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Abstract We investigate a class of models related to the Bak-Sneppen
model, initially proposed to study evolution. The BS model is extremely sim-
ple and yet captures some forms of “complex behavior” such as self-organized
criticality that is often observed in physical and biological systems.

In this model, random fitnesses in [0, 1] are associated to agents located
at the vertices of a graph G. Their fitnesses are ranked from worst (0) to
best (1). At every time-step the agent with the worst fitness and some others
with a priori given rank probabilities are replaced by new agents with random
fitnesses. We consider two cases: The exogenous case where the new fitnesses
are taken from an a priori fixed distribution, and the endogenous case where
the new fitnesses are taken from the current distribution as it evolves.

We approximate the dynamics by making a simplifying independence as-
sumption. We use Order Statistics and Dynamical Systems to define a rank-
driven dynamical system that approximates the evolution of the distribution
of the fitnesses in these rank-driven models, as well as in the Bak-Sneppen
model. For this simplified model we can find the limiting marginal distri-
bution as a function of the initial conditions. Agreement with experimental
results of the BS model is excellent.
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1 Introduction

The publication of the paper by Bak and Sneppen [2] gave rise to a significant
number of contributions in the literature both on evolution modeling and in
related fields, regarding the analysis and application of this model, and other
similar models. This interest has been explained on the basis of the simplicity
of the model and its ability to capture some forms of complex behavior such as
“self-organized criticality”, [11], a property that is often observed in physical
and biological systems. These are of interest in the modeling of evolution
processes but also of other processes. In particular, the model shows power-
law behavior in the distribution of some of its performance measures, while
not requiring the fine-tuning of any parameters to achieve this criticality,
thus it is considered to be “self-organized”.

The study of the theoretical properties of the model, and in general of
related models presenting this self-organized criticality property, has been
based mostly on the analysis of “avalanches” associated to its evolution.
These avalanches are defined as epochs in the process between times when
the fitnesses of all agents are above a certain threshold. In particular, in
Paczuski et al. [18] some results were obtained on the evolution of the gap
between avalanches and the span of an avalanche, for a class of self-organized
models (“extremal” models) that included Bak-Sneppen.

In spite of the simplicity of the Bak-Sneppen (BS) model and the signif-
icant literature devoted to its study, its properties have proven to be quite
difficult to analyze in detail, and many of them are known mainly from sim-
ulation results. In Meester and Znamenski [14] and [15], and Meester et al.
[16], for example, the non-triviality of the marginal distributions was proved
and some parameters associated to the limiting distributions were studied,
based on a characterization of the behavior of avalanches. Other results es-
tablishing different properties of the limiting behavior of these avalanches in
the BS model can be found in Maslov [12] and Tabelow [19].

A more detailed understanding of these models can be obtained from the
consideration of simplified versions, which would still preserve some of the
interesting characteristics of BS while being much more amenable to analysis.
One of the first modifications to be considered was the “mean-field” variant
of BS, that is, the case when the replaced agents were chosen as the one with
the minimum fitness and a fixed number of other agents selected at random.
This model was studied in de Boer et al. [5], where it was shown that power
laws were still obtained for the distribution of avalanche durations. Meester
and Znamenski [13] present another model where fitnesses were required to
take the values either 0 or 1, and show that it exhibits non-trivial behavior.

Another promising and more complex approach to approximate the mod-
els of interest has been proposed by Grinfeld et al. [10]. They introduced
and adapted so-called “rank-driven” processes, that is, processes where the
agents to be replaced are defined in terms of the order statistics of the current
population distribution. These processes have been described in detail, and
their limiting properties have been characterized for some cases, in Grinfeld
et al. [9]. In particular, they showed that if the replacements were chosen
from a uniform distribution, the limiting distribution for appropriate rank-
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driven processes had a structure similar to that observed in simulations of
a BS process. We are interested in considering situations that extend these
cases to more general settings.

There is no perfect equivalence between a Bak-Sneppen process and rank-
driven processes. Nevertheless, the results available show that the limiting
marginal distributions of these processes provide reasonable approximations
to study the limiting behavior of the Bak-Sneppen process and some of its
extensions. The usefulness of these processes as approximations for other
more complex ones, as well as their flexibility to generate different types
of limiting behaviors, provide our main motivation to study this class of
processes.

We introduce a simplifying hypothesis, namely that our observations are
statistically independent. We then use the resulting approximate theory to
characterize the limiting distribution of rank-driven processes for any con-
tinuous replacement distributions, in a manner that is simple and computa-
tionally tractable. The result is a new type of dimensional dynamical system
acting on the space of cumulative distribution functions, and whose solutions
are accessible through analysis. We will denote these systems by rank-driven
dynamical systems.

