
Portland State University Portland State University 

PDXScholar PDXScholar 

Chemistry Faculty Publications and 
Presentations Chemistry 

1-2016 

Electrochemistry-Coupled to Mass Spectrometry in Electrochemistry-Coupled to Mass Spectrometry in 

Simulation of Metabolic Oxidation of Methimazole: Simulation of Metabolic Oxidation of Methimazole: 

Identification and Characterization of Metabolites Identification and Characterization of Metabolites 

Kudzanai Chipiso 
Portland State University 

Reuben H. Simoyi 
Portland State University, rsimoyi@pdx.edu 

Follow this and additional works at: https://pdxscholar.library.pdx.edu/chem_fac 

 Part of the Chemistry Commons 

Let us know how access to this document benefits you. 

Citation Details Citation Details 
Chipiso, K., & Simoyi, R. H. (2016). Electrochemistry-coupled to mass spectrometry in simulation of 
metabolic oxidation of methimazole: Identification and characterization of metabolites. Journal of 
Electroanalytical Chemistry, 761, 131–140. http://doi.org/10.1016/j.jelechem.2015.10.041 

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Chemistry Faculty 
Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make 
this document more accessible: pdxscholar@pdx.edu. 

https://pdxscholar.library.pdx.edu/
https://pdxscholar.library.pdx.edu/chem_fac
https://pdxscholar.library.pdx.edu/chem_fac
https://pdxscholar.library.pdx.edu/chem
https://pdxscholar.library.pdx.edu/chem_fac?utm_source=pdxscholar.library.pdx.edu%2Fchem_fac%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=pdxscholar.library.pdx.edu%2Fchem_fac%2F127&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/chem_fac/127
mailto:pdxscholar@pdx.edu


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

1 
 

October 30, 2015 
Prof. Reuben H. Simoyi, Department of Chemistry, Portland State University, Portland, OR 97207-0751, 
USA. 
____________________________________________________________ 
 
 

 Electrochemistry-Coupled to Mass Spectrometry in Simulation of 
Metabolic Oxidation of Methimazole: Identification and 
characterization of metabolites 

 
 
 
 
 
 
 by 
 
 
 
 
 

 
 

Kudzanai Chipisoᶧ and Reuben H. Simoyi*ᶧǂ 

 ᶧDepartment of  Chemistry, Portland State University, 

 Portland, OR 97207-0751, USA. 
ǂSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Durban 4014. South 

Africa. 

  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

2 
 

Abstract 

Methimazole (MMI), an antithyroid drug, is associated with idiosyncratic toxicity. Reactive metabolites 

resulting from bioactivation of the drug have been implicated in these adverse drug reactions. Mimicry 

of enzymatic oxidation of MMI was carried out by electrochemically oxidizing MMI using a coulometric 

flow-through cell equipped with a porous graphite working electrode. The cell was coupled on-line to 

electrospray ionization mass spectrometry (EC/ESI-MS. ESI spectra were acquired in both negative and 

positive modes.  In acidic medium, ESI spectral analysis showed that the dimer was the main product,  

while in neutral and basic media,  methimazole sulfenic acid, methimazole sulfinic acid and methimazole 

sulfonic acid  were observed as the major electrochemical oxidation products. Oxidation of MMI and 

subsequent trapping with nucleophiles resulted in formation of adducts with N-acetylcysteine.   Some of 

the electrochemically generated species observed in these experiments were similar to metabolites that 

have been observed from in vitro and in vivo studies.   Trapping studies also showed that bioactivation 

of MMI proceeds predominantly through the S-oxide and not through formation of thyil radicals.  These 

results show that electrochemistry coupled to mass spectrometry can be used in mimicry of oxidative 

metabolism and subsequent high throughput screening of metabolites. 

