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Abstract 

The current biochemical information processing systems behave in a pre
determined manner because all features are defined during the design phase. 
To make such unconventional computing systems reusable and programmable 
for biomedical applications, adaptation, learning, and self-modification baaed 
on external stimuli would be highly desirable. However, so far, it haa been 
too challenging to implement these in real or simulated chemistries. In this 
paper we extend the chemical perceptron, a model previously proposed by the 
authors, to function as an analog instead of a binary system. The new analog 
asymmetric signal perceptron learns through feedback and supports Michaelis
Menten kinetics. The results show that our perceptron is able to learn linear and 
nonlinear (quadratic) functions of two inputs. To the best of our knowledge, it 
is the first simulated chemical system capable of doing so. The small number of 
species and reactions allows for a mapping to an actual wet implementation using 
DNA-strand displacement or deoxyribozymes. Our results are an important step 
toward actual biochemical systems that can learn and adapt. 

Keywords 
chemical perceptron, analog perceptron, supervised learning, chemical computing, 
RNMSE, linear function, quadratic function 

1 Introduction 

Biochemical information processing systems, which are crucial for emerging biomed
ical applications, cannot typically be programmed once built. After an in vitro or in 
vivo injection, the behavior, i.e., the program of such nano-scale chemical machines 
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[1[ cannot be changed. That limits their applicability and re-usability. To address 
this limitation, future biochemical machinery should function not only in uniform, 
well-known lab settings but also in previously unknown environments. Such adap
tive chemical systems would decide autonomously and learn new behaviors through 
reinforcements in response to external stimuiL We could imagine that in the future 
millions of molecular spiders [2] would help our immune system fight viruses, deliver 
medications [3], or fix broken cells. Adaptive chemical systems may also simplify 
the manufacturing and design processes: instead of designing multiple systems with 
predefined functionality embedded in their species and reactions one could train and 
recycle a siugle adaptive machine for a desired functionality. 

Neural network theory [4[ inspired numerous chemical implementations [5, 6, 7], 
however, ouly the input-weight integration part of a siugle perceptron model [8] was 
successfully mapped to chemistry. Learning (Le., weight adaptation) was either not 
addressed or delegated to an external non-chemical system [7, 9] that calculated new 
weights values (Le., chemical concentrations) to achieve a desired system behavior. 

Our previous work [10] introduced the first simulated chemical system that can 
learn and adapt autonomously to feedback provided by a teacher. We coined the 
term chemical perceptron because the system qualitatively mimics a two-input binary 
perceptron. In a second step we aimed to simplify the model to make wet biochemical 
implementations feasible. We achieved that by employiug the asymmetric represen
tation of values and by using thresholding. The new asymmetric signal perceptron 
(ASP) model [11] requires less than a half of the reactions of its predecessors with 
comparable performance (Le., 99.3 - 99.99% success rates). The flip side of the more 
compact design is a reduced robustness to rate constant perturbations due to a lack 
of structural redundancy. 

In real biomedical applications one is often required to distiuguish subtle changes 
in concentrations with complex linear or noulinear relations amoug species. Such 
behavior cannot easily be achieved with our previous binary perceptron models, thus, 
several improvements are necessary. In this paper we present a new analog asymmetric 
signal perceptron (AASP) with two inputs. We will refer to the original ASP as a 
binary ASP (BASP). The AASP model follows mass-action and Michaelis-Menten 
kinetics and learns through feedback from the environment. The design is modular 
and extensible to any number of inputs. We demonstrate that the AASP can learn 
various linear and nonlinear functions. For example, it is possible to learn to produce 
the average of two analog values. In combination with a chemical delay line [12], the 
AASP could also be used to predict time series. 

2 Chemical Reaction Network 

To model the AASP we employ the chemical reaction network (CRN) formalism. 
A CRN consists of a fiuite set of molecular species and reactions paired with rate 
constants [13]. CRN represents an unstructured macroscopic simulated chemistry, 
hence, the species labeled with symbols are not assigned a molecular structure yet. 
More importantly, since the reaction tank is assumed to be well-stirred, CRN lacks 
the notion of space. The state of the system does therefore not contain any spatial 
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information and is effectively reduced to a vector of species concentrations. Without 
losing generality we treat a concentration as a dimensionless quantity. Depending 
on the required scale, a wet chemical implementation could use mol . L -, (M) or 
nanomol· L-' (nM) with appropriate (scaled) rate constant units, such as M· 8-' 
or M-' . 8-', depending on the order of a reaction. 