These same procedures are also used to analyze the behavior of the system
in a case that has not been previously considered in the literature, namely
when the replacements are taken from the same population (the “endoge-
nous” case). Also here the limiting measures are easily computable. An in-
teresting dichotomy occurs. In the endogenous case the limiting measure is
singular with respect to Lebesgue. In the case discussed above where the
replacements are taken from an unchanging distribution — we refer to this
situation as the exogenous case, the limiting measures for many reasonable
initial conditions are absolutely continuous, though in some cases the under-
lying exact solution may still be singular (see Section 6). Thus, endogenous
evolution may optimize fitness if the conditions are right, but all agents tend
to become identical (no diversity). Exogenous evolution on the other hand
can also improve fitness, but often diversity is retained: a nontrivial range of
fitnesses is preserved.

The paper is organized as follows: In Section 2 we present the rank-
driven processes of interest, and we enumerate some well-known results on the
distribution of order statistics. Section 3 characterizes the temporal evolution
of the process under endogenous and exogenous replacement schemes. It also
introduces and justifies the main characterization results for both of these
cases. In Section 4 we give some examples of these dynamics and show that
we get behaviors similar to those observed under the BS model. Section 5
presents a precise characterization of the limiting measure (in the limit for
many agents) for exogenous replacement schemes similar to, but much more
general then, the one used in the BS model. In the last section we compare
our approximation to the known exact solution for a particular system.
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2 Rank-driven processes and order statistics

In the Bak-Sneppen model, the lowest value plus its two immediate neighbors
in a given graph G are replaced by random values from a known distribution
N . This procedure introduces a “geometric” dependence that greatly com-
plicates its analysis. Simulation results indicate that after many iterations
the neighbors of the worst performer consist of (on average) one very bad
performer and one (N -) average performer. Indeed, it appears very hard to
prove these correlations (see for example [10]). It seems therefore reasonable
to approximate the BS model by a rank-driven model whose parameters can
be chosen to obtain a model that is much more tractable and provides a close
approximation.

We now introduce a (simplified) formal model for this system, and its
associated notation. Let R be a distribution function for a distribution sup-
ported on [0, 1]. Let G = G(R;n) = {G1, . . . , Gn} be a sample of n (al-
most surely distinct) random variables with marginal distribution R, i.e.,
P [Gi ≤ x] = R(x) for each i. Denote the corresponding order statistics
G(1) ≤ · · · ≤ G(n), and the marginal distribution function of the i-th or-
der statistic by Θi:n(R)(x) = P [G(i) ≤ x], where the notation Θi:n(R) is
motivated by our interest in the study of the properties of R.

Lemma 1 Consider the k-out-of-n order-statistics G(k) from a set of iden-
tically distributed observations. Their distributions Θk:n(R) satisfy:

R =
1

n

n
∑

i=1

Θi:n(R).

Proof It holds that

n
∑

i=1

1{G(i) ≤ x} =

n
∑

i=1

1{Gi ≤ x},

and taking expectations,

1

n

n
∑

i=1

Θi:n(R)(x) = R(x).

Let E(x) = E(G)(x) denote the empirical distribution of G:

E(x) = 1

n

n
∑

i=1

1{Gi ≤ x} =
1

n

n
∑

i=1

1{G(i) ≤ x} =
1

n
max{i : G(i) ≤ x}

Then,
E[E(x)] = R(x),

and R is also the one-dimensional marginal distribution of a randomly chosen
member of G. The characterization of this distribution is the object of interest
of this paper.
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Assume now a random index I, uniformly distributed on {1, . . . , N}. It
holds that

E[P[G(I) ≤ x]] =
1

n

n
∑

i=1

Θi:n(R)(x) = R(x).

On the model described above, we will conduct the following stochastic
“update”: Let ξ1, . . . , ξn and Y1, . . . , Yn be independent (and independent of
G), with P [ξi = 1] = 1 − P [ξi = 0] = αi ∈ [0, 1], and P [Yi ≤ x] = N(x).
Construct G′ by, for each i, selecting Yi if ξi = 1 or G(i) if ξi = 0:

G′ = {G(i) : ξi = 0} ∪ {Yi : ξi = 1}.

Then the “updated” empirical distribution corresponding to G′ is

E ′(x) = E(G′)(x) =
1

n

n
∑

i=1

(

ξi1{Yi ≤ x} + (1− ξi)1{G(i) ≤ x}
)

.

Using Lemma 1 it follows that

E[E(x)] = 1

n
E

n
∑

i=1

ξi1{Yi ≤ x}+ 1

n
E

n
∑

i=1

1{G(i) ≤ x} − 1

n
E

n
∑

i=1

ξi1{G(i) ≤ x}

=
1

n

n
∑

i=1

αiN(x) +R(x)− 1

n

n
∑

i=1

αiΘi:n(R)(x).

This is the one-dimensional marginal of a randomly chosen member of the
new sample G′. The iteration of this update will be the basis to define the
dynamics of our rank-driven dynamical system.

