Transforming Technology Management Courses for Web Delivery

Wayne Wakeland Systems Science Ph.D. Program Portland State University

Using web technology to teach technology management

- Esp. computer modeling and simulation
- What works, and what doesn't
- Web technology supplants lectures
 - with self-paced materials and lab exercises
 - enabling students to take courses remotely and asynchronously
- Exams are also web-delivered

Is the Web going to Transform Technology Mgmt. Education?

- Yes...but exactly how is not yet obvious
- Questions abound:
 - Is the web best used simply as a more flexible and visual vehicle for delivering course materials?
 - Is it possible to effectively assess student learning in a remote, asynchronous environment?
 - How do we ensure the quality of instruction in web courses?

Not a Research Paper

- Rather, it is a reflection on 3 years of using web technology
 - To improve computer modeling & simulation courses
- Possibly of interest to other educators
 - Who are using or considering web technology
- And to serve a springboard for scholarly research
 - To address questions being raised about webbased instruction

Use of Web Technology

- Lectures replaced with self-paced reading materials (web notes plus text)
- Plus activities (labs) conducted in a computer lab
 - Students work at their own pace
 - "Labs" reinforce key concepts in the readings
 - And prepare students to do the graded exercises
 - The instructor and a lab assistant are available
 - Students may do the labs at another location and/or at another time if they so choose
 - Labs are not graded

Assessment of Learning

- Projects
- Examinations
- Graded exercises
 - written up and submitted by the students
- Self-test (non-graded) quizzes are also available to the students.

Taking Courses at a Distance

- Potentially, yes
- Only a few have done so
- Most students attend the lab sessions
 especially those who find the material challenging
- Some opt out of labs, or do them on their own
 - Due to their strong prior background
 - Or because they find the concepts easy to understand

Why Web-enable Courses?

- To improve course quality
- To make courses more learner-directed
- To improve efficiency
 - from the perspective of student and instructor
- Distance-enabling courses was not the driver

The Courses

- Computer Modeling & Simulation
 - How to use the tool (the simulation language)
 - And the process for conducting a simulation-based study
 - All courses meet once a week in the evening
 - to increase accessibility to local professionals
- Continuous System Simulation
 - System Dynamics (STELLA)
- Discrete System Simulation
 - General introduction, emphasizing the interpretation of simulation results using statistics (Arena)
 - Process modeling and simulation (Extend)
 - Manufacturing system simulation (ProModel)

Traditional Approach

- Students read the test
- Instructor lectured from handwritten notes
 - Using the chalkboard to outline/clarify ideas
- Students were expected to take their own notes
 - This was believed to add value
- Sometimes, typewritten notes were provided
 - To complement or update the text
- Examinations were open notes & open book
 - An incentive for students to take good notes

Evolution of the Courses

- 1997
 - Notes put into html on the web
 - Non-graded "test your knowledge" quizzes provided
 - Detailed roadmap for the course provided
 - Excel spreadsheet w/hyperlinks to notes pages, assignment sheets, and quizzes
 - Major improvement over the previous approach (?)
- 1998
 - Classrooms equipped with video projectors and web access
 - The instructor could simply lecture from the web notes
 - No less effective than the previous approach, but
 - It became clear that such lectures added limited value
- A new pedagogical approach was needed

Active or Student-directed or Inquiry-based Learning

- Prestigious universities were exploring these new approaches to learning
 - Incl. Harvard & MIT
- The ideas seemed reasonable:
 - Create materials that require the student to do more than simply read and listen
 - Have them work in teams to solve problems, do research, create presentations, etc.
 - Have students check their own comprehension as they learn new concepts

Active Learning

- Views education not as a passive transmission process, but rather as an active process
 - With ample opportunities for clarifying, questioning, applying, and consolidating
- Tools for active learning include
 - Group discussion
 - Problem solving
 - Case studies
 - Role-playing
 - Journal writing
 - Structured learning groups
- Having students work in pairs is recommended

Web materials (Nelson Baker)

- Web materials help students learn more quickly
- Some students also learn the subject better
 lower quartile students, for example
- However, initial increases in motivation fade
- The web's increased visual impact is important
 - Simply putting text onto the web may not be of much value
- Effective web pages for teaching should
 - Be well organized, easy to navigate, and globally integrated
 - Include samples of previous student work & discussions
 - Provide collaboration mechanisms to maintain community