The reaction rate defines the speed of a reaction application prescribed by kinetic 
laws. The mass-action law [13] states that the rate of a reaction is proportional 
to the product of the concentrations of the reactants. For an irreversible reaction 
a8, + b82 --t P, the rate is given by 

where k E R+ is a reaction rate constant, a and b are stoichiometric constants, [8,] and 
[82] are concentrations of reactants (substrates) 8, and 82 , and [P] is a concentration 
of product P. 

Michaelis-Menten ell2yme kinetics [14] describes the rate of a catalytic reaction 
E + 8 .= E8 --t E + P, where a substrate 8 transforms to a product P with a 
catalyst E, which increases the rate of a reaction without being altered. A species 
E8 is an intermediate ell2yme-substrate binding. By assuming quasi-steady-state 
approximation, the rate is given by 

d[P] kca,[E][8] 
r = dt = Km + [8] , 

where k cat , Km E R+ are rate constants. By combining kinetic expressions for all 
species, we obtain a system of ODEs that we simulate using D.1-step Runge-Kutta4 
numerical integration. 

3 Model 

The AASP models a formal analog perceptron [8] with two inputs x, and X2, similar 
to an early type of artificial neuron [4]. The perceptron is capable of simple learning 
and can be used as a bnilding block of a feed-forward neural networks. Networks built 
from perceptrons have been shown to be universal approximators [15]. 

In a eRN we represent each formal variable with one or several species. While 
the previous BASP models a perceptron with two inputs and a binary output pro
duced by external or internal thresholding, the new AASP is analog and does not use 
thresholding. Instead of a binary yes/no answer, its output is analog, which requires 
much finer control over the weight convergence. As a consequence, the AASP consists 
of more species, namely 17 VB. 13, and more reactions, namely 18 VB. 16. 

3.1 Input-Weight Integration 

A formal perceptron integrates the inputs x with the weights w linearly as r;r~ow, ·x" 
where the weight wo, a bias, always contributes to an output because its associated 
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Table 1: (a) The AASP's species divided into groups according to their purpose and 
functional characteristics; (b) the AASP's reactions with the best rate constants found 
by the GA (see Section 3.3), rounded to four decimals. Groups 1 - 4 implement the 
input-weight integrations, the rest implement learning. 

Group Name 
Inputs 
Output 
Weights 
Target output 
Input (clock) signal 
Learning signal 
Input contributions 
Weight changers 

Total 

Species 
Xl,X2 

Y 
WO,Wl,W2 

Y 
Sin 
SL 

XIY,X2Y, SinY 
We wEll 

wJ3,w?,wf 
'7 

Group , 
2 
3 

4 

5 
6 
7 
8 
9 
10 
11 

,. 
'3 

Total I 

Reaction Catalyst Rates 
Sin+Y--tA .1800 

Bin --t Y + SinY w, .5521, 2.5336 
Xl + Y --t.\ .3905 
X2+Y-tA 

Xl --t Y +XIY W, .4358, 0.1227 
X2 --t Y +X2y W, 

Y-+WW .1884 
Y --t W"" SL .1155, 1.9613 

Y+Y-t'\ 1.0000 
W"" --t woe SinY 0.600, 1.6697 

Wo + Woe --t >.. .2642 
W"" --t Wo SinY .5023, 2.9078 

W" -+ W~ X,Y .1889, 1.6788 
we --t w

2
'O X,y 

w,+w~-+>. .2416 
W2+W2 --t>.. 

W"" --t WI X,Y .2744, 5.0000 
we --t W2 X,y 

'8 

input Xo = 1. An activation function 'P, such as a hyperbolic tangent or signum, then 
processes the dot product to produce the output y. 

The reactions carrying out the chemical input-weight integration are structurally 
the same as in the BASP. The only difference is an addition of the partial input
weight contribution species, which are, however, reqnired for learning only, and will 
be explained in Section 3.1. The AASP models a two-input perceptron where the 
output calculation is reduced to y = 'P(wo + w,x, + X.W2). The concentration of 
input species X, and X 2 corresponds to the formal inputs x, and x., and the species 
Y to the output y. A clock (input) signal 8in is always provided along the regnlar 
input X, and X 2 , since it serves as the constant-one coefficient (or the constant input 
Xo = 1) of the bias weight Wo. 