At this point we introduce a distinction between exogenous and endoge-
nous evolution in a rank-driven dynamical system. In the first case the cdf
N(x) represents individuals from an outside (exogenous) distribution replac-
ing disappearing individuals. Thus in exogenous evolution we consider N(x)
to be fixed. One can say that in this caseN(x) is the distribution that “drives”
the dynamics. In contrast, endogenous evolution would replace the selected
fitnesses with new fitnesses from the same distribution. Those new individu-
als are thus taken from the same (marginal) distribution as the disappearing
individuals. Thus in this case the driving measure is R itself.

Definition 1 The following are the equations governing exogenous and en-
dogenous evolution (n ∈ N fixed) for a rank-driven system

φexo(R)(x) = R(x)− 1

n

n
∑

i=1

αi Θi:n(R)(x) +
1

n

n
∑

i=1

αiN(x) (1)

φendo(R)(x) = R(x)− 1

n

n
∑

i=1

αi Θi:n(R)(x) +
1

n

n
∑

i=1

αiR(x) (2)

where for all i, αi ∈ [0, 1].
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Note that from Lemma 1, φexo(R) in Definition 1 can be written as

φexo(R) =
1

n

n
∑

i=1

((1− αi)Θi:n(R) + αiN) .

Since αi ∈ [0, 1] and N and Θi:n(R) are distributions, it follows that φexo(R)
is also a distribution. As a consequence, both equations map the space M ≡
M1([0, 1]) of cumulative distribution functions on [0, 1] to itself.

The intuition behind this exogenous dynamic model is that at each it-
eration we take out some values, namely for each i we take out (on the
average) αi times the i-th lowest value, and replace those by random values
from the cdf N . Our goal is the study of the marginal cumulative stationary
distribution functions (with support in [0, 1]) of the values G. This study
will be based on the properties of order statistics, and in particular on the
characterization of their distribution functions.

To conduct this analysis we will impose the additional assumption that,
at each stage, the G1, . . . , Gn are independent draws from their marginal
distribution. Under this independence assumption, we now present several
well-known results related to the behavior of order statistics and their distri-
butions. Most of these results are standard and can be found in many basic
references, such as for example [4]. These are presented without proof.

Theorem 1 Given a (cumulative) distribution (function) R(x), for the k-
out-of-n order-statistics G(k) from an independent set of trials we have dis-
tribution functions Θk:n(R),

Θk:n(R) =

n
∑

i=k

(

n

i

)

Ri(1−R)n−i = 1−
k−1
∑

i=0

(

n

i

)

Ri(1−R)n−i

Lemma 2 The partial of Θk:n(R) with respect to R is non-negative, and is
strictly positive if R ∈ (0, 1). Furthermore we have that

∂RΘ1:n(R)|R=0 = n and if k > 1 : ∂RΘk:n(R)|R=0 = 0

∂RΘn:n(R)|R=1 = n and if k < n : ∂RΘk:n(R)|R=1 = 0

Proof This result follows from the expressions for Θk:n(R) in Theorem 1
being differentiable with respect to R, and satisfying

∂RΘk:n(R) = n

(

n− 1

k − 1

)

Rk−1(1 −R)n−k.

Lemma 3 Let αi as in Definition 1. Then ∂R
(

1
n

∑

i αiΘi:n(R)
)

(x) ∈ [0, 1].
It can only be equal to one if R(x) is 0 or 1.
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Proof We note that ∂R R = 1 which, by Lemma 1, equals:

∂R

(

1

n

∑

i

Θi:n

)

= ∂R

(

1

n

∑

i

αiΘi:n

)

+ ∂R

(

1

n

∑

i

(1− αi)Θi:n

)

Since all the coefficients are nonnegative, we have that by the previous
Lemma each of these two terms is nonnegative with the extremal case only
possible if R = 0 or R = 1.

It is amusing to illustrate these concepts with a simple coin-toss example.
As usual we denote the Heaviside step function with the step at r by H(x−r)
and its distributional derivative the delta function by δ(x− r). Suppose

R(x) =
1

2
(H(x) +H(x− 1)) or ρ(x) =

1

2
(δ(x) + δ(x− 1)) .

This corresponds to throwing head (=0) or tail (=1) with equal probability.
One easily checks that for a set of two independent trials one has a probability
of 3

4 that the lowest throw is a 0 and the same probability that the highest
throw is a 1. Indeed the formulae of Theorem 1 give us that

Θ1:2 = 2R−R2 and Θ2:2 = R2

Note that these distributions sum to 2R as in Lemma 1 and that their deriva-
tives with respect to R satisfy Lemma 2. It is also straightforward to check
from this that

Θ1:2(R)(x) =
3

4
H(x)+

1

4
H(x−1) and Θ2:2(R)(x) =

1

4
H(x)+

3

4
H(x−1)

These expression illustrate the fact that even though the Θ1:n(R)(x) may
very well be singular, the Θ1:2 are smooth polynomials in R.

