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Abstract

Two-dimensional (2D) materials present a rapidly developing field of research with some-
times highly unusual and uniquely two-dimensional physics. Starting with graphene,
many recent studies have investigated 2D materials, with results for properties encom-
passing such different topics as Dirac electrons, charge ordering, and superconductivity.
To get closer to a predictive theory of the phases of 2D materials, this thesis systemati-
cally tackles the previously unclear problem of the Coulomb interaction and its influence
on the electronic and many-body properties, with the focus on transition metal dichalco-
genides (TMDCs). While this influence can be quite strong due to the low dimensionality
and the corresponding reduced screening, there is so far no comprehensive understand-
ing of the Coulomb interaction in 2D, its effects, and the possibilities for engineering
it. Furthermore, the interplay between electron-electron interaction, electron-phonon
interaction, and screening is far from being fully understood. The goal of this thesis
is to improve on this by providing a description of the Coulomb interaction for the ex-
ample of the TMDCs as well as to develop a material-systematic database on the basis
of ab-initio calculations for electrons and phonons. We use Density Functional Theory
to describe the electronic structure, Density Functional Perturbation Theory for the
phonons and the electron-phonon interaction, and the Random Phase Approximation
to obtain Coulomb matrix elements. In addition to both semiconducting and metallic
TMDCs, we look at functionalized graphene CgH,. The first step is a quantification
of the Coulomb interaction and the screening in the TMDCs along with calculations
for the plasmonic spectra, which turn out to be highly susceptible to environment and
doping. Secondly, we discuss the influence of the interaction on different many-body
instabilities and find a small suppression of superconducting order in semiconducting
TMDCs, depending again on doping and the dielectric environment, while the mag-
netic order in metallic TMDCs is enhanced. If we further include the phonons, we see
that superconductivity is predicted to be a global phenomenon in the doped semicon-
ducting TMDCs and CgH,, and that charge density waves at different wave vectors are

supposedly occurring in all TMDCs.






Contents

1. Introduction

2. Methods and theory
2.1. General many-body theory . . . . . . . ... ... ...
2.1.1. Many-body Hamiltonian . . . . . . . .. . ... ... .. .....
2.1.2. Born-Oppenheimer approximation . . . . . . . . ... .. ... ..
2.1.3. Second quantization . . . . .. ... ... ... ... ... ...
2.1.4. Hubbard model and related models . . . . . . . ... ... .. ..
2.1.5. Green’s functions . . . . . . . ... ...
2.1.6. Wannier functions. . . . . . . . ... ...
2.2. Density Functional Theory . . . . . . . . .. ... ... ... .. .....
22.1. Formalism . . . . .. ... ...
2.2.2. Kohn-Sham equations . . . .. ... .. .. .. ... .......
2.2.3. Exchange-correlation potential . . . . . . . . .. ... .. ... ..
2.3. Coulomb interaction and screening . . . . . . . .. .. ... ... ....
2.3.1. Random Phase Approximation . .. .. ... .. .. .. .. ...
2.3.2. Constrained Random Phase Approximation . . ... .. ... ..
24. GW approximation . . . . . . . . . .. ... ...
2.5. Lattice dynamics . . . . . . . . .. . ... ...
2.5.1. Acoustic and optical phonons . . . . ... ... ...
2.5.2. Density Functional Perturbation Theory . . . . ... .. ... ..
2.5.3. Electron-phonon coupling . . . ... ... ... ... .. .....
2.6. Superconductivity . . . . . . .. .. ..
26.1. BCStheory . . . . . . . .. .. ... ...
2.6.2. Eliashberg theory . . . . . . . . ... .. .. ... ... ...

3. Electronic properties of two-dimensional materials
3.1. Transition metal dichalcogenides . . . . . . . . . . .. . ... .. .. ...
3.1.1. Density of states and band structure . . . . . . ... .. ... ..

10
13
14
15
17
17
19
22
24
26
27
28
30
32
33
34
36

41
41
42

il



Contents

iv
3.1.2. Minimal three-band model . . . . . . . .. ... ... ... .. .. 50
3.2. Functionalized graphene . . . . . . . . . .. ... ... .. ... .. ... 53
3.2.1. Band structure . . . . . . ... ... ... ... 54
4. Quantification of Coulomb interaction and screening in TMDCs 50
4.1. Coulomb interaction in two dimensions . . . . . . . . . .. ... ... .. 60
4.2. Fits to ab-initio Coulomb interaction . . . . . . . . . . .. ... ... .. 61
4.2.1. Fitting procedure . . . . . . . . ... ... 61
4.2.2. Discussion of results . . . . . . ... ... ... 65
4.3. Screening in semiconducting and metallic systems . . . . . . .. . .. .. 70
4.4. Plasmons and EELS . . . . .. . ... ... ... ... ... ... ... 73
4.4.1. Doped semiconductors . . . . ... . ... ... ... .. ... 75
442 Metals . . . . . . . .. 78
5. Electronic instabilities in two-dimensional materials 83
5.1. Conventional superconductivity in TMDCs . . . . . . . .. ... ... .. 84
5.1.1. Phonons . . . . . . . ... ... 85
5.1.2. Electron-phonon interaction . . . . . . .. .. ... ... .. ... 88
5.1.3. Influence of Coulomb interaction . . . .. .. ... ... .. ... 91
5.1.4. Critical temperature and phase diagram . . . . . . ... .. ... 97
5.2. Conventional superconductivity in functionalized graphene . . . . . . . . 100
5.2.1. Superconducting phase . . . . .. ... ... 100
5.3. Unconventional superconductivity in MoSy . . . . . . . .. ... . . ... 105
5.3.1. BCS equations in the multi-valley case . . . . . . . ... ... .. 106
5.3.2. Results of matrix calculations . . . . . .. .. ... ... ... .. 108
5.4. Charge and spin order in TMDCs . . . . . . . .. .. ... ... .. ... 110
5.4.1. Lattice instability and charge density wave . . . . . . . . .. ... 111
5.4.2. Instability in the charge susceptibility . . . . . . . . ... ... .. 113
5.4.3. Instability in the spin channel . . . . . . . .. ... ... ... .. 116
6. Conclusions 121
A. Details of calculations 123
A1 TMDCs . . .. . . . 123
A.1.1. Electron-phonon calculations . . . . . . . . ... .. ... ... .. 123

A.1.2. RPA and cRPA calculations . . . . . . . . .. .. . ... ... 124



A.2. Functionalized graphene . . . . . . . . ... ... ... ... ... ... 124

A.2.1. Electron-phonon calculations . . . . . . . . ... ... .. ... .. 124

B. Phononic and Coulomb properties of various TMDCs 127
B.1. MoSy . . . . 127
B.2. MoSes . . . . 128
B.3. WSy 128
B4 WSey . . . . 130
B.5. NbSy . . . 131
B.6. NbSey . . . . . . . 132
B.7. Exchange interaction . . . . . . .. .. ... ... ... .. 135

C. Deviation of Coulomb fit from ab-initio data 137
Bibliography 141
List of publications 161
Conference contributions 163

Acknowledgements 165






1. Introduction

In recent years, the interest in low-dimensional materials has grown steadily [1]. Espe-
cially since the production of stable two-dimensional (2D) carbon called graphene by
exfoliation from graphite became possible [2, 3|, a lot of effort has been put into the
research on these systems. The focus often lies on 2D materials consisting of a single
atomic layer, such as graphene, transition metal dichalcogenides (TMDCs) or hexagonal
boron nitride [4]. In bulk samples of these materials, the different layers are coupled only
by weak van-der-Waals forces, thereby making it possible to obtain monolayer samples
from the bulk via exfoliation techniques [3, 5]. The different 2D materials exhibit great
potential, both for the finding of new physics as well as (industrial) applications such
as the field of electronics and transistors [6, 7). Another important point is the under-

standing of fundamental physics such as the behavior of Dirac electrons in graphene

[8-10].

Although some research on monolayer TMDCs was done earlier since the 1970s [11,
12|, and intercalation compounds as well as pristine bulk materials have a long history
[13, 14], the advancements in the research on graphene have also fueled the research in
this class of materials during the last decade [4]. The TMDCs show very rich phase
diagrams, with many properties depending rather strongly on the material thickness
and dimensionality while other properties remain similar from bulk to monolayer [15,
16]. These phase diagrams include a competition of semiconducting, metallic, Mott

insulating, superconducting, charge density wave and magnetic phases [16-28]|, see Fig.
1.1.

One of the most interesting characteristics of 2D materials is the fact that they basically
only consist of surfaces and are, thus, very susceptible to changes in their environment.
This means that their properties can be manipulated on an atomic scale, e.g. via dielec-
tric substrates, doping or functionalization, especially when it comes to the Coulomb
interaction since this interaction as well as the electronic properties influenced by it
can strongly depend on the dielectric environment [29]|. Furthermore, the screening is

in general reduced in 2D systems, which leads to an enhanced Coulomb interaction.
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Figure 1.1.: (Left) Phase diagram of 2H-NbSe, depending on temperature and layer number,
taken from [23]. The rise of the critical temperature of the charge density wave
phase measured in this work is questionable, see Ref. [16]. (Right) Phase diagram
of bulk 1T-TaS, depending on pressure and temperature, taken from [19].

Previously, it was shown that changes in the substrates lead to a different screening as
well as to a renormalization of the band gap [30, 31|, which can be used to engineer
the properties of a material non-invasively. The final goal in this line of research is the
production of tailor-made materials via the use of stacked assemblies of different mono-
layers, bound together by the van-der-Waals forces in so-called heterostructures which

were, for example, proposed in Refs. [32, 33|.

Although it can be a very important ingredient when determining the properties and
phase diagram of a material, the Coulomb interaction and its effects are often not well
understood. So far, only a few ab-initio approaches tried to quantify the interaction,
especially for graphene [34, 35]. For example, it is unclear whether the dome shape
observed for the superconducting phase in few-layer MoS, (see Fig. 1.2) and the drop
of the critical temperature of superconductivity when reducing the thickness of the
system to a monolayer (see Fig. 1.1 and Refs. [16, 23, 36]) might be caused by the
increased Coulomb repulsion between electrons in low dimensions. A comprehensive
understanding of the Coulomb interaction in 2D materials is important, not only to
describe and understand the properties of these materials but also to be able to combine

them efficiently in future heterostructures and other devices.

The aim of this thesis is twofold. First, we investigate the nature of the Coulomb inter-
action in 2D materials with a focus on the quantification of the interaction in TMDCs
M X,, consisting of transition metals M = Mo, W, Nb and chalcogens X = S,Se. We
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Figure 1.2.: Critical temperature of the superconducting phase of few-layer MoS, depending
on electron doping, taken from [22].

take into account the effects of doping and different dielectric environments. A simple,
material-realistic model for the TMDCs including the Coulomb interaction presents an
important result. This model can also be used for other studies of this material class.
Secondly, we discuss the influence of the Coulomb interaction and the electron-phonon
interaction on several many-body instabilities, namely conventional superconductivity,
unconventional superconductivity, charge order and spin order. For comparison, we also
investigate possible superconductivity in functionalized graphene CgH,. In all cases, we

look at metallic materials or semiconducting materials under doping.

The main methods that we employ in our studies are Density Functional Theory for
the calculation of the electronic structure, the Random Phase Approximation to the
electronic polarization for the description of screening effects, and Density Functional
Perturbation Theory for the description of the phonon properties and the electron-

phonon interaction.

The thesis is organized as follows: At first, we give an overview of the theoretical meth-
ods and underlying concepts in chapter 2. This is followed by a description of the
electronic structure of the TMDC monolayers and functionalized graphene in chapter 3.
Afterwards, we quantify and study the Coulomb interaction in the TMDCs in chapter

4. At last, we investigate the aforementioned many-body instabilities in chapter 5.






2. Methods and theory

In this chapter, we present the theoretical foundations of the calculations that are carried
out in the later parts of the thesis. We first present some general remarks on the theory
for many-body systems and recall basic concepts. After that, we give a short overview
of Density Functional Theory (DFT) which is the main method we employ for our ab-
initio calculations of the electronic structure. The following two sections are dedicated
to the Coulomb interaction, with focus on the Random Phase Approximation (RPA),
and the GW approximation. Having discussed the relevant theories for the electronic
properties, we turn to the lattice dynamics, especially in the framework of Density
Functional Perturbation Theory (DFPT). Lastly, we deal with the theories of electron-

phonon superconductivity.

If not stated otherwise, we have used the Refs. [37-41] for the theoretical considerations
presented in this chapter.

2.1. General many-body theory

Every closed quantum mechanical system can be described by the Schrédinger equation

H|D) = ihd,|¥) (2.1)

where the Hamiltonian H incorporates all those atomic and electronic one-particle and
two-particle energy terms that are relevant for the problem at hand, see Sec. 2.1.1. For

a time-independent Hamiltonian the Schrodinger equation simplifies to

H|yp) = Elp) (2.2)

where the time evolution of the system in the state |¢)) with energy F is described by
W) = |)) exp(—iEt/h).
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While the Schidinger equation gives a simple and, in principle, exact description of
a quantum mechanical system, it cannot be solved exactly for more than about ten
particles due to the exponential scaling of computational effort and storage demand
with particle number [42]. Thus, the question in solid state physics is how to describe a
system of many particles, since there is a typical number of ~ 10%* atoms per cm? in bulk
materials. The answer is that methods from both quantum mechanics and statistical
physics need to be used, together with more or less severe approximations. Furthermore,
the focus needs to be on certain quantum mechanical states like the ground state and

energetically low excited states.

2.1.1. Many-body Hamiltonian

The most general Hamiltonian for a solid state system consisting of electrons and atomic

cores can be written as

»

H= Te] + Tat + f/e]—el + I'A/el—a.t + Il}.a.l;—al;- (23)

This includes the electronic kinetic energy Te], the atomic core kinetic energy Tm, the
electron-electron interaction ffel_el, the electron-core interaction f/e]—at, and the interac-
tion between the atomic cores Vat_at. If one explicitly considers a number of electrons

at positions {r;} and a number of cores at positions { R,}, these terms are given by

2 Na,t. P2 Net Nag Nat Z Zﬁe

H= Z ZZ|r—R|+Z|r—rJ| Z|R "Ry (2.4)

with electronic momenta p; = —i1AV;, core momenta P, = —ihV,, masses of the nuclei
M,, and atomic numbers Z,. A vacuum dielectric constant of eg = 1/(4m) for the

Coulomb interaction was used here for the interaction and will be used later on, see Eq.

(2.45).

In this thesis, we do not deal with the coupling of electrons or atomic cores to (external)
electric or magnetic fields. This would require a time-dependent Hamiltonian with, for

example, a scalar field Vi (2).
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2.1.2. Born-Oppenheimer approximation

The Born-Oppenheimer approximation [43] presents an important simplification for the
treatment of a system of electrons and atomic cores. The basic assumption is that the
(light) electrons follow the motion of the (much heavier) atomic cores instantaneously
and with a corresponding instantaneous change of their eigenstate, which is why the
approximation is sometimes called the adiabatic approximation. This leads to a sepera-
tion of the electronic and the lattice or vibrational degrees of freedom and to a product

ansatz for the many-body wave function

|¢> = |¢el>|¢'at) (25)

(see also Sec. 2.5). The kinetic energy of the atomic cores is viewed as a perturbation
to the rest of the system
H = Ho+ Ty (2.6)

and their movement is neglected in a first step, which leads to the treatment of the elec-
trons in the effective potential of the atoms fixed at positions {R,} via the Hamiltonian
of the undisturbed system

N Ne] Nat Nat

~ ZaZﬁ62
o= Zzw—ﬁaﬁzm—m DY P

i>7 a>3

The electrons obey the Schrodinger equation

H0|¢en("" R)) elz(R)W«'en(‘f' R)) (28)

i.e., their motion depends on the coordinates of the other electrons r as well as the fixed
atomic positions R which act as parameters. The electronic Born-Oppenheimer energies

Eq(R) then form an effective potential for the motion of the atoms via the equation

[Ta.t + Eel(R)] |¢'at,ct(R)> - Ea.tlgba.t,a(R»- (29)
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2.1.3. Second quantization

In solid state theory, the language of second quantization, or more accurately occupation
number representation, is often used to describe the properties of a system. This means
that instead of using the many-body wave functions |1, ) of single particles, one uses the
Fock states |n,) as a basis for the description of the electronic states. One starts from the
indistinguishability of individual fermions (half-integral spin) or bosons (integral spin)
and the behavior of their many-body wave function under particle exchange!. This leads
to the notion that it is more reasonable to look at the occupation number n), of each

quantum state A than to look at the state of every single particle.

The observables and the Hamiltonian in second quantization are expressed using the
creation and annihilation operators Ci and ¢, for fermions (for example electrons) and
b& and by for bosons (for example phonons) which create or destroy a particle in a

quantum state A. They obey the (anti-)commutation rules

[bTo:? b,TB]—E = [bO:? bﬁ]—E = 0? [bﬁh bg]—s = 60,5 (210)

[k chle = [cascpl-c = 0, [cas chl-c = 8ag (2.11)

with the subscript —e denoting the commutator for bosons and the anticommutator for
fermions. The number of particles in a single quantum state is given by the expecta-
tion value of the occupation number operator n, = cgc)\ for fermions, which can have

eigenvalues of either 0 or 1 due to the Pauli principle, and n, = b&b)\ for bosons.

The general Hamiltonian for a system of interacting electrons with general quantum

numbers k;) in the language of second quantization reads

1
H = Z EkleCLICkg + 2 Z VklkzkakrchlCLQCkSCkAl (2-12)
kiko kyikakaky

where the single-particle matrix element e, includes the kinetic energy Tel of the
electrons and their interaction with the (static) atoms Vy_a, see Eq. (2.3), while the
two-particle matrix element Vi, gk, describes the Coulomb interaction Vel_e] of two
electrons with ingoing states ks and k; and outgoing states k; and k;. The above
Hamiltonian can be simplified via the approximation of a homogeneous electron gas or

jellium model which treats the atomic cores as a uniform background charge and has

!The wave function is antisymmetric for fermions, i.e., it changes sign with ¢ = —1, while it is
symmetric for bosons, i.e., it does not change the sign, ¢ = +1.
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the electronic Hamiltonian

1
H= Z EkCL,UCk,G + 5 Z VQCL_’_Q,UCL,_Q,J,Ckr,grck,g (213)

ko qgkk' o0’

with &, = h?k?/(2m). This Hamiltonian explicitly includes momentum conservation and
the momentum exchange g via the interaction V, between two electrons with ingoing
momenta k and k’, outgoing momenta k + q and k' — q, and the spins ¢ and o’. As
long as k is only a momentum index and no band index is included, the model also has

only a single electronic band with spin-degenerate parabolic dispersion &y.

2.1.4. Hubbard model and related models

The Hubbard model [44] was originally introduced to describe ferromagnetism in ma-
terials where the local Coulomb interaction is dominant. In recent years, it was used
for a variety of other subjects such as the study of high-temperature superconductors
[45]. Tt is basically a tight-binding model which includes local Coulomb interaction Uj;
between two electrons at lattice site i in addition to the nearest-neighbor hopping ¢;; for

an electron from site i to site j

H=-— Z tijcz,gcj,ﬂ + Z Uini,Tni,l. (214)

(if).o 1

As in all other Hamiltonians presented in thesis, the Pauli principle is included here,
meaning that two electrons of the same spin ¢ cannot occupy the same lattice site. The
Hubbard model can be further simplified by assuming the same hopping ¢ and interaction
U for all lattice sites

H=-t Z c;-r,ocj,g +U Z TN, |- (2.15)

(i7).0 i

The last equation is often simply called the Hubbard model. It cannot be solved ex-
actly in more than one dimension if both ¢ and U are non-zero and is mostly treated
numerically by investigating a certain limit of the parameters such as ¢ > U or t < U.
Depending on the limit and the choice of parameters, the Hubbard model exibits very
different physics such as metallic behavior, antiferromagnetism or the Mott transition
[46] from metal to insulator.

Several extensions to the Hubbard model are possible. In most cases, the model which

includes nearest-neighbor interaction V' in addition to the onsite interaction U is called
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extended Hubbard model. Besides that, the model can be generalized by including
hopping between sites that are not nearest-neigbor sites or by incorporating more than

one electronic band.

If we want to include phonons and the interaction of electrons and phonons on a simple

level, we arrive at the Hubbard-Holstein Hamiltonian?

H = —t Z CI,UCJ',J + UZ Mg 414, + Wo Z b!bg’ + g Z mn; (bl + bg) . (216)

(if),0 i

The first two terms are the Hubbard model while the latter two constitute the electron-
phonon part with phonon frequency wg and electron-phonon coupling g. The use of a
single phonon frequency is similar to the description of optical phonons with an Einstein
mode, see Sec. 2.5.1. The Hubbard-Holstein model shows physics such as charge density
wave formation and superconductivity, also in two dimensions [48]. Furthermore, one can
study the transition from a metal to both a Mott insulator and a bipolaronic insulator,
depending on the parameters, with this model, see Ref. [49]. The Hubbard-Holstein
model can be extended for site-dependent electron-phonon interaction which leads to
the Frohlich Hamiltonian, see Sec. 2.5.3 and Eq. (2.84).

2.1.5. Green’s functions

In cases where the Hamiltonian at hand is not solveable exactly, for instance a system of
interacting electrons, Green’s functions represent an important tool for finding approxi-
mations to the many-body problem. We start with the general time-ordered two-point

correlation function at zero temperature for operators A and B which is defined via
Gap(t,t') = —i(¥o| TA(t) B(t')[1bo) (2.17)

with time ordering operator 7" and many-body ground state |1p). The operator T' sorts
the other operators so that TA(t)B(t') = A(t)B(t') if t > t' and T A(t)B(t') = B(t')A(t)
if ¢ > t. We explicitly call those correlation functions Green’s functions where the
operators A and B are given by the creation or annihilation operators of fermions or

bosons. Here, we use the Heisenberg picture of quantum mechanics, i.e., the full time

2Note that the original Holstein model [47] did not include Coulomb repulsion.
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dependence is attributed to the operators via
A(t) = et A(0)e H! (2.18)

while the wave functions are independent of time. In addition to the time-ordered
correlation function in Eq. (2.17), one often uses the retarded and the advanced Green’s

functions which are defined by

Gip(t,t') = —i0(t — ') (3| [A(t), B(t')]_. |o) (2.19)
Gip(t,t') =10t —t)(vo| [A(t), B(t')]_. ltho) (2.20)

with the Heaviside step function ©(z), and where the (anti)commutator is used depend-
ing on whether A and B are Fermi or Bose operators, see Eq. (2.11). Experimentally,
one can measure the spectral function which is related to the Fourier transform of the

retarded Green’s function via

Sap(w) = —%ImGﬁB(w). (2.21)

The single-electron Green’s function is given by

Gap(t,t') = —i(tho|Tea(t)ch(t')|20) (2.22)

with fermion operators ¢ and ¢f. This Green’s function is often called the propagator
because for t > t/, it tells us the amplitude for a particle being created at time ', going
from state S to state a and being destroyed again at time ¢. In the opposite case t' > t,
one can view Eq. (2.22) as the description of the propagation of a hole from state a to
state (3.

An especially simple description of a Green’s function can be obtained using the Lehmann
representation for a system described by a complete orthonormal system of eigenstates
|n) with H|n) = E,|n). For a system of non-interacting electrons with dispersion &, and
general quantum number k, the time-evolution in Eq. (2.18) then depends only on the
dispersion £ and the function in Eq. (2.22) is non-zero only for « = . Thus, we get

for the one-electron (retarded) Green’s function

1

Colk) = 07—

(2.23)
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Figure 2.1.: Feynman diagram showing the Dyson equation for the Green’s function as given

by Eq. (2.25).

where 107 is an infinitesimal number that is needed to converge the Fourier transforma-
tion on the way from Eq. (2.22) to this formula. With A; = a4 + aT_q and B=A_4 in
Eq. (2.17), we can obtain the phononic Green’s function which we denote by D(q,w).

In the non-interacting case, this yields

1 1 2w
D = — = 1 : 2.24
(g ) w+ilt —w, w—-i0t+tw, w?—wi+i0t (2:24)

The possible excitation energies of the system are given by the singularities of these
Green’s functions. From the above retarded Green’s functions we can obtain the ther-
mal Green’s function by going from the analytical continuation iw = w + 107 to the
Matsubara frequencies w, = (2n + 1)7/B for fermions and w, = 2n7 /B for bosons,

where = 1/(kgT) is the inverse temperature.

The formalism of Green’s functions is especially suited to treat the effects of interactions.
When going from non-interacting to interacting particles, one introduces the concept of
self-energy. This quantity, denoted by X'(k,w), contains all interaction effects. Its real
part contains information on the energy renormalization of the quasiparticles while the
imaginary part gives their lifetime. The full Green’s function can be calculated from the

self-energy and the non-interacting Green’s function using the Dyson equation
G(k,w) = Go(k,w) + Go(k,w) X (k,w)G(k,w) (2.25)

which is also shown in the language of Feynman diagrams in Fig. 2.1. The self-energy is
given by a sum over those diagrams that are considered to be relevant for the problem
at hand; an example for a frequent approximation is the GW approximation which we

discuss in Sec. 2.4.
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2.1.6. Wannier functions

Wannier functions [50] are defined as the Fourier transformations of Bloch functions.
The latter are described by
Ui (r) = e Ty (r) (2.26)

for an isolated electronic band in a crystal where u(r) is a function that has the same

periodicity as the lattice. The Wannier functions are localized orbitals given by
1 —ikR
wgr(r) = N Ek: e by (r) (2.27)

with lattice vectors R and number of primitive cells N. Since the phases of the Bloch
functions can be freely chosen, one can use the phases in such a way that they lead to

a set of convenient Wannier functions.

In this thesis, we make use of the software code Wannier 90 [51, 52| to obtain a simple
description of the electronic states around the Fermi energy in the transition metal
dichalcogenides, see Sec. 3.1.2. The algorithm is based on the construction of Wannier

functions wyr(7) for a set of N Bloch bands via

| wnR /

where m,n € N. The unitary matrix U*) mixes the different bands at the wave vector

Z US| hynrc) ] e FRqk (2.28)

k and BZ stands for the integration over the whole Brillouin zone. The matrix U*)
is usually chosen via the maximal localization scheme implemented in Wannier 90 that

was proposed in Ref. [53]. This scheme minimizes the functional

N
Q= Z(wnDKT — Tn)’[wno) (2.29)

which is the sum of the quadratic spreads of the Wannier functions around their centers.

The functional can be decomposed into two terms

Q = Z (Wno|T2|wno) Z| (WmR |T|wno)|? (2.30)
Q= Z Z |(’u,vﬂ,,wR|r|'.:un0)|2 (2.31)

n mRs#£n0
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where ; is insensitive to changes in U®*). Thus, for an isolated set of bands, the
minimization is only performed for ©, which leads to the computation of the overlap

matrix of periodic Bloch functions

My, = (U ket e 40) - (2.32)

If the N Bloch bands of interest inside an inner energy window are not isolated but
entangled with other bands, one has to look at the N\(;fi)n > N states within an outer

energy window and perform a disentanglement as described in Ref. [54] via

uh'y = " USs®)|ay) (2.33)

where m € N\(;fi)n, n € N, and U9 is the disentanglement matrix. In this work, we
use this disentanglement of the electronic bands but not the maximal localization. This
is due to the fact that we use only first-guess Wannier functions to retain the symmetry
of the corresponding atomic orbitals. Thus, to obtain the relevant Wannier functions,
we start with /V trial functions g,(7) as a first guess and need to project them onto the

periodic parts of the Bloch functions via
b} =Y Al ) (2.34)

where the overlap matrix is
Al = (tmk|gn)- (2.35)

After that, ASY/2 with St = (Gmi|dnk) is used as the inital guess for U4S(¥) and the

spread functional {2; is minimized with respect to this matrix.

2.2. Density Functional Theory

Density Functional Theory (DFT) was originally developed by Hohenberg, Kohn and
Sham in 1964 and 1965 [55, 56]. Especially since large-scale numerical calculations have
become possible in the late eighties and early nineties, this theory has become very
successful and is used as a standard tool today to study the electronic and geometric

structure of atoms, molecules, and solids in materials science and chemistry [57]. While
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3 or strongly

the theory does not work well in some cases such as many chemical reactions
correlated materials, it is, for example, able to accurately predict atomic geometries.

Following the frequent use and success of DFT, the Nobel prize in chemistry was awarded
to Walter Kohn in 1998.

The basic idea of DFT is that it uses the electronic density n instead of the wave functions
to calculate the electronic structure, following the two Hohenberg-Kohn theorems which
state that

e the ground-state properties of a system of electrons are uniquely determined by

the electronic density n(r)

e the correct ground-state electron-density minimizes the energy functional of the

system.

Thus, one does not have to solve equations for the many-body wave function of N
particles with 3N degrees of freedom such as the Schrédinger equation, but has to deal
only with the electron density which only depends on three spatial coordinates.

DFT essentially only describes the ground-state properties of a system. Furthermore,
in the most common approximations, DFT is only able to describe systems with weak
electronic correlations. More advanced methods such as LDA+U [59] or DMFT [60]
have to be used for strongly correlated systems. In this thesis, we restrict ourselves
to cases without strong correlations in the sense of the Hubbard model and the Mott
transition. We mainly use the software package Quantum Espresso [61]| to calculate
electronic properties via DFT. Additionally, we have used the FLEUR code [62] and
checked our results with VASP [63, 64].

2.2.1. Formalism

Here, we aim only at a short description of the cornerstones of DFT as we will use it
later on. Detailed reviews of the foundations and the formalism of DFT as well as its
relation to Hartree-Fock, Hartree and Thomas-Fermi approaches can be found in many

textbooks and articles such as [65].

3For example, even the energy barrier in such simple reactions as H + Hy — Hy + H is strongly
underestimated by standard DFT calculations; in certain cases, the results can be improved by

using hybrid functionals [58].
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DFT starts with a system of N electrons for which the single-particle density is given
by

n(r) = f f By, P |U(r, 19| (2.36)

where ¥({r;}) is the many-body wave function of the system and the particle number

is N = [d*rn(r). The energy functional of the system is

oy ST +V +U|D)
Bln(r)] = )

(2.37)

where T' is the kinetic energy of the electrons, V' is an external potential, in our case
given by the periodic lattice ions, and U is the Coulomb interaction of the electrons.
The Coulomb interaction (see Sec. 2.3) is split up into a Hartree term* and an exchange-

correlation term which leads to the following form of the functional

n(r)n

;) dPrd®r’ + Ei[n(r)].
(2.38)

where the kinetic energy is usually assumed to be that of the non-interacting system

E[n(r)] = T[n(r)] + f V("f')'“("‘")'5'3"'qu 2 4dme, / /

|r =’

T = Ty. The Hohenberg-Kohn theorems state that the energy functional is minimized
by the ground state density ng(r), so that the ground state energy is

Ey = Efno(r)] < Efn'(r)] (2.30)

for all densities n’(r) with ng(r) # n’(r). The ground state density determines not only
the values of the total energy, but also the expectation values of all other observables in
the ground state. The problem of finding this density by finding the minimum of Eq.
(2.38) is usually tackled via the Kohn-Sham approach which we describe in the next

section.

4This term is also called the direct or the density-density part of the interaction.
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2.2.2. Kohn-Sham equations

To minimize the energy functional in Eq. (2.38) one uses a complete set of auxiliary

single-particle wave functions 1, which are called Kohn-Sham orbitals and obey

n(r) = Z |¢a(r)|2? (”uba|¢a) = 1. (240)

(a3

They form the basis of a non-interacting reference system to the real electronic system.