The AASP represents the weights by three species W" W 2 , and Woo As op
posed to the formal model, the input-weight integration is nonlinear and based on 
an annihilatory version of the asymmetric representation of the values and the ad
dition/subtraction operation as introduced in [11]. Since the concentration cannot 
be negative, we cannot map a signed real variable directly to the concentration of a 
single species. The weights require both positive and negative values, otherwise we 
conld cover only functions that are strictly additive. The asymmetric representation 
uses a single species E that catalyzes a transformation of substrate 8 to a product 

P (8 .!£, P) and competes against an annihilation of the substrate and the product 
8 + P --+ A. For a given threshold concentration of the product we can determine 
the associated catalyst threshold, so all concentrations of catalyst [Elo to the left 
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of this threshold represent negative numbers while all concentrations to the right 
represent positive numbers. The final product concentration [Ploo is monotonically 
increasing and asymptotically reaches the initial concentration of the substrate [Slo 
for [E]o -+ 00. 

Using the asymmetric comparison primitives, we map the AASP's weights to cat
alysts (E), the inputs to substrates (S), and the output to product (P) and obtain 6 
reactions as shown in Figure i(a) and Table i(b), groups 1 - 4. Each weight species 
races with its substrate's annihilation but also with other weights. Since the output 
Y is shared, this effectively implements a nonlinear input-weight integration. Note 
that by replacing annihilation with a decay of input species, we would end up having 
three independent races with additive contributions instead of one global race. An 
alternative symmetric representation embedded in the former weight-loop perceptron 
and the weight-race perceptron [101 encodes the values by two complementary species, 
one for the positive and one for the negative domain. We opt for the asymmetric ap
proach because it reduces the number of reactions by half compared to the symmetric 
one. 

Because of the complexity of the underlying ODEs, no closed formula for the out
put concentration exists and theoretical conclusions are very limited. Althongh we 
cannot analyze the input-weight integration dynamics quantitatively, we can still de
scribe the qualitative behavior and constraints. The weight concentration represents 
formally both positive and negative values, so the weights together with annihilatory 
reactions can act as both catalysts and inhibitors. More specifically a low weight con
centration, which strengthens its input-specific annihilation, could impose a negative 
pressure on a different weight branch. Hence, we interpret a weight that contributes 
to the output less than its input consumes as negative. In an extreme case, when the 
weight concentration is zero, its branch would consume the same amount of output 
as its input injected. The relation between the concentration of weights and the final 
output [Yloo has a sigmoidal shape with the limit [X,lo + [X210 + [Sinlo reaching for 
all weights [Wil -+ 00. Clearly the output concentration cannot exceed all the inputs 
provided. 

Figure 2 shows the relation between the concentration of weight W, and weight 
W2 and the final output concentration. For simplicity the bias processing part is not 
considered ([Sinl = 0), so we keep only two branches of the input-weight integration 
triangle. Note that in the plots the concentration of weights span the interval 0 to 2 
because in our simulations we draw the weights nniformly from the interval (0.5,1.5). 
On the z-axis we plotted the ratio of the output concentration [YI to [X,lo + [X210. 
For learning to work we want the gradient of the output surface to be responsive 
to changes in the weight concentrations. Therefore, we restrict the range of possible 
outputs so it is neither too close to the maximal output, where the surface is effectively 
constant, nor too close to zero, where the surface is too steep and even a very small 
perturbation of the weight concentration would dramatically change the output. 
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(a) input-weight integration (b) output comparison 

(e) positive adaptation (d) negative adaptation 

Figure 1: (a) The AASP's reactions performing input-weight integration. Similarly 
to the BASP, cross-weight competition is achieved by the annihilation of the inputs 
Sin,X"X2 with the output Y, an asymmetric strategy for representation of real 
values and subtraction. (b-d) the AASP's reactions responsible for learning. They are 
decomposed into three parts: (b) comparison of the output Y with the target-output 
Y, determining whether weights should be incremented (WEll species) or decremented 
(We species), and (c-d) positive and negative adaptation of the weights Wo, W" and 
W2 , which is proportional to the part of the output they produced SinY, X,Y, and 
X 2Y respectively. Nodes represent species, solid lines are reactions, dashed lines are 
catalysts, and >. stands for no or inert species. 
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0.5 0.5 0.5 