3 Rank Driven Dynamics

As we mentioned above, in order to work with a manageable representation
of the distribution functions of the order statistics, we will study the system
assuming that the different components of G were independent.

Note that in general, even if we start with n i.i.d. random variables,
this independence property will not be preserved by our dynamical systems.
Thus, this assumption would seem to be quite strong, but we believe it is not
entirely unjustified. For example, it has been observed that it appears that
in the limit as N → ∞ the fitnesses behave as if they are independent [17],
and that at the end of an avalanche the fitnesses of the elements affected
by it are independent [14]. Also, it seems reasonable to assume that the
stationary distribution for this process is at least interchangeable, implying
that its marginal distribution could be recovered from the fixed-point of
the dynamical system under the independence assumption. One interesting
insight resulting from our assumption and our ability to recover the limiting
behavior of the marginal distributions in the BS model, see Section 5, is
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that the dependence structure of these models does not seem to impact this
limiting behavior. Note that we impose the condition that the ξi and Yi used
to define our iteration are independent, and independent of G. This condition
corresponds to the structure used in the model defined in [9].

We now show that under this assumption the measures φℓ(R)(x) converge.

Theorem 2 Let φexo and φendo be the dynamical systems on M as given in
Definition 1. Assume that at each step the distributions of the fitnesses are
independent. Then there are unique R∗

exo = Γ ∗
exo(N) and R∗

endo = Γ ∗
endo(R0)

in M such that for every starting measure R0(x) and each x ∈ [0, 1] we have

lim
n→∞

φn
exo(R(x)) = (Γ ∗

exo ◦N)(x) (3)

lim
n→∞

φn
endo(R(x)) = (Γ ∗

endo ◦R0)(x) (4)

Furthermore Γ ∗
exo is strictly increasing and C∞ on (0, 1) while R∗

endo =
Γ ∗
endo(R0) is the cdf corresponding to a weighted sum of finitely many delta

distributions.

f(R)+c  WHEN N=0

f(R)+c  WHEN N=1

EXOGENOUS ENDOGENOUS

f(R) + A/n *R 

Fig. 1 In the first figure the 1-parameter family of attracting dynamical systems
induced by φexo; in this case there is always a unique attracting fixed point. In
the second, the dynamical system induced by φendo; now repelling fixed points are
possible as illustrated in the figure.

Proof From Definition 1 we see that the dynamical system on M given by
R → φ(R) induces an associated dynamical system φ̃ from I = [0, 1] to itself,
via the commuting diagram below (Id is the identity):

φ̃
I → I

R ↑ ↑ φR
I → I
Id
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From now on we replace the study of φ by that of φ̃ and since no confusion
is likely to arise we drop the tilde from the notation. Letting q ≡

∑

i αi, we
get:

φexo(R) = R− 1

n

∑n
i=1 αiΘi:n(R) +

q

n
N

φendo(R) =
(

1 + q
n

)

R− 1

n

∑n
i=1 αiΘi:n(R)

(5)

In both cases the induced map φ is monotone (because it maps cumulative
distribution functions to cumulative distribution functions). From Theorem
1 it is polynomial and not equal to the identity (assuming q < n). Thus it
can only have finitely many fixed points.

For the exogenous case we obtain a 1-parameter family of dynamical
systems of the form:

φexo(R) = f(R) +
q

n
N

see Figure 1. By Lemma 3 we have that 0 < |f ′(R)| < 1 (except possibly at
the endpoints). Thus, by the Mean Value Theorem, for value of N , there is a
unique fixed point R∗ = Γ ∗(N) which is a global attractor. Here Γ ∗ denotes
the mapping from M to M that captures the dependency of the fixed-point
distribution R∗ on the driving distribution N . It is easily seen that f(0) = 0
and f(1) = 1 − q/n and therefore that R∗(0) = 0 and R∗(1) = 1. We can
use the Implicit Function Theorem to get C∞ dependence of R∗ on N . The
dependence on x is given by R∗(x) = Γ ∗(N(x)).

In the endogenous case we obtain a dynamical system of the form:

φendo(R) = f(R) +
q

n
R

Since as before f(0) = 0 and f(1) = 1 − q/n, we conclude that φ(0) = 0
and φ(1) = 1 (see Figure 1). We already know that φ has finitely many
fixed points. Since φ is nondecreasing all fixed points with slope less than 1
must be attracting, and those with slope greater than 1 are repelling. Thus
for any starting distribution R0, we have that Γ ∗(R0) = limn→∞ φn(R0)
assumes finitely many values. The limiting distribution is given by R∗(x) =
Γ ∗(R0(x)).

Remark: It follows from the last part of the proof that Γ ∗(R0) is constant
in a neighborhood of an attracting fixed point. In fact it is constant in the
entire basin of attraction. Thus, it has a discontinuity on a boundary of a
basin of attraction. This gives rise to the somewhat counter-intuitive fact
that the limiting measure is concentrated on the repelling fixed points (or
the marginal ones).

