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ABSTRACT 1 

Traditional signal timing policies have typically prioritized vehicles over pedestrians at 2 

intersections, leading to undesirable consequences such as large delays and risky crossing 3 

behaviors. The objective of this paper is to explore signal timing control strategies to 4 

reduce pedestrian delay at signalized intersections.  The impacts of change in signal 5 

controller mode of operation (coordinated vs. free) at intersections were studied using the 6 

micro-simulation software VISSIM.  A base model was developed and calibrated for an 7 

existing pedestrian active corridor. A hypothetical network of three intersections was 8 

used to explore the effects of mode of operation and measures of delay for pedestrians 9 

and all users. From a pedestrian perspective, free operation was found to be more 10 

beneficial due to lower delays. However, from a system wide (all user) perspective, 11 

coordinated operation showed the greatest benefits with lowest system delay under heavy 12 

traffic conditions (v/c > 0.7). In the off-peak conditions when traffic volumes are lower, 13 

free operation resulted in lowest system delay (v/c < 0.7). During coordination, lower 14 

cycle lengths were beneficial for pedestrians, due to smaller delays. The results revealed 15 

that volume to capacity (v/c) ratios for the major street volumes coupled with pedestrian 16 

actuation frequency for the side street phases, could be used to determine the signal 17 

controller mode of operation that produces the lowest system delay. The results were 18 

used to create a guidance matrix for controller mode based on pedestrian and vehicle 19 

volumes. To demonstrate application, the matrix is applied to another corridor in a case 20 

study approach.  21 
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INTRODUCTION 1 

Walking is a critical component in the development of healthy and sustainable 2 

communities. An estimated 42.5 billion walking trips were undertaken nationwide in 3 

2009, accounting for 10.9% of all trips (1). Many of these walking trips occur in urban 4 

areas which may require mid-block or intersection street crossings. Signal timing 5 

objectives and practices have generally prioritized vehicle movements at intersections-6 

even in places with significant pedestrian activity, which can impose unnecessary delays 7 

for pedestrians.  8 

Though intersections are generally viewed as the preferred place to cross the street 9 

for safety reasons, they can be a deterrent for walking if their design and operation 10 

heavily favor motor vehicles. Unnecessary delays to pedestrians may result in signal non-11 

compliance and negative safety implications. There is emerging interest within cities to 12 

promote multimodal transportation, and to design and operate streets and intersections for 13 

all users. However, currently there is very limited research on accommodating and/or 14 

prioritizing pedestrians at signalized intersections in the North American context. 15 

Pedestrians are often considered as a deterrent to efficient traffic flow, due to reductions 16 

in saturation flow rate for turning vehicles that occur when vehicle movements are 17 

interrupted (2). Therefore active efforts to include them in operational decisions at 18 

intersections have been lagging.   19 

The objectives of this research were to explore pedestrian responsive signal timing 20 

strategies in the context of user delay. In this paper, pedestrian delay is defined as the 21 

difference between the time when a pedestrian activates the push button and the time 22 

when the pedestrian phase is served. The micro-simulation software VISSIM was used to 23 

study the impacts on average delay per user resulting from changes in signal controller 24 

mode of operation (coordinated vs. free) with varying pedestrian and vehicular volumes 25 

in a hypothetical network. Coordination refers to synchronization of multiple 26 

intersections to prioritize certain movements, whereas during free operation, the 27 

intersections operate in isolation without a background cycle length (3). The results show 28 

that free operation resulted in statistically significant lower pedestrian delay irrespective 29 

of the vehicular volumes.  However, when the entire network is considered, free 30 

operation results in statistically significant lower system delays for low v/c ratios (v/c < 31 

0.7). Coordination results in lower system delay at higher v/c ratios (> 0.7).  These results 32 

provide guidance to practitioners to improve system operations and efficiency by 33 

changing signal controller mode of operation based on pedestrian and vehicular data that 34 

can be easily collected in the field.  35 

 The remainder of this paper is organized in the following manner. Related work is 36 

reviewed in the background section, followed by descriptions of the methodology, results, 37 

conclusions and implications. 38 

BACKGROUND 39 

While vehicular delays have been well researched and quantified (e.g. the Highway 40 