(a) Xl = .2,X2 =.2 (b) Xl = .6,X2 = .6 (c) Xl = 1, X2 = 1 (d) Xl = .2, X2 = .8 

~ 1 ~ 1 ~ 1 ~ 1 

+ + + + 
~ 0.5 

~ ~ 

~ 0.5 

2 ~ ~ 

~ 0.5 

2 ~ ~ 

~ 0.5 

2 ~ ~ 

00 

(e) Xl = .2,X2 =.2 (f) Xl = .6,X2 =.6 (g) Xl = 1, X2 = 1 (h) Xl = .2, X2 = .8 

Figure 2: The relation between the weight concentrations [WI] and [W2 ] and the 
final output concentration [Y]oo normalized by [XI]o + [X2 ]o for the input-weight 
integration (excluding the bias Wo part) showing various inputs. The rate constant 
of annihilatory reactions Xi + Y --+ A, i E {1,2} is k = 0.2 in the top and k = 1 in 
the bottom row. 

3.2 Learning 

In the previous BASP model learning reinforced the adaptation of weights by a penalty 
signal, whose presence indicated that the output was incorrect. Since the output is 
analog in the new AASP model, a simple penalty signal is not sufficient anymore. 
We therefore replaced the reinforcement learning by classical supervised learning [16]. 
Formally, the adaptation of a weight Wi for the training sample (x, f)), where f) is 
a target output, and x a input vector, is defined as ~Wi = ex(f) - y(t))Xi' where 
ex E (0,1] is the learning rate. The AASP's, similarly to the input-weight integration, 
does not implement the formal ~Wi adaptation precisely, rather, it follows the relation 
qualitatively. 

The learning is triggered by an injection of the target output Y provided some time 
after the injection of the input species. The part presented in Figure 1 (b) compares 
the output Y and the target output Y by annihilation. Intuitively a leftover of the 
regular output Y implies that the next time the AASP faces the same input, it must 
produce less output, and therefore it needs to decrease the weights by producing 
a negative weight changer We from Y. In the opposite case, the AASP needs to 
increase the weights, hence Y transforms to a positive weight changer WEB. Since the 
AASP can produce output also without learning, just by the input-weight integration, 
we need to guard the reaction Y --+ We by a learning signal SL, which is injected 
with the target output and removed afterwards. To prevent creation of erroneous or 
premature weight changers, the annihilation Y + Y --+ A must be very rapid. Note that 
the difference between the actual output Y and the desired output Y, materializing 
in the total concentration of weight changers WEB and We, must not be greater that 
the required weight adaptation, otherwise the weights would diverge. The learning 
rate ex is therefore effectively incorporated in the concentration of WEB and We. 
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In the formal perceptron, the adaptation of a weight Wi is proportional to the 
current input Xi. Originally, the BASP distinguished which weights to adapt by a 
residnal concentration of inputs X, and X 2 • Because the inputs as well as an adap
tation decision were binary, we cared only about whether some of the unprocessed 
input were still left, but not about its precise concentration. Thus, an injection of 
the penalty signal conld not happen too soon, neither too late. Because the AASP's 
learning needs more information, the input-weight integration introduced three addi
tional species, namely the partial input-weight contributions X,Y, X 2Y, SinY, which 
are produced alongside the regnlar output Y. A decision which weights to update 
based on the input-weight contributions conld be made even after the input-weight 
integration is finished. That allows to postpone an injection of the target output Y 
and the learning signal SL. 

Let us now cover a positive adaptation as shown in Figure l(c), where the total 
amount of WEll is distributed among participating weights. The input contribution 
species X,Y, X 2Y, S'nY race over the substrate WEll by catalyzing the reactions WEll -+ 
Wi, i E {O, 1, 2}. Note that the traditional weight adaptation formula takes into count 
solely the input value, so here we depart further from the formal perceptron and have 
the combination of input and weights compete over WEll. Since larger weights produce 
more output they get adapted more. In addition, once a weight reaches zero, it will 
not be recoverable. 

The negative adaptation presented in Figure led) is analogous to the positive one, 
but this time the input-weight contributions race over We and produce intermediates 
Woe, Wr, W~, which annihilate with the weights. Again, because the magnitude of 
a weight update depends on the weight itself, this feedback loop protects the weight 
from falling too low and reaching zero (Le., a point of no return). This is beneficial 
because as opposed to the formal perceptron, a weight value (concentration) cannot 
be physically negative. 

To inIplement the entire learning algorithm, the AASP reqnires 12 reactions as 
presented in Table l(b), groups 5 - 13. 