We will later need a result that is immediately implied by Theorem 2 and
Equation 5 in its proof.

Lemma 4 The fixed points of φexo and φendo are determined by:

For φexo :

n
∑

i=1

αiΘi:n(R) = qN

For φendo :

n
∑

i=1

αiΘi:n(R) = qR
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4 Examples of Rank Driven Dynamics

In this section we illustrate some of the results that can be obtained from the
application of the preceding Theorems. We start with a very simple example:
an array of n > 1 numbers where we only replace the lowest ranked member,
that is, α1 = 1 and αk = 0 for k ≥ 2. We study both the endogenous and
exogenous cases.

φexo(R) = R− 1

n
Θ1:n(R) +

1

n
N

φendo(R) = (1 +
1

n
)R− 1

n
Θ1:n(R)

Since we have
R1:n = 1− (1−R)n

we get

φexo(R) = R− 1

n
(1− (1 −R)n) +

1

n
N

φendo(R) = (1 +
1

n
)R − 1

n
(1 − (1−R)n)

We solve in both cases for the fixed points (see Figure 2):











exogenous : 1− (1 −R)n = N ⇒ Γ ∗
exo(N) = 1− (1−N)1/n

endogenous : R − 1 + (1−R)n = 0 ⇒ R = 0 or R = 1
⇒ Γ ∗

endo(R0) = H1(R0)

(6)

where Hα is the Heaviside function with jump at α. In the exogenous case
this gives a smooth function (not differentiable at N = 1). In the endogenous
case, R0 = 0 is an attracting fixed point and R0 = 1 a repelling one. Hence
the limiting measure is concentrated in R0 = 1 (see the remark at the end
of Section 3). From Theorem 2 we see that if we choose N(x) = R0(x) = x
then equation 6 gives the solutions (depicted in Figure 2).

The output depends on the initial conditions, however. For example, sup-
pose in the same problem that we just discussed, we now have initial condi-
tions corresponding to an unfair coin-toss, that is:

N(x) = R0(x) = pHα + qHβ = 0.3H0.2 + 0.7H0.8. (7)

Here, 0 < α < β < 1 and p + q = 1. It can easily be checked analytically
that we obtain for Γ ∗

exo(N(x)) and Γ ∗
endo(N(x)) the distributions of Figure 3.

Notice that the limiting distribution in the exogenous case is singular because
the distribution N(x) is singular (see Theorem 2).

A few more examples are presented in Figures 4, 6, and 5. In these fig-
ures we draw Γ ∗

exo(N) (and its derivative) and φendo(R)−R. The parameter
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Fig. 2 In (1) and (2) we use n = 4, α1 = 1 and αi = 0 for i > 1. The first
figure shows the solution Γ ∗

exo(N) given in Equation (6) (thick blue curve) and its
density (thinner red curve) for exogenous evolution. In the second figure we plot
φendo(R) − R to indicate where the fixed points of φendo are located. The limiting
measure is concentrated on the zero of this function with positive slope, ie: R = 1.

Fig. 3 For the same problem as Figure 2 we choose particular initial conditions,
namely N and R0 are given by the unfair coin-toss in (7). We plotted the limiting
measure Γ ∗

exo(N(x)) in the first picture and Γ ∗

endo(R0(x)) in the second.

values are specified in the Figures. In Figure 4 we chose the weights αi qual-
itatively similar to what has been observed numerically in BS. We analyze
this situation in detail in the next section. In Figure 5 both low and high
numbers are replaced giving rise to the distribution given there. The curious
flat part of the limiting distribution actually arises by virtue of replacing ran-
dom numbers in the distribution. In Figure 6 we did not replace “random”
numbers but only the lowest and the highest ranked numbers. The resulting
exogenous distribution looks singular but isn’t (by Theorem 2). However one
can show that the maximum of the density grows exponentially in n.
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Fig. 4 In (1) and (2) we use n = 100, α1 = α2 = 1 and αi = 1/(n− 2) for i > 2.
The first figure is the solution Γ ∗

exo (in red) from (3) and (in blue) its density. In
the second figure we draw φendo(R)−R to indicate the fixed points.

Fig. 5 In (1) and (2) we use n = 100, α1 = α2 = αn = 1 and αi = 1/(n − 3)
otherwise. The first figure is the solution Γ ∗

exo (in red) from (3) and (in blue) its
density. In the second figure we draw φendo(R)−R to indicate the fixed points.

5 Asymptotic behavior of exogenous rank-driven models

In this Section we show that our exogenous model can mimic the observed
limiting (large number of agents) behavior of the distribution in the Bak-
Sneppen model. To give an idea of the results of this section, consider as an
example the model with n > 2, α1 = α2 = 1, αi = 1/(n− 2), for i = 3, . . . , n
and N(x) = x that was discussed in the previous section and exhibited in
the first plot of Figure 4. This model has a behavior similar to that of the
Bak-Sneppen model. Proposition 1 below implies that

∂x|N=0 Γ
∗ ◦N(x) = 1 and ∂x|N=1 Γ

∗ ◦N(x) = n−1
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Fig. 6 In (1) and (2) we use n = 100, α1 = αn = 1 and αi = 0 otherwise. The
first figure is the solution Γ ∗

exo (in red) from (3) and (in blue) its density. In the
second figure we draw φendo(R)−R to indicate the fixed points.