Capacity Manual); research on reducing pedestrian delay is minimal. Both analytical and 41 

simulation modeling techniques have been adopted to optimize network delays. 42 

Bhattacharya et al. used the signal timing optimization software Synchro to study the 43 
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changes in vehicle delay resulting from changes in coordination plans and offsets (4). 1 

They found that offsets that produce lowest vehicle and pedestrian delays are not 2 

necessarily the same, when pedestrian value of time is considered (4). Through a simple 3 

analytical model, Noland analyzed the travel delay costs of pedestrians and showed that 4 

ignoring pedestrian delay and focusing on vehicular flows may not be the most cost 5 

effective solution from an economic perspective, as the travel time costs of delay to 6 

pedestrians may be significant (5). Ishaque and Noland used micro simulation to 7 

understand pedestrian delay and studied the trade-offs between pedestrian and vehicle 8 

delays in a hypothetical network (6, 7). They found that low cycle lengths benefit 9 

pedestrians. A matrix identifying the optimal pedestrian phase based on proportion of 10 

pedestrians and vehicles was developed. While the type of pedestrian crossing was 11 

varied, they did not study the effects of changing the mode of operation or signal timing 12 

parameters on pedestrian delay. 13 

Research conducted in New Zealand evaluated strategies such as phasing 14 

changes, signal timing optimization and cycle length reduction to reduce pedestrian 15 

delay, using micro-simulation modeling in three cities (8). Per person optimization of 16 

time was proposed instead of per vehicle to allow for equitable consideration of all users. 17 

Although this study evaluated the impacts of certain pedestrian control strategies on 18 

delay, it did not evaluate the effects of mode of signal controller operation on delay and 19 

the associated feasibility regimes. Roshandeh et al. proposed simultaneous minimization 20 

of vehicle and pedestrian delays by adjusting green splits during the peak periods and 21 

timing plans during other time periods in a day, without changing cycle lengths and 22 

signal coordination (9). While signal timing optimization reduced delays within the 23 

coordinated framework; delays resulting from uncoordinated operation were not 24 

considered. 25 

Tian evaluated different forms of split phasing and pedestrian timing alternatives 26 

and their impacts on coordinated systems (10). However, pedestrian delay was not 27 

explicitly included in the analysis. Wang et al. proposed a pedestrian delay model with a 28 

two stage crossing design for unconventional pedestrian crossings (11). While the 29 

proposed model provides a method to estimate average pedestrian delay at two stage 30 

crossings, it does not propose any strategies to reduce delay at single crossings. 31 

METHODOLOGY 32 

In this research, VISSIM micro simulation software was used to model the impacts of 33 

changing the signal controller mode of operation from coordinated to free on an urban 34 

street network, and to assess the feasibility of traffic regimes for each mode of operation. 35 

First, a base model was first constructed, calibrated and validated. All the data 36 

required for simulation and validation were gathered via field observations, either 37 

manually or extracted from video. Results from the base model were analyzed (but are 38 

not reported here in detail).  Using the base model as a starting point, a hypothetical 39 

network was then constructed. Pedestrian and vehicle volumes were synthesized in high, 40 

medium and low categories. Simulation models for each combination of these scenarios 41 

were run and analyzed. The following describes these steps. 42 
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Base Model Development and Calibration 1 

 Three signalized intersections were chosen for simulation: NE 11th Avenue, NE 13th 2 

Avenue and NE 15th Avenue along NE Multnomah Street.  These intersections were 3 

chosen based on criteria such as heavy pedestrian activity, coordinated operations, 4 

presence of pedestrian push buttons and Type 2070 signal controllers (for data logging). 5 

A protected cycle track was added along NE Multnomah St in late 2012 by reconfiguring 6 

the corridor from five lanes to three lanes.  Figure 1 shows the Multnomah Street network 7 

that was used for simulation. 8 

 9 

FIGURE 1 Multnomah Street Simulation Network 10 

Vehicle and bicycle volumes were collected using pneumatic tube counters and 11 

pedestrian volumes were collected manually for each crosswalk in the network. The total 12 

bicycle and vehicle volumes were then allocated to each approach based on manual 13 

turning movement counts. The time periods chosen for data collection were 7-8 AM, and 14 