Key words:  electrochemistry, oxidation, mass spectrometry, reactive metabolites 
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Introduction 

The conventional method of studying oxidative drug metabolism during preclinical experiments is 

through animal models (in vivo) or perfused organs in vitro.1 However, the use of animals in experiments 

involving scientific research and biological testing has raised concerns over the years among animal 

advocates.2 In view of this as well as the large number of drug candidates emerging and those existing, 

there has been a renewed interest in development of complementary tools for mimicry of oxidative 

metabolism. Although it remains a challenge to extrapolate data generated from such systems to actual 

In vivo systems, these biomimetic tools offer some advantages that are not inherent in conventional 

methods. Electrochemistry coupled on-line to liquid chromatograph/mass spectrometer (EC/LC/MS or 

EC/MS) has the potential to mimic redox metabolism.3-6 Members of the cytochromes P450 class 

(CYP450) of enzymes are responsible for the majority of phase I biotransformations leading to reactive 

electrophilic intermediates.7  The chemical reactivity of electrophilic metabolites usually prevents their 

detection in vivo since, by definition, they are short-lived and likely to undergo one or more structural 

modifications to form more stable final products.   Jurva and co-workers investigated the extent to 

which this technique could be used to mimic cytochrome P450 catalyzed reactions by comparing 

metabolites generated from EC/LC/MS to those that were generated from the P450 system. Their 

results showed that reactions such as N-dealkylation, S-oxidation, P-oxidation, alcohol oxidation and 

dehydrogenation that proceed via a mechanism initiated by one-electron oxidation or hydrogen 

abstraction  are amenable to electrochemical oxidation.8 

There are a number of therapeutic drugs based on simple sulfur chemistry. Our research in the past has 

focused on investigating the mechanism of S-oxidation of organosulfur compounds.9,10  Extensive studies 

from our laboratory have shown that nearly every organic sulfur compound presents a unique reactivity 

and no generic oxidation pathway can be easily derived. Sulfur atom has been implicated as a site of 
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bioactivation, resulting in formation of reactive and potentially  toxic metabolites from bioactivation of 

sulfur containing drugs.11  Many of the adverse reactions produced by penicillamine and other 

compounds with an active sulfhydryl group form a distinctive pattern when viewed as a class. 

Alterations in taste perception, mucocutaneous lesions, proteinuria due to immune-complex 

membranous glomerulopathy, and pemphigus are adverse reactions that have been encountered with 

all of these compounds.  Classic examples include the thiol, captopril, a still-used antihypertensive drug 

which comes with a black box warning and is associated with hepatotoxicity.12-14  It can only be used in 

low doses and after careful selection of patients to avoid idiosyncratic drug reactions and thus cannot be 

used for patients with severe hypertension.13  Troglitazone, a thiazolidinedione, developed for diabetes 

mellitus type 2, had to be withdrawn from the market because it caused severe liver injury.  Thiazoles 

such as Sudoxicam were withdrawn in Phase III trials when it was already apparent that the drug was 

rife with IDR’s while a closely-related drug, Meloxicam, has not been associated with any IDR’s.  

Methimazole, an antithyroid drug used in the treatment of hyperthyroidism, has been associated with 

idiosyncratic  toxicity, characterized by skin reactions, leucopenia, agranulocytosis, aplastic  anemia, 

hepatitis and cholestasis.15,16 The relationship between idiosyncratic adverse reactions and reactive 

metabolites is not well established.   There is  circumstantial evidence, however, that reactive 

metabolites are involved in the onset of idiosyncratic adverse reactions.17,18 We set out to investigate 

formation of any unexpected or reactive intermediates from MMI. The metabolites are electrophilic in 

nature, are reactive, and have the capacity to bind to nucleophilic cellular macromolecules which can 

then elicit an immune response.  EC/LC/MS method offers the advantage of generating and isolating 

reactive intermediates in cellular matrix free environments, since matrix components will immediately 

bind to the reactive metabolites resulting in evasion of detection.19-21 A range of metabolites have been 

suggested during oxidation of MMI. MMI metabolism is thought to occur through a P450-mediated 