The main theorem in this section (Theorem 3) implies that if we fix x < 2/3,
then as n tends to infinity Γ ∗ ◦N(x) tends to 0. However if we fix x > 2/3
then as n tends to infinity Γ ∗ ◦N(x) tends to 3x− 2.

We start with a proposition that characterizes the behavior of the fixed-
point distribution as N → 0 and N → 1.

Proposition 1 Theorem 2 implies that the exogenous system of Definition
1 has a unique solution Γ ∗(N). We have:

∂N |N=0 Γ
∗(N) =

q

nα1
and ∂N |N=1 Γ

∗(N) =
q

nαn

Proof This follows directly from differentiation of Lemma 4 using the chain
rule:

∂R∗

(

n
∑

i=1

αiΘi:n(R
∗)

)

∂NΓ ∗(N) = ∂N (qN) = q

and subsequent application of Lemma 2.

To formulate the main theorem we need the following refinement of the
model in Definition 1. For the remainder of the Section we will be considering
a sequence of models for increasing n, and we will be particularly interested
in the case n → ∞. In particular, αi ≡ αi(n) in all that follows.

Definition 2 Let αi as introduced in Definition 1. We will say that a se-
quence (indexed by n) of sequences {αi(n)}ni=1 is a (p, q)-sequence, if there
exist p, q > 0 independent of n, and k(n), α̃(n), and δi(n) for i > k(n) with
the following properties:

1. p ≥
∑k(n)

i=1 αi, p <
∑k(n)+1

i=1 αi and q =
∑n

i=1 αi and ∀ i > k(n) : αi =
α̃(n) + δi(n)
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2. 1 < k(n) < n and k(n) = o(n/ lnn)
3. maxi>k(n) |δi(n)| = o(1/n)

To illustrate this definition, consider the following examples of (p, q)-sequences:
a) αi = 2/

√
n for i ≤ √

n and αi = 1/(n−√
n) for i >

√
n, with k(n) =

√
n

(and p = 2); b) α1 = α2 = 1 and αi = 1/(n − 2) for i ≥ 3, with k(n) = 2
(and p = 2). Alternatively, the values αi = 3/n would define a sequence that
is not (p, q).

For (p, q)-sequences we can write

αi =
q − p

n− k(n)
+ o(1/n), p̃ ≡

k(n)
∑

i=1

αi, α̃ =
q − p

n− k(n)
. (8)

An important observation is that if a sequence is (p, q), then the values
p and q are unique. The statement for q is trivial. Assume that there exist
p1, p2 with p2 ≥ p1 such that the conditions in Definition 2 are satisfied for
both values. We must have functions k1(n) ≤ k2(n) associated to p1 and p2
respectively, satisfying these conditions. Consider the sum

S(n) ≡
k2(n)
∑

i=k1(n)+1

αi > p2 − p1 ≥ 0.

From Definition 2 it follows that

k2(n)
∑

i=k1(n)+1

αi = (k2(n)− k1(n)− 1) α̃(n) +

k2(n)
∑

i=k1(n)+1

δi(n)

≤ (k2(n)− k1(n)− 1)

(

q − p

n− k(n)
+ max

i>k(n)
|δi(n)|

)

= o

(

1

lnn

)

,

This implies S(n) → 0 and p2 = p1.

To prove the main Theorem we will need a technical Lemma. This result
makes use of a function m(n) : N → N defined as

m(n) ≡ ⌈k(n) lnn⌉. (9)

If Definition 2 holds, then for ǫ ∈ (0, 1) and n large enough we have

m(n) = o(n), (10)

lim
n→∞

m(n) = ∞, (11)

m(n) > (k(n) + ǫ) lnm(n). (12)

Lemma 5 Suppose m(n) and k(n) satisfy (9), (10), (11), and (12). For
j ≤ k(n) define

Pj,n(m) ≡
j−1
∑

i=0

(

n

i

)(

m(n)

n

)i(

1− m(n)

n

)n−i
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Then
lim
n→∞

max
1≤j≤k(n)

Pj,n(m) = 0

Proof We have that Pj,n ≤ Pk,n and Pk,n satisfies

Pk,n ≤
(

1− m

n

)n k−1
∑

i=0

1

i!

(

m

1− m
n

)i

.

By (10) we have that n > 2m, and so i! (1−m/n)
i
> 1/2. Also for m > 2

and k > 1, we have that
∑k−1

i=0 mi ≤ mk. Thus

Pk,n ≤ 2
(

1− m

n

)n

mk,

and

lnPk,n ≤ ln 2 + n ln
(

1− m

n

)

+ k lnm.