4-6 PM to correspond with the typical AM and PM vehicular peak periods, as well as 15 

11AM – 1 PM which represented a time period with high pedestrian activity and low 16 

vehicle volume. Signal timing for each intersection was obtained from TransSuite®, the 17 

central ATMS software for the City of Portland, Oregon. The east and westbound 18 

movements along Multnomah St. were coordinated during all time periods. The cycle 19 

length at the three intersections varied between 70 and 80 sec, with the higher cycle 20 

length in operation during the day.  21 
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The network was created in VISSIM, a micro-simulation software that provides the 1 

ability to model the interactions between various users.  Road geometry for network 2 

development was partly obtained from Google Maps® Satellite images. Road widths and 3 

speeds were obtained from City of Portland’s records if available and were assumed 4 

otherwise. Vehicle composition was obtained from the pneumatic tube counts. Once the 5 

network was developed, it was calibrated. Calibration is the process used to obtain a 6 

reliable model by specifying certain parameter values so that the model replicates local 7 

traffic conditions as accurately as possible (12). During calibration, modeled volumes and 8 

travel times from the simulation were compared to the observed values to assess how 9 

closely they matched.  These parameters including queue lengths were accepted as 10 

matched based on prior set guidelines (12). Detailed descriptions on the simulation setup 11 

and calibration process can be found elsewhere (13). 12 

 Three time of day models were run in VISSIM using the appropriate volumes and 13 

signal timing parameters. The signals were in coordination during all three time periods. 14 

The main street pedestrian phase was placed in recall and rest in walk setting was also 15 

enabled to mimic the operation in the field. The rest in walk feature allows the pedestrian 16 

walk phase to expand during the coordinated movement green until a conflicting call on 17 

the side street is received. Side street pedestrian phases at Multnomah and 11th and 18 

Multnomah and 15th were also placed on pedestrian recall and side street phase at 19 

Multnomah and 15th was placed on maximum recall to replicate the field settings.  20 

 Performance metrics were extracted from the simulation. The results presented 21 

here represent an average of 10 simulation runs. Figure 2a shows the network volume by 22 

mode for each of the analyzed time periods.   23 

 24 

a) Network Volume by Mode  b) Average Delay per User by Mode 25 

FIGURE 2 Performance Metrics from Base Model  26 

It is apparent from Figure 2a, that Multnomah corridor is busier during the mid-day and 27 

PM peak periods compared to the AM period. The highest percentage of pedestrians is 28 

observed during mid-day. Average network delays and per mode are shown in Figure 2b. 29 

The average delays for auto users were below 20s during all the analyzed time periods, 30 

with the delays during AM and PM peaks slightly lower than mid-day. For pedestrians, 31 

the delay is lowest during AM peak and increases during mid-day and PM peak and 32 

approaches the 30s threshold. Compared to all the users in the network, pedestrians faced 33 

the largest delays. Bicycle delays are lowest, because only the through bicycle 34 
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movements on Multnomah Street are simulated in this research and as such they benefit 1 

from the green band and progression during coordination. 2 

Hypothetical Network Development 3 

A hypothetical network was constructed based on the validated Multnomah Street 4 

network and was used to study the impacts on delay resulting from change in signal 5 

controller mode of operation from coordinated to free. Scenarios pertaining to 6 

coordinated and free operation were tested with varying vehicular and pedestrian 7 

demands to determine the traffic regimes for which each mode of operation would be best 8 

suited. The metric for determining feasibility of mode of operation (coordinated or free) 9 

was minimization of overall network delay.  10 

While the majority of the Multnomah network features were carried over to the 11 

hypothetical network, a few changes were made. All Multnomah pedestrian movements 12 

are placed on recall and rest-in-walk enabled for coordinated operation, which was 13 

unchanged from the existing network. All side street vehicular and pedestrian movements 14 

were actuated in the hypothetical network, while previously in the Multnomah St. network 15 

some of these movements did not have detection and were placed on recall. The vehicle, 16 

bicycle and pedestrian flows were varied in three ranges of high, medium and low demand. 17 

Hypothetical vehicle, bicycle and pedestrian volumes for the high scenario are shown in 18 