We note that varying the energy functional with respect to n(r) is equivalent to the
functional derivate with respect to ¥%. Both lead to the so called Kohn-Sham equations
ﬁ? 2 !

= A+V(r)+ € n(r’)

2m dmteg J |r — 7|

BVl Yalr) = Bubalr) (241

which have the form of a one-particle Schrodinger equation for the auxiliary orbitals 7,.
The Kohn-Sham equations are in principle exact if one uses the true exchange-correlation
potential Vi.(r) = 2 Ex.[n], but this is a priori unknown, and a lot of effort can be put

into the determination of the potential that works best, see Sec. 2.2.3.

Since the Coulomb interaction terms in the Kohn-Sham equations depend on the elec-
tronic density n(r) and, thus, on all Kohn-Sham orbitals 1,, one has to follow an iter-
ative procedure and solve the Kohn-Sham equations self-consistently. The Kohn-Sham
orbitals and energies obtained in this way have no direct physical meaning and are only
auxiliary quantities to determine the electron density of a system’s ground state. Nev-
ertheless, these orbitals are often used to describe the electronic structure of a system,

especially of the occupied states, and tend to work well in many situations.

2.2.3. Exchange-correlation potential

The main issue and limitation of DFT is the determination of the correct or best
exchange-correlation potential, i.e., finding the best® effective single-particle potential
to be used in Eq. (2.41). While this potential is only known nearly exact for the
free electron gas, several approximations have been suggested that tend to work rather
well in more or less specific situations. The two approximations that are used most
commonly are the Local Density Approximation (LDA) and the Generalized Gradient
Approximation (GGA).

5Usually, this means that one wants to be able to reproduce certain experimental results.
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Local Density Approximation

The LDA assumes that the exchange-correlation potential at a certain point in space
does only depend on the electronic density at this point, and that this local potential is
similar to the potential of a homogeneous electron gas. Thus, the exchange-correlation

energy can be expressed by

Epfn] = f n(F)exe (n)d*r (2.42)

where e,.(n) is the exchange-correlation energy of the homogeneous electron gas. The

exchange-energy of the homogeneous electron gas can be analytically expressed via

Eyn] = —3762 (%)1/3 / n(r)"3der. (2.43)

The correlation energy can be expressed analytically only for certain limits, and different
proposals have been made for the full exchange-correlation potential in LDA. We use

potentials resulting from the approach presented in Ref. [66].

Generalized Gradient Approximation

The GGA goes beyond the LDA and assumes that the exchange-correlation energy does
not only depend on the local values of the density n, but also on its derivatives [67],

Eyc[n] = /n(’r)sxc(n, Vn)d®r. (2.44)

In this way, the GGA accounts for the fact that the true electron density is not homo-
geneous, which often leads to better results for the equilibrium geometry and electronic
structure of a material than those obtained from LDA. For instance, LDA calculations
generally yield smaller equilibrium lattices constants than GGA calculations; for exam-
ple, we find 3.22 A in LDA for a MoSe, monolayer compared to 3.28 A in GGA (see Tab.
A1), while the experimental lattice constant for thin films of this material is 3.3 A [68].
In the same way as for the LDA, different proposals have been made for the best GGA

functional and we use potentials resulting from the approach presented in Ref. [69].
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Pseudopotentials

Some codes for the calculation of the electronic structure, such as FLEUR, explicitly
include all electrons in the calculation, while other codes, such as Quantum Espresso,
use pseudopotentials which already include the effects of the core electrons. This means
that only the chemically active valence electrons are treated explicitly in pseudopotential
calculations while the contributions of the energetically lower and spatially more cen-
tered core electrons are approximated by the pseudopotential. Pseudopotentials come
in especially handy when a code uses plane waves as a basis set, as it is the case in
Quantum Espresso, since a description of the large gradients near the nucleus via plane

waves is difficult.

We have used norm-conserving pseudopotentials for all our calculations in Quantum
Espresso. These potentials are constructed in such a way that the resulting wave func-
tions have the same norm as the corresponding all-electron functions inside of a certain
cutoff radius. Furthermore, the wave functions are identical to the all-electron functions
outside this radius.

The pseudopotentials we use for the electron-structure calculations of each material in
Quantum Espresso are given in Appx. A. We always choose the potential in such a way
that the calculations run smoothly and that the results are reasonable, i.e., similar to
experimental results or results from higher-level theories. For example, this means that
we have to take a GGA potential for the calculations of MoSe, since a LDA potential
yields an indirect band gap for the monolayer, which is not found experimentally, see
Sec. 3.1.1.

2.3. Coulomb interaction and screening

In this section we deal with the general description of the Coulomb interaction between
electrons. If not stated differently, the formulas apply not only to the two-dimensional
systems discussed in this thesis, but to general electronic systems. The real space poten-
tial for one electron in the presence of another electron at distance r, both with charges
e, is given by ,

U(r) = (2.45)

 Amegr

with the vacuum permittivity o. For our purposes, it is more convenient to work with

a representation of the Coulomb interaction in reciprocal space. This is given by the
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Fourier transform of Eq. (2.45) which in the case of three spatial dimensions leads to

Ul =5 (2.46)

where we use units in which £y = 1/(4x). In two dimensions, the result is different,

2me?

Ulq) =

(2.47)

The last equations show the so-called bare interaction betweeen two electrons in vacuum.
Of course, a real system contains more than two interacting electrons. Thus, one electron
does not feel the full potential of a second electron, but rather a screened potential that
is usually reduced due to the presence of the atomic cores and the other electrons. Since
it is usually not feasible or desirable to take all electrons of a solid state system into
account, one focusses on a subsystem of interest. In its simplest form, the effective
screening by the other parts outside of the subsystem, which are not explicitly taken
into acount, can be given in the form of a dielectric constant &,, so that the effectively

screened interaction is given by

Vig) = - (2.48)

This approach of a constant screening that is not wave-vector or frequency dependent
can yield reasonable results, especially if one is only interested in macroscopic properties
and deals with semiconductors or insulators in the long-wavelength limit. We use it
in this thesis to describe the dielectric properties of the environment around the two-

dimensional layers of interest, see Figs. 4.1 and 4.6.

The use of an effective screening given by a dielectric constant is, of course, rather
limited. To realistically describe the screening, especially in a metallic subsystem with
free electrons, one has to go beyond this macroscopic or classical treatment and look at
the microscopic effects. To this end, one has to solve the Dyson equation [cf. Eq. (2.25)]

for the screened® interaction
W(q,w) =V(q) + V(q)Il(q,w)W(q,w) (2.49)

with the polarization IT(q,w) of the material, see Eq. 2.63. This polarization can be

6In this thesis, the notation is always the following: the bare Coulomb interaction is denoted by U, the
interaction that takes into account some or all of the screening effects from outside of the subsystem
of interest is denoted by V', and the interaction that includes all screening effects is denoted by W.
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k—l—q?ﬂ'{ k!_q?ﬁ
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Figure 2.2.: Coulomb interaction between two electrons with momenta k and k&’ and quantum
numbers « and 5. This form of the interaction includes momentum conservation.

calculated in various ways; we use the Random Phase Approximation, see Sec. 2.3.1. In

this context, the screening is defined as
e(q,w) =1—1I(q,w)-V(q) (2.50)

and is equivalent to the dielectric function which describes the response of the system
to an additional or external electric field or charge distribution. The fully screened

interaction is calculated via
W(q,w) = V(q)e(q,w)™ (2.51)

which is equivalent to Eq. (2.49).

The Coulomb interaction between two electrons with momenta k& and £’ is symbolically
shown in Fig. 2.2 and was already used for the Hamiltonian in second quantization in
Eq. (2.13). When interaction matrix elements are used in this way, one always has to
make sure that they are appropriately screened. This means that the screening effects
of electrons outside of the (sub)system of interest have to be considered effectively, but
the effects of the electrons that are treated explicitly by the Hamiltonian have to be left

out of the effective treatment to prevent double-counting, cf. Sec. 2.3.2.

Let us make a short comment on terminology: In the section on DFT, see Sec. 2.2
and Eq. (2.38), we already distinguished between the different terms of the Coulomb
interaction like the Hartree and the exchange term. The Hartree term, which mediates
the interaction between the densities of two electronic states, n, and ng, and is therefore
sometimes called density-density term, has a classical analogon; all other terms are purely
quantum mechanical. The exchange term describes an interaction in which electronic
quantum numbers are exchanged, e.g. the orbital character. This can be depicted by

changing the quantum numbers « and 3 for the outgoing states in Fig. 2.2.
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Figure 2.3.: So called bubble-diagrams of electron-hole excitations are summed up to get the
polarization in the Random Phase Approximation.

2.3.1. Random Phase Approximation

The Random Phase Approximation (RPA) was originally presented by Bohn and Pines
in 1953 [70]. It is a method to describe the response of an electronic system to an
external perturbation using two-particle excitations. We employ the method in the way
that was described in Ref. [71]. For a detailed derivation of the RPA formulas, see the
corresponding chapter in Ref. [38]. Plasmons and electron-hole excitations are accounted

for in RPA by the roots of the dielectric function, see Sec. 4.4.

The underlying principle of the RPA is that the electronic polarization IT as introduced
in Eq. (2.49) is approximated by a summation of so-called bubble-diagrams, see Fig. 2.3.
This means that the states with one particle and one hole are used to describe possible
excitations to the Fermi sphere of the many-body system.” One performs a summation
over the corresponding product of free electronic Green’s functions Go(k + q)Go(k), cf.
Eq. (2.23). Alternatively, the polarization can be obtained from the time derivative
of the electron-hole excitation c}; +4Ck- Expectation values of the form CL +¢Ck+q ATISING
in this derivative are only kept if ¢ = q’. The argument behind this is that all other
contributions average out due to their randomly distributed phase factors, which is why

this approximation is called Random Phase Approximation.

The Lindhard formula [72] is the final result for the electronic polarization of a free,

non-interacting system with a single, spin-degenerate band. It reads

fk - fk+q
11 =
o(9:) ZM hw + 107 + € — €xrq

(2.52)

where f is the Fermi function, w is the frequency of the excitation, and ¢ describes
one-particle energies. The infinitesimal quantity 0™ was previously already used for the
Green’s functions in Eqs. (2.23) and (2.24). The use of the RPA means that we set
II(q,w) = II)(q,w) in the calculation of the screening in Eq. (2.50) or the fully screened
interaction via Eq. (2.49), respectively. The full charge response function is discussed
later in Sec. 5.4.1 and Eq. (5.14).

"Excitonic effects are not considered in this approximation.
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In the case of realistic materials as discussed in the following chapters of this thesis, one
has to go beyond the single-band model of Eq. (2.52). For our case, this generalization
was previously discussed in Refs. [71] and [73]. The general formula for the polarization
of a multi-band and multi-orbital model such as the one we use for the TMDCs later in

this thesis is given by the fourth rank tensor

A1 f)\z
Hg,&m‘i(q’ QJ) — Mi}(ﬁi}’é .kso : k+q,0 . (2-53)
k,(%;)\z P hw i+ e, — kg

where a, 3,7, § are orbital indices, A1, A\; are band indices, and the broadening parameter
7 is the same as the infinitesimal 0 in previous equations. The involved overlap matrix

elements are calculated via

apys _ (P " s
My = (din) (Ck+q,)u) Chta sk (2.54)

where the stars represent the complex conjugate. The scalars ¢ are the expansion coef-
ficients of the eigenfunctions corresponding to band energies 3 in the orbital basis. In
all of our calculations using the RPA polarization, except for the Kernel L involved in
the calculation of the spin susceptibility in Sec. 5.4.3, we only involve density-density
matrix elements and do not take into account exchange and other higher-order terms of

the Coulomb interaction. In this case, the polarization in Eq. (2.53) simplifies to
115" (q,w) = 115"*(q, ). (2.55)

So far, we did not account for the spin degeneracy of the models we use later on. For
spin-degenerate electronic bands, the partial polarization is the same for up- and down-
spin, and the summation over ¢ in Eq. (2.53) leads to the multiplication by a factor of
two.

In many cases, one is just interested in the static and long wavelength limit, w = 0
and g — 0, of the polarization. This limit leads to the Thomas-Fermi formula for the
dielectric function in 3D

2
ere(e) =1+ °F (2.56)

with Thomas-Fermi wave vector grp = 1/4me20n/0u and chemical potential p. In 2D,

the different formula for Coulomb interaction, see Eq. (2.47), results in a different
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Thomas-Fermi screening
err(g) =1+ 7° (2.57)

with a Thomas-Fermi wave vector grp = 2me?N (Er) [74] and a constant density of states
at the Fermi level N(Ey). The latter is the Thomas-Fermi limit of the polarization,

o(q — 0,w = 0) = —N(E). (2.58)

Another limit that can be of interest is that of a free electron gas. In this case, an analytic

description of the polarization is possible, which was discussed for the two-dimensional
case in Refs. |75, 76].

2.3.2. Constrained Random Phase Approximation

We shortly discuss the constrained Random Phase Approximation (cRPA) as described
in Refs. [77-81]. The cRPA can be used if one aims at describing the Coulomb interaction
explicitly only in a part of the (electronic) system to, for example, describe effects in
this part on a higher or more detailed level of theory. The model at hand is restricted
to a certain subspace of interest in the orbitals or bands, for example the electronic
d-orbitals [79], while the rest of the system is already effectively included in the values

of the interaction. This means that the polarization from RPA is split up into two parts,

II = IT™ + 11", (2.59)

with the polarization of the subsystem I7*"? and the polarization of the rest I7*. Only
the latter, which includes all screening effects by the rest of the full electronic system, is
calculated in a first cRPA step. To this end, specified electronic bands are excluded from
the cRPA calculation to prevent double-counting in later calculations of the subsystem.

The effective interaction between the electrons in the subspace of interest is then given

by

1

Ve = U (1 — ™. U) ™ (2.60)

with the bare interaction U. After computing the polarization of the subsystem in a
second step which only involves the bands or orbitals of this part, the fully screened

interaction can be calculated similar to Eq. (2.51) via

W =V (1 — I - Vg) " (2.61)
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In our calculations, we make assumptions beyond Eq. (2.59) and take the only the
polarization of the subsystem to be dynamic while assuming the polarization of the rest

to be static,
Hrest — HreSt'(Q‘). (262)

This means that also Vg = Veg(q). For the metallic TMDCs, see chapter 4, the elec-
tronic band around the Fermi energy is excluded from the calculations for the partially
screened effective Coulomb interaction Vg using the Spex code [82, 83| with Wannier
functions (see Sec. 2.1.6) while the fully screened interaction W' is computed using our
own RPA code on top of that. For the semiconducting TMDCs, no band is excluded
since the cRPA calculation is done for the undoped systems, and IT*"® accounts only
for the screening effects due to additional doping charges. Especially in the latter case,
the cRPA approach is only justified up to a certain energy or frequency w in the polar-
ization and the interaction since transitions between additional doping electrons in the
subsystem and bands of the rest are not accounted for; furthermore, the assumption in

Eq. 2.62 is not valid at high energies.
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2.4. GW approximation

While DFT can give good results for the ground state of a system, it is in general not
suited to correctly describe excited-state properties®. One approach that can be used
to obtain these properties is the GW approximation [84-86] which was first described
by Hedin in 1965 [87]. For the calculations of the partially screened Coulomb matrix
elements in cRPA and RPA, we use the GW-code Spex [82, 83|.

The calculation in this framework starts with a set of self-consistent equations that were
derived by Hedin

G(1,2) = Go(1,2) + Go(1,1) (1", 2)G(2,2)

(
W(1,2) = U(1,2) + U(1,3)I1(3,4)W (4,2)
¥(1,2) =iG(1,3)I(3,2,4)W(4,1) (2.63)
11(1,2) = —iI'(3,4,2)G(1,3)G(4,1)
I(1,2,3) = 6(1,2)8(1,3) + %G@, 6)G(7,5)I'(6,7,3)

where the generalized number indices encompass time, spin and space, Gy is the single-
particle Green’s function, see Eq. (2.23), U is the bare Coulomb interaction, and the
equations for the Green’s function G and the screened Coulomb interaction W are the
same as the Dyson equations (2.25) and (2.49). This means that the calculation of the

self-energy ). is performed via the term
Y =iGWT. (2.64)

So far, the Hedin equations (2.63) are a formally exact solution to the many-body prob-
lem. The omission of vertex corrections and terms of higher order in G and W, i.e.,

setting I = 1, leads to the GW approximation for the self-energy
Y =iGW. (2.65)

Furthermore, the polarization IT is then given by the diagram in Fig. 2.3 and the

screened interaction is calculated within the RPA, see Sec. 2.3.1.

8 Although eigenenergies of Kohn-Sham functions often agree rather well with quasiparticle energies ob-
tained from photoemission experiments, there is no theoretical justification for such an equalization
and the electronic band gap is often found to be off in DFT calculations [84].
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As a simple approach to or starting point for the self-energy, one often retains just the
first part of the Dyson series in G and W which leads to

X =iGoWo (2.66)

with non-iterated Coulomb interaction Wy and single-particle Green’s function Gy. If
one takes the bare Coulomb interaction U and not the dynamically screened interaction
W in the calculation of the self-energy, the self-energy is equal to the Hartree-Fock
exchange potential. Thus, the GW approximation can be viewed as an extension of the
Hartree-Fock method. For weakly screened systems like atoms or molecules, the results
of the two approaches can lie closely together and performing GW calculations on top

of Hartree-Fock calculations can lead to improved results [86, 88].

The GW method gives a good description of the excited-state properties of systems with
small or moderate electronic correlation. For example, the description of the electronic
band gap in semiconductors is improved compared to DFT. In many cases, it is useful
to first calculate the ground-state properties using DFT and then use GW to go further,
as it is done by the combination of the codes Fleur [62] and Spex [82, 83] that we use.
For systems with large electronic correlations, GW calculations can be insufficient and

more advanced methods like GW+DMFT [89] or Dual Boson [90, 91] are useful.

2.5. Lattice dynamics

Lattice vibrations are very important to understand solids since they determine many
properties of solid materials such as infrared, Raman and neutron diffraction spectra,
sound velocities, specific heat, elasticity, and thermal expansion. The quasiparticles of
the lattice vibrations are called phonons. In this section, we describe the basic proper-
ties of phonons, give an overview of the basic ideas of Densitiy Functional Perturbation

Theory, which we use to calculate phononic spectra, and discuss electron-phonon cou-

pling.
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2.5.1. Acoustic and optical phonons

Phonons are quantized lattice vibrations which can in many cases be described by har-

monic oscillators )
_ T
Hpn = Zk: hwr, (bkbk + 5) (2.67)

where wy defines the dispersion of a phonon with wave vector k. Due to this possible
description, phonons are bosonic quasiparticles. One phonon can be interpreted as a
normal mode for which all atoms of the crystal lattice vibrate with a single frequency.

All other vibrations can be constructed by superimposing several phonon modes.

To illustrate their behavior, the first description of phonons in lectures and books is
often done for a one-dimensional atomic chain. In this case, the phonon dispersion
for a periodic chain with n different atoms consists of one acoustic branch, which is
characterized by wy — 0 for £ — 0, and n — 1 optical branches, which have a higher and
finite frequency for k& — 0. Regular two- or three-dimensional lattices have three acoustic
branches and 3n — 3 optical branches for n atoms in the unit cell. The generalization of

the Hamiltonian in Eq. (2.67) for this case is given by

1
Hon =Y hwpa (bL,Abk,A + 5) (2.68)

kA

with three-dimensional wave vector k and branch index A\. The acoustic branches de-
scribe the dispersion resulting from simultaneous movements of all atoms of the unit cell
in the same transverse or longitudinal direction with respect to the other unit cells of
the crystal. The slope at small k of the linear dispersion wg ) = vak|k—o of an acous-
tic long-wavelength phonon gives the sound velocity vy in this direction of the lattice.
The optical branches result from oscillations of one or more atoms in the unit cell rel-
ative to other atoms in the same unit cell, such as the stretching of bonds. Optical
phonons are often described with so-called Einstein modes, which means that, due to

their often flat dispersion, their frequency is assumed to be constant [see for example

the Hubbard-Holstein model, Eq. (2.16)].

In general, lighter atoms in the crystal lattice lead to higher frequencies of the phonon

dispersions. This comes from the fact that in the harmonic approximation, the phonon
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frequency can be calculated via

Wip = \/ % (2.69)

with atomic mass M and force constant K} . Thus, the phonon frequency is in general

proportional to the inverse of M'/2

To obtain the result in Eq. (2.69), one defines displacements u,(R;) in spatial direction

a = z,y, z around the equilibrium atomic positions R; and uses the Taylor expansion®

of the potential energy U of the atoms,

U=Uy+= ZZ% Ry) - (Rl)aug(Rg) us(Ry). (2.70)

R1R2 a3

This leads to the definition of the force strength matrix

02U
d5(R; — = . 2.71
AR = G Rujous (Ry) 21
The Fourier transform of this matrix is called the dynamical matrix
k)= ®as(R)e™™". (2.72)
R

The dynamical matrix is the basic quantity one uses to investigate the phonon properties
of a material. Its eigenvalues are the force constants K}, » which determine the phonon

frequency in Eq. (2.69) via the use of an equation of motion for the atoms
D(k)ﬁk,)\ = MwQEk,)\ = Kk,)\fk,)\ (273)

with the polarization vectors € which are the eigenvectors of the dynamical matrix.

As a side note, we mention the Debye model, which aims at a description of the heat
capacitance Cy = OF /0T of a crystal lattice in a simple model. It uses a suitable

average with the same linear dispersion relation for all branches in the extended zone

9In this thesis, we do not go beyond the harmonic approximation in the calculation of the phonons,
which means that only the second derivative of the potential is included, which is done in most of
the literature. The first derivative vanishes due to vanishing forces in the equilibrium, see Eq. 2.75.
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scheme to achieve this. The result is

) T 3 Op/T :1746'7:
C{?H(T) = gNiODkB ((:-)—D) / de (274)
0

which leads to Cy o T? for small temperatures and Cy = 3Njonkp for large tempera-
tures. This model is often used because it contains only one free, material-dependent
parameter, namely the Debye temperature ©p which also appears in the calculation of
the critical temperature of superconductivity via Eq. (2.105). The Debye temperature
is the temperature at which every vibrational mode is excited; it is related to the Debye

frequency via ©p = hwp /kg.

2.5.2. Density Functional Perturbation Theory

Density Functional Perturbation Theory (DFPT) is a way to calculate the properties of
lattice vibrations (92, 93|. It is, for instance, implemented in Quantum Espresso [61].
The underlying approximation of the DFPT is the Born-Oppenheimer approximation,
see Sec. 2.1.2, with Eq. (2.9) describing the motion of the atoms.

In the equilibrium, all forces acting on individual atoms vanish, i.e.,

_ OEq(R)
Fi=—yp—=0 (2.75)

where E(R) is the Born-Oppenheimer energy surface and R; is the changeable position
of the i-th atom. Vibrations of the lattice with frequency w are then given by displace-
ments of atoms from this equilibrium. They can be calculated via the Hessian matrix

of interatomic force constants

1 0?Eq(R) 9
—w

/MM, OR.OR,

which is similar to the force strength matrix ® in Eq. (2.71), scaled by the atomic

det

=0 (2.76)

masses.

To obtain the matrix in Eq. (2.76) and the corresponding dynamical matrix, DFPT

makes use of the Hellman-Feynman theorem

OF OH.
= (%

O\ )

¢A> (2.77)
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which connects the derivative of the total energy E with respect to a parameter A to the
expectation value of the derivative of the Hamiltonian with respect to the same param-
eter. In our case, this means that we can use derivatives of the many-body Hamiltonian
with respect to the atomic positions, which act as parameters in the case of the Born-
Oppenheimer Hamiltonian, see Eq. (2.7). Only the interaction between the electrons
and the atomic cores Vg _,; and the interaction between different atomic cores Vi_at

depend on these positions. This leads to the Hellman-Feynman forces

F,=— / nR(r)amé}z(T)dr - 3‘@5‘;@) (2.78)

since the electron-atom interaction only couples to electronic degrees of freedom via the
charge density ng(r) of the electrons for the unperturbed system [cf. Eq. (2.38)]. The
derivatives of the Hellman-Feynman forces lead to the Hessian in Eq. (2.76) via
O’Eq(R) _OF;
OR,0R;  OR,;
[ Onm(r) OVa—a(r) 9?Ver—at(r) O Vag—ar(R)
_/ IR, R, d‘r—i—/nR(r) dROR, dr + IRIR,

(2.79)

One can see that the ground-state electron-density and its linear response to perturba-
tions, i.e., displacements of the atoms, are needed in order to calculate the force constant
matrix or the dynamical matrix. The DFPT is a way to obtain the linear response within
the framework of DFT, see chapter 2.2. To this end, one linearizes Eqs. (2.38), (2.40)
and (2.41) with respect to variations of the wave function, the density and the potential,

and uses first order perturbation theory.

We mention that there are other methods besides DFPT that are able to calculate the
phonon properties. One popular example is the frozen phonon method which employs
explicit displacements of some atomic cores according to the symmetry of the phonon
at hand. Due to the fact that these calculations need a super cell corresponding to
the inverse of the phonon wave vector, this method is mainly limited to phonons in the

Brillouin zone center or on its boundary.

A severe limitation of the DFPT as discussed here and used in this thesis is the fact
that no anharmonic effects are included. This, for example, leads to the prediction
of an instability in the phonon dispersion of bulk NbS,, c¢f. Fig. 5.2, which is not
observed experimentally and can be lifted by including anharmonic effects, see Sec.

5.4.1. Furthermore, screening effects arising from the environment of the system are only
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accounted for in this thesis when it comes to the Coulomb interaction of the electrons,

see Sec. 4.2, while their possible influence on the phonons is discarded.

2.5.3. Electron-phonon coupling

The interaction of electrons and phonons is an important quantity since it can result in
the formation of superconducting or CDW instabilities as discussed in chapter 5. The
coupling was already included in the Hubbard-Holstein model, see Eq. (2.16), in the
form of a constant coupling g. In general, however, the coupling depends on the momenta
of the involved electron and phonon as well as the phonon branch. The electron-phonon
coupling coefficient for electrons with wave function in state k and phonons with wave

vector ¢ in mode v can be defined by

1/2
= ()"

which describes the scattering of an electron to state k + g due to the interaction with

61/;;1—31:

Oug,

rra) (2:30)

a lattice vibration and, thus, a change in the atomic potential. Since the variation of
the potential is calculated within DFPT, the electron-phonon coupling coefficients can

be also be obtained within this framework.

An important function for the description of conventional superconductivity is the

electron-phonon spectral function [94]

0*F(0) = 3777 2 90w (P3(ek = By — Be)d(w =) (281)

kq,v

which is the product of the phonon DOS
Fw)=) 6w —wgy) (2.82)
q,

2

and the averaged squared electron-phonon coupling a*. This spectral function defines

the effective coupling parameter of superconductivity via

A= 2/00 CFW) g, (2.83)

w

which is used in Eqgs. (2.105) and (2.106).
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An alternative way to describe the electron-phonon interaction is the use of polarons [95].
These are the quasiparticles describing an electron in a lattice and the surrounding self-
induced polarization cloud. The discussion of polarons often makes use of the Frohlich

Hamiltonian

2m

H=P oY b+ Y (Vibie™ + Vibfer) (2.84)
k k

where the first term describes the kinetic energy of the bare electron via its momentum
p and mass m, the second term describes the energy of longitudinal optical phonons
with frequency wy,o, and the third term describes the polarization cloud via the Fourier
components V; of the electron-phonon coupling. Using the Frohlich Hamiltonian, one

can derive how the properties of a polaron differ from those of a usual band electron.

2.6. Superconductivity

Superconductivity was first observed by Heike Kammerling Onnes in 1911 when he
cooled mercury down below the boiling point of liquid helium [96]. In the following
years, several theories were put forward to describe this new phase, with the BCS ap-
proach being the first to yield a correct explanation via the electron-phonon coupling
and the formation of Cooper pairs, see Sec. 2.6.1. The two most important macroscopic
properties of the superconducting state are the vanishing electrical resistance and the
Meissner-Ochsenfeld effect. The latter describes the expulsion of an external magnetic
field from the interior of the superconductor below the transition temperature. Raising
the magnetic field above a critical value leads to the sudden breakdown of the super-
conducting state via a first-order phase transition in so-called type-I superconductors.
In type-II superconductors, there are two critical field strengths and the magnetic field
is only fully expelled from the sample below the lower strength, while magnetic vortices

form inside the superconductor in the regime between the two strengths.

Besides the conventional electron-phonon coupled superconductors, there are also a va-
riety of unconventional superconductors with a sometimes much higher critical tem-
perature. This class consists of two main families, namely the cuprates, where high-T,
superconductivity was first found in 1986 [97], and the iron-based compounds [98|. These
materials have in common that they exhibit a change in the phase diagram upon dop-

ing and/or pressure from an antiferromagnetic to a superconducting phase. The pairing
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mechanism responsible for the formation of Cooper pairs in these materials is unclear and
has received a lot of research interest. While several possible pairing mechanisms such
as spin fluctuations or strong effective antiferromagnetic pairing have been discussed, no

general mechanism has been found yet (see Refs. [99, 100] and Sec. 5.3).

We call all kinds of superconductivity that are not mediated by electron-phonon coupling
unconventional. The charge carriers in all conventional superconductors and at least
most of the unconventional superconductors are Cooper pairs consisting of two bound
electrons. The pairing mechanisms or effective, attractive interactions that are needed

for the formation of this bond are, however, different.

In addition to the books [38, 40], our description of the BCS theory and the Eliashberg
theory for conventional superconductors in the two following sections is guided by Refs.

[101] and [102].

2.6.1. BCS theory

The BCS theory of superconductivity was published by Bardeen, Cooper and Schrieffer
in 1957 [103, 104]. Before this date, there were several phenomenological approaches for
the description of the superconducting phase. One approach worth mentioning are the

London equations [105] which are able to describe the Meissner effect.

The success of the BCS theory was that it was the first theory to correctly explain
the formation of the superconducting phase, which gained the three authors the Nobel
prize in 1972. The underlying assumption of the theory is that the charge carriers in a
superconducting material are Cooper pairs [106] formed by two electrons. Responsible
for the formation of these bound pairs is an effective attraction between the electrons

which is mediated by phonons.

The Hamiltonian of the BCS theory is given by

H = Z EkCLJCkg -V Z CL’TCT—k'J,c—klckT (2.85)
k.o kK’

which describes electrons with dispersion ¢, and includes the effective attraction V
between two electrons of opposite spin and momentum forming a Cooper pair via the
exchange of a momentum q = k' — k as shown in Fig. 2.4. The simplifications that
ones uses here are that only electrons with opposite spin and momentum in a range of

the Debye frequency wp around the Fermi level participate in the interaction and that
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Figure 2.4.: Schematic representation of the formation of a Cooper pair via the exchange of
a phonon with momentum gq.

the effective interaction is a simple constant. The BCS Hamiltonian can be treated by

several methods like the original variational ansatz or the Bogoliubov transformation.