Using ln(1− x) < −x for x ∈ (0, 1), and (12):

lnPk,n ≤ ln 2− ǫ lnm.

From (11) we have lnPk,n → −∞.

Theorem 3 Theorem 2 implies that the exogenous system of Definition 1
has a unique solution R∗

n = Γ ∗(N ;n) for each n. If αi(n) is a (p, q)-sequence,
these solutions satisfy:

1. N(x) <
p

q
⇒ lim

n→∞
R∗

n(x) = 0

2. N(x) >
p

q
⇒ lim

n→∞
R∗

n(x) =
qN(x)− p

q − p

Proof R∗
n(y) = Γ ∗(N(y);n) are non-decreasing functions of N by Theorem

2. We prove part 1 by finding values yn tending to p/q such that R∗
n(yn)

tends to 0.
Using αi, k(n) and q given in Definition 2, and m(n) defined in (9), we

can write the fixed-point equation from Lemma 4 as:

qN =

k
∑

i=1

αiΘi:n − α̃

k
∑

i=1

Θi:n + α̃

n
∑

i=1

Θi:n +

n
∑

i=k+1

δiΘi:n, (13)

where we have suppressed the dependence of αi and α̃ on n. Let yn ∈ [0, 1] be
such thatR∗

n ≡ R∗(yn) = m(n)/n, and use Lemma 1, the notation introduced
in (8), and Lemma 5 to obtain:

qNn =

k
∑

i=1

αi(1−Pi,n)−
q − p

n− k

k
∑

i=1

Θi:n(R
∗
n)+n

q − p

n− k
R∗

n+

n
∑

i=k+1

δiΘi:n(R
∗
n),
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where Nn ≡ N(yn).
From (8), (10), and parts 2 and 3 of Definition 2 we have for n → ∞,

0 ≤ q − p

n− k

k
∑

i=1

Θi:n(R
∗
n) ≤

q − p

n− k
k → 0,

0 ≤ n
q − p

n− k
R∗

n ≤ n
q − p

n− k

m

n
→ 0, (14)

0 ≤
n
∑

i=k+1

δiΘi:n(R
∗
n) ≤ (n− k − 1)max

i>k
|δi| → 0.

Furthermore, we note that by Lemma 5

0 ≤
k(n)
∑

i=1

αiPi,n ≤ max
i≤k(n)

Pi,n

k(n)
∑

i=1

αi ≤ p max
i≤k(n)

Pi,n → 0.

Thus the first term tends to p and we obtain

lim
n→∞

qNn = p.

which proves the first part.
We prove part 2 by establishing that if y is such thatR∗

n(y) = Γ ∗(N(y);n) >
ǫ (independent of n), then N(y) > p/q and R∗

n(y) must have the indicated
limit.

In the proof of part 1 we showed that whenever R∗
n(y) = m(n)/n, then

limn→∞

∑k(n)
i=1 αiΘi:n(R

∗
n(y)) = p. Since the Θi:n(R

∗
n) are non-decreasing

functions of R∗
n (see Lemma 2), for R∗

n(y) ≥ ǫ > 0 we must have that

lim
n→∞

k(n)
∑

i=1

αiΘi:n(R
∗
n(y)) ≥ p.

On the other hand, from Theorem 1 and for any value y,

k(n)
∑

i=1

αiΘi:n(R
∗
n(y)) =

k(n)
∑

i=1

αi −
k(n)
∑

i=1

i−1
∑

j=0

(

n

j

)

(R∗
n(y))

j(1 −R∗
n(y))

n−j ≤ p.

Thus,

lim
n→∞

k(n)
∑

i=1

αiΘi:n(R
∗
n(y)) = p.

Combining these bounds and using the arguments in (14) to have the
second and fourth terms of (13) again limiting to 0, we get for any ǫ > 0 and
R∗

n(yn) ≥ ǫ, letting Nn ≡ N(yn),

lim
n→∞

(

qNn − p− q − p

1− k(n)/n
Γ ∗(Nn;n)

)

= 0,

which proves part 2 of the theorem.
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This result is similar in spirit to Theorem 3.2 in [9], although simpler in
its structure. Also, it applies to any driving distribution N , and not just to
the uniform case. It provides a very close approximation to the simulation
results presented in [7], Fig. 1, and specially in [8], Fig. 1, for the form of the
stationary marginal densities in the Bak-Sneppen model.

The result can be extended to include other situations. For instance in
Definition 2 instead of using a single number p one could require

p1 =

k1(n)
∑

i=1

αi and p2 =

n
∑

i=k2(n)

αi.

The example of Figure 5 is a case in point.

6 Comparison of rank-driven models

We compare the performance of our approximating rank-driven dynamical
model to a rank-driven model that we can analyze exactly. For the remainder
of the section we consider the exogenous process with n agents, where α1 = 1
and the remaining αi’s are all zero. The solution (without approximation) is
described in the following proposition (see [9] for more details).