Figure 3.  The bolded figures represent the bicycle volumes. The medium and low volumes 19 

were assumed to be 60% and 30% of the high volume respectively. 20 

 21 

FIGURE 3 Hypothetical Vehicle, Bicycle and Pedestrian Volumes (High Scenario) 22 

In order to determine the high auto volumes, the capacity for each lane group was 23 

estimated using HCM methodology (2). The volumes for each lane group for the high 24 

volume scenario were assumed such that a v/c ratio of 0.7 or greater was achieved for the 25 

coordinated movements (through movements). The exception to that rule was at 26 

Multnomah and 15th, where the v/c ratio for high scenario was 0.5 – 0.6, due to only two 27 

phases being operational at the intersection, which in turn resulted in more green time for 28 

the coordinated movement. The v/c ratios for the coordinated movements for high, 29 

medium and low volume scenarios at the three intersections are shown in Table 1.  30 

Pedestrian volumes were also divided into three ranges of high, medium and low. Based 31 

on the input volume provided by the user, VISSIM loads the pedestrians onto crosswalks 32 

using the Poisson distribution. These volumes were assumed based on the frequency of 33 

pedestrian phases in an hour. In the high scenario, the demand was assumed such that a 34 
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pedestrian phase would come up every cycle. The pedestrian volume was obtained by 1 

observing multiple simulation runs with varying pedestrian volumes and determining the 2 

number of cycles during which the pedestrian phase was served.  For example, the 3 

maximum number of cycles in one hour with an 80 sec cycle length is 45 (3600/80). 4 

Assuming a pedestrian volume of 150 per crosswalk, the number of pedestrian phases 5 

served in one hour based on observation of multiple VISSIM runs is 45. This implies that 6 

the pedestrian phase is served every cycle and the frequency is 100%. In the medium and 7 

low scenarios, the pedestrian phase was designed to be served during approximately 60% 8 

and 30% of the number of cycles in one hour. Table 1 also shows the varying pedestrian 9 

flows for the high, medium and low scenarios. 10 

TABLE 1 Assumed Inputs for Different Scenarios 11 

Intersection 
High Medium Low 

EB WB EB WB EB WB 

v/c, Multnomah and 11th 0.73 0.71 0.43 0.44 0.24 0.22 

v/c, Multnomah and 13th 0.96 0.77 0.57 0.47 0.29 0.23 

v/c, Multnomah and 15th 0.60 0.50 0.36 0.30 0.18 0.15 

Ped Volume/Cross-Walk 150 50 10 

# of Cycles (80 s Cycle Length) 45 45 45 

# of Observed Ped Phases 45 29 10 

Ped Phase Frequency (# Ped Phases/# Cycles) 100% 64% 22% 

 12 

RESULTS 13 

Based on the varying combinations of auto and pedestrian volumes, a total of 18 14 

simulation models were constructed; 9 for each mode of operation. For each combination 15 

of auto and pedestrian volume, 10 runs were carried out. The number of runs was 16 

selected based on the recommendation in ODOT’s VISSIM protocol guide (13).  Using a 17 

random number generator, a starting random seed was generated and a total of 180 18 

simulation runs were created. Each run was approximately 75 minutes long and the data 19 

from the first 15 minutes was discarded for analysis purposes as the network was still 20 

being populated during this time. The simulation resolution was set to 10 time steps/s 21 

similar to the calibrated Multnomah St. network.  22 

The resulting simulation outputs were analyzed and performance metrics were 23 

extracted similar to original Multnomah Street network. Percent change in average delay 24 

resulting from each mode of operation was the metric used for comparison and is 25 

calculated using the equation below: 26 

% Difference in Delay =
(Free Delay−Coordinated  Delay)∗100

Coordinated Delay
    1 27 

Three sets of comparisons between delays resulting from coordinated and free operation 28 

were made. First, existing signal timing including cycle lengths, splits and offsets from 29 

the field were used for coordinated operation. In addition, to make a fair comparison 30 

between average delays resulting from the two modes of operation, the signal timing 31 

optimization software VISTRO was used to optimize the signal timing in two ways. First, 32 

the splits and offsets for each scenario were optimized, while keeping cycle length 33 