process, resulting in ring scission, with further S-oxidation mediated through FMO to produce the 
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tandem of  sulfenic and sulfinic acids.22 However, some sources reported that FMO sequentially 

monooxygenates  intact methimazole to produce unstable  methimazole sulfenic  and sulfinic acids 

without ring scission.23  

The objective of this study was to use electrochemistry and mass-spectrometry to mimic oxidative 

metabolism in order to generate and characterize intermediates and  products using electrospray 

ionization.   Various electrochemical methods using modified electrodes to enhance catalytic oxidation 

of MMI have been developed and used for the determination of MMI at sub-micromolar  detection 

limits using cyclic voltammetry.24-26 While most of these studies were focusing on detection and 

determination of MMI using electrochemical techniques, our study is designed to explore metabolic fate 

of MMI. The  

 

Figure 1.Schematic of EC/ESI –MS system.  Coulochem III Electrochemical Detector  controls potential of 

the flow through cell. Samples were infused at 10 µL/min. 
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electrochemical oxidation of thiol  compounds such  MMI  is complicated by large anodic over potential 

and poor voltammetric signals. In the coulometric cell used in this study, the  eluent flows through the 

electrodes rather than by the electrodes as in convectional cells.  This maximizes the contact of the 

electro-active compound in solution with the electrode surface, ensuring that diffusion and convection 

controlled process do not  limit the electrochemical oxidation of the compound.27  

Experimental Section. 

Reagents: Reagent grade methimazole, reduced glutathione, N-acetylcysteine and  

methoxylamine were purchased from Sigma Aldrich (USA) and were used without further purification. 

Water solutions for electrochemical oxidation were purified using a Barnstead Sybron Corp. water 

purification unit capable of producing both distilled and deionized water (Nanopure ).  ICPMS, was used 

to evaluate concentrations of metal ions in the reagent water.  ICPMS results showed negligible 

amounts (< 0.1 ppb) of copper, iron and silver ions with approximately 1.5 ppb of cadmium and 0.43 ppb 

in lead as the highest metal ion concentrations.  In previous experiments from our lab, no discernible 

differences in kinetics data had been obtained between experiments run with chelators (EDTA, 

deferroxamine) and those run without, and so all experiments were carried out without the use of 

chelators.    Solvents used for electrochemical oxidation and mass spectrometry were HPLC grade. 

 

Instrumentation:   Electrochemical oxidations were performed using Thermo Scientific Dionex 5150  

Synthesis CellTM equipped with a flow through graphite  working electrode, solid state palladium 

reference electrode and a Palladium counter electrode (see Figure 1). The cell potential was controlled 

using Thermo Scientific Dionex Coulochem III electrochemical detector. The cell outlet was interfaced 

into a mass spectrometer inlet for on-line analysis using PEEK tubing. To prevent electrical damage to 
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the detector and cell; as well as shock, the synthesis cell and the detector were decoupled from the high 

voltage of the mass spectrometer using a high voltage decoupling union kit.  Samples were infused 

through a syringe pump at a flow rate of 10 µL/min for on-line experiments.  Mass spectra of the 

electrochemical oxidation products, were acquired on a high-resolution (m/Δm = 30 000) Thermo 

Scientific LTQ-Orbitrap Discovery mass spectrometer (San Jose, CA) equipped with an electrospray 

ionization source. The MS ESI source parameters were set as follows: spray voltage (kV), 2.5 in negative 

mode and 4.5 in positive mode; spray current (μA), 1.96; sheath gas flow rate, 20; auxiliary gas flow rate, 

0.01; capillary voltage (V), −16; capillary temperature (°C), 300; and tube lens (V), −115. Detection was 

carried out in both the negative ionization mode and positive (−ESI) for 4 min. The detection parameters 

were set up as follows: Analyzer; FTMS, positive and negative polarity; mass range; normal, resolution; 

30 000, scan type; centroid.    

On-line EC/ESI-MS electrochemical oxidation of methimazole. 