These mean-field treatments for small V' yield a self-consistent equation for the order

parameter of the superconducting phase, the gap

_va Z — tanh P E" (2.86)

where the energy is Ex = 4/¢i + A? and S is the inverse temperature. In the normal
metallic state we get A = 0 while for a superconducting state we find A # 0. Going
to small temperatures and using a constant electronic density N(FEy) in the range hwp

around the Fermi level leads to an approximation for the gap

A(T = 0) ~ 2hwpe YV NER] (2.87)

The most important quantity to describe a superconducting material is probably the
critical temperature 7T, at which the superconducting phase sets in. This temperature
can be derived by setting A ~ 0 in Eq. (2.86) and assuming that fuwp > kg7, since
the Debye temperature is typically of the order of room temperature and the critical

temperature is usually a few Kelvin. This leads to
T. = 1.14Ope YIVNER) (2.88)

We see that both the critical temperature and the superconducting gap depend expo-

nentially on the inverse of the interaction parameter

Apcs = VN (Ep). (2.89)
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As found previously in Eq. (2.69), the typical phonon frequency is proportional to the
inverse of the square root of the atomic mass. Since T, is proportional to the Debye
frequency, this leads to

T, o ——. (2.90)

VM
Thus, different isotopes of the same chemical element have different critical temper-
atures, which is called the isotope effect. Finding the isotope effect in experiments is
regarded as an indication that the material at hand is a conventional superconductor. We
mention that the highest temperatures in electron-phonon superconductors are gener-
ally possible when hydrogen atoms are included in or responsible for the electron-phonon

coupling.!?

While providing a simple and intuitive picture for the understanding of conventional
superconductivity and being able to calculate the superconducting properties of simple
materials, there are severe limitations to the BCS theory. It is only a mean field theory
for weak electron-phonon coupling, and this coupling is only taken into account in an
effective way. Furthermore, no Coulomb interaction between the electrons is (explicitly)
included in the BCS theory. Thus, an extension in form of the Eliashberg theory is
needed.

2.6.2. Eliashberg theory

The Eliashberg theory of superconductivity [94, 108| was first put forward in 1960 [109].
It is basically an extension of the BCS theory which deals with strong electron-phonon

coupling A ~ 1 and also includes the Coulomb interaction explicitly.

The Eliashberg theory is conveniently derived using the Nambu formalism [110| which

treats the electron operators in the form of spinors

Ckt
’Qbk - ( t ) 3 ’lf«'}; - (CLT: c—k.l.)' (291)
From this notation one can already see that the starting point of this theory is similar to
the BCS theory since it also uses Cooper pairs composed of electrons with opposite spin

and momenta. The general Hamiltonian for electrons, phonons and their interactions

10Sulfur hydrides have gained a lot of interest recently due to the finding of a superconducting phase
with T of up to 203K [107].
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Figure 2.5.: Self energy diagrams with electron-phonon and electron-electron interaction that
are included in the Eliashberg theory.

reads in this notation

H = Z Ekwl-,03¢k + Z wq,)\b:;,)\bq,)\ + Z gk—k!,x(k)¢5k—kf,)\¢;1103¢k
k qi

kE'A

by 3 (el W lkako) (6L o, )t ot (292)

kikakak,

with electronic dispersion £, phonon frequency w, ), electron-phonon coupling g, (k),
(appropriately screened) static Coulomb interaction W, and the phonon operator in the

Nambu formalism ¢4, = bq, + bT_q,,,. The Pauli matrices are

(0 1) (o —i) (1 0)
ay = 3 T9 — . 5 03 = . (293)
10 i 0 0 —1

To obtain information on the state of the system, one has to solve the Dyson equation

(2.25) for the 2 x 2 Green’s function matrix of the electrons

G(k,7) = —(Trihi ()9}, (0)). (2.94)

The most important ingredient is the self-energy of the electrons. Usually, the self-
energy in the framework of Eliashberg theory is found by using a theorem by Migdal
[111] which states that vertex corrections can be omitted since \/mqg/M ~ wp/Ep < 1
with effective electron mass mes and atomic mass M, i.e., because electrons and phonons
live on different energy scales. The only remaining contributions to the self-energy are

shown in Fig. 2.5. This diagram leads to

Yk, iwy,) = —1 Z 03G (K, iwy ) o3 [|gk_kr,,,(k)|2D,, (k— K iw, —iwy) + W(k — k’)]
k'n'v

(2.95)
where the phonon Green’s function D,(q,iw,) in imaginary frequencies is the Fourier
transform of D,(q,7) = —(T,rgbq,,,(‘r)qﬁfw (0)). Splitting up the self-energy into odd and
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even parts with respect to the Matsubara frequency iw, leads to
Y (k,iwy,) = iwp[l — Z(k,iwy)]1 + x(k,iw,) o3 + ¢(k,iw, )0y + o(k,iw,)oe.  (2.96)

One now uses the one-particle Green’s functions for electrons, Eq. (2.23), and inserts
them into the Dyson equation for the full Green’s function together with the self-energy.
If we then put the full electronic Green’s function and the one-particle Green’s function
for the phonons, Eq. (2.24), into Eq. (2.95), and compare to Eq. (2.96), we get the
equations for the individual components.!' Afterwards, several approximations are used;
one assumes that the components of the self-energy are only non-zero around the Fermi
level and that it is, thus, senseful to take the average over the Fermi surface kr and omit
wave vector dependencies. Furthermore, one uses a constant electronic DOS N(Er) and
sets y = 0 due to the fact that it only brings about a small shift of the energy scale. In
the end, the self-energy equations that have to be solved self-consistently read

i — Z(iwn)] = —= 7iwn;Z(iwn:) iwn — lwpr) —
iwn[1 — Z(iwn)] 3 zﬂ: = (i) [A(iwn — iwns) — p]
$(iwn) = % 3 i(';:j) [A(iwn, — i) — 4] (2.97)
with
Z(iwn) = Vw2 Z2(iwy,) + ¢2(iwn) (2.98)

and the effective electron phonon coupling

. . wa?F(w
Aitwn — iwpe) = 2 / — wn:)(Q i_wgdw (2.99)

that includes the electron-phonon spectral function o?F, see Eq. (2.81). The averaged

Coulomb interaction is defined by

H= ﬁE:F)ZWkk!(S(Ek — EF)(S(Ek! — EF) (2100)

kk'

If the Coulomb interaction is purely local, Wy, = W, this leads to the simple formula!?

UDetails on the derivation of the Eliashberg equations can, for example, be found in Refs. [112] and
[113].

12Note that in this effective way, Coulomb repulsion and BCS electron-phonon interaction are described
very similar, see Eq. (2.89).
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1= N(Ep)W. (2.101)

In the form of the Eliashberg theory presented in Eq. (2.97), the gap is defined by

o (iwy,)
Z (iwy)

A(iw,) = (2.102)

Besides the effective electron-phonon interaction A, see Eq. (2.83), there are two impor-
tant quantities that are often used to describe the superconducting phase in Eliashberg

theory, namely the effective or typical phonon frequency

Wiog = €XP l; / a2 F(w) 1“5") dw] (2.103)

and the retarded Coulomb potential, sometimes called Coulomb pseudopotential or

Morel-Anderson parameter [114],

. p
= o (&) (2.104)

Wiog

The latter takes care of the fact that the static Coulomb repulsion between electrons
is reduced due to the retardation of the electron-phonon interaction. Commonly, p* is
assumed to be in the range p* = 0.1 — 0.2, but it can also have significantly different

values, see Sec. (5.1.3).

McMillan and Allen-Dynes approximation

In this thesis as well as many other works on electron-phonon superconductivity, ap-
proximative formulas for the critical temperature are used instead of solutions to the
full Eliashberg equations. We use the formula by Allen and Dynes [115], which is an im-
provement of the work by McMillan [116]. The latter employed fits to numerical results

for Nb that lead to the expression for the critical temperature

Op —1.04(1+ )
= exp
1.45 A1 = 0.62p%) — p*

T, (2.105)
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where Op is again the Debye temperature, A is calculated via Eq. (2.83), and p* is
calculated via Eq. (2.104). The improvement by Allen and Dynes led to

 Buiog —1.04(1 + \)
©T 12k P N1 0.620%) — it

(2.106)

where the phonon frequency wy,, is calculated via Eq. (2.103). Allen and Dynes used a
value of p* = 0.1 for all metals. The exponential dependence on A was previously also
found by solving the BCS equations. Taking an effective coupling of Aeg = (A—p*) /(14+1)

approximately recovers the BCS equation for the critical temperature (2.88).

The use of three rather simple parameters and the simplified calculation of the critical
temperature led to the success of the above equations for T, and to the fact that they
are often used synonymously with Eliashberg theory. However, they suffer from some
severe limitations. Among these is the fact that they cannot account for anisotropy in
the coupling and, thus, in the gap function or the critical temperature. Additionally, the
calculation of the effective phonon frequency via Eq. (2.103) is no longer possible for
a non-vanishing electron-phonon coupling and a non-zero a?F'(w) at frequencies w < 0,

and the equations for the critical temperature are not applicable in this case.



3. Electronic properties of two-dimensional

materials

Two-dimensional materials have received a lot of scientific attention in recent years. In
contrast to earlier discussions of the properties of quasi-two-dimensional situations like
surfaces or interfaces [117], purely 2D materials consisting of a single atomic layer can
now be produced experimentally by exfoliation via the scotch-tape technique [3]| or on a
larger scale by chemical vapor deposition [118]|. Not only are these materials important
when it comes to studying fundamental physics, but they can also be utilized to make
ultrathin devices for the use in such fields as (opto)electronics, catalysis or photovoltaics
[119, 120]. Here, we show only a few aspects of the properties of these materials relevant
for the work presented in the later parts of the thesis. Detailed discussions for both

graphene and the transition metal dichalcogenides can be found in the literature, e.g. in

Refs. [9, 121, 122].

3.1. Transition metal dichalcogenides

Transition metal dichalcogenides (TMDCs) have the chemical formula MX,, with the
monolayers consisting of a layer of transition metal atoms M sandwiched between two
layers of chalcogen atoms X. The lattice structure is similar to the honeycomb lattice
of graphene, see Sec. 3.2, with the transition metal atoms on one sublattice and the
chalcogen atoms on the other in the 2H phase. Thus, the inversion symmetry is broken in
monolayer TMDCs. About 40 different TMDCs exist [123]; we focus on the six materials
with Mo, W and Nb as a transition metal and S or Se as a chalcogen and only deal with
the 2H phase as depicted in Fig. 3.1. In this thesis, we do not discuss the 1T phase where
the positions of the chalcogen atoms change and TMDCs that are semiconducting in the
2H phase exhibit metallic character; for a comprehensive discussion of the electronic

structure of many TMDCs in both phases see for example Ref. [124].

41
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Figure 3.1.: Structure of a TMDC in the 2H phase. The chalcogen atoms are colored yellow,
the transition metal atoms are colored grey.

One example for the practical use of TMDCs that has been studied for a rather long
time are lubricant applications, where MoS, was investigated most intensively [125].
Recently, due to the possibility of creating thin layers and the variety of opportunities for
functionalization, tuning, and combination that is inherent to low-dimensional materials
[126], a lot of other applications have been proposed and are a major topic of research
[127, 128]|. They include the use in photovoltaic and other devices for energy conversion
and storage [129-131] and in digital electronic devices such as field effect transistors
[7, 132, 133] as well as several other physical, chemical and industrial fields, especially
upon doping [134].

3.1.1. Density of states and band structure

While the electronic properties of the TMDCs can encompass a wide range from semi-
conducting to superconducting [120], their basic descriptions like the band structure look
similar. Here, we demonstrate some of the typical and important features of these basic
electronic properties using the example of MoSe,; instabilities like superconductivity and

CDWs are discussed later on in chapter 5.

First we look at the density of states (DOS) as obtained from DFT calculations', see
Fig. 3.2. The DOS shows sharp features at the van-Hove singularities, which we will
discuss in more detail later on, as well as at the band edges, and has values in the range
between 2 and 5eV ! otherwise. Its 2D character is obvious in the lower picture of Fig.
3.2, where one can clearly see the singularities around 0.4 €V, and in the steps above 3 eV
and around 0eV in the upper picture. These steps arise because two-dimensionality leads
to a constant DOS for a single electronic valley which can be described by a quadratic
dispersion, in constrast to the square root shape of the DOS in 3D. This is the case here:

below Ep < 0.15€V, only the valley around the K point in reciprocal space is relevant

1For details on the parameters in these and other calculations, see Appx. A. The Fermi energy is set
to the minimum of the conduction band in all pictures for undoped, i.e., semiconducting MoSes.
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Figure 3.2.: (Top) Density of states for MoSe, obtained using the tetrahedron method [135].
(Bottom) Closer look at the densitiy of states of the lowest conduction bands.
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Figure 3.3.: Path through the 2D-Brillouin zone including high symmetry points. Taken from
[113].

and the density is constant n ~ 0.5eV~!. Above this energy, both K- and Z-valleys are

relevant and n > 2.5eV "

Next, we plot the electronic bands along the high symmetry path through the first
Brillouin zone shown in Fig. 3.3. The full band structure of MoSe, is depicted? in Fig.
3.4. The bands of inner shell electrons lie at 14eV below the Fermi energy and lower.
At higher energies, one can identify a set of outer shell valence bands between -7eV and
-2€eV. Above the Fermi level we see four conduction bands. Between the six TMDCs
discussed in this thesis, the most important differences in the band structure are the
position of the Fermi energy, which lies in the band gap for the semiconductors and in
the upmost valence band for the metals, and the position of the highest valence band.

This valence or conduction band is more or less entangled with the lower valence bands;

ZPlease note that we used a GGA potential for MoSe, since this yields the direct band gap in the
monolayer which was found experimentally [136]. A LDA potential would yield an indirect band
gap. For every material we use a potential that yields a reasonable electronic structure and makes
the calculation run smoothly, see Appx. A.
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Figure 3.4.: (Top) Full band structure of MoSe,. (Bottom) Bands around the Fermi level.
The red lines show the Wannier model of the three important bands around the
Fermi level as described in Sec. 3.1.2.
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Figure 3.5.: Experimental result for the photoluminescence of MoS,. The peak in the intensity
in the monolayer limit signals a change from an indirect do a direct semiconductor
with decreasing layer number. Picture taken from [137].

for example, it is not seperated from the lower bands in MoSe,, see Fig. 3.4, while it is

clearly decoupled from these bands in NbS,, see Fig. 3.9.

Semiconductors

The four materials considered here, MoS,, MoSe,, WS, and WSe,, are all indirect semi-
conductors in the bulk and few-layer systems, while they become direct semiconductors
in the monolayer limit, which was first found experimentally for MoS, by Mak et al.,
see Fig. 3.5. The optical band gap® is between 1.5 and 2eV [136, 137, 139]. The change
from an indirect to a direct band gap happens due to quantum confinement [15, 140]
which influences the maxima of the valence band at K and I" as well as the minima of the
conduction band at K and L; it can be experimentally observed in photoluminescence

spectra [141].

The instabilities of superconductivity and CDWs that are discussed in chapter 5 can of
course only arise in a metallic system, or rather a system with free conduction electrons.
Metallic phases can be established in the semiconducting TMDCs via chemical doping
as well as field effect gating [126]. In our DFT calculations, we do not explicitly consider

chemical doping and limit ourselves to an effective treatment of the doping by including

30ne has to bear in mind that the electronic band gap seen in our figures of the band structure
is well known to be underestimated by DFT calculations; better results are obtained using GW-

calculations, see for example [138].
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Figure 3.6.: Change of the band structure at the Fermi level with electron doping z for MoSe,.
The Lifschitz transition towards a larger number of Fermi pockets happens around
x = 0.08.

a non-zero total charge that is compensated by a jellium background [cf. Eq. (2.13)].
This effective electron doping? z leads to a change of the Fermi level as well as the valley
structure of the conduction bands as can be seen in Fig. 3.6. The lowest conduction
band has two prominent minima at the K-point and the point L = %W in reciprocal
space. The valleys at both points have parabolic dispersions close to the minima, which
makes an effective mass description possible, see Refs. [113, 142]. Upon electron doping,
first the valleys at the K-points and afterwards the X-valleys are filled with electrons.
This Lifschitz transition [143] to a larger number of Fermi pockets is depicted in Fig.
3.7. Its importance, for example concerning the superconducting phase, is discussed
later on in this thesis. The value of the critical doping at which the transition takes
place is approximately zy = 0.08 for MoSe, in DFT, but can be different for the other
TMDCs. In general, the values lie between z = 0.05 and = = 0.10.

4The doping is always quantized as the amount of additional electrons = per umit cell.
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Figure 3.7.: Schematic picture for the change of the Fermi surface with electron doping in the

semiconducting TMDC:s if no spin-orbit coupling is included. Blue is low doping
while red shows high doping.
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Figure 3.8.: Development of the density of states at the Fermi energy with electron doping
in several TMDCs. Data is obtained from calculations involving the Wannier
models described in Sec. 3.1.2. The two dashed lines represent values of 0.2 and
1.0, respectively.
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From Fig. 3.6 one can further see that the two minima experience not only a shift
with respect to the Fermi energy, but also a relative change of their positions. The
latter change will be included in the phonon calculations in Sec. 5.1, but not in our
calculations on the Coulomb interaction presented in Secs. 4.3, 4.4, 5.1.3, and 5.3.
Whether the treatment of the doping as a rigid shift done there is justified can be

questioned and will be discussed in the respective sections.

Lastly, we look at how the DOS at the Fermi level N(Er) changes upon electron doping
for the different semiconducting TMDCs, see Fig. 3.8. The Lifshitz transition is obvious
in this picture, with a change of N(FEF) at the transition from ~ 0.2 per eV and spin
to 2 1.0 per eV and spin in all four materials. Where exactly the transition occurs
depends, however, on the specific material. Furthermore, the concrete values change
slightly, with N(Ef) being generally a little larger in MoSe, and lying below 0.2 in the

tungsten materials at low doping.

As a side note, we mention that no spin-orbit coupling (SOC) is discussed in this thesis.
SOC can be strong in TMDCs with splittings between 150 and 500 meV at the top of
the valence band at the K point and is much stronger in tungsten based materials than
in molybdenum based materials because of the larger atomic mass [144]. Furthermore,
combining spin and valley degrees of freedom can be useful for studying physics and

applications [145].

Metals

For the metallic TMDCs NbSe, and NbS,, we have a half filled lowest conduction band
which has a similar structure to the highest valence bands in the semiconducting materi-
als. Its structure is shown for NbS, in Fig. 3.9. Since the materials are already metallic,
we do not discuss the effects of doping. The Fermi energy lies close to the van-Hove
singularity [146] that occurs at the M-point of the Brillouin zone where the electronic
dispersion is flat and has a vanishing derivative. This singularity shows up as a large
peak in the density of states, which can have profound effects on the screening and other

properties of the material.

Fig. 3.10 shows the Fermi surface of NbS,. We can identify rather large Fermi pockets
around [" and each K point. At the K points, the pockets have an ellipsoidal shape while

the shape is circular around T
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Figure 3.9.: Band structure of the half filled conduction band and surrounding bands for
undoped NbS,,.

3.1.2. Minimal three-band model

In order to obtain a model that is at the same time material realistic and easy to
handle, we turn to the question whether a simplified description of the band structure
is possible. Superconductivity and other low-energy physics considered in this thesis
mainly take place close to the Fermi level. For the TMDCs, Figs. 3.4 and 3.9 show
that essentially only three bands are relevant to describe the electronic dispersion in
this area. As was previously shown in Refs. [73, 147, 148|, these three bands arise from
the d-orbitals of the M-atoms for the TMDC M X,. Fig. 3.11 shows that they can be
efficiently described using only the d,2, d, and d,2_,2 orbitals. Thus, to get a simple
and accurate model for the three important bands of each TMDC, we employ a Wannier
construction which includes only these three orbitals. The tight-binding hopping matrix
elements are obtained from projections of the results for the DFT band structure onto
the three orbitals. We use a disentanglement procedure inside of an outer energy window,

but do not involve the maximal localization scheme in order to preserve the symmetry
and orbital character (see Sec. 2.1.6 and [52]).
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Figure 3.10.: Schematic picture of the Fermi surface of undoped NbS,. The black lines cor-
respond to the boundaries of the first Brillouin zone.

An example of the resulting three-band structure is depicted for MoSe, in Fig. 3.12.
Wannier models were obtained for the other five TMDCs as well. While the construction
of these models is very accurate if the highest valence band is not entangled with the
lower valence bands, as it is the case for example in NbS,, see Fig. 3.9, problems can
arise and the description can be inaccurate at certain points in reciprocal space for the
case of entangled valence bands. As can be seen in Fig. 3.4 (Bottom), these inacurracies
are overall still small for the band structure of MoSe, and mainly present around the K
and L points as well close to the crossing bands at the M point. The Wannier models

described here are used for the calculations involving the Coulomb interaction in Secs.
44,513, 5.3, and 5.4.
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Figure 3.12.: Electronic dispersion from three-band Wannier model for MoSe,.
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3.2. Functionalized graphene

The isolation of carbon as a stable, purely two-dimensional monolayer called graphene
was first performed by Novoselov et al. |2, 3]. It led to a lot of research on graphene and
to the discovery of such interesting physics as exorbitant mechanical strength, very large
intrinsic mobility and Dirac electrons [10, 149, 150]. Besides the insight into fundamental
physics that can be gained from the example of graphene, there have also been a lot of

proposals to use the material in electronic, photonic or other applications [151, 152].

In graphene, the carbon atoms are arranged in a honeycomb lattice structure with
two different sublattices. Pristine graphene can be viewed as a semiconductor with a
vanishing electronic gap. Directly at the Fermi level, electrons obey a linear dispersion,
called the Dirac cone, and the low-energy quasiparticle excitations can be described via
an effective Hamiltonian for massless Dirac fermions [9, 151]. This unusual electronic

dispersion is one of the reasons for the strong interest in graphene.

Because of the absence of a band gap, some optical and other applications are not possi-
ble in pristine graphene. As a result, a lot of research has been focussed on searching for
a graphene related material with a sizeable band gap. This has lead to the experimen-
tal and theoretical work on several functionalizations of graphene, where hydrogenated
graphene, called graphane [153|, and fluorinated graphene, called fluorographene [154];

are two of the most common examples.

As mentioned earlier in Sec. 2.6.1, hydrogen is especially interesting for superconduct-
ing compounds. Due to their low atomic mass, hydrogen atoms lead to large phonon
frequencies which can result in large critical temperatures of the superconducting phase,
cf. Eqgs. (2.69) and (2.90). For example, critical temperatures of up to 203K were
recently found in sulfur hydrides [107]. The possibility of high critical temperatures is
one reason for us to discuss the example of partially hydrogenated graphene C H, in
this thesis. Additionally, this structure is especially interesting since it can be produced
experimentally [156] and leaves the side of graphene that is not occupied by hydrogen

atoms open for further tuning or functionalization.

We use the geometry that was described for the undoped system in Ref. [155] with the
parameters of the calculations given in Appx. A.2. In this material, the two hydrogen
atoms per supercell are on the same side of the graphene layer and occupy the opposite
sides in a hexagon, so that they are on different sublattices, see Fig. 3.13. The system

can be described as an arrangement of C; hexagons connected by CH molecules. We
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Figure 3.13.: (Left) Unit cell of functionalized graphene CiH, that we use for our calculations
with carbon atoms in yellow and hydrogen atoms in blue. Wehling et al., [155],
calculate this to be the geometry realized for low doping concentrations. (Right)
Side view showing the relaxed z-positions of the atoms.

do not fully relax the atomic structure, but only relax the z-position to preserve this
symmetry®, see Fig. 3.13. Due to this approach, the CgH, structure described in this

thesis is metastable, as can be seen from the phonon dispersions in Sec. 5.2.

3.2.1. Band structure

While pristine graphene is a semiconductor with a vanishing band gap, the function-
alization with hydrogen atoms opens up a band gap of several €V. In the electronic
dispersion obtained from our DF'T calculations, we see two high valence bands and two
lower conduction bands, separated by an indirect band gap of 3.4¢eV, see Fig. 3.14. Both
bands are rather flat, while the surrounding lower valence and higher conduction bands
have a stronger dispersion that is quadratic around I'. The most discussed features of
the typical graphene band structure, i.e., the Dirac cone and the m-bands, are pushed
upwards in energy by more than 3eV as a result of the functionalization with hydrogen

atoms and hybridization.

Next, we discuss the effects of doping, and look at the case of electron doping first, see

Fig. 3.15. We see that for small electron doping levels = = 0.1 per super cell of CgH,,

A fully relaxed atomic structure would, among other effects, lead to computational problems such as
very long time scales in the calculation of the phonon dispersion and the electron-phonon interaction,
see Fig. 5.11. This is due to the fact that the g-mesh of the phonon calculation can be reduced if
the system has a high symmetry, cf. Appx. A.2.
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Figure 3.14.: Band structure of CgH, without doping from DF'T calculations.

two degenerated Fermi pockets around [ exist. For larger concentrations, an additional
pocket appears, stemming from a quadratic band that is rapidly pushed downwards
with increased doping. It hybridizes with the two lowest, formerly separated conduction
bands and additional electrons mainly occupy this band for z 2 0.2. Thus, a Lifshitz
transition like the one that was already observed in the semiconducting TMDCs upon

doping occurs here, too.%

Upon hole doping, the situation is a little different. Due to flat dispersion and the
resulting high density of states at the M-point maximum, already small changes in the
Fermi level require a rather large doping level, so that one needs x ~ 0.3 removed
electrons to get a clear hole pocket around the valence band maximum, see Fig. 3.16.
Further hole doping changes the shape of the two valence bands and leads to another
Lifshitz transition at = ~ 0.9 where additional pockets appear at a point between K and
I" in reciprocal space.” The dispersion around this point is also rather flat and similar

to a van-Hove singularity.

As a last step, we look at the orbital character of the relevant valence and conduction

6See the discussion at the end of this section.

It is important to note that in Ref. [155], = < 0.4 electrons per super cell or z < 0.05 electrons
per carbon atom was calculated to be the regime where the CgH, structure discussed here is the
equilibrium geometry. Furthermore, we do not take into account chemical doping which could
experimentally be necessary to achieve such high doping concentrations as = ~ 0.9 holes or electrons.
Thus, the results for large electron or hole doping presented here have to be taken carefully.
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Figure 3.15.: Band structure of the conduction bands in CgH, under electron doping = per
super cell.
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Figure 3.16.: Band structure of the valence, i.e., partially filled bands in CgH, under hole
doping = per super cell.
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bands. These bands are composed of the p-orbitals of the carbon atoms as well as
the s-orbitals of the hydrogen atoms. In Fig. 3.17, one can see that the py- and py-
orbitals have only a small contribution, mainly for small wave vectors around I', while
the hydrogen s-orbitals are present for larger wave vectors. Most of the orbital character
of the considered bands, however, stems from the carbon p,-orbitals. This means that
in the case of electron doping into the conduction bands, only the carbon p-orbitals
are relevant, especially because the band that is pushed downwards in energy has only
p,-character. Upon hole doping, only the p,-orbitals and the hydrogen s-orbitals play a
role since the hole pockets arise at the M point and between I' and K.

One important issue that has not been adressed so far is the problem of nearly free
electrons with quadratic bands. One might ask if electron dopings beyond the Lifshitz
transition in CgH, just fill these quadratic bands. We can state that from our calculations
of the orbital character as shown in Fig. 3.17, the band that is pushed downwards and
filled with electrons still has a well defined orbital p,2-character which means that it
should not belong to nearly free electrons. Still, by using only data from our DFT
calculations, we cannot decide whether the observed Lifshitz transition is an artifact of
our calculations; furthermore, the transition may occur at a different doping level in

experiments.
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Figure 3.17.: Band structure of CgH,, without doping. (Top) Weight of the py- and py-orbitals
of the carbon atoms. (Bottom) Weight of the p,- orbitals of the carbon atoms

and s-orbitals of the hydrogen atoms.



4. Quantification of Coulomb interaction
and screening in TMDCs

In this chapter, we present our model for the Coulomb interaction and focus on 2D
TMDCs. The other material class of interest to us, (functionalized) graphene, was
already investigated in Refs. [34, 81| and is discussed in Secs. 3.2 and 5.2 concerning its

electronic and phononic properties, respectively.

As mentioned in the introduction, the Coulomb interaction in TMDCs and its effects,
especially on the many-body properties of the materials, are not well understood. On
the other hand, the interaction influences a lot of properties like superconducting order,
charge order and spin order more or less strongly. In order to be able to describe
these properties in chapter 5 and account for the influence of the interaction, we need a
material-realistic description. Furthermore, this detailed and quantitative description of
the interaction is important to examine the general claim of a strong Coulomb interaction

in two dimensions.

Here, we first make some remarks on why the Coulomb interaction can be different
in 2D compared to 3D materials. The main part of this chapter follows in Sec. 4.2
where we give details on our fitting procedure and present the results for the Coulomb
interaction. Although the details of this scheme can be technical, they are important
to understand the advantages and shortcomings of our approach. Afterwards, we show
results for the screening in both semiconducting and metallic systems and discuss the

plasmonic spectra or Electron Energy Loss Spectra (EELS) of the TMDCs.

59
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4.1. Coulomb interaction in two dimensions

As already mentioned, the Coulomb interaction in 2D materials can behave qualitatively
and quantitatively different compared to three-dimensional bulk materials. The most
obvious difference is probably the possibility to influence the interaction inside of the
layer from outside by changing the dielectric environment. In a simplified picture, this
can be understood by the fact that the field lines of the interaction between two seperated
charges do not only pass through the layer, but also enter the environment, see Fig. 4.1;

this effect is stronger the larger the distance between the two charges is.

If the material is surrounded by vacuum, this means that especially the long-range part
of the dielectric screening is reduced compared to the bulk case, which in general leads
to an enhanced Coulomb interaction. On the other hand, we can put the material
into a dielectric environment and in this way enhance the screening. If we enclose the
layer for example in a metallic environment, this could even reduce the interaction to
values lower than those for the bulk. Since experiments on 2D materials are usually
done on substrates, it is important to include substrate effects in our calculations to get
comparable results. Beyond that, substrates can be used to functionalize materials and
tune their properties. One example is the creation of heterostructures with a spatially

changing band gap, see Ref. [31].

In reciprocal space, the bare Coulomb interaction is also different to three dimensions
because the Fourier transform of the 1/r-potential leads not to a 1/¢*> dependence as
in 3D, see Eq. (2.46), but rather to a 1/q dependence, see Eq. (2.47). This different
behaviour will be used in the following section to obtain fitting models to the ab-initio

results for the Coulomb interaction.

- vacuum/
substrate

R —

&—-—._____._.—-—'—/
vacuum/

N substrate

Figure 4.1.: Electric field lines between two charges in a two-dimensional layered material.
Picture by Malte Rosner, edited by the author.
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4.2. Fits to ab-initio Coulomb interaction

In this section, we present our fitting routine for the Coulomb interaction in 2D TMDCs.
To get an accurate, yet simple model describing the interaction in the relevant bands
around the Fermi energy, we employ the three-band model described in Sec. 3.1.2. The
dielectric screening and Coulomb interaction of the materials discussed in this thesis was

in parts also investigated in Refs. [157, 158|.

Instead of using a fit routine, one could, in principle, also directly use the ab-initio
values of the Coulomb interaction to describe its influence on the many-body properties,
similar to our use of the onsite interaction in Sec. 5.4.3. Yet, our approach has several
advantages: with the fit model, we obtain a description of the Coulomb interaction
that is easier to interpret and to handle than the ab-initio data. Furthermore, it is very
difficult and computationally demanding to include the effects of dielectric environments
and doping in the ab-initio calculations, while this is much easier using the fit model.
Lastly, in combination with the Wannier Hamiltonian (cf. Sec. 3.1.2), we obtain a simple

description of the TMDCs that can be interpolated on arbitrary wave-vector grids.