Cohesive Web Design (Campbell)

- The key interactivity
- Cognitive science research indicates that humans learn better by experimenting with the real world rather than memorizing lists of rules (Schank and Cleary)
- Campbell also presents the notion of *anchored discussion*
 - developed by the Cognition and Technology group at Vanderbilt
 - Students explore and resolve complex, realistic problems
 - Video materials serve as anchors or macro contexts

More from Cognitive Theory

- Important concepts include:
 - Experiential learning
 - Situated learning
 - Lateral thinking
 - Social development theory
 - That social interaction is the key to cognition
- *Teaching architectures* (Shank & Cleary):
 - Simulation-based
 - Learning by Doing
 - Incidental Learning
 - Learning by Reflection
 - Case-based Learning
 - Learning by Exploring

Learning Frameworks (Bruner)

- Multiple Representations of Reality microworlds)
- Authentic Tasks
- Real-World, Case-based Contexts
- Fostering Reflective Practice
- Knowledge Construction
- Collaborative Learning

Continued Evolution of Courses

- The subject lends itself to active learning
 - The objective is for students to learn how to build models
 - And then to use these models to generate insights, and inform decisions
- Students build several models of increasing complexity, with decreasing levels of assistance
 - Addressing a real world problem completes their learning
 - Reading books and webnotes plays a support role

Conversion to WebCT

- Webnotes moved easily
- Quizzes were a challenge
 Short essay → multiple choice
- Self-paced modules
 - vs. schedule with specific due dates
- SW demonstrations during labtime
 - To labs done by the students

Exams on the Web

- Multiple choice vs. short essay
 - Good multiple choice questions are hard to write!
- Needed to make exams "closed notes"
- Time constraint concerns
 - To limit web-searching to find answers
 - Fairness to foreign language students?
- Trust concerns
 - Is the student following the rules?
 - Who is actually taking the exam?
 - Proctor the exams?

Student Surveys

- Was lecture/lab time used effectively?
- Was using contact time for labs effective?
- Were the labs were useful?
- Did the labs take too much time?
- Were self test quizzes useful?
- Were the web notes useful?
- Was the multiple choice Midterm OK?
- Can this material can be learned as well or better via welldesigned web course?
- Did taking course remotely and asynchronously work?
- Was access to WebCT a problem?
- Did it work for you to rely on the WebCT Bulletin Board for important course info.?

Survey Results 1

- Neutral about the usefulness of the lectures
- Somewhat enthusiastic about the lab sessions
 Useful; not overly time-consuming
- Some students appear to miss the lectures
- There is much room for improvement regarding use of contact time
- Self-test quizzes were equally useful when converted to WebCT

Survey Results 2

- Curiously, the usefulness of the web notes dropped from "strongly agree" to "agree"
- Multiple-choice midterm worked fine
- Most students indicated having a good experience with using the web
- Students relying on the web-based bulletin board indicated mixed results

Preliminary Conclusions 1

- The courses are getting better
 - Creation of web notes, self-test quizzes, labs, etc.
 - The web simply provided the impetus and made the materials easier to deliver.
- But, there is much room for improvement
 - The materials are still quite static and "beg" to be made more dynamic
 - Self-test capability needs to be more complete
 - The glossary capability needs to be better exploited
 - Student interaction during the labs needs to be improved

Preliminary Conclusions 2

- Some amount of "lecture time" may need to be re-incorporated
 - In order to maximize student learning and satisfaction
- The experience for remote students is inferior
 - This will not be easy to remedy

Future Research 1

- Data is needed regarding both the quality and efficiency of web-based learning
 - For different subjects
 - For learners of varying ability
 - For different aspects of web instruction
- This will not be easy
 - Web course software may help to some degree
- Comparing the quality of learning
 - Same exam given in similar courses, one delivered traditionally and one web-based
 - may require the cooperation of instructors at multiple institutions

Future Research 2

- Comparing efficiency data between web and traditional classes will be even more difficult
 - Since there is no mechanism in traditional courses to track of how long students spend reading, doing assignments, etc.
 - This will require the cooperation of the students
- Despite the difficulty, this research is needed
 - To learn when to use and when not to use various types of web-based instruction
 - What subjects
 - Which students