constant (80 sec). Next, the cycle length was also optimized in addition to the splits and 34 
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offsets. During cycle length optimization, a cycle length of 70s was chosen by VISTRO 1 

for low vehicle volume scenarios and 90s was chosen for high volume scenarios.  The 2 

resulting pedestrian and overall average delays were compared and the percent change in 3 

average delays for coordinated and free operation using existing as well as optimized 4 

timing are shown in Figure 4 and Figure 5. The x-axis shows the different scenarios with 5 

varying auto and pedestrian volumes. For example, low-low refers to low auto - low 6 

pedestrian scenario.  7 

 8 

 FIGURE 4 Percent Difference in Average Pedestrian Delay  9 

 10 

FIGURE 5 Percent Difference in Overall Average Delay  11 

 In the analysis presented above, for every tested scenario, pedestrian delay is always 12 

lower during free operation irrespective of the auto volumes as seen in Figure 4.  13 

However from an overall delay minimization perspective, when all users are considered,  14 

the trends in Figure 5 clearly indicate that free operation produces lower system delays 15 

for low and medium vehicle volumes (v/c ratios for mainline through movements < 0.7).  16 

Coordinated operation is beneficial when auto volumes are nearing capacity (v/c > 0.7). 17 
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Delays for coordinated operation were compared to the delays resulting from free 1 

operation using Welch’s two sample T-Test with unequal variances. For all the nine 2 

scenarios, overall average delay per user was significantly different between coordinated 3 

(existing or optimized) and free operation at 95% confidence (α = 0.05). The average 4 

delays for each scenario and each mode of operation as well as the resulting p-values are 5 

shown in Table 2. 6 

TABLE 2 Overall Average Delays for Different Scenarios  7 

Scenario 

 

Auto-Ped 

Coord Delay 

(s) 

(Existing) 

Coord Delay 

(s) 

(Optimized) 

Free Delay  

(s) 

p-value 

 

(Existing) 

p-value 

 

(Optimized) 

Low – Low  

Low – Med  

Low – High  

Med – Low  

Med – Med  

Med – High  

High – Low  

High - Med  

High - High  

12.79 

16.57 

19.97 

13.74 

16.49 

19.99 

16.37 

19.58 

22.01 

13.08 

16.88 

20.47 

13.97 

16.62 

19.76 

17.09 

19.45 

21.37 

8.65 

14.19 

17.80 

10.97 

15.04 

18.58 

14.74 

21.25 

28.12 

3.49E-14 

1.72E-08 

1.13E-09 

6.23E-13 

2.88E-06 

1.32E-08 

1.01E-06 

0.02 

0.00 

2.53E-13 

4.09E-13 

2.44E-13 

1.56E-13 

9.63E-07 

3.16E-08 

5.09E-09 

0.01 

0.00 

DISCUSSION 8 

This research has demonstrated empirically, the various traffic regimes that are best 9 

suited for strategies that benefit pedestrians from an efficiency perspective. Under the 10 

conditions assumed in the simulation, the results demonstrate that free operation is 11 

beneficial for pedestrians leading to reduced delay as compared to coordinated operation.  12 

Free operation also shows network benefits under low and medium volumes (v/c for main 13 

line through movements < 0.7). Coordinated operation was beneficial when traffic 14 

volumes are high (v/c > 0.7). While in coordination, lower cycle lengths generally benefit 15 

pedestrians.  16 

System operators and signal timing engineers face tradeoffs each day while 17 

operating the signals at various intersections. The primary tradeoff is balancing safety vs. 18 

efficiency. Secondary tradeoffs include balancing delay between modes such that no 19 

mode is unduly penalized. Although traditional signal timing policies have favored motor 20 

vehicles, this policy needs to be reconsidered if cities want to develop livable 21 

communities that promote walking and bicycling. Therefore, with the aim of providing 22 

guidance to system operators, a concept graphic based on the results obtained in this 23 

research has been developed, that seeks to consolidate the findings with the objective of 24 

informing signal timing decisions based on policy. Figure 6 shows the graphic with 25 

recommendations for operational decision strategies at the intersection level. 26 
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 1 

FIGURE 6 Strategy for Change in Signal Controller Mode of Operation 2 

Although the results showed that free operation provides benefits when v/c is less than 3 