4.2.1. Fitting procedure

Simple Model

Most of the fitting procedure presented here was described and published by the author
in Ref. [159]. Additionally, parts of our calculations on and parametrization of the
Coulomb interaction in MoS, were previously described in Ref. [142]. Here, we follow
a similar procedure and make use of the Wannier function continuum electrostatics
approach (WFCE) developed by Malte Rosner et al., [81], to include the screening

effects of substrates, as described in the following.

The results for the bare and the interband screened interaction are obtained via GW
(see Sec. 2.4) and RPA or cRPA calculations (see Secs. 2.3.1 and 2.3.2) using the Spex
software code [82, 83| on the basis of DFT calculations in FLEUR [62]. Details on the

procedure and the parameters for these calculations can be found in Appx. A.1.2.

In a first step, the bare interaction matrix U,s(q) in the basis consisting of orbitals

a, B € {d,2,dyy,d,2_,2} of the transition metal atoms is obtained for the freestanding
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undoped material. To parametrize the Coulomb interaction, we use the sorted eigenbasis

of the bare interaction to diagonalize the latter

U™ 0 0
Udeg(g) = 0 Udieg _ (4.1)
0 0 Udee

Here, the diagonal matrix elements are given by
U™ = (e:[Ules) (4.2)
using the eigenvectors® of U in the long-wavelength limit ¢ — 0,

1/V/3 2/3 0
er=|1/V3|,ea=|-1/V6|,es=| 1/v2 |. (4.3)
1/v/3 ~1/v6 ~1/v2

Uf iag(q) is the leading eigenvalue of the bare interaction. The other two eigenvalues
only have a weak, anisotropic g-dependence and are, thus, assumed to be approximately
constant; their values in our model are calculated by averaging the ab-initio values, see
Fig. 4.3.

In most cases in this chapter and the next one, we look at the macroscopic values of
the quantities of interest. This means that we use those values which are obtained by a
transformation using the eigenvector e; of the bare interaction that corresponds to its
leading eigenvalue. In this definition, the macroscopic value of some quantity A is given
by

Amac = (e1]Aley). (4.4)

For the leading eigenvalue of the interaction, we obtain a fit of the form

3e? 1

diag _
Uie) = 2204 q(1+ vq)

(4.5)

with the area of the 2D hexagonal unit cell A = @a? and the lattice constant a. The
values for a can be found in Appx. A.1.2. The factor 3 is new in Eq. (4.5) compared to

1One might also try to fit the possible wave vector dependencies of these eigenvectors; the comparison
of the ab-initio data for the eigenvectors to the analytic values given above in Eq. (4.3) is shown in

Fig. C.1.
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Eq. (2.47) and arises from the fact that we use three orbitals to describe the system and
treat the Coulomb interaction in the eigenbasis of the bare interaction. - describes how
the effective height affects short wavelengths, which means that it is a structure factor
and becomes important at large wave vectors close to 1 A~! where ¢ and ¢ are of the
same order.

The screened matrix elements in the eigenbasis of the bare interaction are obtained for

the undoped system via?

Vidiag (q) — [E?iag(Q)] - Uidiag(q) (4.6)

where ¢7%2(g) accounts for the screening that results from the material specific interband
polarizability and the polarizability of the substrate. In the philosophy of cRPA (see Sec.
2.3.2), this means that we do not involve intraband or metallic screening effects in the
fitting procedure presented here and include them later on when we calculate the fully
screened interaction W. The diagonal represantation of the interband and substrate

screening is given by

El(ii“) 0 0
e g =| 0 & 0 (4.7)
0 0 Eg

where the constants €, and €3 describe microscopic local screening effects which are
similar to the bulk material and essentially unaffected by the dielectric environment of

the monolayer. The macroscopic effects are described by the leading eigenvalue via

15 ﬁze_qu
= €0 4.8
falg) =¢ L+ (B1 + Ba)e 94 + By fre=29d (48)
with factors
183‘ o oo — €sub,i (49)

oo+ Esuby
describing the influence of semi-infinite bulk materials on the screening inside of the
monolayer. Eq. (4.8) was derived in Ref. [160] for a general case and applied to the
situation described here in Ref. [81]. The involved parameters are an effective height d

and the value of the screening at large wave vectors £,,. The values are derived from fits

2Please note that the calculation of the interband screened interaction V via Eq. 4.6 presents an
approximation to the full ab-initio values of this interaction. It is not guaranteed that V is diagonal
in the eigenbasis of the bare interaction U [see Eq. (4.3)] which can lead to additional errors beyond
those of our fitting scheme for the bare interaction and the screening. The comparison of the ab-intio
values to the fit values for the background screened interaction is done in Appx. C.
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to the ab initio calculations for the freestanding layer. The surrounding substrates are
approximated by dielectric constants g, 1 above and £g,p 2 below the monolayer which
can be varied using Eq. (4.9). Note that we do not take into account possible frequency
or wave vector dependencies of the substrate screening in our approach, which at the
same time limits its accuracy but also gives us a model that is not restricted to a specific

material and substrate, like MoS, on graphene [30].

In the case of vacuum surrounding the monolayer (esyb1 = €sup2 = 1), Eq. (4.8) simplifies

to
Eoo +1— (6o — 1)e ¢

Eoo + 1+ (60 — 1)e98"

€1(q) = €0 (4.10)

Once we have obtained the diagonal dielectric matrix £42€(q), we can calculate the
screened Coulomb interaction in the eigenbasis using Eq. (4.6) together with Eqs. (4.1)
and (4.5) and the parameters in Tab. 4.1 (for MoSe,; see Appx. B for values of the other
TMDCs). Afterwards, we can transform to the orbital basis using the eigenvectors in
Eq. (4.3). This analytic description allows to evaluate the bare and screened Coulomb

matrix elements at arbitrary momenta ¢ and for arbitrary dielectric environments.

Pseudo-Resta model

To be able to understand the limitations of our model description of the bare and
interband screened Coulomb interaction, we turn to the Thomas-Fermi model for semi-
conductors by Resta, [161], and modify it to better describe the macroscopic part of the
interband screening. First of all, we try to improve our fit of the largest eigenvalue of

the bare interaction by introducing a cubic factor in Eq. (4.5), leading to

Udiag ( )_ 382 1
LResta\d) = 920 A q(1 + vq + 00°)

(4.11)

with the new fit constant 4. This leads to the largest changes in Uf g (q) when large
values of g are considered. The description of the other two eigenvalues of the bare

interaction is not changed.

Second of all, we employ a pseudo-Resta model for the macroscopic screening, which
incorporates not two fitting parameters like the simple model in Eq. (4.8) but rather
five fitting parameters a, b, ¢, d,e. We still rely on the fitting model for £,(¢), but make
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Figure 4.2.: Fit of the leading, macroscopic eigenvalue U; of the bare interaction U in MoSe,.

Circles show the ab-initio data, the black line shows the quadratic fit and the red
dashed line the cubic pseudo-Resta fit.

the former constant ., wave vector dependent

2
S (g) = g e (4.12)
b g T4

The results of this model are shown and compared to the simple model in Figs. 4.2, 4.4,
4.13, and 5.8.

4.2.2. Discussion of results

Now that we have discussed our approach to obtain a model for the Coulomb interaction
of the relevant bands in 2D TMDCs, we present the results of the fits. The focus here lies
on one example, MoSe,, but most of the results are very similar for the other members
of this material class. The specific fit parameters for all TMDCs can be found in Appx.
B.
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Table 4.1.: Parameters of Coulomb interaction in MoSe,.
‘ dielectric € ‘

leading EV, simple

| bare U e 10.238

leading EV, quadratic d(A) 9.615
v (A) 2.061 leading EV, pseudo-Resta

leading EV, cubic a (1/A?) 1.605

v (A) 2.232 b 13.181

5 (A?) -0.356 ¢ (A) 5.772

microscopic EV d(A) 3.499

Uy (V) 0837 e 7.508

Us (eV) 0.376 microscopic EV
€9 3.148
€3 2.510

As described above, our first step is to fit Egs. (4.5) and (4.11) to the ab-initio results
for the largest, macroscopic eigenvalue of the bare interaction which we obtain from
calculations with FLEUR and Spex [62, 83| using the RPA or the cRPA approach, see
Secs. 2.3.1 and 2.3.2. The results are shown in Fig. 4.2 and Tab. 4.1. For wave vectors
g > 0.2A! both fit models describe the ab-initio data very well®. At this point, the
difference between the two fit models is almost negligible; the cubic fit has slightly more
accurate results only for large ¢ close to 1 A~! since it can describe the flattening of the
ab-initio values by a negative prefactor for the ¢*-term (see ¢ in Tab. 4.1). Both models
are not able to describe the trend of the ab-initio values of U; for ¢ — 0, but this is no
problem because these values result partly from a finite vacuum height of all supercells
involved in the calculations. Furthermore, finite values of the Coulomb interaction for
g = 0 are not physical in non-metallic systems, which means that the results of the
calculations cannot be trusted for ¢ &~ 0; this sets a natural limit for the lower end of

our fit range which excluded the point at ¢ = 0 in all cases.

For the full description of the bare interaction, we also need the eigenvectors according
to Eq. (4.3) and the two microscopic eigenvalues of U, which are shown in Fig. 4.3.
We observe that that the average values of the two eigenvalues are U, ~ 0.8eV and

Us < 0.4¢eV (see Tab. 4.1), which is a general feature for all the TMDCs considered here

(see the corresponding tables in Appx. B). To use the average as a model description

3Since in the end we are interested mainly in the orbital Coulomb interaction that already involves
screening by interband transitions, we will discuss deviations of our fit model from ab-initio results
primarily later on in this section and in Appx. C.
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Figure 4.3.: The two microscopic eigenvalues of the bare interaction U in MoSe,. Circles
show the ab-initio data, while the lines show the average values that we use in
our model.

of the microscopic eigenvalues seems justified because the deviations of the ab-initio
data are less than 10%. Besides that, the anisotropy present in the values of the third
eigenvalue renders any kind of scalar fit rather difficult.

Having obtained model parameters for the bare Coulomb interaction, we now discuss
the screening. Here, we only give our results for the interband screening; other screening
effects are discussed in Sec. 4.3. The ab-initio data and fit results for the interband
screening £; of the leading eigenvalue of U without substrates are presented in Fig. 4.4.
Starting from £; = 1 at ¢ = 0, the screening rises to values €; 2 10 up to ¢ ~ 0.5 A1
and lowers again for larger g, which looks somewhat similar to a damped sine function.
For ¢ 2 0.6 A~ some anisotropy in the data is visible. With our simple fit model, we
can correctly describe the ab-initio values for ¢ = 0 and ¢ > 0.2 A~! within a range of
10 %, but the shape of the screening is only reproduced approximately. The somewhat
sinoidal behavior, i.e. the rise and decrease of the ab-initio values, cannot be found in
this model since its values approach the constant ., for g ~ 0.4 A=, The pseudo-Resta
model on the other hand yields a much better fit of the screening and reproduces both
the shape and the values of the ab-initio data. One important disadvantage is though
that we lose the simple interpretation of the parameters €., and d that we have in the

simple model, where ¢, is a short-wavelength dielectric constant, similar to the bulk
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Figure 4.4.: Fits of the macroscopic part €1(g) of the interband screening in MoSe,.

material, and d can be viewed as an effective height of the monolayer.

Alongside with the fit of £;, we further need the averages of the two values of the screening
g9 and &5 that belong to the microscopic eigenvalues of U and describe microscopic
screening effects occurring locally inside of the monolayer. The corresponding data is
shown in Fig. 4.5. The situation here is similar to the microscopic eigenvalues U, and
Us; the deviation of the ab-initio data from the average values is 10 % or less and is in
large parts due to the anisotropy in the ab-initio values. This is also the reason why a
scalar fit would not lead to improved results compared to the simple average. As a last
point, we note that the values of e, ~ 3 and €3 ~ 2.5 (see Tab. 4.1) are similar for all

TMDCs, see the corresponding tables in Appx. B.

Limitations of fit models

While our two fit models are in general a simple, yet accurate way to describe the
Coulomb interaction in 2D TMDCs, they have some obvious shortcomings (see also
Appx. C). First of all, the exclusion of the half-filled band in the cRPA calculations on
metallic TMDCs as well as the exclusion of doping in the RPA ab-initio calculations on
semiconducting TMDCs limits the applicability of our models (see Sec. 2.3.2). Since no

transitions between the other electronic bands and the three bands of our Wannier model
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Figure 4.5.: Microscopic parts £5(q) and £3(q) of the interband screening in MoSe,. Ab-initio
data is depicted as dots, while the averages for the fit model are shown as lines.

are included in the three-band description, it is only reasonable to apply our model in
a certain energy range of less than ~ 1eV. Second of all, the use of the eigenvectors
of U(q — 0) over the whole range of wave vectors, cf. Eq. (4.3), may be questioned.
Although the variation of the ab-initio values compared to the analytic ones is 10 %
or less, see Fig. C.1, a fit of the eigenvectors could improve the Coulomb interaction

model.

For the calculations following in Sec. 4.4 and chapter 5, we of course do not use the
Coulomb interaction in the eigenbasis, but rather the interband screened interaction
in the orbital basis V,3. Thus, we look at the differences between the results of our
models and the ab-initio values in this basis, see Fig. C.2. For the diagonal matrix
elements, both fit models describe the ab-initio values quite well with deviations of less
than +20% for ¢ < 0.6 A~!, while the errors of the simple fit are slighty smaller than
for the pseudo-Resta fit. Concerning the off-diagonal matrix elements, the deviations
are larger with less than +25% for ¢ < 0.6 A~! and the pseudo-Resta fit works a little
better than the simple one. At large g, especially these off-diagonal values of V3 become
more anisotropic and the errors of our fits get larger, except for the dgy — dy2_,2 matrix
element. This shows that one has to be careful when using the fit models far away from

the Brillouin zone center.
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In the end, the main issue that one has to deal with when choosing which model to
employ is a competion between simplicity and accuracy. Since we cannot guarantee that
the results of our ab-initio calculations are perfectly accurate to begin with, we have
chosen to stay with the simple fit model for most results presented in this thesis and
have for example not fitted the eigenvectors of the bare interaction. The results of the
pseudo-Resta model will be shown whenever a comparison between the two models is

deemed useful.

4.3. Screening in semiconducting and metallic

systems

When we talk about the screening of the Coulomb interaction in this thesis, we distin-

guish three different screening mechanisms:

e Interband screening that is due to the microscopic polarizability given by tran-

sitions between different electronic bands already in the isolated semiconducting
and undoped layer. See Eqgs. (4.7) and (4.10).

e Substrate screening due to the dielectric environment; this can be metallic. See

Eq. (4.9).

e Metallic screening inside the monolayer due to a partially filled conduction band.

See Eq. (2.50).

Only the influence of the interband screening was discussed in the previous section. Here,

we describe the other two screening channels.

In Fig. 4.6, we show the full background screening, i.e., the combination of the interband
screening and the substrate screening according to Eq. (4.8), for dielectric constants
gsub = 1, 5, 10, 50, oo of the encapsulating environment as sketched in the right part
of the figure. One can see that the influence of the environment is most important for
small wave vectors. At ¢ < 0.2 A~ the background screening &; (q) is largely determined
by the dielectric environment; for very large wave lengths ¢ — 0, it is solely determined
by the substrates, i.e., £;(¢ — 0) = £gyp. One important point here is that the screening
inside the layer can be metallic, £,(¢ — 0) — oo, solely due to a metallic environment
and without the monolayer itself being metallic. With increasing ¢, the background
screening in our model approaches the material specific constant £.,. At ¢ > 0.6 A1,

the substrates have nearly no influence, ¢, = ... This behavior of the screening for
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Figure 4.6.: (Left) Macroscopic screening for different dielectric environments of MoSe,.
(Right) Sketch of the model situation for our calculations.

small and large wave wectors can be intuitively understood if one considers the fact that
for small wave vectors, i.e., large distances, most of the electric field lines pass through
the surrounding and, thus, the screening is determined by the dielectric environment of
the monolayer, cf. Fig. 4.1; for large wave vectors, the charges are close together and

the material itself determines the screening.

If we further take into account the screening by conduction electrons inside the material,
we find that the screening diverges at small wave vectors ¢ in all metallic cases, see Fig.
4.7. In the case of high electron doping concentrations the screening is strongly enhanced
compared to the other cases. It approaches a constant level that is higher than e, for
wave vectors ¢ > 0.5A~! while it diverges for smaller g. For low electron doping
concentrations, we can identify three different ranges. At ¢ 2 0.4 A~ the screening
is close to €. and basically not influenced by the conduction electrons. For smaller
wave vectors 0.2 < ¢ < 0.4 A~ the additional screening by the conduction electrons is
stronger than £, but weaker than the screening by a fully metallic environment. Below
g ~ 0.2A~! the screening by the additional conduction electrons becomes effective and

is stronger than the metallic substrate screening.

Finally, we show the orbital dependent onsite values in real space of the bare and screened
Coulomb interaction in MoSe, in Tab. 4.2 (see Appx. B for the values of other TMDCs).
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Figure 4.7.: Macroscopic screening in MoSe, with vacuum and metallic surrounding as well
as low (z ~ 0.02) and high (z ~ 0.17) electron doping with vacuum surrounding.

The values are calculated using a Fourier transformation® of the orbital values in k-space
which are obtained in the way described in Sec. 4.2.1 with the addition of Eq. (2.51) for
the doped metallic case. One can clearly see that the inclusion of interband transitions,
i.e., of the screening in the semiconducting layer reduces the bare interaction by a factor
of 6 to 7. The corresponding matrix elements V' are in general larger for the sulfur
compounds than for the selenium compounds, see Appx. B, while no obvious dependence
on the transition metal is observable. If we go to the metallic case and include screening
by the additional conduction electrons, the onsite interaction is further reduced by a
factor of 2 to 3. As a side remark, we mention that the local exchange interaction is
~ 0.25eV between d,2 and one of the other orbitals and 0.15eV between d,, and d,2_,2
for all TMDCs considered in this thesis (see Tab. B.11), i.e., it is insensitive to both

material characteristics and screening.

Lastly, we compare the onsite interaction in the TMDCs to the onsite interaction in
graphene. Similar calculations to those described here led to values of 17eV for the
bare interaction in graphene and 9.3 eV for the interaction that includes screening by all
bands but the 7-bands [34]. The band width of the w-bands in graphene is on the order
of 3t = 8.1eV with the hopping ¢t = 2.7eV [9]. Considering the band width of about

4Since we discuss only onsite values, which means that the corresponding real space vector is R = 0,
the Fourier transform simplifies to an average of all reciprocal space values.
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Table 4.2.: Bare onsite U as well as background screened onsite V' and fully screened onsite
Coulomb matrix elements W for the three important orbitals of MoSe,. Values
for W are in the range of low electron doping z =~ 0.03 in the fifth (Wi, K is
occupied) and for high electron doping = ~ 0.17 in the last column (Whjgn, K and
L are occupied).

bare  undoped doped
orbitals U@EV) V (V) Wigw (V) Whign (eV)
d.2 d,2 8.95 1.41 0.77 0.56
d.2 dry 8.11 1.14 0.52 0.33
d.2 dp2_2 | 8.11 1.14 0.52 0.33
day dry 8.72 1.35 0.75 0.55
day de2_y2 | 8.34 1.20 0.60 0.40
dp2_y2 dyp2_,p | 8.72 1.35 0.75 0.55

1.6 eV for the lowest conduction band of MoSe,, see Fig. 3.4, we can conclude that the
relation between the (partially) screened Coulomb interaction and the band width is on
the order of 1 in both the TMDCs and graphene.

4.4. Plasmons and EELS

Plasmons are quasiparticles describing collective excitations of the electrons in a mate-
rial; they may be thought of as oscillations of the charge density. They are given by the
roots of the dielectric function £(q,w), see Eq. (2.50). While the plasmon dispersion is
determined by

Rele(q,w)] =0 (4.13)

for damping rates that are much smaller than the plasmonic frequency w,, we also
need the imaginary part to be zero to have a long-lived plasmonic mode; otherwise, the
imaginary part determines the lifetime of the plasmon. In the following, we plot the

Electron Energy Loss Spectrum (EELS) to show the plasmon dispersions,

1
EFEFELS(q,w) = —Im 4.14

(q) ) l €(q, w ):| b ( )
since it can be measured directly in experiments [162] and shows plasmonic, but also
single-particle resonances such as electron-hole excitations. We use the macroscopic
value of the dielectric function ¢, i.e., the largest eigenvalue with respect to the bare

Coulomb interaction, see Eq. (4.4).
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Depending on the dimensionality of the system - and, thus, the g-dependence of the
Coulomb interaction, c¢f. Sec. 4.1 and Eq. (2.47) therein - the plasmon dispersion be-
haves differently already on the general level of non material-specific, bare interaction.
In the long-wavelength limit ¢ — 0, the plasmons have no dispersion and a finite fre-
quency wp, in 3D, while they follow a square root dispersion in 2D and a linear dispersion

in 1D; see for example [163|. For a 2D electron gas in this limit, the dispersion is

2me?

m

wp(q) = q (4.15)

which we will find as a limit in the numerical results presented later on in this section. It
has, for example, also been found in theoretical investigations of doped graphene [164].
As a sidenote, we remark that there can be multiple plasmon modes in the electron gas of
layered materials; depending on the out-of-plane wave vector g,, they follow dispersions

that lie between the square root dispersion and a constant frequency [165, 166].

Plasmonic resonances can be utilized in different ways, and surface plasmons of bulk ma-
terials have an especially high and long discussed potential for optical sensing and the
characterization of thin films and interfaces [167|. Lately, the application of plasmons
in the context of information technology and electronics, called plasmonics, has been
a major point of research [168]. Plasmonics in graphene have attracted a lot of atten-
tion since the plasmon dispersion in this material can be tuned via doping and electric
field gating [169-171|. Another interesting topic is that, because of their low energies
in 2D, plasmon modes might be benefitial for plasmon-mediated or plasmon-assisted

superconductivity, see for example [166, 172-174].

Various ways are possible to calculate the plasmon dispersion; here, we use RPA to
obtain the dielectric function from our three-orbital models for the Coulomb interac-
tion and the electronic properties of the the TMDCs. This means that we include
only Landau damping which occurs due to the excitation of single particle-hole pairs;
other damping effects like electron-phonon or electron-electron scattering, [175, 176],
are not explicitly included. However, the finite broadening 7 in the equation for the
RPA /Lindhard polarization, Eq. (2.53), amounts to a phenomenological description of

these processes.®

In the following, we present the results for the EELS of doped semiconducting and
metallic TMDCs, with a focus on MoSe, and NbS,, respectively. We show how the

5We use a value of 7 = 1 meV.
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plasmon dispersions depend on both electron doping and the dielectric environment.
Note that we did not include spin-orbit coupling in our calculations, which can be a

severe limitation depending on the effect one wants to discuss [71].

4.4.1. Doped semiconductors

The plasmonic dispersions of semiconducting TMDCs have been investigated before
[71, 177, 178|, but sofar other materials than MoS, have received little attention and
the influences of substrates have not been investigated. Here, we improve on this by
explicitly discussing the effects of substrates and by calculating the EELS of all four
semiconducting TMDCs discussed in this thesis. First, we look at the EELS for doped
MoSe, along the high symmetry path through the Brillouin zone (see Fig. 3.3). In
Fig. 4.8, we consider low and high doping concentrations and no substrates, similar to
Fig. 4.7. For low doping concentration, where only the K-valley in the electronic band
structure is occupied, one can identify a variety of features in the energy range below
0.5eV. The continuum of electron-hole excitations has minimal positions with w = 0 at
g = I and ¢ = K, while it reaches its maximum between I' and M and has two seperate
branches at 2. A plasmon dispersion is visible for very small wave vectors around I’
with energies below 0.2€V. It approaches the continuum rather rapidly with increasing
g. At high doping concentration, where the K- and the Z-valley in the band structure are
both occupied by electrons, a lot of the other features of the EELS get blurred while the
plasmon dispersion becomes more pronounced. Following the initial square root rise at
very small ¢, it has a flat shape with w < 0.5€eV and enters the continuum at ¢ < 0.3M
and ¢ < 0.5X. In addition to the blurring, some new features also appear in the EELS.
The electron-hole continuum has one branch with very large energy around X and one

with a constant energy w < 0.3¢eV around K.

Next, we present the dependence of the plasmonic dispersion on doping as well as sub-
strate screening for the path I' — X, see Fig. 4.9. We observe that the plasmon dispersion
is strongly tuneable by doping and the dielectric environment. Both the shape and the
energy can be varied. In general, one can see that an increasing dielectric constant
pushes the dispersion into the continuum, i.e., the initial rise for small g is less steep and
the overall shape is less different from a linear function. On the other hand, increased
electron doping also changes the shape of the dispersion and leads to a raise of the maxi-
mum plasma, frequency from between 0.1 and 0.2eV at z = 0.02 to approximately 0.5eV

at z = 0.17. In all cases, no clear plasmon dispersion can be identified for ¢ > 0.5 X.
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Figure 4.8.: EELS for MoSe, without substrate for doping concentrations z = 0.02 (Top) and
z = 0.17 (Bottom). The color scale is logarithmic.



4.4. Plasmons and EELS 77

= =
= b3

0.7] D.? 3
(15 0. 0
(15 _2 ' 5
%0‘4 a3 43
?(13 5 30 6
_8 . —8
E : —10
: —12

=

=)

——

3
3

¥

4 4

9 .

0 .

-2 : -2

—4 : -4 @

—6 - —6

—8 0.2 —8

—10 0.1 —10

-12 —12

4

9 D.? 9
0 0.6 0
-2 -2
—4 | —4
—6 | —6
—8 0.2 —8
—10 0. 1 —10
-12 k —12

™

0.7]
(ll':'»
OAS
i 0A4
3 0.3
02
0.1
k N W

= =2 =
o~

w {eV}

0.2
0.1

4
2
0
—12
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As a last step, we compare the EELS for MoSe,, MoS,, WSe, and WS,, see Fig. 4.10.
We use the path I' — K and consider the case of electron doping = 2 0.09, where
both valleys are occupied, and vacuum surrounding. The four materials all have similar
features, such as a plasmon frequency at w 2 0.4 eV, but the specific shape of the plasmon
dispersion and the electron-hole continuum are subject to changes. One can see that the
dispersions are similar to the bare 2D square root dispersion in all cases, see Eq. (4.15).
For MoSe,, its frequency stays around 0.4eV, while it undergoes a rise to nearly 0.6 eV
for the other three materials. The EELS also have some structure beyond the plasmon
dispersions. Around the L point, the electron-hole continuum is split up into three (two
for WS,) regimes with larger intensities, shown by the green color in the logarithmic
color scale, and two (one) intermediate frequency regimes with lower intensities. The
splitting of the two lower regimes with larger intensity is not clearly visible for MoSe,,

while it is similar for MoS, and WSe, and most pronounced for WS,,.
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Figure 4.10.: EELS for TMDCs MoSe, (Top left), MoS,, (Top right), WSe, (Bottom left) and
WS, (Bottom right) for electron doping z 2 0.09 without substrate. The color
scale is logarithmic.

4.4.2. Metals

The plasmonic spectra of several metallic TMDCs have been investigated before in Ref.
[179]. Furthermore, a possible influence of charge order on the plasmon dispersion has
been studied concerning NbSe, [180], NbS, [181] and other metallic TMDCs such as
TaS, [182]. Here, we do not include charge order (see Sec. 5.4) and its effects, and we
also omit the effects of doping that we looked at in the previous section, although they
can be important in metallic TMDCs [183]. However, we include the effects of dielectric
substrates, which have not yet been investigated for metallic TMDCs.

First, we show the EELS along the full high symmetry path for undoped, half-filled
NbS, and NbSe, with vacuum surrounding in Fig. 4.11. Distinct square root shaped

plasmon dispersions can be observed in both cases. NbS, has a larger plasmon frequency
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Figure 4.12.: Plasmon dispersions for NbS, and NbSe, as obtained by Andersen et al. in Ref.
[179]. The scale of the x-axis is g(A~1).

w 2 0.8€eV and larger slope of the dispersion. In NbSe,, the dispersion has a more
constant shape with w < 0.8€eV. Due to the Fermi surfaces and half filling, the electron-
hole continuum has no distinct branches as in the case of the doped semiconductors, and
its shape basically follows the band structure of the half-filled band®, cf. Figs. 3.9 and
3.10.

To verify our method, we compare the EELS for NbS, and NbSe, as obtained from our
RPA calculations, see Fig. 4.11, to the plasmon spectra obtained by Andersen et al., see
Fig. 4.12. One can see that the initial steep rise of the plasmon dispersion as well as the
general shape are similar. Furthermore, both calculations find a large wave-vector range
with an only slightly dispersing plasmon frequency which lies above 0.8eV (NbS,) and
around 0.8 eV (NbSe,). The difference between the two materials is more pronounced in
our results than in the ones by Andersen et al. They claim that the dispersions from I’
to M and from I" to K are very similar, which we do not see in the case of NbSe,. The
constant or even negative dispersion that they find for this material is only obtained in

the direction from I to K in our results.

As a last step, we look at the change of the plasmon dispersion along I' — K in NbS,
with different substrate dielectric constants and compare to the results for the pseudo-
Resta model of Eqgs. (4.11) and (4.12). From Fig. 4.13, one can see that the shapes of
both fit models are different in a small range if no substrate is included, but that their
frequencies are very similar. The pseudo-Resta model yields a rather dispersionless
mode, while the simple model has a non-vanishing slope. Furthermore, the previously

discussed fact that the dielectric environment pushes the dispersion into the continuum

6The band width is approximately 1.2€V in NbS,, while it is less than 1€V in NbSe,.
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can be observed here, too. For the pseudo-Resta model, this happens faster with the
dispersion not being distinguishable from the continuum for a large dielectric constant
e =50.



5. Electronic instabilities in

two-dimensional materials

When we talk about instabilities in this thesis, we always discuss the instability of
the conduction electrons towards the formation of a long-range ordered phase. In the
field of 2D materials and especially TMDCs, several examples such as superconductivity
[22, 28], Charge Density Wave (CDW) phases [16, 23] and Spin Density Wave (SDW)
phases [184| have been ivestigated so far. Other examples in layered materials include
the high-temperature superconductivity and the Mott transition from metal to insulator
in the cuprates [97]. The Mott transition was also experimentally observed for 1T-TaS,
[19] and claimed to occur in monolayer 1T-NbSe, [185|. Here, we look at conventional
superconductivity in the TMDCs (Sec. 5.1) and functionalized graphene (Sec. 5.2), as
well as possible unconventional superconductivity in MoS, (Sec. 5.3) and at CDW and
SDW formation in the TMDCs (Sec. 5.4).

From a theoretical point of view, it has often been argued that superconductivity is not
possible in two-dimensional materials. This is due to the so-called Mermin-Wagner the-
orem which states that in two or less dimensions, no spontaneous breaking of continuous
symmetries at finite temperatures is possible.! This means, as Hohenberg showed [187],
that superconductivity or long-range crystalline order cannot exist in strictly two or less

dimensions.

Several reasons can be stated for why superconductivity and other long-range order
can indeed exist in 2D; we give two arguments. First of all, although the systems at
hand are mostly treated as being effectively two-dimensional in our calculations, they
are not purely two-dimensional in the sense that they have a certain height due to the
distance between the chalcogen atoms and the transition metal atoms or the hydrogen
atoms and the carbon atoms, respectively; furthermore, monolayers of 2D materials

often exhibit a crumbling in the z-direction [149]. Secondly, even if the systems are

!Mermin and Wagner originally showed that no long-range ferromagnetic or antiferromagnetic order
can exist in the Heisenberg model in two dimensions [186].
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purely two-dimensional, i.e., also not supported by substrates, and longe-range order is
suppressed by thermal fluctuations, they can exhibit quasi-long-range order in the form
of a Berezinskii-Kosterlitz-Thouless transition [188, 189]. This can, for example, lead to

a superconducting state with a lowered critical temperature [36].

