught during a normal lecture.

I do not like in-class assignments, because the content is trivial and I want to learn more in the same time.

I do not like in-class assignments, because they are stealing too much time from the lecture time, I prefer to learn more theory instead of practical programming sessions.

I do not like the in-class assignments, because I cannot work on the computer without silence around

I don't care.

Other

can be removed 3 18%

much less 1 6%

less 2 12%

same 10 59%

more 1 6%

much more 0 0%

can be removed 0 0%

much less 2 12%

less 3 18%

same 6 35%

more 5 29%

much more 1 6%

can be removed 0 0%

much less 2 12%

less 6 35%

same 8 47%

more 0 0%

much more 1 6%

17 responses
View all responses Publish analytics

Summary

In-class assignments

History and background of systems and C programming [Course content]

Standard unix shell tools (find, grep, ...) [Course content]

Unix documentation system (man, roff, ...) [Course content]

Edit this form
Alexander Förster

can be removed 5 31%

much less 0 0%

less 1 6%

same 4 25%

more 6 38%

much more 0 0%

can be removed 0 0%

much less 0 0%

less 1 6%

same 8 50%

more 7 44%

much more 0 0%

can be removed 0 0%

much less 0 0%

less 1 6%

same 7 41%

more 5 29%

much more 4 24%

C is still a popular programming language, an informatics student has to know it 15 31%

C is a classical programming language with a long history. Every computer scientist should know it. 13 27%

C is THE programing language for hardware near programming. 8 17%

Pointers are a cool concept for efficient programming. Why haven't I heard about it before? 6 13%

C is a dinosaur. Computers are fast enough nowadays to compensate the overhead of languages like Java or Python 2 4%

Other 4 8%

Programming on the terminal shows fundamental concepts. IDEs hide important things behind a GUI.

Programming on the terminal gives more control about the compilation process and allows to find errors faster.

Programming on the terminal works on all systems, but all systems have different IDEs which I do not want to learn all.

Embedded Systems, uC programming [Course content]

Robots [Course content]

C programming language

Terminal based developing

can be removed 5 31%

much less 0 0%

less 1 6%

same 4 25%

more 6 38%

much more 0 0%

can be removed 0 0%

much less 0 0%

less 1 6%

same 8 50%

more 7 44%

much more 0 0%

can be removed 0 0%

much less 0 0%

less 1 6%

same 7 41%

more 5 29%

much more 4 24%

C is still a popular programming language, an informatics student has to know it 15 31%

C is a classical programming language with a long history. Every computer scientist should know it. 13 27%

C is THE programing language for hardware near programming. 8 17%

Pointers are a cool concept for efficient programming. Why haven't I heard about it before? 6 13%

C is a dinosaur. Computers are fast enough nowadays to compensate the overhead of languages like Java or Python 2 4%

Other 4 8%

Programming on the terminal shows fundamental concepts. IDEs hide important things behind a GUI.

Programming on the terminal gives more control about the compilation process and allows to find errors faster.

Programming on the terminal works on all systems, but all systems have different IDEs which I do not want to learn all.

Embedded Systems, uC programming [Course content]

Robots [Course content]

C programming language

Terminal based developingFigure 5: Some of the answers given by students to our course internal survey in 2012.

not like or to increase the volume in other topics. Sometimes we
also removed a topic, which was introduced purely as an example,
and substituted it with another.

The survey was performed with all students who have attended
the class in fall 2011 and fall 2012. Figure 5 gives some of the answers
of the students, which we considered most useful for the course
design. After examining these results, we decided to remove some
of the Unix documentation system topic and to motivate it better,
as well as to increase the kernel and driver related examples.

6 CONCLUSION
In this paper we presented our experience in teaching a Systems
Programming class in the undergraduate level. We showed that the
students motivation to learn C was improved by using a robotic
platform. Robots present a playful environment for the students, but
at the same time represent also one of the most challenging real-life
hardware systems. Our approach has stimulated the motivation and

enthusiasm of the students, whichwas otherwise low in comparison
with other courses, such as web, graphical or game programming.
In this paper we described the overall curriculum and the syllabus
of the course itself, as well as the used robotic platforms, e-puck
and thymio. Furthermore, we explained in detail the design of all
assignments (robotics oriented and traditional), so that other course
lecturers can re-use our approach easily. Our felt success to provide
a more interesting course to the students was confirmed by the end-
of-semester evaluation. In those the students ranked our course 4th
resp. 3rd from all bachelor-level courses. This has motivated us to
share the experience in the firm belief, that a similar approach can
be adopted in other Systems Programming (or related) courses to
increase the learning experience of the students and thus also their
knowledge about programming when leaving academia. At the
same time it guarantees that future IT experts are still in possession
of Systems Programming skills.

7

ACKNOWLEDGEMENTS
Thanks to all the students and all the previous lecturers of the
course, who gradually developed the in-class exercises, homework
assignments and lecture slides.

REFERENCES
[1] M. Baar, H. Will, B. Blywis, T. Hillebrandt, A. Liers, G. Witternburg, and J. Schiller.

The scatterweb msb-a2 platform for wireless sensor networks. Technical Report
B-08-15, Free University of Berlin, 2008.

[2] A. Förster and M. Jazayeri. Hands-on approach to teaching wireless sensor
networks at the undergraduate level. In Proceedings of the 15th Annual Conference
on Innovation and Technology in Computer Science Education (ITiCSE), Bilkent,
Turkey, 2010.

[3] L. Guyot, N. Heiniger, O. Michel, and F. Rohrer. Teaching robotics with an
open curriculum based on the e-puck robot, simulations and competitions. In

Proceedings of the International Robotics in Education Conference (RiE), 2011.
[4] A. Hoover. System Programming with C and Unix. Addison-Wesley, 2009.
[5] M. Jazayeri. The education of a software engineer. In Proceedings of the 19th

IEEE international conference on Automated software engineering (ASE), pages
.18–xxvii, Washington, DC, USA, 2004.

[6] B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall,
1978.

[7] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat,
J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-puck, a robot designed for
education in engineering. In Proceedings of the 9th Conference on Autonomous
Robot Systems and Competitions, 2009.

[8] U. Müller. Brainfuck 2, 1993.
[9] R. Pike. Another go at language design.
[10] G. Samaras. Robots avoiding obstacles (e-puck) /samaras@usi. online, 2009.
[11] Faculty of Informatics USI. Bachelor curricculum, systems programming, 2012.

8

	Abstract
	1 Introduction
	2 Curriculum and Background
	3 Syllabus
	4 The robot
	5 Student Satisfaction and Evaluation
	5.1 Official cours evaluation
	5.2 Internal course survey

	6 Conclusion
	References