Proposition 2 For the exact exogenous system with n agents, α1 = 1, and
the remaining αi’s equal to zero, its distribution R̂(x) converges to Γ̂ ∗(N)(x)
and:

Γ̂ ∗(N) =
1

n
N +

n− 1

n
Hβ ,

where N is the driving distribution, Hβ the Heaviside function with jump at
β, and β = sup{x |N(x) < 1}.
Proof Let {x(i)

t }ni=1 be the values of the fitnesses at time-step t, ordered

according to increasing magnitude. At every positive integer t, x
(1)
t is replaced

by a N -random value x. If x < x
(2)
t−1 then

x
(1)
t = x and x

(i)
t = x

(i)
t−1 for i > 1.

If that is not the case, then for some k > 1 we have

x
(k)
t = x, x

(i)
t = x

(i+1)
t−1 if i < k and x

(i)
t = x

(i)
t−1 for i > k.

It follows that for fixed i > 1 the sequence x
(i)
t (as function of t) is non-

decreasing and bounded, so it has a limit. If it converges to a number less
than β, where N(β) < 1, then with probability 1 the replacement value x will
at some point be larger than it. And then it must increase by the previous
reasoning. Thus, must converge to a value ≥ β.

In the limit the replacement value will always be x
(1)
t , the smallest entry

in the list of fitnesses. Therefore the distribution of that variable must be
equal to N . Thus, the order-statistics satisfy

Θ1:n(R̂
∗) = N and Θi:n(R̂

∗) = Hα(x) for i > 1.

The proposition follows from Lemma 1.
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If we introduce the independence assumption and approximate this model
with a rank-driven dynamical system, then from Equation 6 we see that its
limiting measure satisfies:

Γ ∗(N) = 1− (1−N)1/n (15)

We now provide a sense of the closeness of the distributions R∗ = Γ ∗(N)

and R̂∗ = Γ̂ ∗(N) by computing several derived quantities. From Proposition
2 and Theorem 1 one easily sees that:

Lemma 6

Θ1:n(R
∗(x)) = Θ1:n(R̂

∗(x)) = N(x)

To simplify the following discussion we now set N to be equal to the
uniform distribution: N(x) = x.

Corollary 1 The mean of R̂∗(x) is 1− 1

2n
. The mean of R∗(x) is 1− 1

n+ 1
.

Proof The first statement follows from Proposition 2. The second can be
calculated using Equation 15 and

E[R∗] =

∫ 1

0

(1−R∗(x)) dx =

∫ 1

0

(1 − x)1/n dx =
n

n+ 1

The situation is slightly worse if we look at the distributions of individual
order statistics. In this context, we would expect to see the largest difference
between Θ2:n(R̂

∗) and Θ2:n(R
∗).

Corollary 2 Θ2:n(R̂
∗) = H1 and has mean 1, while Θ2:n(R

∗)(x) = 1+ (n−
1)(1− x)− n(1− x)(n−1)/n and has mean

3n− 1

2(2n− 1)
.

Proof The first statement is obvious.
For the second statement, by Theorem 1 we get:

Θ2:n(R
∗) = 1− (1−R∗)n − nR∗(1−R∗)n−1

Substituting Equation 15 gives the desired expression for Θ2:n(R
∗). For its

mean, we have as before

E[Θ2:n(R
∗)] =

∫ 1

0

(1−Θ2:n(R
∗)(x)) dx

= n

∫ 1

0

(1 − x)(n−1)/n dx − (n− 1)

∫ 1

0

(1− x) dx

The evaluation of this integral yields the desired result.



19

7 Conclusions

In this paper we have described and analyzed the asymptotic behavior of
a class of rank-driven processes. These processes appear in many practical
cases, where a dynamic system changes along time by replacing some of its
components by others with new random characteristics, when the choice of
the components to replace based on the ranks of these components. This
would be a reasonable model for a system where the replacements come
from a fixed distribution N that is independent of the evolving distribution.
This model was thought to apply to the “biological evolution of interacting
species” by its original authors (see [2] for further discussion of this aspect).
Other examples are for example the modeling of the dynamics of economic
agents, see [3] or [1], or the study of small-world networks, [6]. As long as the
components to be replaced are selected in an (approximately) independent
manner, our theory shows that there is an essentially unique fixed point
distribution which can easily be constructed from the initial distribution and
the fixed distribution N .

In the paper we also show that the behavior of these systems is quite
different if the replacements come from the evolving distribution itself. That
would be the case if the characteristics of the replacements are somehow
inherited from those of the existing population. In this case we have show
that again there is a unique fixed point that can easily be constructed from
the initial distribution. The difference with the previous case is that in this
case the limiting distribution is always a countably singular measure, while
in the former case there are many plausible scenarios where the limiting
measure actually has a non-singular density.
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