0.7 for the main line through movements, this graphic takes a conservative approach by 4 

recommending free operation when v/c is less than 0.5. Coordination with the ability to 5 

manage the type of pedestrian response is recommended for the middle regime where v/c 6 

is between 0.5 and 0.8 and the pedestrian actuation frequency is low or medium.  The 7 

type of response for pedestrian service will depend on the policies adopted by agencies 8 

and the priority hierarchy assigned for each mode. Pedestrian friendly strategies such as 9 

temporary removal of a signal from coordination by increasing permissive length or 10 

providing pedestrian priority service could be employed, if agencies want to prioritize 11 

pedestrians (14). Permissive length refers to the period of time during the coordinated 12 

cycle during which a call received on a non-coordinated phase results in transition from 13 

the coordinated to the non-coordinated phase (3).  Prior research by Kothuri et al. has 14 

shown that increase in permissive length can produce significant reductions in pedestrian 15 

delay (14).  For v/c ratios greater than 0.8, coordination is recommended with short cycle 16 

lengths, so that pedestrians are not faced with large delays. It is recommended that 17 

pedestrian signals be actuated with pushbuttons when the actuation frequency is less than 18 

70% of the number of cycles during the design time period. Higher actuation frequencies 19 

dictate the need for pedestrian recall.  Placing the pedestrian movements on recall during 20 

periods of low actuation has the potential to impose unwarranted delays on the main 21 

street movements leading to larger delay overall and lower system efficiency. 22 

However, switching the pedestrian detection from actuated to recall based on time 23 

of day could be confusing for pedestrians given the existing detection technology 24 

limitations at intersections. In the future, this could be mitigated with advances in 25 

automated detection technology that could respond efficiently to fluctuations in 26 

pedestrian volume.   27 
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To implement the strategies discussed above using the graphic, the primary inputs 1 

required are major street through volumes and side street pedestrian actuation frequency. 2 

Typically, many cities gather volumes on arterials using some form of detection (loop, 3 

microwave, radar or video). The actuation frequency is easily logged through the signal 4 

controller (13).  5 

 Using time of day auto volumes and pedestrian actuation patterns, system 6 

operators can identify time periods during the day when a certain signal controller mode 7 

of operation is justified based on the lowest overall average delay per user.  8 

As an example, Figure 7 shows the auto volumes and pedestrian actuations for the 9 

Multnomah Corridor on Thursday, October 3, 2013. As discussed earlier, the pedestrian 10 

volumes along the three analyzed intersections at this corridor are higher during mid-day 11 

and PM peak periods compared to the AM peak. Therefore, the corridor could stay in 12 

coordination during morning (6 AM – 11 AM) to prioritize auto, bicycle and transit 13 

volumes along the major street. This time period would represent the high auto scenario 14 

where coordinated operation is recommended as discussed earlier. Due to the higher 15 

pedestrian demand and low vehicle demand during noon and early afternoon, the signals 16 

could switch to free operation between 11 – 3 PM to benefit pedestrians (Low Auto – 17 

High Ped). Between 3 – 8 PM, the signals could switch back to coordinated operation to 18 

benefit the heavy PM peak period traffic volumes (High Auto – High Ped). Allowing the 19 

signals to operate in a free mode at night (after 8 PM) would allow the signals to be more 20 

responsive to the low traffic conditions (Low Auto – Low Ped).   21 

 22 

FIGURE 7 Concept Mode of Operation Based on Time of Day 23 

Allowing free operation during certain times of the day could be easily applicable to 24 

signals that are close to high pedestrian demand generators such as shopping malls and 25 

theaters. This strategy could also be used at signals with low pedestrian compliance rate 26 

or high pedestrian crash rate, to improve safety by reducing pedestrian delay. While this 27 

research presented an empirical framework to assess the optimal mode of operation based 28 

on overall average delay per user, there are other factors that could also predispose 29 

certain locations towards coordinated operations. Closely spaced intersections (1/4 mile 30 

or less) can benefit from coordination due to platooning effect (15). The ratio of side 31 

street to major street volume is another factor that could impact the decision on mode of 32 
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operation. If the ratio is low, coordinated operation may be preferred as it would benefit 1 