Experiments were carried out in acidic, neutral and alkaline medium.  100 µM MMI were dissolved in 

acidic medium which consisted of 20 % methanol with 80 % 20 mM formate buffer ( pH 2.75).  For 

neutral medium, a combination of 20 % methanol with 80 % 50 mM phosphate buffer (pH 7.4) was 

used.  Alkaline media utilized a 20 % methanol with 80% 20mM ammonium buffer solution (pH 10.2).  A 

500 µL sample was infused through the electrochemical cell at a flow rate of 10 µL/min before the cell 

was turned on.  
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Table I: List of structures featured in this manuscript 

 

 

 

 

 

 

 

 

 

 

   3-methylimidazolidine-2,4-
dione ( M3) 

Methimazole S-oxide 

(1-methyl-1H-imidazol-2-yl)-ƛ3-sulfanone) (M1) 

  

1-methyl-1H-imidazole-2-sulfinate 
(M5) 

3-methyl-2-thioxoimidazolidin-4-
one (M2)        

bis(1-methylimidazol-2-yl)disulfide 
(M4) 

1-methyl-2,3-dihydro-1H- 

imidazole-2-thiolate (S3) 

1-methyl-1H-imidazole-
2-sulfonate (M6) 

Methimazole 

(1-methyl-3H-imidazole-2-thione) (S1) 

  1-methyl-1H-
imidazole-2-thiol (S2) 

1-methyl-2-(methylthio)-2,3-
dihydro-1H-imidazole (M7) 

1-methyl-2,3-dihydro-1H- 

Imidazole (M8) 

 4-methyl-6-oxa-2,4-
diazabicyclo[3.1.0]hexa-1(5),2-diene-
3-thiol  (M9) 
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Table I legend: Those labeled with a prefix of ‘S’ indicate different forms of the substrate, methimazole, 

and those with ‘M’ indicate metabolites, either observed in this study or in previous studies. 

  

With the cell turned on, species generated from oxidation in each medium were monitored on the mass 

spectrum generated on-line. The potential was changed manually on the front panel of control module 

of ESA Coulochem III Electrochemical detector from 100 mv to 1200 mv. Each scan acquisition lasted for 

four minutes. The optimum potential was determined to be 600 mV vs Pd solid state reference.  Higher 

potentials resulted in a large number of unidentifiable fragments. 

Choice of supporting electrolyte and effect of pH 
 
Larger currents were attained in phosphate and in ammonium buffers. The same species obtained at pH 

7.4 in phosphate were also obtained in more alkaline media of pH 10.2.  Phosphate buffer, however, 

was not used for subsequent experiments.  This was because phosphate buffers are non-volatile and can 

clog the MS inlet capillary, and hence ammonium buffer was chosen as the suitable supporting 

electrolyte in subsequent experiments. In acidic medium the dimer was the predominant metabolite.  

 

 

Assessment of stability, reactivity of metabolites and off-line synthesis 

 

N-methylthiourea (M11) Methylthiourea  

sulfenic acid (M12) 

N-methylthiourea 

 sulfonic acid (M13) 

2-mercapto-1-methyl- 

1H-imidazole-4,5-diol (M10) 
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In order to perform off-line synthesis of intermediates, stability of the electrochemically generated  was 

monitored over a period of 30 h. To collect samples off-line, samples were infused at 40 µL/min, with 

potential maintained at 600 mV. The samples were then collected in vials with one batch kept at room 

temperature and the other batch kept at -20 0C.  Samples were analyzed by ESI-MS.  Relative 

abundances of the intermediates at m/z 129 and 146 decreased significantly after 26 h. for both the 

samples that were kept frozen at  -20   C and those maintained at room temperature. There was a 75 % 

decrease in abundance of these intermediates  over this time duration.  In addition, stability of MMI was 

also monitored and was found to be stable for prolonged periods in solution.  