As pointed out before, an important aspect that has not been investigated in detail in
the existing literature is the influence of the Coulomb interaction on the instabilities. In
the following discussion on the TMDCs, we aim at improving this situation and use the
material-realistic Coulomb interaction as derived in the previous chapter to calculate
realistic values for the effective Coulomb repulsion and its influence on the supercon-
ducting phase, the charge ordered phase and the spin ordered phase. By investigating
this influence and additionally taking the interaction between electrons and phonons
into account, we build up a database for the TMDCs, similar to the plain values of the

Coulomb interaction and the plasmon dispersion discussed in the previous section.

5.1. Conventional superconductivity in TMDCs

The essential ingredient to a superconducting phase are the Cooper pairs which are
formed by two electrons as described in Sec. 2.6 and Fig. 2.4. When using the term
conventional superconductivity we mean that the binding responsible for this pair forma-
tion is mediated by the interaction of electrons and phonons. To theoretically describe
this interaction we use Density Functional Perturbation Theory for the lattice dynamics
and Eliashberg theory for the superconducting phase, see Secs. 2.5.2 and 2.6.2, respec-
tively. At first, we discuss the phononic properties of the TMDCs using the examples of
MoSe, and NbS,. Afterwards, we take a look at the electron-phonon and the electron-
electron interaction and finally characterize the superconducting phase via the results
for the critical temperature. We mention that the phonon calculations presented in this
section are fully ab-initio, which means that they include band structure changes beyond
rigid shifts on a DFT level.
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5.1.1. Phonons

The TMDCs have unit cells with three atoms which results in nine different phononic
modes. Three of these modes are acoustic, which means that they have zero frequency
w for vanishing wave vectors ¢ — 0, while the other six have optical character with
higher frequencies according to Sec. 2.5.1. Two of the acoustic modes stem from in-
plane longitudinal or transversal vibrations (LA and TA). At small wave vectors, they
have a linear dispersion and a larger energy than the third, quadratic mode (ZA) that
stems from the out-of-plane motion. As we will see later on, these acoustic modes have
the largest influence on the superconducting and CDW properties of the materials at
hand. We will also see that their dispersion can depend strongly on the electron doping

level.

In the metallic regimes upon electron doping (semiconducting TMDCs) or at half filling
(metallic TMDCs), the phonon dispersions can become imaginary at wave vectors away
from g ~ 0. These imaginary frequencies are shown as negative frequencies in the graphs
that we plot. They are signs of a lattice instability or CDW phase, which we discuss in
Sec. 5.4.1.

As one can see from the corresponding figures in Appx. B and Figs. 5.1 and 5.2, the
phonon dispersions of the semiconducting or metallic TMDCs, respectively, are rather
similar. Despite the fact that the instability occurs at different wave vectors in the
doped semiconducting and the metallic materials, see Sec. 5.4.1, the main difference is
the magnitude of the frequencies. In general, lighter atoms lead to higher frequencies,
see Sec. 2.5.1 and Eq. (2.69); thus, for example, WSe, has smaller frequencies than
both WS, and MoSe, because molybdenum is lighter than tungsten and sulfur is lighter

than selenium. This trend can be seen for all materials.

Semiconductors

The phononic dispersions of semiconducting TMDCs have previously been calculated
in Ref. [191] for MoS, and WS, and in Ref. [190] for MoSe,. Electron doping in
MoS, and its effect on the phonons has been investigated in Refs. [192, 193]. For the
other semiconducting TMDCs the effects of electron doping on the phonons are studied
here for the first time. We look mostly at the example of MoSe, and show the phonon
dispersion in Fig. 5.1.
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Figure 5.1.: Phononic dispersion in undoped MoSe, from our DFPT calculations. The anno-

tations indicate the character of the corresponding vibrations or Raman modes,
[190].

The three acoustic modes reach their maximum frequency at ~115cm™! for the TA
mode, ~133cm™! for the ZA mode and ~156cm™! for the LA mode.?2 The optical
phonons are well seperated from the acoustic ones with two distinct groups at higher
frequencies. Especially the E” and E’ Raman modes [190] have a rather flat dispersion;

they are degenerate at ¢ = 0 with frequencies ~162cm™! and ~275cm™!

, respectively.
The other two optical modes, called A’y and A”5, are the only modes with a negative
dispersion, i.e., lower frequencies for larger wave vectors. They have frequencies in the

range of ~195ecm™! to ~240cm™! and ~285cm™! to ~345cm™!, respectively.

Upon electron doping, the LA phonon mode softens strongly and eventually becomes
unstable with imaginary frequencies around the M point (see Figs. 5.3 and 5.16). Parts of
the other phonon modes also experience a weaker softening. These softened or imaginary

frequencies will be discussed in more detail in Secs. 5.1.2 and 5.4.1.

2If one wanted to represent these phonons by a single Einstein frequency for large wave vectors in a
Hubbard-Holstein model, a possible choice would be to use the ~16.5meV of the ZA mode, since
this mode is the least normalized by the electrons.
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Figure 5.2.: Phononic dispersion in undoped NbS,.
Metals

While NbSe, and its phonon dispersion have been investigated before both in the bulk
and in the monolayer, [194], the phonon dispersion in NbS, has so far only been studied
for the bulk material [195] as far as we know. Thus, we focus on NbS, and give its

phonon dispersion as obtained from DFPT calculations in Fig. 5.2.

A distinct feature in the phonon dispersions of NbSe, (see Fig. B.3) and NbS, are the
imaginary frequencies between I' and M which stem from a strongly softened acoustic
mode. They are a sign of a lattice instability as discussed in Sec. 5.4.1. The acous-
tic phonons are well seperated from the optical bands and have frequencies of up to
~205cm™! (TA mode at K point). The optical dispersions do not fall into two groups
as it was the case for MoSe,. Instead, they lie between ~220cm™! and ~410cm™!

bl

where the minimal frequency results from a band that is softened similar to the softened

acoustic band. At q = 0 the optical phonons have two degenerate bands at ~235cm™!

and ~335cm™!, respectively, and two nearly degenerate bands around ~400 cm™!.



88 5. Electronic instabilities in two-dimensional materials

Phonon Dispersion of MoSe, DOS of phonons, AE=5cm™  o’F(®), Gy 5y, = 0.010 Ry
400 T T T T T T T T T T T
350 | 4 F 4k .
300 - 4k .
250 . .
€
s
> 200 [ ?E <: 1k . .
o
® >
=
w
150 |- 4 F 4k .
100 |- 4k . > .
50 |- 4 H A A
P——
0 | | | | | | | | | | |
r M K ro 005 01 015 02 020 05 1 15 2 25 3

Figure 5.3.: Phononic dispersion, DOS [see Eq. (2.82)] and o?F [see Eq. (2.81)] for MoSe,
under electron doping = = 0.08.

5.1.2. Electron-phonon interaction

Superconductivity in monolayer and few-layer TMDCs has experimentally been investi-
gated by several groups [11, 22, 23, 26, 28, 36|, while the theoretical effort to understand
the electron-phonon interaction responsible for the superconducting phase has focussed
on monolayer MoS, [192, 193]. Here, we study again the case of a monolayer of MoSe,
under electron doping. The results for the phonon dispersion, the phononic DOS and
the spectral function o?F that quantifies the electron-phonon interaction [see Eq. (2.81
and Secs. 2.5.3 and 2.6.2| are shown for an examplary doping of z = 0.08, i.e., above
the Lifshitz transition, in Fig. 5.3.

When comparing to the phonon dispersion of pristine MoSe, in Fig. 5.1, one can see

an overall softening of the phonon dispersion towards lower frequencies at several wave

1

vectors. The acoustic phonons now lie well below 150 cm™ since the additional electrons

have the strongest effect on the LA mode around the M point with a change of more
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Figure 5.4.: Frequency-dependent electron-phonon interaction A(w) in MoSe, at electron dop-
ing x = 0.08 obtained by setting the upper boundary of the integration in Eq.
(2.83) to w, which is equal to setting n = n’ in Eq. (2.99). For w — oo, the

interaction is equal to the value of A = 2.03 entering the Allen-Dynes equation,
see Tab. 5.3.

than 100ecm™. The TA mode also softens, but around the K point, while the ZA mode
is unaffected. The optical phonons are still split up into two subsets but partly softened.
While both the E” modes and the A”y mode are basically unchanged, the A’; mode
softens at ¢ = 0 and the E’ modes soften around g = M.

In the middle panel of Fig. 5.3, we see the phononic density of states. There are
several peaks around 100 cm™, 200ecm™! and 275 cm™! which correspond to flat regions
in the dispersion. The right panel shows the corresponding values of the electron-phonon
spectral function o?F, see Eq. (2.81). Since this function incorporates both the phonon
DOS as well as the electron-phonon interaction, we can now distinguish between the
influences of these two quantities. We see that a?F has considerable values of 0.5 and
less around the maxima of the acoustic phonons and, less pronounced, in the optical
region between 200cm™' and 300cm™! where the DOS of the phonons is large. This
can be seen as a DOS effect which means that the electrons couple rather weakly to the
ZA and TA acoustic modes as well as the optical modes. However, we can also identify

I around M with values

a very strong coupling to the softened LA mode below 50 cm™
exceeding a?F ~ 3. Since the DOS in this region is rather low, this effect is caused by

a strong electron-phonon interaction.

For a better justification of and more insight into the claims in the last paragraph, we look
at the frequency-dependent electron-phonon interaction A(w), which is the integrated
weight of the spectral function a?F(w). In this way we can distinguish between the

contributions at different frequencies to the full effective electron-phonon interaction A.
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Table 5.1.: Electron-phonon coupling A [see Eq. (2.83)] and phonon frequency wiog [see Eq.
(2.103)] in electron doped TMDCs below, directly at and above the Lifshitz transi-
tion. Note that the values of the doping z for different materials are not necessarily

comparable.

Material MoS, MoSe, WS, WSe,
Thelow 0.05 0.05 0.02 0.03
Abelow 0.40 0.43 026 0.42
Wiog, below (cm™1) | 183 118 148 85

Tat 0.075 008 005 0.05
Aat 0.78 2.03 065 098
Wiog,at (cm™?) 151 50 121 62

Tabove 0.087 0.09 008 0.08
Aabove 1.0 CDW 120 CDW
Wiog,above (cm™Y) | 134  CDW 97 CDW

From the results in Fig. 5.4, we see that the main contribution, which already amounts
to more than three quarters of the full A, is given by the softened phonon mode which
lies slightly below 50cm™! for z = 0.08. Most of the rest of the effective interaction
comes from the acoustic modes in their flat region above 100cm™!. Finally, about 5%

of the full A results from the coupling to optical phonons at higher frequencies.

The strong coupling to the LA mode around the M point that softens upon electron
doping can be understood when we look at the Fermi surface of doped MoSe, in Fig.
3.7. Once the Lifshitz transition has occurred, a phonon mode with wave vector M can
connect Fermi pockets around K and ¥ as well as two L pockets. This situation is similar
to the so-called (partial) Fermi surface nesting that was often linked to the formation of

CDWs [196].

We now look at the evolution of the electron-phonon interaction with doping for the
semiconducting TMDCs. In Tab. 5.1, we show the values below, approximately at,
and above the Lifshitz transition for the averaged interaction A [see Eq. (2.83)] and the
typical phonon frequency wi, [see Eq. (2.103)] that are part of the Allen-Dynes equation
[see Eq. (2.106)| which we use to calculate the critical temperature of superconductivity
in Sec. 5.1.4. One again sees that the phonon frequency depends on the mass of the
atoms involved which means that MoSe, has a lower frequency than MoS, and WSe, has
a lower frequency than MoSe, at low doping, i.e., only weak softening. Below the Lifshitz
transition, the coupling is A ~ 0.4 or less which results in a vanishing critical temperature
(see Tab. 5.3). Once the transition takes place, there is a strong enhancement of A to

values above A ~ 1.0 which shows that we need a theory that is able to treat strong
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coupling such as the Eliashberg theory. The typical frequency is shifted towards 0 cm™.
For the selenide materials, the lattice instability occurs already below z ~ 0.1 which
means that the calculation of wig is not possible due to the finite values of a?F at
negative, i.e., imaginary frequencies.> The Lifshitz transition occurs at lower doping in
the two tungsten materials since the valleys around K and X are closer together in energy
in these materials and the shift of the X-valley upon doping is stronger (as predicted
from our DFT calculations)*.

5.1.3. Influence of Coulomb interaction

Although superconductivity has been around for more than a hundred years, the role of
the Coulomb interaction in this field is still far from being fully understood. Besides the
possibility to get an unconventional superconducting phase purely from the Coulomb
interaction between the electrons, which leads to an order parameter with lower symme-
try than the standard s-wave (see, for example, Sec. 5.3 and [197]), the interaction can
both enhance and suppress the critical temperature in the conventional electron-phonon
superconductivity [198]. Here, we focuss on the Coulomb repulsion which reduces T,
in the formalism of Eliashberg theory (see Sec. 2.6.2). The possible enhancement has
also been a subject of recent research [199], including discussions of the dynamic, i.e.,

plasmonic part of the Coulomb interaction [173, 174].

In standard BCS theory, the Coulomb repulsion is only implicitly included in the effec-
tive attraction of the electrons (see Sec. 2.6.1). More advanced treatments of phonon-
mediated superconductivity use the Eliashberg theory, often in the Allen-Dynes approx-
imation (see Sec. 2.6.2), and usually include the Coulomb repulsion via the effective
Morel-Anderson constant p*, see Eq. (2.104) and [114]. This constant can be obtained
in several ways such as fits to experimental values for the critical temperature. In a lot
of cases, it is simply assumed to have a certain value between 0.1 and 0.2, e.g. p* = 0.13
[81, 116, 192]. Other studies including calculations of p* also find values in this range,
see for example Refs. [200-202]. We aim at a better, material-realistic and specific
description of the effective Coulomb repulsion for the monolayer TMDCs which is not
available yet. To this end, we perform calculations for the averaged Coulomb interaction
i [see Eq. (2.100)] from ab-initio data via our own RPA code which uses the Coulomb

3Since this is also the case for the undoped metallic TMDCs, we have not discussed the electron-phonon
coupling in NbS, and NbSe,.

4This effect can also be seen from Fig. 3.8 where doping is included only as a rigid shift of the Fermi
level.
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Figure 5.5.: Dependence of the averaged Coulomb repulsion g on the electron doping concen-
tration z, subject to various g}, of the dielectric environment.

interaction presented in the previous chapter.® The parts of our results that show only
data for MoS, have already been published by the author in Ref. [159].

First of all, we use Eq. (2.100) to calculate the effective Coulomb coupling constant
f. The results are shown in Fig. 5.5 for different dielectric environments of a MoS,
monolayer and in dependence on the electron doping concentration. We see a decrease
of p with increasing doping up to z < 0.07 from values of p ~ 0.3 to p < 0.2 for the
freestanding layer (e5,, = 1); for higher doping levels, p is nearly independent of the
doping. In the low-doping regime, < 0.07, where only two Fermi pockets around
the two K points are present, the coupling g is renormalized by up to ~ 30% via
external screening, resulting in a decrease of p with increasing dielectric constant of the
environment. In contrast, at higher doping concentrations p is clearly much less sensitive
to the dielectric environment, and variations of x due to external screening are limited
to < 10%.

If we account for the multi-valley structure of the Fermi surface (see Fig. 3.7), p is
no longer a simple scalar but becomes a matrix in the electronic valleys. To further
investigate the effect of the dielectric environment, we discuss this matrix structure of

p. For low doping concentrations, where only the two valleys around the K points are

For this subsection, the calculations use band structures of undoped TMDCs and treat the doping
as a rigid shift of the Fermi level. This changes the values of the critical electron doping at which
additional Fermi pockets arise but does not influence the trends and conclusions since the relative
change of the minima at K and X is not important here.
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Figure 5.6.: Values of the 2 x 2-matrix p [cf. Eq. (5.1)] for low doping concentrations and
their dependence on the dielectric environment.

occupied, we obtain the following structure

Piow = ( P"intra .P:int,er ) , (51)

)U‘inter )U‘intra

where the states {k,k’} in Eq. (2.100) are in the same valley for pin, while they are
in different valleys for pinter- The sum of all matrix elements yields the total coupling
constant p. A comparison of external screening effects on intra- and intervalley Coulomb
scattering (Fig. 5.6) shows that essentially only the intravalley scattering is affected by
the dielectric environment; the intervalley scattering experiences no notable change.
These observations can be explained intuitively.® External screening is most effective
when the separation (~ 1/q) of the interacting charges inside the monolayer is larger
than the distance ~ %d to their image charges in the environment but smaller than the
internal Thomas-Fermi screening length 1/qrp [cf. Eq. (2.57)], ie., for grp < ¢ < 2
(cf. Fig. 4.7). As a consequence, the influence of the substrate weakens as soon as
qtr 2 %. Using the effective thickness of d ~ 9.1 A, a Thomas-Fermi wave vector
grr = 2me’N(Er)/(Ae,(grr)), and a background dielectric constant on the order of
£1(q) & €5 = 9.3 for g > %, we find that the substrate influence is minor as soon as the

density of states at the Fermi level exceeds N(Er) > 0.19 /eV per unit cell. In MoS,, we
have N(Ep) ~ 0.4eV~! and N(Ep) ~ 2eV~! for low (z < 0.07) and high electron doping

6See also the discussion in Sec. 4.3.
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Figure 5.7.: Development of averaged Coulomb interaction p with electron doping in several

TMDCs.

Table 5.2.: Values of the averaged Coulomb interaction p and the density of states per spin at
the Fermi level N(Ef) for different TMDCs, shown as averages of several values
at high doping (semiconductors) or for the undoped, half filled material (metals).
For N(Eg) of the semiconductors, see also Fig. 3.8.

Material MoS, MoSe, WS, WSe, NbS, NbSe,
I 0.189 0214 0.182 0.186 0.235 0.217

N(Ep) (1/eV) | 1.02 1.24 099 102 140  1.42

concentrations (z > 0.07), respectively, which means that substrate influence is weak,
especially in the regime of high doping concentrations. However, for sufficiently low
doping concentrations, the scattering inside the same K- or K’-valley can be controlled

via the substrates.

We now compare the results for the averaged Coulomb repulsion p in several TMDCs.
The dependence of i on electron doping in the different semiconducting TMDCs is shown
in Fig. 5.7. One observes a similar trend in all TMDCs, namely a descrease from values
between 0.25 and 0.3 to a constant value around 0.2 upon increased electron doping.
The small difference of MoSe, to the other three materials can be explained in parts by
the slightly larger DOS at the Fermi level, see Fig. 3.8, which leads to a larger value of
the Coulomb repulsion, see Eq. 2.101. The tungsten materials have a lower DOS at the
Fermi level than the molybdenum materials in the low-doping regime which may be the

reason for the slightly lower values of p.
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The similarity of the values of i at high doping, where all K and X valleys are occupied,
can also be seen in Tab. 5.2. There, we show the average p in the full metallic regime
for all six TMDC s, i.e., at high doping for the semiconductors and for the undoped/half-
filled case for the metals. This average Coulomb interaction is between 0.18 and 0.24 for
all six materials. Again, one reason for the overall similar values as well as the slightly
larger values in MoSe, and the niobium compounds can be the DOS at the Fermi level,

because p = N(Ep)W in a simple picture with local interaction W, see Eq. (2.101).

Eq. (2.101) can also be used to gain insight into the the range of values that is possible for
the averaged Coulomb repulsion. An upper limit for p can be calculated via the unitary
limit of the Coulomb interaction, V' — oo. This leads to the following estimation for

the maximum of the screened onsite interaction, derived from Eq. (2.51):

— v Voo 1 g0 1

Wos =191 = "1 ~ 2N (Er) (52)

where we have used the long-wavelength limit of the polarization, see Eq. (2.58), and
taken into account that the interaction is screened by all electrons, which leads to the
factor of 2 due to a (in our case) spin-degenerate DOS. Since the prefactor in the calcu-

lation of p is only the DOS per spin, this leads to an estimation of

— 1
pmax = N (Ep)Wmax = ) (5.3)
for the upper limit of the Coulomb repulsion. With a p of up to 0.3 in the low-doping
regime of the semiconducting TMDCs, our values are at 60 % or less of this maximal

value.

In chapter 4, we discussed a pseudo-Resta model as an improvement of the simple fit
of the Coulomb interaction, see Sec. 4.2.1. Using this model to calculate the Coulomb
interaction instead of the simple model used so far has only a minor influence on the
values for pu, as is apparent from Fig. 5.8. In the low-doping regime, the values of the
pseudo-Resta model are slightly higher by an amount of less than 2 %, while the change
in the high-doping regime is barely visible.

As a last step, we show the change of the Coulomb pseudopotential p* [see Eq. (2.104)]
with doping and dielectric environment for the case of MoS,, in Fig. 5.9. For free-standing
MoS, we observe a decrease of p* from p* > 0.25 to p* < 0.15 for z < 0.07, which is
caused by the corresponding decrease in p and the decrease in the phonon frequency

Wiog (see Tab. 5.1 and [193]). At larger electron doping concentrations, p is basically



96 5. Electronic instabilities in two-dimensional materials

o
w
T

= simple T
v pseudo-Resta

0.25

0.15f 1

Averaged Coulomb potential p
o
"

o
Y

0.05 0.1 0.15

electron doping concentration

o

Figure 5.8.: Comparison of the averaged Coulomb interaction p for electron doped MoS,,
resulting from the simple Fit for the interaction and the pseudo-Resta fit.

constant and we have p* ~ 0.13. For MoS, embedded in a metallic environment, p*
shows essentially the same trend with the only difference in comparison to the free-
standing case being a reduction of p* by up to 25 %, particularly at low doping, which
could shift the onset of the superconducting phase to a lower doping concentration than

the critical concentration for the freestanding layer.

A significant T, is only reached when the exponent in Eq. (2.106) is close to —1 or larger,
especially when the electrons mainly couple to acoustic phonons as it is the case for the
TMDCs (cf. Fig. 5.3) and, thus, the frequency wog is rather small, e.g. T, > ff;—lgge_2.
To achieve this, A > 3 u* has to be realized for the range of 0.1 < p* < 0.3 found
here. From the comparison of p* and A/3 in Fig. 5.9, we see that a significant T, (as
occurring for A > 3 u*) can only be observed once z = 0.07, i.e., when both valleys
in the conduction band are occupied by electrons. This result for the strong effect of
the Lifschitz transition on the critical temperature is true for all four semiconducting

TMDCs discussed here, as we will see in the next section, see Tab. 5.3.

We thus conclude that the frequent use of a constant for the Coulomb pseudopotential,
e.g. pu* = 0.13 [81, 116, 192], is not sufficient in the case of electron doped MoS, to
describe the influence of the Coulomb interaction directly at the transition to the su-
perconducting phase. However, p* ~ 0.13 yields a sufficient description of the Coulomb

repulsion deep in the superconducting phase.
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Figure 5.9.: Development of effective Coulomb interaction pu* and electron-phonon interaction
A with electron doping in MoS,. The values of A are scaled by a factor of 3 for
comparability.

5.1.4. Critical temperature and phase diagram

Experimentally, evidence of a superconducting phase in few-layer MoS, was first found
by Ye et al., [22], where a dome shape of the critical temperature upon electron doping
via electic field gating was observed, see Fig. 1.2. The experimental phase diagram
included a rapid onset of superconductivity at a certain critical doping and a maximum
critical temperature around 10K at doping level &~ 0.1. This phase diagram shares
some similarities with the phase diagram observed in high-temperature superconductors
[97] which is one reason for the interest of the scientific community in these results. High-
temperature superconductors also share some similarities with the TMDCs concerning
their crystal structure due to the layered structure of the cuprates. The doping depen-
dence of superconductivity in the semiconducting TMDCs was also found in theoretical

studies on MoS,, [192, 193] as well as experimental investigations of MoSe, [28].

A feature of superconductivity in metallic TMDCs is its enhancement upon pressure
which was found in Ref. [203] for bulk NbSe, and in Ref. [204] for bulk NbS,. Further-
more, several studies have found that the critical temperature reduces with decreasing
thickness of the few-layer MoS, [36] and NbSe, [11, 23, 26| (see also Fig. 1.1). The
reason behind this reduction has not been clearly identified so far. One possibility that

has been discussed in the literature [36] is enhanced Coulomb interaction due to the
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Table 5.3.: Critical temperatures of superconductivity in electron doped TMDCs below, di-
rectly at and above the Lifshitz transition. To calculate these values, the values
in Tab. 5.1 and the Allen-Dynes equation (2.106) were used. For comparability of
the values of one material, a value of u* = 0.15 is used in all cases. Note that the
values of the doping = of different materials are not necessarily comparable.

Material MoS, MoSe, WS, WSe,
Thelow 0.05 005 0.02 0.03
Tt betow (K) | 0.2 0.3 0.0 0.2

Tat 0.075 0.08 0.05 0.05
Te e (K) 6.5 9.3 2.9 4.6

Zabove 0.087 0.09 0.08 0.08
Tt above (K) | 11.2  CDW 100 CDW

low dimensionality and the reduced screening of the system. From the results in the
previous section on p*, we can already state that the drop in the critical temperature of
TMDCs when going from the bulk or multilayer-system to a monolayer cannot be caused
by this effect as far as our calculations go, because the values of the electron-phonon
coupling (see Tab. 5.1) are much larger than the p* &~ 0.13, which we find in the region
of optimal doping independently of the dielectric environment of the MoS, monolayer.
However, one topic that is not included in this thesis are the possible effects of disorder
on the phase diagram. These effects can be very significant and can lead to a reduction
of the critical temperature of the superconducting phase, especially in systems with low
dimensionality [205].

From the results obtained so far, we can calculate the critical temperatures of the
electron-doped semiconducting TMDCs using the Allen-Dynes equation (2.106) together
with the values in Tab. 5.1. The resulting data with critical temperatures below, at, and
above the Lifhitz transition is pesented in Tab. 5.3. We see that all four materials have
a vanishing T, below the Lifshitz transition and a rapid onset of the superconducting
phase at the transition. The maximal critical temperatures reached for high doping con-
centrations are above 10 K. Due to the fact that the coupling to low-frequency acoustic
phonons dominates in the TMDCs, we do not reach higher critical temperatures such as
those calculated for functionalized graphene (see Sec. 5.2) despite the strong effective

electron-phonon coupling evidenced by large values of .

Using our data as well as the data from [22] and [193], we can draw a generic phase dia-
gram of the semiconducting TMDCs under electron doping, see Fig. 5.10. By increasing

the doping level, our calculations predict that the materials first become metallic, then
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Figure 5.10.: Sketch of the generic phase diagram including the DFT, DFPT and Eliashberg
results for semiconducting TMDCs upon electron doping.

turn superconducting and eventually obtain a CDW phase. The arrows indicate that in-
creased substrate screening £y}, can shift the onset of the superconducting phase towards
lower values of the electron doping, while an increase in the atomic mass, i.e., the use
of a heavier transition metal or chalcogen, leads to the formation of the CDW phase at
lower doping concentrations due to lower phonon frequencies (see Sec. 5.1.2). While the
coexistence of CDW phases and superconductivity was investigated for bulk, metallic
1T-TaS, [19], we are not aware of any experimental study that has investigated few-layer
or monolayer systems of the semiconducting TMDCs under high electron doping and
searched for a CDW phase. For high-temperature superconductors, a possible compe-
tition between superconductivity and CDW has been investigated for example in Ref.
[206]. Whether superconductivity and the CDW phase coexist in metallic TMDCs and
whether the superconducting order persists beyond the critical doping of the predicted
CDW in the semiconducting TMDCs is unclear and has to be investigated experimen-

tally.
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5.2. Conventional superconductivity in functionalized

graphene

Superconductivity in functionalized or doped, i.e., metallic graphene materials was al-
ready investigated in a lot of studies from both theory and experiment, [207-212] among
others. In this thesis, we discuss the example of partially hydrogenated graphene C H,
and look at the possibility of electron-phonon superconductivity. The electronic prop-
erties of this material were in parts already shown in Sec. 3.2. As was mentioned there,
CgH, is an interesting material since the placement of the hydrogen atoms on just one
side of the carbon layer leaves the other side open for further functionalization, e.g.
via substrates. Furthermore, the material is especially interesting concerning its super-
conducting properties due to the large phonon frequencies and resulting high critical
temperatures that can be obtained in hydrogen and carbon compounds because of their

small atomic masses.

The Coulomb interaction in graphene was already investigated by several studies, for
example [34, 81]; we will not discuss it here and use a constant Coulomb pseudopotential
of p* = 0.15 when calculating the critical temperature of the superconducting phase. The
doping that is needed to have free charge carriers in the otherwise semiconducting CgH,
is modeled again via additional or missing electrons, compensated by a homogeneous
jellium background [cf. Eq. (2.13)]; this means that no chemical doping is considered
explicitly.

5.2.1. Superconducting phase

To investigate the possibility of a superconducting phase that is induced by electron-
phonon coupling in doped CgH,, we look at the phonon dispersion upon doping, the
phononic density of states and the function o?F. In Fig. 5.11 (top) we see the results for
electron dopings of x = —0.1 and x = —0.4; the corresponding electronic band structures
were shown in Fig. 3.15. Compared to the TMDCs (see Fig. 5.3 for MoSe,), the phonon
dispersion of C¢H, has a richer structure, consisting of 30 modes since there are 10
atoms in the unit cell. The three acoustic modes lie below 320 cm™!; they experience
no substantial softening upon electron doping. Between 330cm™! and 1550 cm™! we see

1

a large group of 25 optical modes where only two modes around 500 cm™" are strongly

softened. Seperated from the other optical modes, two C-H stretching modes lie between
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Figure 5.11.: Phononic dispersion, DOS and o?F for CgH, under electron doping (top) and
hole doping (bottom). The ZA-mode is unstable around I" due to the fact that

the atomic structure is not fully relaxed for symmetry reasons; cf. Sec. 3.2.
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2680 cm™! and 2730cm™!. They are very similar to the high-energy optical modes in
graphane [207] and show a small softening upon electron doping. Since they have a
very flat dispersion, the DOS of these two modes is rather large. Additionally, there is
one other peak in the phononic DOS around 1250 cm™!; besides these two features, the
phononic DOS has values at or below 0.05eV—1.

Via the third panel in Fig. 5.11 (top), showing the values of the function o?F, we
can once again distinguish between DOS and electron-phonon coupling effects (cf. Sec.
5.1.2). The acoustic modes and the two C-H stretching modes have only marginal values
for o2 F' despite their finite DOS which shows that the coupling of the electrons to these
modes is rather weak. Futhermore, the electrons do not couple strongly to the modes
around 1250 cm™! which have a peak in the DOS. Instead, the coupling is strong for
the optical modes between 1000cm™! and 1250 cm™! as well as for the modes around
500cm™!. The sizeable values of a2F just below 1500 cm™! can be attributed to both
the coupling and the DOS.