the higher volumes on the major street.  Conversely, higher ratios would favor free 2 

operation. This strategy of changing the signal controller mode of operation would be 3 

best suited for minor arterials with intersecting cross streets that have low vehicular 4 

volumes, but may have moderate or high pedestrian demand. 5 

The framework designed here is applied to another corridor, Division Street in 6 

Portland, Oregon to assess the transferability of the findings and the results are presented 7 

in the following section.  8 

CASE STUDY APPLICATION 9 

 Division Street is an east-west arterial corridor in Portland, Oregon carrying 10 

approximately 18,000 vehicle trips per day.  Three intersections were chosen for 11 

simulation analysis to test the robustness of the operational strategy described in the 12 

previous section based on recommendation from city staff: SE 119th Avenue, SE 122nd 13 

Avenue and SE 130th Avenue along SE Division Street.  Along this stretch, Division 14 

Street has two lanes in each direction, with additional turn lanes at intersections. Figure 8 15 

shows the network of three intersections that were included in the simulation.   16 

 17 

FIGURE 8 Division Street Network used in VISSIM 18 

All the data required for the simulation were obtained from the City of Portland records 19 

or other sources, and if unavailable, were assumed. Currently, the intersection of 122nd 20 

and Division is being operated in a free mode, however for the purpose of this analysis, it 21 

was placed in coordination with a cycle length of 120s and the signal timing parameters 22 

were obtained using VISTRO. The existing volumes corresponded to the medium auto-23 

low ped scenario. 24 
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Based on the learnings from the Multnomah corridor, the expected finding was that 1 

overall percent difference in average delay for the medium auto-low pedestrian scenario, 2 

compared between the coordinated and free operation would be lower for the free 3 

operation. 10 simulation runs were performed for the coordinated and free operation 4 

(fully actuated) and average delay metrics were extracted. As expected, the overall 5 

average delay was lower in the free mode of operation as seen in Figure 9. Hypothetical 6 

pedestrian and auto volumes were chosen for the low auto – low ped and the high auto – 7 

high ped scenarios based on v/c ratios and pedestrian phase frequency. The analysis 8 

presented earlier for hypothetical Multnomah Street network was repeated for just the 9 

low auto-low ped and high auto-high ped scenarios along the Division Street corridor as 10 

the objective was to assess whether general trends seen earlier were followed. Figure 9 11 

shows the difference in percent average delays on Division Street. Note that the medium 12 

auto-low ped scenario corresponded to the existing conditions. 13 

 14 

FIGURE 9 Percent Change in Average Delays across Scenarios 15 

The plot above shows similar trends as seen in the hypothetical analysis on Multnomah 16 

Street. This analysis reinforces the prior findings that free operation shows benefits for 17 

light traffic conditions and coordination is preferred for heavy traffic conditions.  18 

CONCLUSIONS AND IMPLICATIONS 19 

Improving efficiency for pedestrians at intersections by reducing their delay is critical, if 20 

cities want to encourage walking. Using VISSIM, this study has empirically explored the 21 

impacts resulting from changing the signal controller mode from coordinated to free 22 

operation. The results revealed overall delay reductions between 7%-32% when the 23 

signals were operated in the free mode during lower volume conditions compared to 24 

coordinated operation (80s cycle length). Greater delay reductions (52%) were obtained 25 

with free operation during low volume conditions compared to coordinated operation 26 

with higher cycle lengths (120s). Similar trends were found when the analysis was 27 

repeated on Division Street. Free signal operation was found to benefit pedestrians by 28 

lowering their delay. When coordination is warranted at higher v/c ratios, pedestrian 29 

friendly strategies such as dropping signal coordination to service the pedestrian, 30 
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increasing permissive length and utilizing lower cycle lengths can be helpful.  These 1 

results provide guidance to practitioners in determining the appropriate mode of signal 2 

operation based on field inputs to improve efficiency at intersections. 3 

The traditional practice of prioritizing vehicles over users of all other modes should be 4 

reevaluated in the context of livability. As communities engage in efforts to improve 5 

livability and aim to transform their streets into vibrant public spaces that foster 6 

interactions, a new approach that balances user needs is necessary to accommodate all 7 

modes and improve safety for all users.  8 
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