S-oxidation reactions in vitro had revealed that reactive intermediates are produced during oxidation of 

MMI and these can be eliminated by addition of nucleophiles such as glutathione to the reaction 

mixture22. In order to check reactivity of the intermediate species, samples were also incubated with a 

selected set of nucleophiles. Conjugates were observed when the samples were incubated with N-

acetylcysteine. Methoxylamine and glutathione, however did not form conjugates with MMI 

metabolites. 
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Figure 2.  On-line negative mode ESI-MS analysis of methimazole oxidized in ammonium buffer. MMI 
was infused at 10 µL/minute.  At this low flow rate the substrate has sufficient residence time in the 
oxidation cell allowing complete oxidation to sulfonic acid.  

 

Results. 

Technical limitations with respect to the spectrometer cavity could not allow for a faster flow rate than 

10 μL per minute.  Thus the residence time of the substrate in the oxidation chamber was generally long 

enough for full oxidation of MMI to its full oxidation products of the sulfonic acid at 600 mV.  The 

reaction could be slowed down by running the oxidation in basic environments.  Figure 2 shows the on-

line negative mode ESI spectrum obtained.  This spectrum shows a strong peak of the sulfonic acid at 

m/z =161.003 and another for the unoxidized substrate, MMI at m/z = 113.01.  In-between, there are 
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smaller peaks at m/z = 129.01 and 145.01.  These ramp to the sulfonic acid, m/z = 161.003 by jumps of 

16 amu’s signifying these are putative the sulfenic  (or S-oxide) and sulfinic acids (the dioxide).  The 

relative abundances of the peaks indicate that the sulfenic and sulfinic acid derivatives are relatively 

unstable.  The rate determining step for the oxidation of MMI is the formation of the S-oxide.   

 

         

 

      

     

 

 

 

 

 

 

 

 

 

Subsequent oxidation (after the first 2-electron oxidation) of the S-oxide is facile, hence the relative low 

abundance of these metabolites.  Structures of the S-oxide and sulfinic acid metabolites are shown in 

Figures 3a and b, respectively. 

 

Dimer 

Figure 3c 

Methimazole S-oxide 

Figure 3a 

Methimazole Sulfinic Acid 

Figure 3b 
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Figure 4. Positive mode. On-line ESI spectrum acquired in basic medium.  This spectrum shows strong 
peaks for the dimer (m/z = 114.025, not labeled), the sulfenic acid, and the sulfonic acid.  The sulfinic 
acid is not observed under these conditions. 

 

Figure 4 shows spectra derived from on-line spectra in the positive mode.  As expected, the substrate 

now shows up at m/z = 115.03.  There is, surprisingly, a very strong peak for the S-oxide at 129.01.   

There is virtually no evidence for the sulfinic acid.  The major metabolite, before full oxidation to the 

sulfonic acid, is the dimer, at m/z = 114.025 (Figure 3c).  A slow oxidation rate will allow the electrophilic 

S-oxide to react with the thiol substrate in a condensation-type reaction to produce the dimer.  Dimeric 

disulfides are not as reactive as the original thiols, and thus they accumulate.  Their further oxidation 

rates back through the sulfenic acid are relatively slower. 
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Figure 5. Negative mode.  Off-line synthesis and analysis of MMI oxidation products. The products were 
identified with a mass accuracy of 3.93 ppm and 3.43 ppm, absolute values, for the Methimazole sulfinic 
acid and Methimazole sulfonic acid respectively. 

 

Figure 5 shows the batch off-line experimental spectra.  Incubation period was long enough for the near-

full completion of the reaction.  Since this is a batch environment, with no outflow of unreacted 

metabolites, facile reactions were able to react to completion.  In contrast, negligible amounts of S-

oxide are observed; the major metabolite is the dioxide, methimazole sulfinic acid.  Since the batch 

environment is constantly in an oxidizing environment, the highly labile sulfenic acid is not observed. 
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Figure  6.  Off-line Positive mode. ESI spectrum showing the oxides of Methimazole.  Electrochemical 

oxidation can result in ionization of neutral molecules that are difficult to detect, resulting in only 

positively charged ions that can be detected in this mode.  