In the case of hole doping [see Fig. 5.11 (bottom) for z = 0.8 removed electrons or addi-
tional holes per unit cell of CgH,|, the acoustic phonon bands are not anymore decoupled
from the optical modes. This is a sign for the strong softening of the low-frequency op-
tical phonons. Rather strong softening can also be seen for the C-H stretching modes
with a shift of up to 100 cm ™. Furthermore, these two modes have again a large DOS,
but the coupling to the electrons is almost negligible as can be seen from o?F ~ 0. The
other optical modes have values of a?F < 1 which shows that they couple significantly
to the electrons, similar to the case of electron doping. What is different for hole doping,
though, is that there is large coupling in the acoustic frequency range below 250 cm™*
resulting in two peaks in o?F. This difference can be explained via the different Fermi
surfaces of CgH, upon electron (see Fig. 3.15) and hole doping (see Fig. 3.16) and the
corresponding orbital characters (see Fig. 3.17). In the case of electron doping, the
Fermi surface consists of two (three) partially degenerate Fermi pockets around I" before
(after) the Lifshitz transition, and the relevant electrons have purely carbon p,-character.
Upon hole doping, a hole pocket around M in the highest valence band arises and the
corresponding conduction electrons have carbon p,- as well as hydrogen s-character.
The coupling to the low-frequency modes in the latter case is, thus, also due to these

hydrogen electrons.

Similar to the discussion of MoSe, in Sec. 5.1, we now have a look at the frequency-

dependent electron-phonon interaction, see Fig. 5.12. For the electron-doping levels
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Figure 5.12.: Frequency-dependent electron-phonon interaction A(w) in CgH, at two electron
doping levels 2 = 0.1 and x = 0.4 as well as for hole doping z = 0.08. Values
were obtained by setting the upper boundary of the integration in Eq. (2.83) to
w, which is equal to setting n = n’ in Eq. (2.99). For w — oo, the interaction
values are equal to the values of A entering the Allen-Dynes equation, see Tab.
5.4. The colors are the same as in Fig. 5.11.

r = —0.1 and z = —0.4, we see that the contribution of the acoustic phonons to
the full efective interaction A is negligible. The main contribution of more than 50%

stems from the lower-frequency optical phonons around 500 cm™!.

The intermediate-
frequency phonons between 1000 cm™! and 1500 cm™! also contribute significantly, while
the amount of effective interaction from the high-frequency stretching modes is negligible.
For hole doping, the situation is similar to MoSe,, cf. Fig. 5.4, since the strong coupling

I amounts to more than 75% of the full effective ).

to acoustic phonons around 200 cm™
The contributions of the other phonons at higher frequencies are similar to the case of

electron doping.

From the values of the function a® F' we can calculate the parameters of superconductivity
via the equations in Sec. 2.6.2. The results for both electron and hole doping are provided
in Tab. 5.4. A significant critical temperature of up to 40 K and more is obtained in both
cases. This is a rather large value for a conventional electron-phonon superconductor
and comparable” to the T; of 39K found in MgB,, [213-215]. The reason for this large
critical temperature is the coupling to high-frequency optical phonon modes. For the

TMDCs we obtained comparable values for the effective electron-phonon coupling A ~ 1

"The situation in MgB, is more complex due to the multi-gap nature of the superconducting phase,
which is beyond the scope of the isotropic Eliashberg or Allen-Dynes approach used here. If one
wanted to describe the critical temperature of about 40K in MgB, within the latter approach
anyway, an effective interaction of A = 1.01, a frequency of wjog = 453 cm~!, and a value of u* = 0.1
would be reasonable according to Ref. [213].
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Table 5.4.: Parameters for the superconducting phase in doped CgH,, calculated by DFPT
(see Sec. 2.5.2) and Eliashberg theory (see Sec. 2.6.2). Negative values for the
doping z represent electron doping, while positive represent hole doping. A value
of u* = 0.15 is used for all critical temperatures.

| Doping x | coupling A wieg (cm™!) Te (K) |

-0.1 0.29 930 0.1
-0.2 0.48 865 3.5
-04 0.57 773 7.7
-1.0 1.48 535 51.4
0.1 0.51 685 3.6
0.2 0.60 o877 6.8
0.3 0.87 504 20.0
0.4 1.48 488 34.7
0.8 2.15 320 43.2

(see Tab. 5.1), but these values resulted in considerably lower critical temperatures (see
Tab. 5.3) due to the coupling to low-frequency acoustic phonons. For the case of CgH,
discussed here, already a lower A\ leads to a larger critical temperature because of the
large values for wiog. Especially in the case of hole doping, where we have a rather large
T. 2 20K already at doping levels z 2 0.3, another reason is the strong coupling which
results from the high electronic DOS since the Fermi level is close to the maximum at
the M point (see Fig. 3.16). Much larger electron-doping levels of up to z ~ 1.0 are

needed to get an effective coupling of similar strength.

In both doping regimes, a Lifshitz transition to a larger number of Fermi pockets takes
place at z ~ —0.2 and = ~ 0.9, respectively (see Figs. 3.15 and 3.16). These two
transitions have different effects on the superconducting phase. At the critical electron
doping, we see a significant enhancement of A which leads to a rise in the critical temper-
ature. For hole doping levels = > 0.9, the coupling to acoustic, instable phonons leads
to non-zero values of o?F at negative, i.e., imaginary frequencies. In this case, the use
of Eliashberg theory in the simple Allen-Dynes form is no longer valid and we are, thus,
not able to calculate superconducting parameters for hole-doping levels beyond z = 0.8.
Furthermore, we see that the atomic structure of CgH, used in this thesis is not stable

beyond hole doping levels of = = 0.9.

As a last point, we need to mention that the validity of some of the results presented here
can be questioned. In [155], the CgHy-structure that we use for all our calculations was
found to be stable only up to a critical doping of z = 0.05 additional electrons per carbon

atom which corresponds to a doping level of x = +0.4 per unit cell as discussed here.



5.3. Unconventional superconductivity in MoS, 105

Assuming the phase diagram to be symmetric, this means that the crystal structure of
CgH, might be different from the one in Fig. 3.13 for |z| > 0.4 which would certainly

change the parameters of the superconducting phase.

To conclude, superconductivity in CgH, was investigated here for the first time. We have
seen that critical temperatures of 40 K and more can be achieved in electron as well as
hole-doped C¢H,. The high values for 7 result from a strong coupling of the electrons
to acoustic (hole doping) and optical (electron doping) phonons with high frequencies

due to the low atomic masses of hydrogen and carbon.

5.3. Unconventional superconductivity in MoS,

By unconventional superconductivity we mean that the effective electron-electron inter-
action which leads to the formation of Cooper pairs and is responsible for the supercon-
ducting phase is not mediated by electron-phonon interaction, but rather by some other
mechanism such as charge or spin fluctuations. Since the experimental observation of
high-temperature superconductivity in the cuprates [97], a lot of such mechanisms have
been discussed [99]. Most of them share that their pairing is of pure electronic nature
and that the order parameter, i.e., the gap function, has a lower symmetry than the

s-wave of conventional electron-phonon superconductors.

In this section, we investigate possible unconventional superconductivity that arises when
the Fermi surface consists of multiple distinct sheets, and where the pairing is purely
mediated by the otherwise repulsive Coulomb interaction between the electrons. This
Fermi surface is realized in the electron doped semiconducting TMDCs, see Fig. 3.7.
We first write down the relevant equations starting from anisotropic BCS-theory (see
Sec. 2.6.1) and then discuss the example of MoS, as a typical semiconducting TMDC.
Most of this section was already published by the author in Ref. [159].
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5.3.1. BCS equations in the multi-valley case

To get an effective mean-field description that can be used for the discussion of uncon-
ventional Coulomb-driven superconductivity, we use the anisotropic BCS equations, see
Eq. (2.86) and Ref. [216],

Apr

M=% 2V K)gpy tanh ) (5.4)

where A} is the anistropic gap, N is the number of unit cells, V(k, k') is the coupling of
momenta k and k', F(eg) = m is the energy, and [ is the inverse temperature.
If the Fermi surface can be divided into different valleys F'S; (as it is the case in the
doped semiconducting TMDCs, cf. Fig. 3.7) and if the energy gap A is constant in each
valley and does not depend on the wave vector k, we can simplify the description of the
gap to

A =A; if ke FS,. (5.5)

In this way, the summation over k' in Eq. (5.4) can be decomposed into a summation
over Fermi suface sheets and a summation over all momenta &’ on the relevant Fermi
surface sheet. If we further rewrite the summation over £’ into an energy integration

and introduce the partial DOS per valley

Ni = % S 6ew —e), (5.6)

keFs;

we arrive at the expression

B 1 BE(e)
A.,; = —Zj: KJAJNJQA- dEQE(E) tanh 9 1 (57)

where we assume a constant coupling V;; inside as well as between the valleys and an

energy cutoff Feyt.

Close to the critical temperature, the gap is A =~ 0 which leads to F(¢) =~ ¢, and we can

rewrite the integration to

ﬁEcut.f2
f 4z = pBE.L./2) (5.8)
0 I

with the function F'(z) and z = B¢/2. The function F'(z) can be evaluated numerically
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Figure 5.13.: Function F'(z) as defined in Eq. (5.8) and used from Eq. (5.9) onwards.

and has positive finite values for all z, see Fig. 5.13. These approximations lead to the

expression of the gap

A= — ZWjAijF (ﬁEQCUt) : (5.9)
J

We define a dimensionless valley-valley coupling constant

1

Hij = m%jN@Nj; (5.10)

where N (Ep) is the total density of states per spin and the full coupling matrix is given
by (wt)i; = pij, similar to Eq. (5.1). Note that the above definition of ;; can be regarded
as an anisotropic extension to the result for the averaged Coulomb repulsion p in the

case of purely local coupling, see Eq. (2.101). Using this terminology, Eq. (5.9) becomes

do= =3 M (20 o, (5.11)

J
This can be cast into a matrix form via

0=(N+N(Ep)Fp)A, (5.12)

where N is the diagonal matrix containing the density of states per valley and A is a

vector of the gaps in each valley.
A non-trivial solution to Eq. (5.12) exists if

det [N + N(Eg) F p] = 0. (5.13)
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Otherwise, [N + N(Eg) F' u] would be invertible and Eq. (5.12) could be fulfilled via the
trivial case A = 0. Since N(Ep) and F are always positive, Eq. (5.13) has no solution if
all eigenvalues of N and p are positive. Furthermore, since N has only positive entries
and is diagonal, it can have only positive eigenvalues which means that the necessary
criterion is that at least one eigenvalue of p is negative. A sufficient criterion for a
non-trivial solution and, thus, a superconducting instability with a non-vanishing gap
A is a negative eigenvalue of N~/2,/N~!/2_ This can be seen by multiplying Eq. (5.12)
with N2 from left and right and by looking at the characteristic polynomial of the
resulting condition, det [N~Y/2uN~Y2 + 1/{N(Eg) F} 1] = 0.

If p is a 2 x 2-matrix with only positive, i.e., repulsive entries as it is the case in
our calculations in the range of low electron doping [cf. Eq. (5.1)], it has a negative
eigenvalue once the off-diagonal element is larger than the diagonal elements, which
means in our case that the coupling between the two valleys, pinter, is larger than the
coupling inside of one valley, fintra- This scenario was originally proposed for MoS, in
the range of low doping in Ref. [217|. If the Fermi surface consists of more than two
valleys, as it is the case for MoS, under high electron doping where the Fermi surface
has six additional pockets and g is an 8 x 8-matrix, there are various fipter and fingra,

and it is more insightful to directly discuss the eigenvalues of the p-matrix.

5.3.2. Results of matrix calculations

In general, superconductivity occurs when the total coupling between the electrons is
attractive, por < 0. For conventional phonon-mediated superconductivity, as it was
discussed in Secs. 5.1 and 5.2, this is the case when the effective coupling between
electrons mediated by the phonons overcomes the electron-electron repulsion. As we
showed in the previous section, a superconducting instability is also possible for a purely
repulsive Coulomb interaction if at least one eigenvalue of the coupling matrix p is
negative. We now investigate whether this type of superconducting order is possible in

electron doped MoS, and the semiconducting TMDCs in general.

At low doping levels, i.e., when only two Fermi surface sheets around the two K points
exist in the semiconducting TMDCs (see Fig. 3.7), Minter > [intra Would lead to a
negative eigenvalue of p and, thus, to a superconducting phase. This phase would be
purely electronically mediated with an unconventional sign-changing order parameter
(Ax = —Ag) as discussed in Ref. [217]. However, as one can see from Fig. 5.6
and Fig. 5.14, the intravalley coupling is always larger than the intervalley coupling
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Figure 5.14.: Dependence of the 2 x 2-matrix p [cf. Eq. (5.1)] on the electron doping con-
centration z in the case of low doping. We present the eigenvalues for vacuum
(¢ = 1) and metallic (¢ = 0o0) surrounding.

and p has only positive eigenvalues. This means that the described situation is not
realized in freestanding MoS,. Furthermore, it cannot be achieved using substrates or
capping layers with arbitrarily large (¢ independent) dielectric constants. Although the
additional screening by the dielectric environment can lower the intravalley coupling

constant by up to 30 %, see Fig. 5.6, it is not strong enough to achieve pipter > fintra-

In the high-doping regime, we do not find any negative eigenvalues, either (see Fig.
5.15). Furthermore, there is no significant difference in the values for freestanding MoS,
and MoS, in a perfectly metallic dielectric environment, here. This insensitivity to the
dielectric environment upon high doping was already oberserved for the full averaged
Coulomb coupling constant p (see Fig. 5.5). Thus, Coulomb-driven superconductivity is
not possible in MoS, below and above the Lifschitz transition involving the mechanism
of several Fermi pockets discussed here. Since both the electronic structure and the
averaged Coulomb coupling are very similar for the other semiconducting TMDCs, see
Figs. 3.6 and 5.7, we can expand this conclusion to all four materials investigated
here. All in all, we conclude that for unconventional electron-driven superconductivity in
doped MoS, or other semiconducting TMDCs one would need more complex mechanisms
involving a stronger renormalization of the interactions at low energies than what can

be achieved via substrates [218].
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5.4. Charge and spin order in TMDCs

Charge order has been a popular research topic in the TMDCs in recent years. Especially
the typical Charge Density Wave (CDW) material NbSe, has received a lot of attention
[16, 23, 194, 219-223] but other metallic TMDCs and their CDW phases have also been
studied, e.g. TaS, [19, 24] and TaSe, [224].

One original theoretical description of charge order that is often referred to was per-
formed by Peierls who showed that a one-dimensional metallic chain is not stable at low
temperatures [225]. Rather, the underlying atomic lattice gets distorted which leads to
a charge modulation called charge density wave with the wave vector ¢ = 2kp. A band
gap opens up and the material becomes insulating. Since the work by Peierls, a lot of
theoretical and experimental effort has been put into the investigation of CDWs; they
have been found in materials with higher dimension, and more sophisticated descriptions
have been developed [226].

Besides the Peierls mechanism and related mechanisms, where charge order arises due to

the interplay of atoms, electrons and phonons, charge order can also arise due to strong
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Coulomb repulsion which pins the electrons to the atomic sites. These mechanisms
are qualitatively different since in a half-filled band described by a Hubbard-Holstein
Hamiltonian, cf. Eq. 2.16, large electron-phonon coupling may lead to a bipolaronic

insulator while large electron-electron coupling may lead to Mott insulating states, see

Ref. [49].

A similar phenomenon is the magnetic ordering of the electronic spins that can lead to
Spin Density Waves (SDWs), ferromagnetism, and other magnetic phenomena. For the
TMDCs and related materials, magnetic ordering was previously observed in theoretical
results for vanadium based compounds [227, 228|, while ferromagnetic ordering upon

strain was predicted to occur in niobium compounds [229]. Furthermore, the possibility

of SDWs in NbS, was discussed [184].

In this section, we discuss charge order in the form of CDWs which means that we
look at instabilities in the phononic dispersion, see Sec. 5.4.1, as well as in the charge
susceptibility, see Sec. 5.4.2. These instabilities signal a tendency of the system towards
a periodic modulation of the lattice positions and, accordingly, of the electronic charge
density. Additionally, we look at the possibility of spin order signaled by an enhancement
of the magnetic susceptibility, see Sec. 5.4.3. In all subsections, we focus on the example
of NbS, since it turns out that this material is on the brink between spin and charge

order and is, thus, an especially interesting case.

5.4.1. Lattice instability and charge density wave

For the metallic TMDCs NbS, and NbSe,, our calculations of the phonon dispersion
using DFPT predict an instability at a point below the M point in reciprocal space, see
Figs. 5.2 and B.3, respectively. In both cases, the minimum of the softened phonon
frequency is at gcpw ~ 2/3TM which indicates a threefold symmetry of the CDW
phase, i.e., that the phase is commensurate with a 3 x 3-supercell. This is indeed the
wave vector at which the CDW instability occurs in bulk and probably monolayer 2H-
NbSe, [16], which shows that DFT and DFPT calculations can already be sufficient to
describe charge ordering. On the other hand, no anharmonic effects are included here,
and, thus, the suppression of the CDW phase that is observed in bulk 2H-NbS, [195]
cannot be reproduced by our calculations. Whether monolayer NbS, exhibits a CDW
phase has not been investigated experimentally, as far as we know, so our result that a
CDW exists in this system cannot be verified.
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Figure 5.16.: Phononic dispersion in electron doped MoSe, showing possible CDW instability.

In addition to the at least partially correct description of the CDW in the metallic
TMDCs, our calculations predict the occurence of a CDW for the semiconductors upon
high electron doping. Using again the example of MoSe,, we show in Fig. 5.16 that
the strong softening of the LA acoustic mode leads to an instability at the M point,
meaning that the resulting CDW phase is commensurate with a 2 x 2-supercell. Similar
results were obtained for MoS, in Ref. [193], and we also find the instability at M
for WS, and WSe,. This result can be very interesting since it means that not only
the superconducting phase, but also the CDW phase in semiconducting TMDCs can be
tuned externally via the electron doping level, see Fig. 5.10. As already mentioned in
Sec. 5.1.4, we do not know of any study that has looked for a CDW in the high-doping
regime of monolayer semiconducting TMDCs. Thus, it remains unclear whether the
CDW instability found here is only a theoretical prediction or also a real effect found
in experiments. As indicated in Fig. 5.10, the onset of the CDW phase can be shifted
towards lower electron doping concentrations by the use of heavier atoms due to the
lowered phonon frequencies. This leads us to the prediction that the CDW phase will

be most easily realizable in experiments on WSe, (see also Tab. 5.3).
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5.4.2. Instability in the charge susceptibility

In addition to looking at the atomic properties of a material, i.e., the phononic dispersion
in our case, and implying that a CDW goes hand in hand with a lattice instability,
indications of a CDW can also be found by looking at the electronic charge susceptibility.
An enhancement and a divergence or eventually a sign change around some wave vector
Gerit 1N this quantity can be interpreted as an instability towards the formation of a charge
ordered phase with wave vector g, which would result in an increased double occupancy
and eventually lead to an insulating state [49]. By performing model calculations for the
charge susceptibility, we can gain insight into the formation of charge order beyond the
rather superficial interpretation of phonon dispersions obtained from DFPT. Employing
again the RPA approximation and the matrix formalism for the electronic orbitals, as
already done for the plasmonic spectra in Sec. 4.4, the charge susceptibility or charge

response function can be calculated using a Dyson equation via
Xew = —IT- (1 — V*II)™" (5.14)

where IT = IIp(q,w) is the polarization obtained from RPA calculations, see Eq. (2.53),
and where we include a model electron-phonon coupling A(w) in addition to the interband

and background screened interaction V [see Eq. (4.6)]

V' =V - A(w) (5.15)

— = =
— = =
— = =

In the static limit, the model electron-phonon coupling is equal to the coupling in the
Hubbard-Holstein model, i.e., A = 2¢%/w,, and we use A = 1.55eV. Away from w = 0,

the model electron-phonon interaction is frequency-dependent with

w
AMw) = ¢*Do(w) = 29‘2% (5.16)

W= — Wy
with the non-interacting phonon Green’s function D, [see Eq. (2.24)]. We use an
electron-phonon coupling of g = 0.1245eV and a phonon frequency® of wy = 20meV,
which lead to A = 1.55€V in the static limit. The matrix of ones in Eq. (5.15) means that

we assume an effective electron-phonon coupling that is the same for the three relevant

8Values around 150 cm™! ~ 20meV are typical for the short-wavelength acoustic phonons of NbS,
and other TMDC s, cf. Fig. 5.2.
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Figure 5.17.: Real part of the static macroscopic charge susceptibility xch(q,w = 0) in free-
standing monolayer NbS, as calculated via Eq. (5.14). We show the values of
x for a Coulomb interaction V* without electron-phonon coupling as described
in Eq. (5.15) (Left) and the values with static model electron-phonon coupling
A = 1.55 (Right). The black lines correspond to the boundaries of the first
Brillouin zone.

electronic orbitals. This is basically comparable to the use of an effective electron-phonon
interaction in the Allen-Dynes approximation to the Eliashberg theory of superconduc-

tivity, see Eq. (2.83).

In Fig. 5.17 we show the results for the macroscopic value [see Eq. (4.4)] of xen(gq,w = 0)
for A = 0 and A = 1.55. If we remind ourselves that the static non-interacting suscep-
tibility, which is just the RPA polarization ITo(¢ — 0,w = 0), has limiting values of’
1/3- N(Eg) ~ 1/3-28eV"! ~ 1eV™! see Eq. (2.58) and Tab. 5.2, we can directly
conclude that the Coulomb interaction reduces the charge susceptibility quite strongly
by a factor of ~ 10 or more if no electron-phonon interaction is present. On the other
hand, one can see that the additional electron-phonon coupling leads a strong enhance-
ment of the static susceptibility and to a sign-changing instability around gem = 0.6 TM.
This indicates that large enough electron-phonon coupling can trigger the formation of
a CDW in NbS,. The critical value of the wave vector is similar to the observed CDW
vector of 2/3 TM that was discussed in Sec. 5.4.1 which shows that the tendency towards
charge order in the metallic TMDCs can already be understood on a RPA level.

Figs. 5.18 and 5.19 show the results for the dynamic susceptibility x.n(q,w) along the

9The factor of 1/3 results from the use of the macroscopic value of the susceptibility and the polariza-
tion, cf. Eq. (4.4). A simple sum of all matrix elemts of the 3 x 3 polarization matrix would yield
the full DOS at the Fermi level in the static long-wavelength limit.
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Figure 5.18.: Real part of the macroscopic charge susceptibility xcn(q,w) in freestanding
monolayer NbS, as calculated via Eq. (5.14) for the path from I' to M in
reciprocal space (cf. Fig. 3.3). We show the values of x for a Coulomb inter-
action V* without electron-phonon coupling as described in Eq. (5.15) (Left)
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Figure 5.19.: Same as Fig. 5.18 for small frequencies w.

path from I" to M. The instability around g upon increased electron-phonon interaction
is only present for very small frequencies below the phonon frequency wy = 20meV; at
higher frequencies, there is no visible difference between the values of the susceptibility
with and without electron-phonon coupling. This shows that the coupling to phonons is
only relevant in a small energy range, at least in the case of acoustic phonons. Overall,
the susceptibility without electron-phonon coupling has similar features to the EELS
spectrum of NbS,, see Fig. 4.11. It shows a sign-changing transition from a minimum to
a maximum at frequencies of around 1€V for wave vectors below 0.5 "M which is similar

to the plasmonic dispersion.
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5.4.3. Instability in the spin channel

So far, possible magnetic ordering in NbS, was studied in Ref. [184]. There, a single-band
model without orbital characters [cf. Eq. (2.53)] and without Coulomb interaction was

used. The authors found possible SDW instabilities at a wave vector ge; = 0.4 TM.

We make use of the magnetic response function [see Eq. (2.17)| or magnetic susceptibility

ij
7}

(5.17)

which describes the change of the spin density (6) due to a change in the applied magnetic
field B with 4,5 € [z,y, 2, —,+|. The + and — correspond to the raising and lowering

of spins, i.e., the ladder operators 6 = 6, +i6, and 6_ = 6, —i6,,. The Pauli matrices

0z, 0y,0, are given in Eq. (2.93).

To calculate the magnetic susceptibility, we use the formalism described in Ref. [230]
which means that the T-matrix approximation as well as the GW approximation (see Sec.
2.4) are employed. The relevant quantity for our considerations is the spin susceptibility
which is the transverse magnetic susceptbility R~*(q,w). In our case, the equations

from Ref. [230] yield for the interacting susceptibility

Xsp (qa w) = Q& w) Z Z J,Sa o:ﬁ mn nm(q: w) + Lﬁ'ﬂa nm( w)] (5 18)

mn of

with spin indices a, # and orbital indices m, n which are again given by {d,2, dyy, d2_,2}.
Since we do not take spin-orbit coupling into account and have a spin-degenerate band
structure and Coulomb interaction, the kernels K and L do not depend on the spin

indices and the summation over Pauli matrices in Eq. (5.18) yields

Y o0ty =4. (5.19)
af
The kernel K is given by
k -—L m
Kkt,mn (k: q, iw) — (520)
7 e—e—e]
k—q

which is equal to an open RPA bubble and, thus, the negative of the RPA polarizability

from Eq. (2.53), which in turn means that the non-interacting susceptibility is related



5.4. Charge and spin order in TMDCs 117

to the polarizability via
_ 4
RN:D—Il'lt. (Q: w) - 5 Hﬂ(q; w) (521)

where the factor 4 comes from the summation over Pauli matrices as mentioned above
and the 2 results from the fact that the RPA polarizability that we used in the previous
chapters was calculated without spin-orbit coupling and, thus, all included bands were

two-fold spin-degenerate.
To calculate the Kernel L, which is defined by

k K m m

Lim.n = T (5.22)

n n' I 1

we need the so-called T-matrix which incorporates all interaction effects. The elements

of this matrix follow the Bethe-Salpeter equation

Tkt,mn(q; CU') = Wkl,mﬂ + Z Wkk’,n’nKk’E’,m’n’ (q; W)Tk’t,mn’(q; w) (523)

V. m'n

where the Coulomb interaction W is the fully screened local interaction as given in Tabs.
B.8 and B.11. Adopting a generalized index notation of a product basis with k = {k,n}

and m = {l,m}, we can rewrite the above equation using a matrix formalism
T=W+W.K-T. (5.24)

From this equation, similar to a Dyson equation, we can obtain the T-matrix directly
via

T=(1-W-K)' - W. (5.25)

The kernel L is then calculated via

L=K-T- K. (5.26)

Our results for the static spin susceptibility are given in Fig. 5.20. We find the same
critical wave vector g, = 0.4TM as [184] for the non-interacting susceptibility, but the
susceptibility is suppressed for large wave vectors due to the inclusion of orbital char-
acters and the resulting overlap matrix elements in our model. Furthermore, we see

a strong enhancement in the interacting susceptibility due to the fully screened onsite
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Figure 5.20.: (Left) Non-interacting static spin susceptibility Ryt [ .(g,w = 0) for NbS,.
(Right) Interacting static spin susceptibility R~ "(g,w = 0) for NbS,. Both
quantities were calculated using Eq. (5.18), where we set L = 0 for the non-
interacting susceptibility!!. The black lines correspond to the boundaries of the
first Brillouin zone.

interaction as given in Tabs. B.8 and B.11; the enhancement leads to a difference of up
to an order of magnitude compared to the non-interacting susceptibility. This change
upon the inclusion of interaction effects is a clear indication that g. = 0.4 TM can indeed
be a critical'® point for magnetic ordering in NbS,. The enhancement is usually called
a Stoner enhancement, since for the single-band and single-orbital case where IT and W

are scalars, we can calculate the magnetic susceptibility in the long-wavelength limit via

1
T 1-wn
with the DOS at the Fermi level N(Ey) = IT1(q — 0,w = 0) and the onsite interaction .
From Eq. (5.27), we can directly see the Stoner criterion which states that a magnetic
instability is to be expected for N(Ep)W > 1.

(5.27)

Whether spin and/or charge order are indeed realized in monolayer NbS, is beyond the
scope of the RPA approach presented here. To decide this question, one needs theories
that include the correlation of both electron-electron and electron-phonon interaction,

such as the Dual Boson method [90, 91]. However, our results clearly show that NbS,

0We call this point critical although the spin susceptibility is only strongly enhanced and does not
diverge here.

" One might expect the non-interacting susceptibility to be equal to twice the DOS at the Fermi level
in the long-wavelength limit due to Eq. (5.21). This is only true here if one considers a scaling
factor of 1/3 which arises due to the use of the macroscopic values as shown in Eq. (4.4).
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is an intermediate interesting case since it exhibits characteristica of the transitions to
both phases. This means that it might be possible to experimentally tune the order in

NbS, via substrates or other external parameters.






6. Conclusions

Although many fundamental properties of 2D materials have been investigated in the
last couple of years, a lot of open questions remain in the research on this new material
class. One topic that has not received enough attention and is not yet fully understood
is the Coulomb interaction, along with its influences on the (many-body) properties
of 2D materials and its interplay with other interactions such as the electron-phonon
interaction. While it is known that the Coulomb interaction can be very strong in
low dimensions due to reduced environmental screening, the details and effects of the

interaction in specific situations are often unclear.

In this thesis, we performed a detailed investigation of the Coulomb interaction, along-
side with calculations for the properties of the phonons, and with a focus on the six
transition metal dichalcogenides (TMDCs) M X, with M = Mo, W,Nb and X = S, Se.
We build up a material database containing both electronic and phononic properties,
the electron-electron interaction, the electron-phonon interaction, and resulting phases.
To this end, we made use of Density Functional Theory and Density Functional Pertur-
bation Theory as implemented in the software package Quantum Espresso, as well as

(c)RPA calculations employing the Spex and Fleur codes and our own RPA code.

As a first result, we obtained a simple, yet accurate and material-specific model for the
band structure and the Coulomb interaction in 2D semiconducting and metallic TMDCs.
We studied the Coulomb interaction and the screening and found that they can have a
profound influence on many-body instabilities. Furthermore, 2D materials show a strong
tunability, which was investigated here systematically concerning the use of doping and
dielectric substrates. We saw that there are many similarities in the behavior of the

different semiconducting or metallic TMDCs, respectively.

In more detail, we found at our level of theory that the plasmon dispersion quantified
by the electron energy loss spectrum depends strongly on the electron doping level and
the dielectric environment. The dome-shaped or similarly structured superconducting
phase found experimentally in doped semiconducting TMDCs could be reproduced with

maximum critical temperatures above 10 K and an onset at some critical electron doping
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level. Furthermore, we found that the influence of the Coulomb repulsion on supercon-
ductivity goes beyond a simple, doping- and material-independent constant p*, which
leads to a shift of the onset of the phase. We observed a decrease of the values of p*

with increased doping, with reasonable values p* ~ 0.13 in the high-doping regime.

Beyond conventional superconductivity in the TMDCs, our calculations predict a super-
conducting phase with high critical temperatures above 40 K in electron or hole-doped
functionalized graphene CiH,, which was investigated here for the first time concerning
its superconducting properties. In contrast to previous theoretical studies, we find that
no unconventional superconductivity is possible in the doped semiconducting TMDCs,
based on the mechanism of different Fermi pockets and a strong intervalley Coulomb

repulsion considered here.

Charge order in form of a Charge Density Wave (CDW) is a frequent topic for the
TMDCs, especially in NbSe,. Our investigations yield a CDW for all TMDCs, with
Gerit & 0.6 TM in metals from both DFPT and RPA calculations, which is similar to the
ordering observed in experiments and theoretical studies on NbSe,. In all semiconduct-
ing TMDCs upon high electron doping, we find charge order with ge =~ M from DFPT
calculations, which is a prediction not yet investigated by experiments. Furthermore,
we find possible magnetic order in the metallic TMDC NbS, with a strong Stoner en-
hancement of the spin susceptibility around gy ~ 0.4TM. This result is an indication
of a competition between charge and spin order in the metallic TMDCs; the strong

correlations involved in this process are beyond the RPA approach used here.