 

The positive mode results of the batch process are shown in Figure 6.  Basic environments destabilize 

electrophilic intermediates, and acidic environments stabilize them.  Thus, in Figure 6, the S-oxide is 

observed, as well as the sulfinic acid. 
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Electrospray Ionization results in acidic media. 

The Methimazole dimer was the predominant product in acidic medium (Figure 3c, structure M4).   

Figure 7 shows strong peaks for the singly charged dimer at m/z = 227.04 and the doubly charged 

species at m/z = 114.03. 

 

 

 

Figure 7. Positive mode ESI in acidic medium. 

 

Experimental procedure for trapping experiment 

A 100 µM sample of MMI in 20 % methanol with 80% ammonium buffer, was infused through the 

electrochemical cell at a flow rate of 10uL/minute.  A solution of N acetyl cysteine, 100µM  from another 
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syringe was then infused  at the same rate, the effluent from both channels combined and  mixed at a T-

junction flowing into the cavity of mass spectrometer as shown in Figure 1.  

 

Experimental results derived from trapping. 

Figure 8 shows the ESI spectrum derived from the use of N-acetylcysteine (NAC) as the trap.  One strong 

peak is observed, of a 1:1 adduct of NAC with MMI.  The experimental setup involved flowing NAC 

through a T-junction into the flow going into the spectrometer cavity (see Figure 1 schematic).  Thus 

NAC was not electrochemically oxidized.  It combined with the effluent from the electrochemical cell as 

a reducing thiol.  It reacts strongly with any electrophilic species from the electrochemical cell.  The 

absence of symmetric disulfides is important: it means no radicals are involved in this mechanism.  The 

only electrophile present in the electrochemical oxidation cell is the S-oxide. The decrease in abundance 

of metabolite and formation of the conjugate strongly indicates that it is the reactive metabolite. The 

sulfinic and sulfenic acids are not strong electrophiles.  Figure 8 thus shows that the sulfenic acid is very 

stable in the oxidizing environment but is quickly and quantitatively deactivated in a reducing 

environment such as in the presence of NAC.   This (a reducing environment) is the expected medium in 

the physiological environment. 
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Figure 8 MMI   metabolite conjugate with  N-acetyl cysteine.  There is one dominant adduct 1:1 adduct 
of the N-acetylcysteine and MMI.  There is a small peak for the S-oxide and an even smaller peak for the 
dioxide. 

Mechanism. 

All the data derived from electrochemical oxidations suggests a very strong case for a viable S-oxide.   

This has been, previously, an elusive metabolite.    Very strong and stable peaks have been observed in 

Figures 4 and 6.  Figure 2, though not showing a strong sulfenic acid peak, does show a peak for the 

dimer.  This dimer is derived from a sulfenic acid (vide supra)  

The oxidation pathway has a direct correlation with the physiological effects of MMI.  The standard 

accepted oxidation pathway of sulfur-based drugs is through S-oxygenation, though the mechanism of 

this S-oxygenation differs with specific compounds based on the environment of the sulfur group.  All β-

amino sulfur compounds are oxidized in vivo and in vitro to as far as the sulfonic acid without cleavage 

of the C – S bond.  Thus most biologically active molecules such as cysteine, glutathione, and cysteamine 

show this distinct oxidation pathway.28-30  In the presence of excess oxidant, the stoichiometry of the 
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reaction was found to be strictly 1:3; with formation of the sulfonic acid with very little detectable 

sulfate by BaSO4 precipitation: 

 3Br2  +  RSH  +  3H2O   →   RSO3H  (Structure M3)  +  6H+  +  6Br- 

Most deleterious effects of bioactive compounds are ascribed to the reactive metabolites produced 

during the first pass metabolism31.  By nature of the physiological environment, such reactive 

metabolites are never observed.  The first set of experiments carried out to detect possible reactive 

intermediates of MMI involved its reaction with aqueous bromine.  This is a ‘clean’ and strong oxidant 

that oxidizes in 2 one-electron steps to produce only Br- as its reduced product: 

  ½Br2 (aq) + e-     Br-  Eo/ V = 1.09 

  This affords the determination of the possible metabolites without interference from the oxidant.  A 

1:1 mixture of MMI and aqueous bromine imparts a 2-electron oxidation which should limit oxidation of 

MMI to the sulfenic acid.  If the sulfenic acid is stable enough, it should be observed in the ESI spectrum.  

Figure 9 shows a spectrum of a 1:1 mixture of MMI and aqueous bromine.  Even though the spectrum 

shows the sulfinic and sulfonic acids; the major metabolite is surprisingly, the S-oxide (Figure 3a, 

Structure M1).  In the absence of the reducing physiological environment, this highly unstable, 

electrophilic S-oxide can be stabilized.  Unstable S-oxides are known to disproportionate or to form 

thiosulfinates.  They are also expected to react with the nucleophilic remaining thiol to produce a dimer: 

  RSOH  +  RSH  →  RSSR  +  H2O   

Under insufficient oxidant equivalents, the substrate will partition into its most stable intermediates at 

those conditions.   Spectrum in Figure 9 shows that the sulfinic acid, as expected, is not as stable as the 

sulfonic acid, which is the final oxidation product.  This spectrum was taken after complete consumption 

of bromine and before full rearrangement of the sulfur compounds as evidenced by the coexistence of 

the S-oxide and the thiol.  The spectrum obtained in Figure 9 was derived from unbuffered  solutions.  
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pH of the reaction solution decreased due to formation of H+ according to the reaction stoichiometry.  

Thus the m/z peak at 116.99 can be ascribed to the substrate, and the 115.03 to the dimer.  After long 

incubation periods the substrate peak disappears completely, with a concomitant increase in the 

dimeric species and other unidentifiable thiosulfinates.  The sulfenic and sulfinic acids still show up at 

the expected m/z values because of their acidity, and thus unlikely to be further protonated despite the 

highly acidic product environment. 
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Figure 9. ESI spectrum of oxidation of methimazole using bromine in a 1:1 mixture ratio. As expected, 

the sulfenic acid is the major metabolite in these conditions of excess reductant. 

 

Proposed  mechanism for electrochemical oxidation of methimazole 

Our experimental results can now allow us to produce a plausible mechanism of electrochemical 

oxidation of MMI.  This is shown in Scheme 1.  Electrochemical oxidation of sulfur-based drugs is 

complicated by the fact that sulfur centers generally oxidize via 2-electron jumps, while electrochemical 

abstractions generally involve a single electron transfer at a time.  Starting with the thiol center would 

produce a sulfur-based thiyl-type radical on abstraction of the first electron.  This would immediately 

precipitate a cascade of free radical reactions with a strong formation of the dimeric disulfide.  Our 

results thus lead us to the conclusion that the abstraction of the first electron results in the formation of 
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a positive charge delocalized mostly over the C-N-C network and not a sulfur-based radical.  Zwitterionic 

forms of thioureido oxo-acids have similarly been described.32 

 

 

 

Scheme 1. 

 

 

Comparison with biological metabolism. 

In general, the electrochemical species generated from electrochemical oxidation of MMI , shown here 

in this manuscript, are similar to metabolites obtained from  in vitro incubations with microsomes.  