All in all, this thesis presents a step forward towards a predictive theory of the phases and
interactions of 2D materials and especially TMDCs. We see that the properties of these
materials are determined by a complex interplay of different factors, notably the Coulomb
interaction, the electron-phonon interaction and the screening. Furthermore, this shows
that it is possible to manipulate the properties in a non-invasive way from outside of
the monolayer system. The different elements of the material database developed here,
especially the simple model for the band structure and the Coulomb interaction, present
ingredients that are relevant for the further study of the TMDCs. This includes a variety
of subjects such as the excitonic properties, where the results on WS, are part of an
upcoming publication, or the use of monolayer TMDCs in both vertical and lateral

heterostructures, which is for example discussed in Refs. [31, 32|.



A. Details of calculations

A.l. TMDCGCs

A.1.1. Electron-phonon calculations

We have used k-meshes of 64 x 64 x 1 points for the fine electron-phonon coupling
calculations involved in the DFPT-code of Quantum Espresso and 32 x 32 x 1 points
for the coarse calculations of the electronic and phononic structure. The g-mesh for the
phonons was made up of 8 x 8 x 1 points in reciprocal space. Cut-offs were set to 60 Ry
for the wave functions and to 500 Ry for the charge density.

In Tab. A.1 we show the pseudopotentials that we used for each material as well as the
lattice constants. To get the lattice constants, we minimized the total energy of each
system using Quantum Espresso. The pseudopotentials were chosen in such a way that
the phonon calculations using DFPT worked and yielded reasonable results and that
the band structures from our calculations matched those found in the literature. For
example, this means that for MoSe,, we needed to use a GGA potential since calculations
involving LDA potentials yielded an indirect band gap in the monolayer, which was not

found experimentally [231].

Table A.1l.: Pseudopotentials and lattice constants that we used for the calculations of differ-
ent TMDCs in Quantum Espresso.

Material | Pseudo potential lattice constant (ag)
MoS, | LDA, PW [66], MT [232] 5.90
MoSe, | GGA, PBE [69], MT [232] 6.28
WS, GGA, PBE [69], HGH [233] 6.07
WSe, GGA, PBE [69], HGH [233] 6.34
NbS, LDA, PW [66], MT [232] 6.13
NbSe, GGA, PBE [69], MT [232] 6.57
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A.1.2. RPA and cRPA calculations

We performed (¢)RPA calculations in Spex for the six different TMDCs in a semicon-
ducting state at vacuum heights from ~ 30ag to ~ 60ay and extrapolated the results
to infinite vacuum height to get the best estimation of the Coulomb interaction of an
isolated monolayer. All calculations were done on an 18 x 18 x 1 k-mesh, except for the
calculations of MoS,, where we used a 16 x 16 x 1 k-mesh.

In Tab. A.2, we show the lattice constants for the calculations in Fleur and Spex as
well as the Unit cell areas that are used to fit the bare Coulomb interaction according

to Eqgs. (4.5) and (4.11).

Table A.2.: Lattice constants and unit cell areas that we used for the calculations of different

TMDCs in Fleur and Spex.

Material | Unit cell area (A?) lattice constant (A)
MoS, 8.758 3.180
MoSe, 9.546 3.320
WS, 8.818 3.191
WSe, 9.574 3.325
NbS, 9.840 3.371
NbSe, 10.612 3.501

Concerning the calculations which employ the three-band model and use our own RPA
code, we have to make sure that the resolution of the Fermi surface is fine enough. This
is why we use k-meshes of 576 x 576 points for all line plots of the plasmon dispersions
of the TMDCs in a metallic state as presented in Sec. 4.4. For the calculation of the
effective Coulomb repulsion p* of MoS, in Sec. 5.1.3, we have also used our own RPA
code and k-meshes of 500 x 500 points.

A.2. Functionalized graphene

A.2.1. Electron-phonon calculations

We have used a lattice constant of 9.315a, = 4.93 A for the 2x2 super cell, which is
equal to 2.465 A for a primitive graphene cell and, thus, only slightly larger than the
~ 2.46 A lattice constant of graphene. The potentials were GGA, PBE [69], MT [232]

potentials, similar to the calculation of MoSe, as described above. We have used a
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vaccum height of 12.3 A. The k-meshes were 16x16x1 for the electron structure and
coarse phonon calculation and 32x32x1 for the fine electron-phonon mesh. The g-
mesh for the phonon dispersion consisted of 4x4x 1 points in reciprocal space. We have
checked our procedure by computing the electronic band structure for graphane and

comparing to the literature in [207].






B. Phononic and Coulomb properties of

various TMDCs

In this appendix, we present the data for our fits of the density-density Coulomb inter-

action and the phonon dispersion for the TMDCs considered in this thesis, as long as

they were not shown elsewhere already. Additionally, we show data for the exchange

interaction in RPA.

B.1. MoS,

e The phonon and electron-phonon calculations for MoS, that we use in this thesis

were previously described in [73, 113, 193].

e Parts of the data for the Coulomb interaction were already published in [159].

Table B.1.: Parameters of Coulomb interaction in MoS,,.

‘ bare U
leading EV, quadratic
v (A) 2.091
leading EV, cubic
v (A) 1.932
5 (A?) 0.395
microscopic EV
U, (eV) 0.810
Us (eV) 0.367

‘ dielectric &

leading EV, simple

Eoo 9.253
d(A) 9.136
leading EV, pseudo-Resta
a (1/A2) 2.383
b 17.836
¢ (A) 5.107
d(A) 2.740
e 5.739
microscopic EV
£ 3.077
E3 2.509
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Table B.2.: Bare onsite U as well as background screened onsite V' and fully screened onsite
Coulomb matrix elements W for the three important orbitals in real space. Values
for W are in the range of low electron doping = &~ 0.04 in the fifth (Wioy, K is
occupied) and for high electron doping = ~ 0.13 in the last column (Whjg, K and
X are occupied).

bare  undoped doped
orbitals U(@V) V (eV) Wi (V) Whign (eV)
dez  dpe 9.11 1.55 0.82 0.68
de  dyy 8.30 1.29 0.58 0.44
d2  dyey2 | 8.30 1.29 0.58 0.44
dyy dyy 8.89 1.49 0.80 0.64
dyy  dyzy2 | 8.52 1.35 0.65 0.51
dy2y2  dy2y2 | 8.89 1.49 0.80 0.64

B.2. MoSe,

e The phonon properties of MoSe, and their behaviour upon doping were described
in the main text in Figs. 5.1, 5.3 and 5.16.

e The Coulomb interaction parameters were given in Tabs. 4.1 and 4.2.

B.3. WS,

Table B.3.: Parameters of Coulomb interaction in WS,

‘ dielectric ‘

leading EV, simple

| bare U || ea 7.593

leading EV, quadratic d(A) 11.960
v (A) 2.455 leading EV, pseudo-Resta

leading EV, cubic a (1/A2) 3.947

v (A) 2.130 b 29.931

5 (A?) 0.720 ¢ (A) 5.440

microscopic EV d(A) 1.578

Us (V) 0712 e 4.497

Us (eV) 0.354 microscopic EV
€9 2.979
€3 2.494
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Figure B.1.: Phononic dispersion in undoped WS,
Table B.4.: Bare onsite U as well as background screened onsite V' and fully screened onsite

Coulomb matrix elements W for the three important orbitals in real space. Values
for W are in the range of low electron doping  ~ 0.03 in the fifth (Wiow, K is
occupied) and for high electron doping = ~ 0.12 in the last column (Wh;gn, K and
X are occupied).

bare  undoped doped
orbitals U(@EV) V(eV) Wiy (€V) Whign (eV)
d,2 d,2 8.37 1.57 0.89 0.71
d,2 dxy 7.66 1.33 0.67 0.48
d,2 dy2y2 7.66 1.33 0.67 0.48
dyy dyy 8.19 1.52 0.87 0.68
dyy dy2y2 7.84 1.38 0.73 0.54
dy2y2  dy2y2 | 819 1.52 0.87 0.68
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Figure B.2.: Phononic dispersion in undoped WSe,.
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Table B.5.: Parameters of Coulomb interaction in WSe,.
‘ dielectric ¢ ‘

leading EV, simple

[ bare U | e 8.435

leading EV, quadratic d(A) 12.661
v (A) 2.376 leading EV, pseudo-Resta

leading EV, cubic a (1/A?) 2.430

v (A) 2.297 b 20.764

5 (A?) 0.174 ¢ (A) 5.761

microscopic EV d (A) 2.489

Uy (V) 0715 e 5.305

U; (eV) 0.360 microscopic EV
€9 3.028
£3 2481

Table B.6.: Bare onsite U as well as background screened onsite V' and fully screened onsite
Coulomb matrix elements W for the three important orbitals in real space. Values
for W are in the range of low electron doping  ~ 0.03 in the fifth (W), K is
occupied) and for high electron doping = ~ 0.12 in the last column (Wh;gn, K and
X are occupied).

bare  undoped doped
orbitals U@EV) V(eV) Wigw (V) Whign (eV)
dz dpe 8.33 1.42 0.83 0.65
dz  dyy 7.62 1.18 0.61 0.43
dz  dy2y2 | 7.62 1.18 0.61 0.43
dyy dyy 8.15 1.38 0.81 0.63
dyy  dx2y2 | 7.79 1.23 0.67 0.49
dy2y2  dy2y2 | 8.15 1.38 0.81 0.63

B.5. NbS,

The phonon dispersion of NbS, was already shown in Fig. 5.2.
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Table B.7.: Parameters of Coulomb interaction in NbS,.

‘ bare U ‘
leading EV, quadratic
v (A) 1.901

leading EV, cubic
v (A) 1.923
5 (A?) -0.046
microscopic EV
U, (eV) 0.877
Us (eV) 0.393

‘ dielectric ¢

leading EV, simple

oo 7.090
d(A) 9.611
leading EV, pseudo-Resta
a (1/A2) 2.488
b 16.479
¢ (A) 5.622
d (A) 2.143
e 4.105
microscopic EV
€9 2.749
£3 2.361

Table B.8.: Bare onsite U as well as background screened onsite V' for an empty conduc-
tion band and fully screened onsite Coulomb matrix elements W for the three

important orbitals in real space.

bare  empty band undoped

orbitals U (eV) V (eV) W (eV)
d,2 d,2 9.19 1.91 0.52
d,2 dxy 8.32 1.60 0.27
d,2 dy2y2 8.32 1.60 0.27
dxy dxy 8.96 1.84 0.51
dyy dy2y2 8.56 1.67 0.35
dy2y2  dy2y2 8.96 1.84 0.51

B.6. NbSe;
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Figure B.3.: Phononic dispersion in undoped NbSe,.

Table B.9.: Parameters of Coulomb interaction in NbSe,,.
‘ dielectric & ‘

leading EV, simple

[ bare U || e 8.011

leading EV, quadratic d(A) 10.522
v (A) 1.934 leading EV, pseudo-Resta

leading EV, cubic a (1/A2) 2.040

v (A) 2.161 b 15.149

5 (A?) -0.476 ¢ (A) 6.311

microscopic EV d(A) 2.620

Us (V)  0.846 e 5.092

Us (eV) 0.384 microscopic EV
€9 2.819
E3 2.383




134 B. Phononic and Coulomb properties of various TMDCs

Table B.10.: Bare onsite U as well as background screened onsite V' for an empty conduc-
tion band and fully screened onsite Coulomb matrix elements W for the three
important orbitals in real space.

bare  empty band undoped
orbitals U (eV) V (eV) W (eV)

dz  dp | 893 153 0.45
dp  dy | 808 1.23 0.21
d  deyg | 8.08 1.23 0.21
dey dyy | 869 1.46 0.44
dyy  dy2y2 | 831 1.30 0.29

deyz  dyay2 | 8.69 1.46 0.44
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B.7. Exchange interaction

Here, we show the values of the exchange interaction as resulting from our RPA calcu-
lations for the undoped semiconducting and the half-filled metallic TMDCs.

Table B.11.: Ounsite exchange interaction J for the six TMDCs.

| Material | orbitals J (&V) |
MoS, dz  dyy or dyaye 0.26
dyy dy2y2 0.15
MoSe, dz  dyy or dyaye 0.27
dyy dyey 0.15
WS, dz  dyy or dyaye 0.26
dyy dyey 0.15
WSe, dz  dyy or dyaye 0.27
dyy dyey 0.15
NbS, dz  dyy or dyaye 0.25
dyy dyey 0.15
NbSe, dz  dyy or dyaye 0.24
dyy dyey 0.15







C. Deviation of Coulomb fit from ab-initio

data

In Fig. C.1 we show the dependence of the eigenvectors of the bare Coulomb interaction

on the wave vector in MoSe,. The errors of our fit model for the interband screened

interaction V are presented in Fig. C.2.
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Figure C.1.: Ab-initio data and fit model according to Eq. (4.3) for the eigenvectors of the
bare Coulomb interaction in MoSe,.



139

50
2
g
o 25+
@
= o
(5]
g 0 %
° o o0
:E]l 95 g ggg s,
o -25¢ 4z2-dz2 % g &3 3%
4 o Simple Fit
50 © Pseudo Resta Fit .
0 0.2 04 0.6 0.8 1
q (1/A)
50 - -
) ¥
B; ogo g; ;o ° @
& 25 o0 §80 500 T g
o 0 o 29 °® o
2
o~
H =25 dz2-dxy
4 o Simple Fit
50 Pseudo Resta Fit .
0 0.2 04 0.6 0.8 1
q (1/A)
< 50 . . oo og’c
o go ?0 ‘gg @
= 25¢ 8 °38°%, 8%
g ® ° o8 . o° 84
C%_. 0 o OB gg ® a (=] oc
Q o ] 1
2
o~
g_.s =25+ dz?_d_X?yQ
4 o Simple Fit
50 © Pseudo Resta Fit .
0 0.2 04 0.6 0.8 1
q (1/A)

A of Vo5 to Spex in %

A of V5 to Spex in %

A of V5 to Spex in %

50
257
°
or o o
o o8 85 £§S§ g%o %8
o o,
=25r dxy-dxy 8 §§ B%E
a Sirnple Fit ° o9
_50 o Pseludo R.eslta. Fit . ,
0 0.2 04 0.6 0.8 1
q (1/A)
50 ' '
257
o w © gg g@g ﬁ o B,
of , %8 85®° §§§§%
o4
=25} dxy-dx2y? |
o Simple Fit
P Pseudo Resta Fit .
0 0.2 04 0.6 0.8 1
q (1/A)
50
257
0_ o o fs-]
o o8 og mggg ﬁ@s %g .
=25/ dx%y2-dx2y? ig ggg
> Simple Fit *
5ol Pseudo Resta Fit .
0 0.2 04 0.6 0.8 1
q (1/A)

Figure C.2.: Difference in % between ab-initio data and fit model for the interband screened
Coulomb interaction in the orbital basis V5 in MoSe,.






Bibliography

[1]

2]

3]

[4]

[5]

[6]
7]

8]

G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son,
M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim,
R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande,
N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, “Recent
Advances in Two-Dimensional Materials beyond Graphene,” ACS Nano 9, 11509
11539 (2015).

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos,
I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon
films,” Science 306, 666-669 (2004).

K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V.
Morozov, and A. K. Geim, “Two-dimensional atomic crystals,” PNAS 102, 10451
10453 (2005).

S. Z. Butler, S. M. Hollen, L. Cao, Y. Cui, J. A. Gupta, H. R. Gutierrez, T. F.
Heinz, S. S. Hong, J. Huang, A. F. Ismach, E. Johnston-Halperin, M. Kuno, V. V.
Plashnitsa, R. D. Robinson, R. S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M. G.
Spencer, M. Terrones, W. Windl, and J. E. Goldberger, “Progress, Challenges,
and Opportunities in Two-Dimensional Materials Beyond Graphene,” ACS Nano
7, 2898-2926 (2013).

V. Nicolosi, M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman,
“Liquid Exfoliation of Layered Materials,” Science 340, 1226419 (2013).

F. Schwierz, “Graphene transistors,” Nat. Nano. 5, 487-496 (2010).

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer
MoS, transistors,” Nat. Nano. 6, 147-150 (2011).

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V.
Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless
Dirac fermions in graphene,” Nature 438, 197-200 (2005).

141



142

Bibliography

]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim,
“The electronic properties of graphene,” Rev. Mod. Phys. 81, 109-162 (2009).

T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky, “Dirac materials,”
Advances in Physics 63, 1-76 (2014).

R. Frindt, “Superconductivity in Ultrathin NbSes Layers,” Phys. Rev. Lett. 28,
299-301 (1972).

D. Yang, S. J. Sandoval, W. M. R. Divigalpitiya, J. C. Irwin, and R. F. Frindt,
“Structure of single-molecular-layer MoS,,” Phys. Rev. B 43, 12053-12056 (1991).

S. F. Meyer, R. E. Howard, G. R. Stewart, J. V. Acrivos, and T. H. Geballe,
“Properties of intercalated 2H-NbSes, 4Hb-TaS,, and 1T-TaS,;,” The Journal of
Chemical Physics 62, 4411-4419 (1975).

R. H. Friend and A. D. Yoffe, “Electronic properties of intercalation complexes of

the transition metal dichalcogenides,” Advances in Physics 36, 1-94 (1987).

A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, and
F. Wang, “Emerging photoluminescence in monolayer MoS,,” Nano Lett. 10, 1271—
1275 (2010).

M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-
Aristizabal, H. Ryu, M. T. Edmonds, H.-Z. Tsai, A. Riss, S-K. Mo, D. Lee,
A. Zettl, Z. Hussain, Z.-X. Shen, and M. F. Crommie, “Characterization of col-
lective ground states in single-layer NbSe,,” Nat. Phys. 12, 92-97 (2016).

R. B. Somoano, V. Hadek, A. Rembaum, S. Samson, and J. A. Woollam, “The
alkaline earth intercalates of molybdenum disulfide,” The Journal of Chemical
Physics 62, 1068-1073 (1975).

J. A. Woollam and R. B. Somoano, “Proceedings of the Franco American Con-
ference on Intercalation Compounds of Graphite Physics and chemistry of MoS,

intercalation compounds,” Materials Science and Engineering 31, 289-295 (1977).

B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forro, and E. Tutis, “From
Mott state to superconductivity inA 1t-TaS,,” Nat. Mater. 7, 960-965 (2008).

J. Paglione and R. L. Greene, “High-temperature superconductivity in iron-based
materials,” Nat. Phys. 6, 645-658 (2010).



Bibliography 143

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

K. Taniguchi, A. Matsumoto, H. Shimotani, and H. Takagi, “Electric-field-induced
superconductivity at 9.4 K in a layered transition metal disulphide MoS,,” Appl.
Phys. Lett. 101, 042603 (2012).

J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa,
“Superconducting dome in a gate-tuned band insulator,” Science 338, 1193-1196

(2012).

X. Xi, L. Zhao, Z. Wang, H. Berger, L. Forro, J. Shan, and K. F. Mak, “Strongly
enhanced charge-density-wave order in monolayer NbSe,,” Nat. Nano. 10, 765-769
(2015).

Y. Yu, F. Yang, X. F. Lu, Y. J. Yan, Y.-H. Cho, L. Ma, X. Niu, S. Kim, Y.-W.
Son, D. Feng, S. Li, S.-W. Cheong, X. H. Chen, and Y. Zhang, “Gate-tunable
phase transitions in thin flakes of 1T-TaS,,” Nat. Nano. 10, 270-276 (2015).

J. K. Glasbrenner, I. I. Mazin, H. O. Jeschke, P. J. Hirschfeld, R. M. Fernandes,
and R. Valenti, “Effect of magnetic frustration on nematicity and superconductiv-
ity in iron chalcogenides,” Nat. Phys. 11, 953-958 (2015).

Y. Cao, A. Mishchenko, G. L. Yu, E. Khestanova, A. P. Rooney, E. Prestat,
A. V. Kretinin, P. Blake, M. B. Shalom, C. Woods, J. Chapman, G. Balakrish-
nan, I. V. Grigorieva, K. S. Novoselov, B. A. Piot, M. Potemski, K. Watanabe,
T. Taniguchi, S. J. Haigh, A. K. Geim, and R. V. Gorbachev, “Quality Het-

erostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly
in Inert Atmosphere,” Nano Lett. 15, 4914-4921 (2015).

S. Jo, D. Costanzo, H. Berger, and A. F. Morpurgo, “Electrostatically Induced
Superconductivity at the Surface of WS,,” Nano Lett. 15, 1197-1202 (2015).

W. Shi, J. Ye, Y. Zhang, R. Suzuki, M. Yoshida, J. Miyazaki, N. Inoue, Y. Saito,
and Y. Iwasa, “Superconductivity Series in Transition Metal Dichalcogenides by
Ionic Gating,” Sci. Rep. 5, 12534 (2015).

H.-P. Komsa and A. V. Krasheninnikov, “Effects of confinement and environment

on the electronic structure and exciton binding energy of MoSs from first princi-
ples,” Phys. Rev. B 86, 241201 (2012).

M. M. Ugeda, A. J. Bradley, S.-F. Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu,
W. Ruan, S.--K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F.
Crommie, “Giant bandgap renormalization and excitonic effects in a monolayer
transition metal dichalcogenide semiconductor,” Nat. Mater. 13, 1091-1095 (2014).



144 Bibliography

[31] M. Résner, C. Steinke, M. Lorke, C. Gies, F. Jahnke, and T. O. Wehling, “Two-
Dimensional Heterojunctions from Nonlocal Manipulations of the Interactions,”
Nano Lett. 16, 2322-2327 (2016).

[32] A. K. Geim and 1. V. Grigorieva, “Van der Waals heterostructures,” Nature 499,
419-425 (2013).

[33] K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. C. Neto, “2D materials
and van der Waals heterostructures,” Science 353, aac9439 (2016).

[34] T. O. Wehling, E. Sagioglu, C. Friedrich, A. L. Lichtenstein, M. I. Katsnelson, and
S. Bliigel, “Strength of effective coulomb interactions in graphene and graphite,”
Phys. Rev. Lett. 106, 236805 (2011).

[35] M. Schiiler, M. Résner, T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnel-
son, “Optimal Hubbard Models for Materials with Nonlocal Coulomb Interactions:
Graphene, Silicene, and Benzene,” Phys. Rev. Lett. 111, 036601 (2013).

[36] D. Costanzo, S. Jo, H. Berger, and A. F. Morpurgo, “Gate-induced superconduc-
tivity in atomically thin MoS, crystals,” Nat. Nano. 11, 339-344 (2016).

[37] S. Doniach and E. H. Sondheimer, Green’s functions for solid state physicists, 2nd
ed. (Imperial College Press, London, 1998).

[38] G. D. Mahan, Many-Particle Physics, 3rd ed. (Kluwer Academics/Plenum Pub-
lishers, New York, 2000).

[39] H. Bruus and K. Flensberg, Many-body quantum theory in condensed matter
physics - an introduction (Oxford University Press, 2004).

[40] G. Czycholl, Theoretische Festkorperphysik, 3rd ed. (Springer-Verlag Berlin Hei-
delberg, 2008).

[41] U. Réssler, Solid State Theory: An Introduction, 2nd ed. (Springer-Verlag Berlin
Heidelberg, 2009).

[42] R. B. Laughlin and D. Pines, “The Theory of Everything,” PNAS 97, 28-31 (2000).

[43] M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln,” Ann. Phys.
389, 457-484 (1927).

[44] J. Hubbard, “Electron Correlations in Narrow Energy Bands,” Proc. R. Soc. Lond.
A 276, 238-257 (1963).

[45] E. Dagotto, “Correlated electrons in high-temperature superconductors,” Rev.

Mod. Phys. 66, 763-840 (1994).



Bibliography 145

[46] N. F. Mott, “Metal-Insulator Transition,” Rev. Mod. Phys. 40, 677-683 (1968).
[47] T. Holstein, “Studies of polaron motion,” Annals of Physics 8, 325-342 (1959).

[48] E. Berger, P. Valasek, and W. von der Linden, “Two-dimensional Hubbard-
Holstein model,” Phys. Rev. B 52, 4806-4814 (1995).

[49] W. Koller, D. Meyer, Y. Ono, and A. C. Hewson, “First- and second-order phase
transitions in the Holstein-Hubbard model,” EPL 66, 559 (2004).

[50] G. H. Wannier, “The Structure of Electronic Excitation Levels in Insulating Crys-
tals,” Phys. Rev. 52, 191-197 (1937).

[51] A. A. Mostofi, J. R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari,
“wannier90: A tool for obtaining maximally-localised Wannier functions,” Comp.

Phys. Comm. 178, 685-699 (2008).
[52] A. A. Mostofi, J. R. Yates, G. Pizzi, Y.-S. Lee, I. Souza, D. Vanderbilt, and

N. Marzari, “An updated version of wannier90: A tool for obtaining maximally-
localised Wannier functions,” Comp. Phys. Comm. 185, 2309-2310 (2014).

[63] N. Marzari and D. Vanderbilt, “Maximally localized generalized Wannier functions
for composite energy bands,” Phys. Rev. B 56, 12847-12865 (1997).

[54] 1. Souza, N. Marzari, and D. Vanderbilt, “Maximally localized Wannier functions
for entangled energy bands,” Phys. Rev. B 65, 035109 (2001).

[55] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136, B864—
B871 (1964).

[56] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and cor-
relation effects,” Phys. Rev. 140, A1133-A1138 (1965).

[57] R. Jones, “Density functional theory: Its origins, rise to prominence, and future,”

Rev. Mod. Phys. 87, 897-923 (2015).

[58] A. J. Cohen, P. Mori-Sanchez, and W. Yang, “Challenges for Density Functional
Theory,” Chem. Rev. 112, 289-320 (2012).

[59] V. L. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, “First-principles calcu-
lations of the electronic structure and spectra of strongly correlated systems: the

LDA + U method,” J. Phys.: Condens. Matter 9, 767 (1997).
[60] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, “Dynamical mean-field

theory of strongly correlated fermion systems and the limit of infinite dimensions,”

Rev. Mod. Phys. 68, 13-125 (1996).



146 Bibliography

[61] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli,
G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso, S. d. Gironcoli, S. Fabris,
G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri,
L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smo-
gunov, P. Umari, and R. M. Wentzcovitch, “QUANTUM ESPRESSO: a modular
and open-source software project for quantum simulations of materials,” J. Phys.:
Condens. Matter 21, 395502 (2009).

[62] “The juelich fleur project,” http://www.flapw.de (2014).

[63] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Phys.
Rev. B 47, 558-561 (1993).

[64] G. Kresse and J. Furthmiiller, “Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169-11186 (1996).

[65] R. O. Jones and O. Gunnarsson, “The density functional formalism, its applications
and prospects,” Rev. Mod. Phys. 61, 689-746 (1989).

[66] J. P. Perdew and Y. Wang, “Accurate and simple analytic representation of the
electron-gas correlation energy,” Phys. Rev. B 45, 13244-13249 (1992).

[67] A. D. Becke, “Density-functional exchange-energy approximation with correct
asymptotic behavior,” Phys. Rev. A 38, 3098-3100 (1988).

[68] A. Roy, H. C. P. Movva, B. Satpati, K. Kim, R. Dey, A. Rai, T. Pramanik,
S. Guchhait, E. Tutuc, and S. K. Banerjee, “Structural and Electrical Properties
of MoTe, and MoSe; Grown by Molecular Beam Epitaxy,” ACS Appl. Mater.
Interfaces 8, 7396-7402 (2016).

[69] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation
made simple,” Phys. Rev. Lett. 77, 3865-3868 (1996).

[70] D. Bohm and D. Pines, “A collective description of electron interactions: IIL.

coulomb interactions in a degenerate electron gas,” Phys. Rev. 92, 609-625 (1953).

[71] R. E. Groenewald, M. Résner, G. Schonhoff, S. Haas, and T. O. Wehling, “Valley
plasmonics in transition metal dichalcogenides,” Phys. Rev. B 93, 205145 (2016).

[72] J. Lindhard, On the properties of a gas of charged particles. (I kommission hos
Munksgaard, Copenhagen, 1954).



Bibliography 147

73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]
[81]

[82]

[83]

[84]

[85]

[36]

M. Résner, Electronic Structure of Novel Two-dimensional Materials and
Graphene Heterostructures, Ph.D. thesis, University of Bremen (2016).

S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, “Electronic transport in
two-dimensional graphene,” Rev. Mod. Phys. 83, 407-470 (2011).

F. Stern, “Polarizability of a two-dimensional electron gas,” Phys. Rev. Lett. 18,
546-548 (1967).

B. Mihaila, “Lindhard function of a d-dimensional fermi gas,” arXiv:1111.5337
[cond-mat, physics:math-ph| (2011).

F. Aryasetiawan, K. Karlsson, O. Jepsen, and U. Schonberger, “Calculations of
Hubbard U from first-principles,” Phys. Rev. B 74, 125106 (2006).

T. Miyake and F. Aryasetiawan, “Screened Coulomb interaction in the maximally

localized Wannier basis,” Phys. Rev. B 77, 085122 (2008).

E. Sagioglu, C. Friedrich, and S. Bliigel, “Effective Coulomb interaction in tran-
sition metals from constrained random-phase approximation,” Phys. Rev. B 83,

121101 (2011).
M. Kaltak, Merging GW with DMFT, Ph.D. thesis, University of Vienna (2015).
M. Résner, E. Sasioglu, C. Friedrich, S. Bliigel, and T. O. Wehling, “Wannier

function approach to realistic Coulomb interactions in layered materials and het-
erostructures,” Phys. Rev. B 92, 085102 (2015).

C. Friedrich, A. Schindlmayr, and S. Bliigel, “Efficient calculation of the Coulomb
matrix and its expansion around within the FLAPW method,” Comp. Phys.
Comm. 180, 347-359 (2009).

C. Friedrich, S. Bliigel, and A. Schindlmayr, “Efficient implementation of the
$GWS$ approximation within the all-electron FLAPW method,” Phys. Rev. B 81,
125102 (2010).

F. Aryasetiawan and O. Gunnarsson, “The GW method,” Rep. Prog. Phys. 61,
237 (1998).

L. Hedin, “On correlation effects in electron spectroscopies and the GW approxi-
mation,” J. Phys.: Condens. Matter 11, R489 (1999).

G. Onida, L. Reining, and A. Rubio, “Electronic excitations: density-functional
versus many-body Green’s-function approaches,” Rev. Mod. Phys. 74, 601-659
(2002).



148

Bibliography

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

L. Hedin, “New Method for Calculating the One-Particle Green’s Function with
Application to the Electron-Gas Problem,” Phys. Rev. 139, A796-A823 (1965).

C. Rostgaard, K. W. Jacobsen, and K. S. Thygesen, “Fully self-consistent GW
calculations for molecules,” Phys. Rev. B 81, 085103 (2010).

S. Biermann, F. Aryasetiawan, and A. Georges, “First-Principles Approach to the
Electronic Structure of Strongly Correlated Systems: Combining the GW Approx-
imation and Dynamical Mean-Field Theory,” Phys. Rev. Lett. 90, 086402 (2003).

A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, “Dual boson approach
to collective excitations in correlated fermionic systems,” Annals of Physics 327,

1320-1335 (2012).

E. G. C. P. van Loon, A. I. Lichtenstein, M. I. Katsnelson, O. Parcollet, and
H. Hafermann, “Beyond extended dynamical mean-field theory: Dual boson ap-
proach to the two-dimensional extended Hubbard model,” Phys. Rev. B 90, 235135
(2014).

S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related
crystal properties from density-functional perturbation theory,” Rev. Mod. Phys.
73, 515-562 (2001).

R. Heid, “Density functional perturbation theory and electron phonon coupling,” in
Emergent Phenomena in Correlated Matter, Lecture Notes of the Autumn School

Correlated Electrons (2013).

D. J. Scalapino, J. R. Schrieffer, and J. W. Wilkins, “Strong-coupling supercon-
ductivity. i,” Phys. Rev. 148, 263-279 (1966).

J. T. Devreese, “Frohlich Polarons. Lecture course including detailed theoretical
derivations,” arXiv:1012.4576 [cond-mat| (2010), arXiv: 1012.4576.

H. Onnes, “Van der Waals heterostructures,” Commun. Phys. Lab. Univ. Leiden
12, 120 (1911).

J. G. Bednorz and K. A. Miiller, “Possible high-Tc superconductivity in the Ba-
La-Cu-O system,” Z. Physik B - Condensed Matter 64, 189-193 (1986).

Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-Based Layered
Superconductor La|O; ,F.|FeAs (z = 0.05 — 0.12) with 7, = 26 K,” J. Am.
Chem. Soc. 130, 3296-3297 (2008).



Bibliography 149

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

M. R. Norman, “The Challenge of Unconventional Superconductivity,” Science
332, 196-200 (2011).

F. Wang and D.-H. Lee, “The Electron-Pairing Mechanism of Iron-Based Super-
conductors,” Science 332, 200-204 (2011).

K. H. Bennemann and J. B. Ketterson, eds., Superconductivity - Volume 1: Con-

ventional and unconventional superconductors (Springer-Verlag Berlin Heidelberg,
2008).

V. Z. Kresin, H. Morawitz, and S. A. Wolf, Superconducting State. Mechanism
and Properties, 1st ed. (Oxford University Press, Oxford, 2014).

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,”
Phys. Rev. 108, 1175-1204 (1957).

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of supercon-
ductivity,” Phys. Rev. 106, 162-164 (1957).

F. London and H. London, “The electromagnetic equations of the supraconductor,”

Proc. R. Soc. Lond. A 149, 71-88 (1935).

L. N. Cooper, “Bound electron pairs in a degenerate fermi gas,” Phys. Rev. 104,

1189-1190 (1956).
A. P. Drozdov, M. 1. Eremets, I. A. Troyan, V. Ksenofontov, and S. I. Shylin,

“Conventional superconductivity at 203 kelvin at high pressures in the sulfur hy-
dride system,” Nature 525, 73-76 (2015).

G. A. C. Ummarino, “Eliashberg Theory,” in Emergent Phenomena in Correlated
Matter, Lecture Notes of the Autumn School Correlated Electrons (2013).

G. M. Eliashberg, “Interactions between electrons and lattice vibrations in a su-
perconductor,” Sov. Phys. JETP 11, 696 (1960).

Y. Nambu, “Quasi-particles and gauge invariance in the theory of superconductiv-

ity,” Phys. Rev. 117, 648-663 (1960).

A. B. Migdal, “Interaction between electrons and lattice vibrations in a normal

metal,” Sov. Phys. JETP 7, 996 (1958).

J. Berges, On the scope of McMillan’s formula, Master’s thesis, University of Bre-
men (2016).

G. Schonhoff, Coulomb interaction and superconductivity in doped MoS,, Master’s
thesis, University of Bremen (2015).



150 Bibliography

[114] P. Morel and P. W. Anderson, “Calculation of the superconducting state parame-
ters with retarded electron-phonon interaction,” Phys. Rev. 125, 1263-1271 (1962).

[115] P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled supercon-
ductors reanalyzed,” Phys. Rev. B 12, 905-922 (1975).

[116] W. L. McMillan, “Transition temperature of strong-coupled superconductors,”

Phys. Rev. 167, 331-344 (1968).

[117] T. Ando, A. Fowler, and F. Stern, “Electronic properties of two-dimensional
systems,” Rev. Mod. Phys. 54, 437-672 (1982).

[118] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung,
E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, “Large-Area Synthesis of
High-Quality and Uniform Graphene Films on Copper Foils,” Science 324, 1312—
1314 (2009).

[119] L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko,
T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist,
A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, “Field-effect tunneling tran-
sistor based on vertical graphene heterostructures,” Science 335, 947-950 (2012).

[120] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Elec-
tronics and optoelectronics of two-dimensional transition metal dichalcogenides,”

Nat. Nano. 7, 699-712 (2012).
[121] R. Roldan, J. A. Silva-Guillen, M. P. Lopez-Sancho, F. Guinea, E. Cappelluti, and

P. Ordejon, “Electronic properties of single-layer and multilayer transition metal

dichalcogenides MX, (M = Mo, W and X = S, Se),” Annalen der Physik 526,
347-357 (2014).

[122] M. Bernardi, C. Ataca, M. Palummo, and J. C. Grossman, “Optical and Elec-
tronic Properties of Two-Dimensional Layered Materials,” Nanophotonics 0, 111—

125 (2016).
[123] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The

chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,”

Nat. Chem. 5, 263-275 (2013).

[124] F. A. Rasmussen and K. S. Thygesen, “Computational 2d Materials Database:
Electronic Structure of Transition-Metal Dichalcogenides and Oxides,” J. Phys.
Chem. C 119, 13169-13183 (2015).



Bibliography 151

[125] C. Drummond, N. Alcantar, J. Israelachvili, R. Tenne, and Y. Golan, “Microtri-
bology and Friction-Induced Material Transfer in WS, Nanoparticle Additives,”
Adv. Funct. Mater. 11, 348-354 (2001).

[126] H. Wang, H. Yuan, S. S. Hong, Y. Li, and Y. Cui, “Physical and chemical tuning
of two-dimensional transition metal dichalcogenides,” Chem. Soc. Rev. 44, 2664
2680 (2015).

[127] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam,
“Emerging Device Applications for Semiconducting Two-Dimensional Transition
Metal Dichalcogenides,” ACS Nano 8, 1102-1120 (2014).

[128] R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, and M. Ter-
rones, “Transition Metal Dichalcogenides and Beyond: Synthesis, Properties, and
Applications of Single- and Few-Layer Nanosheets,” Acc. Chem. Res. 48, 5664
(2015).

[129] L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y -
J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K.
Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, “Strong Light-Matter

Interactions in Heterostructures of Atomically Thin Films,” Science 340, 1311-

1314 (2013).

. Wang, H. Feng, and J. Li, “Graphene and Graphene-like Layered Transition

130] H. W; H. F d J. Li, “Graph d Graphene-like L d Transiti
Metal Dichalcogenides in Energy Conversion and Storage,” Small 10, 2165-2181
(2014).

[131] S. Wi, H. Kim, M. Chen, H. Nam, L. J. Guo, E. Meyhofer, and X. Liang, “En-
hancement of Photovoltaic Response in Multilayer MoS, Induced by Plasma Dop-
ing,” ACS Nano 8, 5270-5281 (2014).

[132] V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility
field-effect transistors based on transition metal dichalcogenides,” App. Phys. Lett.
84, 3301-3303 (2004).

[133] S. Kim, A. Konar, W.-S. Hwang, J. H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J-B.
Yoo, J.-Y. Choi, Y. W. Jin, S. Y. Lee, D. Jena, W. Choi, and K. Kim, “High-

mobility and low-power thin-film transistors based on multilayer MoS, crystals,”
Nat. Comm. 3, 1011 (2012).



152 Bibliography

[134] A. A. Tedstone, D. J. Lewis, and P. O'Brien, “Synthesis, Properties, and Ap-
plications of Transition Metal-Doped Layered Transition Metal Dichalcogenides,”
Chem. Mater. 28, 1965-1974 (2016).

[135] P. E. Blochl, O. Jepsen, and O. K. Andersen, “Improved tetrahedron method for
Brillouin-zone integrations,” Phys. Rev. B 49, 16223-16233 (1994).

[136] Y. Zhang, T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee,
R. Moore, Y. Chen, H. Lin, H.-T. Jeng, S.-K. Mo, Z. Hussain, A. Bansil, and
7.-X. Shen, “Direct observation of the transition from indirect to direct bandgap
in atomically thin epitaxial MoSe,,” Nat. Nano. 9, 111-115 (2014).

[137] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, “Atomically thin MoS,: A
new direct-gap semiconductor,” Phys. Rev. Lett. 105, 136805 (2010).

[138] D. Y. Qiu, F. H. da Jornada, and S. G. Louie, “Optical Spectrum of MoS,:
Many-Body Effects and Diversity of Exciton States,” Phys. Rev. Lett. 111, 216805
(2013).

[139] W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P-H. Tan, and G. Eda,
“Evolution of electronic structure in atomically thin sheets of WS, and WSe,,”

ACS Nano 7, 791-797 (2013).

[140] A. Kuc, N. Zibouche, and T. Heine, “Influence of quantum confinement on the
electronic structure of the transition metal sulfide T'S;,” Phys. Rev. B 83, 245213
(2011).

[141] H. R. Gutierrez, N. Perea-Lopez, A. L. Elias, A. Berkdemir, B. Wang, R. Lv,
F. Lopez-Urias, V. H. Crespi, H. Terrones, and M. Terrones, “Extraordinary
Room-Temperature Photoluminescence in Triangular WS, Monolayers,” Nano
Lett. 13, 3447-3454 (2013).

[142] A. Steinhoff, M. Résner, F. Jahnke, T. O. Wehling, and C. Gies, “Influence of
excited carriers on the optical and electronic properties of MoS,,” Nano Lett. 14,

3743-3748 (2014).

[143] 1. M. Lifshitz, “Anomalies of electron characteristics of a metal in the high pressure
region,” Sov. Phys. JETP 11, 1130 (1960).

[144] Z. Y. Zhu, Y. C. Cheng, and U. Schwingenschlogl, “Giant spin-orbit-induced
spin splitting in two-dimensional transition-metal dichalcogenide semiconductors,”

Phys. Rev. B 84, 153402 (2011).



Bibliography 153

[145] X. Xu, W. Yao, D. Xiao, and T. F. Heinz, “Spin and pseudospins in layered
transition metal dichalcogenides,” Nat. Phys. 10, 343-350 (2014).

[146] L. Van Hove, “The Occurrence of Singularities in the Elastic Frequency Distribu-
tion of a Crystal,” Phys. Rev. 89, 1189-1193 (1953).

[147] C-H. Chang, X. Fan, S-H. Lin, and J.-L. Kuo, “Orbital analysis of electronic
structure and phonon dispersion in MoSy, MoSe;, WS,, and WSe, monolayers
under strain,” Phys. Rev. B 88, 195420 (2013).

[148] A. Kormanyos, G. Burkard, M. Gmitra, J. Fabian, V. Zolyomi, N. D. Drummond,
and V. Fal’ko, “k - p theory for two-dimensional transition metal dichalcogenide
semiconductors,” 2D Mater. 2, 022001 (2015).

[149] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183-191
(2007).

[150] A. K. Geim, “Graphene: Status and Prospects,” Science 324, 1530-1534 (2009).

[151] P. Avouris, “Graphene: Electronic and Photonic Properties and Devices,” Nano
Lett. 10, 4285-4294 (2010).

[152] K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and
K. Kim, “A roadmap for graphene,” Nature 490, 192-200 (2012).

[153] D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P.
Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and
K. S. Novoselov, “Control of Graphene’s Properties by Reversible Hydrogenation:
Evidence for Graphane,” Science 323, 610-613 (2009).

[154] S. Yuan, M. Résner, A. Schulz, T. O. Wehling, and M. 1. Katsnelson, “Electronic
Structures and Optical Properties of Partially and Fully Fluorinated Graphene,”
Phys. Rev. Lett. 114, 047403 (2015).

[155] T. O. Wehling, B. Grundkétter-Stock, B. Aradi, T. Frauenheim, and
T. Niehaus, “Charge-doping-induced phase transitions in hydrogenated and flu-
orinated graphene,” Phys. Rev. B 90, 085422 (2014).

[156] D. Haberer, C. E. Giusca, Y. Wang, H. Sachdev, A. V. Fedorov, M. Farjam, S. A.
Jafari, D. V. Vyalikh, D. Usachov, X. Liu, U. Treske, M. Grobosch, O. Vilkov,
V. K. Adamchuk, S. Irle, S. R. P. Silva, M. Knupfer, B. Biichner, and A. Griineis,

“Evidence for a New Two-Dimensional C,H-Type Polymer Based on Hydrogenated
Graphene,” Adv. Mater. 23, 4497-4503 (2011).



154 Bibliography

[157] F. Hiiser, T. Olsen, and K. S. Thygesen, “How dielectric screening in two-
dimensional crystals affects the convergence of excited-state calculations: Mono-

layer MoS,,” Phys. Rev. B 88, 245309 (2013).

[158] K. Andersen, S. Latini, and K. S. Thygesen, “Dielectric Genome of van der Waals
Heterostructures,” Nano Lett. 15, 4616-4621 (2015).

[159] G. Schonhoff, M. Résner, R. E. Groenewald, S. Haas, and T. O. Wehling, “Inter-
play of screening and superconductivity in low-dimensional materials,” Phys. Rev.

B 94, 134504 (2016).

[160] A. Emelyanenko and L. Boinovich, “On the effect of discrete charges adsorbed
at the interface on nonionic liquid film stability: charges in the film,” J. Phys.:
Condens. Matter 20, 494227 (2008).

[161] R. Resta, “Thomas-Fermi dielectric screening in semiconductors,” Phys. Rev. B
16, 2717-2722 (1977).

[162] F. Roth, A. Kénig, J. Fink, B. Biichner, and M. Knupfer, “Electron energy-loss
spectroscopy: A versatile tool for the investigations of plasmonic excitations,” J.
Electron Spectrosc. Relat. Phenom. 195, 85-95 (2014).

[163] B. Santoyo and M. Mussot, “Plasmons in three, two and one dimension,” Revista
Mexicana de Fisica 39, 640-652 (1993).

[164] E. H. Hwang and S. Das Sarma, “Dielectric function, screening, and plasmons in
two-dimensional graphene,” Phys. Rev. B 75, 205418 (2007).

[165] H. Morawitz, I. Bozovic, V. Z. Kresin, G. Rietveld, and D. v. d. Marel, “The
plasmon density of states of a layered electron gas,” Z. Physik B - Condensed
Matter 90, 277-281 (1993).

[166] A. Bill, H. Morawitz, and V. Z. Kresin, “Electronic collective modes and super-
conductivity in layered conductors,” Phys. Rev. B 68, 144519 (2003).

[167] J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: re-
view,” Sensors and Actuators B: Chemical 54, 3-15 (1999).

[168] S. A. Maier, Plasmonics: fundamentals and applications (Springer Science & Busi-
ness Media, 2007).

[169] F. H. L. Koppens, D. E. Chang, and F. J. Garcia de Abajo, “Graphene Plasmon-
ics: A Platform for Strong Light-Matter Interactions,” Nano Lett. 11, 3370-3377
(2011).



Bibliography 155

[170] L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang,
A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz
metamaterials,” Nat. Nano. 6, 630-634 (2011).

[171] A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat
Photon 6, 749-758 (2012).

[172] Y. Takada, “Plasmon Mechanism of Superconductivity in Two- and Three-

Dimensional Electron Systems,” Journal of the Physical Society of Japan 45, 786
794 (1978).

[173] R. Akashi and R. Arita, “Development of density-functional theory for a plasmon-
assisted superconducting state: Application to lithium under high pressures,”
Phys. Rev. Lett. 111, 057006 (2013).

[174] R. Akashi and R. Arita, “Density functional theory for plasmon-assisted supercon-
ductivity,” J. Phys. Soc. Jpn. 83, 061016 (2014).

[175] H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea, P. Avouris, and
F. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,”

Nat. Photon. 7, 394-399 (2013).

[176] A. Principi, G. Vignale, M. Carrega, and M. Polini, “Intrinsic lifetime of Dirac
plasmons in graphene,” Phys. Rev. B 88, 195405 (2013).

[177] A. Scholz, T. Stauber, and J. Schliemann, “Plasmons and screening in a monolayer

of MoS,,” Phys. Rev. B 88, 035135 (2013).

[178] K. Kechedzhi and D. S. L. Abergel, “Weakly damped acoustic plasmon mode in
transition metal dichalcogenides with Zeeman splitting,” Phys. Rev. B 89, 235420
(2014).

[179] K. Andersen and K. S. Thygesen, “Plasmons in metallic monolayer and bilayer
transition metal dichalcogenides,” Phys. Rev. B 88, 155128 (2013).

[180] J. van Wezel, R. Schuster, A. Konig, M. Knupfer, J. van den Brink, H. Berger,
and B. Biichner, “Effect of Charge Order on the Plasmon Dispersion in Transition-

Metal Dichalcogenides,” Phys. Rev. Lett. 107, 176404 (2011).

[181] P. Cudazzo, E. Miiller, C. Habenicht, M. Gatti, H. Berger, M. Knupfer, Angel
Rubio, and S. Huotari, “Negative plasmon dispersion in 2H-NbS, beyond the
charge-density-wave interpretation,” New J. Phys. 18, 103050 (2016).



156 Bibliography

[182] A. Konig, K. Koepernik, R. Schuster, R. Kraus, M. Knupfer, B. Biichner, and
H. Berger, “Plasmon evolution and charge-density wave suppression in potassium
intercalated 2H-TaSe,,” EPL 100, 27002 (2012).

[183] A. Konig, R. Schuster, M. Knupfer, B. Biichner, and H. Berger, “Doping depen-
dence of the plasmon dispersion in 2H-TaSez,” Phys. Rev. B 87, 195119 (2013).

[184] F. Giiller, V. L. Vildosola, and A. M. Llois, “Spin density wave instabilities in the
NbS; monolayer,” Phys. Rev. B 93, 094434 (2016).

[185] Y. Nakata, K. Sugawara, R. Shimizu, Y. Okada, P. Han, T. Hitosugi, K. Ueno,
T. Sato, and T. Takahashi, “Monolayer 1t-NbSe2 as a Mott insulator,” NPG Asia
Mater. 8, €321 (2016).

[186] N.D. Mermin and H. Wagner, “Absence of Ferromagnetism or Antiferromagnetism
in One- or Two-Dimensional Isotropic Heisenberg Models,” Phys. Rev. Lett. 17,
1133-1136 (1966).

[187] P. C. Hohenberg, “Existence of Long-Range Order in One and Two Dimensions,”
Phys. Rev. 158, 383-386 (1967).

[188] V. L. Berezinskii, “Destruction of long-range order in one-dimensional and two-
dimensional systems having a continuous symmetry group. I. classical systems,”

Sov. Phys. JETP 32, 493 (1971).

[189] J. M. Kosterlitz and D. J. Thouless, “Ordering, metastability and phase transitions
in two-dimensional systems,” Journal of Physics C: Solid State Physics 6, 1181
(1973).

[190] S. Horzum, H. Sahin, S. Cahangirov, P. Cudazzo, A. Rubio, T. Serin, and F. M.
Peeters, “Phonon softening and direct to indirect band gap crossover in strained
single-layer MoSe,,” Phys. Rev. B 87, 125415 (2013).

[191] A. Molina-Sanchez and L. Wirtz, “Phonons in single-layer and few-layer MoS2 and
WS2,” Phys. Rev. B 84, 155413 (2011).

[192] Y. Ge and A. Y. Liu, “Phonon-mediated superconductivity in electron-doped
single-layer MoSy: A first-principles prediction,” Phys. Rev. B 87, 241408 (2013).

[193] M. Rosner, S. Haas, and T. O. Wehling, “Phase diagram of electron-doped
dichalcogenides,” Phys. Rev. B 90, 245105 (2014).

[194] M. Calandra, I. I. Mazin, and F. Mauri, “Effect of dimensionality on the charge-
density wave in few-layer 2H-NbSe,,” Phys. Rev. B 80, 241108 (2009).



Bibliography 157

[195] M. Leroux, M. Le Tacon, M. Calandra, L.. Cario, M.-A. Measson, P. Diener, E. Bor-
rissenko, A. Bosak, and P. Rodiere, “Anharmonic suppression of charge density

waves in 2H-NbS,,” Phys. Rev. B 86, 155125 (2012).

[196] M. D. Johannes and I. I. Mazin, “Fermi surface nesting and the origin of charge
density waves in metals,” Phys. Rev. B 77, 165135 (2008).

[197] D. J. Scalapino, E. Loh, and J. E. Hirsch, “d-wave pairing near a spin-density-wave
instability,” Phys. Rev. B 34, 8190-8192 (1986).

[198] H. Rietschel and L. J. Sham, “Role of electron Coulomb interaction in supercon-
ductivity,” Phys. Rev. B 28, 5100-5108 (1983).

[199] M. Calandra, P. Zoccante, and F. Mauri, “Universal Increase in the Supercon-

ducting Critical Temperature of Two-Dimensional Semiconductors at Low Doping
by the Electron-Electron Interaction,” Phys. Rev. Lett. 114, 077001 (2015).

[200] O. Gunnarsson and G. Zwicknagl, “Coulomb pseudopotential, screening and su-
perconductivity in Cgp,” Phys. Rev. Lett. 69, 957-960 (1992).

[201] K.-H. Lee, K. J. Chang, and M. L. Cohen, “First-principles calculations of the
coulomb pseudopotential p*: Application to al,” Phys. Rev. B 52, 1425-1428
(1995).

[202] C.-Y. Moon, Y.-H. Kim, and K. J. Chang, “Dielectric-screening properties and
Coulomb pseudopotential p* for MgB2,” Phys. Rev. B 70, 104522 (2004).

[203] D. Jerome, A. J. Grant, and A. D. Yoffe, “Pressure enhanced superconductivity
in NbSe,,” Solid State Comm. 9, 2183-2185 (1971).

[204] V. G. Tissen, M. R. Osorio, J. P. Brison, N. M. Nemes, M. Garcia-Hernandez,
L. Cario, P. Rodiere, S. Vieira, and H. Suderow, “Pressure dependence of super-

conducting critical temperature and upper critical field of 2H-NbS,,” Phys. Rev.
B 87, 134502 (2013).

[205] A. M. Finkel’stein, “Suppression of superconductivity in homogeneously disordered
systems,” Physica B: Condensed Matter 197, 636-648 (1994).

[206] J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot,
R. Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann, E. M.
Forgan, and S. M. Hayden, “Direct observation of competition between supercon-
ductivity and charge density wave order in YBayCu30g¢7,” Nat. Phys. 8, 871-876
(2012).



158 Bibliography

[207] G. Savini, A. C. Ferrari, and F. Giustino, “First-Principles Prediction of Doped
Graphane as a High-Temperature Electron-Phonon Superconductor,” Phys. Rev.
Lett. 105, 037002 (2010).

[208] A. P. Durajski, “Influence of hole doping on the superconducting state in
graphane,” Supercond. Sci. Technol. 28, 035002 (2015).

[209] B. M. Ludbrook, G. Levy, P. Nigge, M. Zonno, M. Schneider, D. J. Dvorak, C. N.
Veenstra, S. Zhdanovich, D. Wong, P. Dosanjh, C. Straker, A. Stohr, S. Forti,
C. R. Ast, U. Starke, and A. Damascelli, “Evidence for superconductivity in
Li-decorated monolayer graphene,” PNAS 112, 11795-11799 (2015).

[210] E. R. Margine, H. Lambert, and F. Giustino, “Electron-phonon interaction and
pairing mechanism in superconducting Ca-intercalated bilayer graphene,” Sci. Rep.

6 (2016).

[211] H.-Y. Lu, L. Hao, R. Wang, and C. S. Ting, “Ferromagnetism and superconduc-
tivity with possible p + ip pairing symmetry in partially hydrogenated graphene,”
Phys. Rev. B 93, 241410 (2016).

[212] J. Chapman, Y. Su, C. A. Howard, D. Kundys, A. N. Grigorenko, F. Guinea, A. K.
Geim, [. V. Grigorieva, and R. R. Nair, “Superconductivity in Ca-doped graphene
laminates,” Sci. Rep. 6, 23254 (2016).

[213] A. Y. Liu, I I. Mazin, and J. Kortus, “Beyond Eliashberg Superconductivity in
MgBs: Anharmonicity, Two-Phonon Scattering, and Multiple Gaps,” Phys. Rev.
Lett. 87, 087005 (2001).

. Nagamatsu, IN. gawa, 1. Muranaka, Y. Zenmitani, and J. imitsu, “ou-
214] J. N N. Naka T. M ka, Y. Zenitani d J. Akimi “S
perconductivity at 39 K in magnesium diboride,” Nature 410, 63-64 (2001).

[215] H. J. Choi, D. Roundy, H. Sun, M. L.. Cohen, and S. G. Louie, “First-principles cal-
culation of the superconducting transition in MgB, within the anisotropic eliash-
berg formalism,” Phys. Rev. B 66, 020513 (2002).

[216] K. H. Bennemann and J. B. Ketterson, eds., The Physics of Superconductors
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2003).

[217] R. Roldan, E. Cappelluti, and F. Guinea, “Interactions and superconductivity in
heavily doped MoS,,” Phys. Rev. B 88, 054515 (2013).

[218] J. Yuan and C. Honerkamp, “Triplet pairing driven by Hund’s coupling in doped
monolayer MoS,,” arXiv:1504.04536 [cond-mat| (2015).



Bibliography 159

[219] C. D. Malliakas and M. G. Kanatzidis, “Nb-Nb Interactions Define the Charge
Density Wave Structure of 2H-NbSe,,” J. Am. Chem. Soc. 135, 1719-1722 (2013).

[220] M. Leroux, I. Errea, M. Le Tacon, S-M. Souliou, G. Garbarino, L. Cario, A. Bosak,
F. Mauri, M. Calandra, and P. Rodiere, “Strong anharmonicity induces quantum

melting of charge density wave in 2H-NbSe, under pressure,” Phys. Rev. B 92,
140303 (2015).

[221] F. Flicker and J. van Wezel, “Charge order from orbital-dependent coupling evi-
denced by NbSe,,” Nat. Commun. 6, 7034 (2015).

[222] F. Flicker and J. van Wezel, “Charge ordering geometries in uniaxially strained

NbSe,,” Phys. Rev. B 92, 201103 (2015).

[223] X. Xi, H. Berger, L. Forro, J. Shan, and K. F. Mak, “Gate Tuning of Elec-
tronic Phase Transitions in Two-Dimensional NbSes,” Phys. Rev. Lett. 117, 106801
(2016).

[224] R. Samnakay, D. Wickramaratne, T. R. Pope, R. K. Lake, T. T. Salguero, and
A. A. Balandin, “Zone-Folded Phonons and the Commensurate-Incommensurate
Charge-Density-Wave Transition in 1T-TaSe, Thin Films,” Nano Lett. 15, 2965
2973 (2015).

[225] R. E. Peierls, Quantum Theory of Solids (Oxford University New York/London,
1955).

[226] G. Griiner, “The dynamics of charge-density waves,” Rev. Mod. Phys. 60, 1129~
1181 (1988).

[227] Y. Ma, Y. Dai, M. Guo, C. Niu, Y. Zhu, and B. Huang, “Evidence of the Existence
of Magnetism in Pristine VX, Monolayers (X = S, Se) and Their Strain-Induced
Tunable Magnetic Properties,” ACS Nano 6, 1695-1701 (2012).

[228] H. Zhang, L.-M. Liu, and W.-M. Lau, “Dimension-dependent phase transition
and magnetic properties of VS,,” J. Mat. Chem. A 1, 10821-10828 (2013).

[229] Y. Zhou, Z. Wang, P. Yang, X. Zu, L. Yang, X. Sun, and F. Gao, “Tensile Strain
Switched Ferromagnetism in Layered NbSs and NbSe;,” ACS Nano 6, 9727-9736
(2012).

[230] E. Sasioglu, A. Schindlmayr, C. Friedrich, F. Freimuth, and S. Bliigel, “Wannier-
function approach to spin excitations in solids,” Phys. Rev. B 81, 054434 (2010).



160 Bibliography

[231] S. Tongay, J. Zhou, C. Ataca, K. Lo, T. S. Matthews, J. Li, J. C. Grossman, and
J. Wu, “Thermally Driven Crossover from Indirect toward Direct Bandgap in 2d
Semiconductors: MoSe; versus MoS,,” Nano Lett. 12, 5576-5580 (2012).

[232] N. Troullier and J. L. Martins, “Efficient pseudopotentials for plane-wave calcula-
tions,” Phys. Rev. B 43, 1993-2006 (1991).

[233] C. Hartwigsen, S. Goedecker, and J. Hutter, “Relativistic separable dual-space
Gaussian pseudopotentials from H to Rn,” Phys. Rev. B 58, 3641-3662 (1998).



List of publications

Published in peer-reviewed journals

e Valley plasmonics in transition metal dichalcogenides.
R. E. Groenewald, M. Rosner, G. Schonhoff, S. Haas, and T. O. Wehling.

Phys. Rev. B 93, 205145 (2016).

e Interplay of screening and superconductivity in low-dimensional materials.
G. Schéonhoff, M. Résner, R. E. Groenewald, S. Haas, and T. O. Wehling.

Phys. Rev. B 94, 134504 (2016).

Under review

e Observation of exciton redshift-blueshift crossover in monolayer WS,.
E. J. Sie, A. Steinhoff, C. Gies, C. H. Lui, Q. Ma, M. Rosner, G. Schénhoff, F.
Jahnke, T. O. Wehling, Y .-H. Lee, J. Kong, P. Jarillo-Herrero, and N. Gedik.

Submitted to Nano Lett. (2017)

161






Conference contributions

e Talk: From optics to superconductivity: Many body effects in transition metal
dichalcogenides.
G. Schonhoff, M. Rosner, A. Steinhoff, A. Schulz, F. Jahnke, C. Gies, S. Haas, T.
O. Wehling,
Towards Reality in Nanoscale Materials VIII, Levi, Finland,
February 9th - 11th, 2015.

e Talk: Coulomb interaction in transition metal dichalcogenides: effects on many-
body instabilities.
G. Schéonhoff, M. Résner, S. Haas, T. O. Wehling.
DPG Meeting, Regensburg, March 08th, 2016.

e Talk: Coulomb interaction in transition metal dichalcogenides: effects on many-
body instabilities.
G. Schonhoff, M. Résner, R. E. Groenewald, C. Steinke, S. Haas, T. O. Wehling,.
Cecam Workshop, Bremen, June 28th, 2016.

e Talk: Description of superconductivity, charge order, and magnetism in 2D mate-
rials.
G. Schonhoff, M. Rosner, E. v. Loon, R. E. Groenewald, S. Haas, M. Katsnelson,
T. O. Wehling.
QM3 Workshop, Bremen, February 28th, 2017.

163






Acknowledgements

Many people have contributed to the work that was presented in this thesis. First of all,
[ would like to thank Tim Wehling for giving me the opportunity to work in his group
and to write this thesis; this work would not have been possible without his support, his
many ideas and the helpful discussions. Secondly, I am very thankful to Gerd Czycholl

for acting as the co-referee of this thesis.

I thank all of our working group for the great atmosphere and a lot of help. In partic-
ular, I thank Malte Rosner for introducing me to the field of 2D materials and sharing
a lot of his knowledge and skills with me. I enjoyed all the interesting discussions with
Christian Renk and Jan Berges in our office, not only concerning physics. Jan Berges,
Malte Schiiler and Ebad Kamil have been really helpful with the proofreading of this
manuscript. [ also thank Klaus Bowe and Andreas Beuthner for their help with the
hardware and software and Sarah-Jane Farley for her help with organizational prob-

lems.

Finally, I thank my family and Svenja for their ongoing support.

165