There are other products obtained with microsomes that were not obtained here (See Table 1).  The 
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electrochemical process is a ‘cleaner’ oxidation environment than that afforded by microsomes.  Our 

electrochemical oxidation platform involves the most easily oxidizable part of the molecule without any 

regard to other parameters present in bimolecular activations such as stereochemistry.  Thus one would 

expect a compact set of metabolites, while microsomal oxidations would produce a broader spectrum of 

possible metabolites.  The major metabolites observed in microsomal oxidations have been echoed by 

our electrochemical system.  The maintenance of an oxidizing environment in the electrochemical 

environment has allowed for the observation of those highly electrophilic intermediates that would 

otherwise have been quenched by the reducing physiological environment.  Metabolism by microsomes 

involves primarily the flavin-containing monooxygenases (FMO’s) and the Cytochromes P450 group of 

enzymes.  FMO’s are a family of drug-metabolizing enzymes that use FAD, NADPH and molecular oxygen 

to catalyze the oxygenation of a large number of xenobiotics  containing ‘soft’ nucleophiles such as 

sulfur, phosphorus and nitrogen.33,34  These FMO’s convert xenobiotics into polar metabolites  by adding 

oxygen so that they can subsequently be easily eluted through the kidneys.35   While initially thought to 

be a single enzyme; FMO’s are now known to contain at least 11 isoforms, with 5 of them having been 

characterized to date.36,37  Since MMI is a well-tolerated drug for hyperthyroidism, its in vitro  and in vivo  

metabolism has been extensively studied.   Human, rat and pig microsomal incubations with MMI have 

concluded that the major activation of MMI is performed by FMO’s rather than CYP450’s.   Presence of 

FMO’s however, seemed to deactivate CYP-based bioactivations, and it has since been established that 

MMI is a competitive inhibitor of FMO’s.38,39  Isolation of the effect of CYP450’s can be determined by 

heating, which deactivates FMO’s or addition of N-octylamine, which inhibits FMO bioactivations.   The 

variety of metabolites obtained which involved ring cleavage to obtain methyl thiourea and its oxo-acids 

(structures  M11 – 13 in Table 1) can be attributed to CYP450-mediated bioactivations.   This can be 

justified through the initial epoxidation of MMI (structure M9) whose subsequent hydrolysis product of 

a 1,2 dihydroxy moiety can easily cleave the C-C bond by even the mildest oxidants.   Thus one expects a 
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wide variety of possible metabolism products when microsomal oxidations are utilized to metabolize 

MMI.  The major pathway of microsomal bioactivation of MMI involves S-oxygenation, with the sulfinic 

acid (structure M2) as the major metabolite.  While the sulfenic acid has been postulated (structure 

M1), microsomal incubations had never been able to isolate it; even though formation of M2 has to pass 

through M1.  Our study has been able to isolate this formerly postulated metabolite.  The deactivation 

of CYP450’s is clearly related to formation of a highly reactive electrophilic metabolite of MMI derived 

from FMO’s.  This has been observed with the oxidation of a novel kinase inhibitor, TG100435.40,41  Its 

bioactivation by FMO’s gives an S-oxygenated S-Oxide, TG100855, which not only deactivates Cyp450’s 

but is also reduced back to TG100435 during the deactivation. Thus the products, kinetics and dynamics 

of microsomal bioactivations are expected to be complex.  Our electrochemical oxidations simplify this 

process.  This makes evaluation of physiological effects, especially toxicities, easier to determine. 

Conclusion 

Bioactivations of sulfur-based drugs have always been difficult to determine. Sulfur chemistry is 

generally complex, characterized by free radical mechanisms and formation of polymeric species.  

Toxicities of sulfur-based drugs have been attributed to formation of highly reactive sulfur oxo-acids and 

depletion of glutathione by the formation of reactive metabolites.  The most-postulated metabolite, the 

sulfenic acid, had never been isolated until now, using electrochemistry on-line with electrospray 

ionization. 
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Electrochemistry-Coupled to Mass Spectrometry in Simulation of Oxidation of Methimazole: 

Identification and characterization of metabolites 

Research Highlights: 

This manuscript, although not the first of its type involving mimicry of metabolic activation of a long-

used drug, is the first one that involves Methimazole, a drug still in major use for hyperactive thyroid 

disorders and Graves Disease.  Using this electrochemical technique, we have been able to detect 

genotoxic metabolites that had been hitherto elusive.  We can use this technique to rationalize 

observed toxicities associated with this drug. 
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