3.3 Genetic Search 

Since a manual trial-error setting of the rate constants wonld be very time-consuming, 
we optimize the rate constants by a standard genetic algorithm (GA). Possible so
lutions are encoded on chromosomes as vectors of rate constants, which undergo 
cross-over and mutation. We use elite selection with elite size 20, 100 chromosomes 
per generation, shuffle cross-over, per-bit mutation, and a generation limit of 50. The 
fitness of a chromosome defined as the RNMSE reflects how well the AASP with 
the given rate constants (encoded in the chromosome) learns the target functions 
k,x, + k2X2 + ko, k,x" and k2X2. The fitness of a single chromosome is then calcu
lated as the average over 300 runs for each function. We included the k,x, and k2X2 
tasks to force the AASP to utilize and distinguish both inputs X, and X2. Otherwise 
the GA would have a higher tendency to opt for a greedy statistical approach where 
only the weight Wo (mean) might be utilized. 
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4 Performance 

We demonstrate the learning capabilities of the AASP on 6 linear and nonlinear 
target functions as shown in Table 2. During each learning iteration we inject inputs 
X, and X2 with concentrations drawn from the interval (0.2,1) and set the bias 
input Sin concentration to 0.5. We chose the target functions carefnlly, such that the 
output concentration is always in a safe region, i.e., far from the minimal (zero) and 
the maximal output concentration [Sinlo + [X,lo + [X2lo. We then inject the target 
output Y with the learning signal SL 50 steps after the input, which is sufficient to 
allow the input-weight integration to proceed. 

For each function family we calculated the AASP's performance over 10,000 simu
lation runs, where each run consists of 400 training iterations. We define performance 
as the root normalized mean square error (RNMSE) 

RNMSE= 
(y - fj)2) 

a~ y 

A RNMSE of 1 means change level. The AASP's RNMSE settles down to the range 
(0.11,0.39) (see Figure 3), which implies that it successfully learns and generalizes all 
target functions. Note that we do not distinguish between the training and testing 
set. During each iteration we draw the inputs with the target output for a given 
function independently. 

Among all the functions, k,X, + k2X2 + k is the easiest (RNMSE of 0.117) and the 
constant function ko the most difficult (RNMSE of 0.388) one. The function ko is even 
more difficult than the nonlinear function k,X,X2 + ko (RNMSE of 0.298). Compared 
to the formal perceptron, the constant function does not reach zero RNMSE because 
the AASP cannot fully eliminate the contribution (or consumption) of the X, and 
X 2 input-weight branches. The formal perceptron could simply discard both inputs 
and adjust only the bias weight, however, the AASP's weights W, and W2 with zero 
concentration would effectively act as inhibitors, thus consuming a part of the output 
produced by the bias. On the other hand, a nonlinear k,XIX2 +ko function with fairly 
low RNMSE would be impossible to calculate for the formal perceptron. Therefore it 
is an open question what function classes can be learned by the AASP. Note that for 
the nonlinear function we set ko = 0.25, which does not increase the variance, i.e., only 
the nonlinear part counts toward the error. Figure 4 shows the weight concentration 

Table 2: Target functions with uniform constant k
" 

k2, ko intervals. 

fj ~ ~ ko 
k,x, + k2x2 + ko (0.2,0.8) (0.2,0.8) (0.1,0.4) 
k,X, - k2X2 + ko (0.2,0.8) (0.0,0.3) (0.4,0.7) 
k,X, (0.2,0.8) 
k2X 2 

k,X,X2 + ko 
ko 

(0.2,0.8) 
(0.2,0.8) 

0.25 
(0.1,0.4) 
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-- k1xl + k2x2 + kO 

-- llil - k2x2 + kO 
-- llilx2 + kO 

llil and k2x2 
kJ) 

0.' L--=======:::::;:=:::;::::::::::; 
50 100 '50 200 250 300 350 400 

Learning Iteration 

10 

Figure 3: RNMSE for 6 linear and nonlinear functions over 400 learning iterations. 

traces as well as the output, the target output, and the absolute error for selected 
functions. 

5 Conclusion 

In this paper we extended our chemical asymmetric design introduced for the asym
metric signal perceptron to an analog scenario. We demonstrated that our new AASP 
model can successfully learn several linear and nonlinear two-input functions. The 
AASP follows Michaelis-Menten and mass-action kinetics, and learns through feed
back provided as a desired output. 

In related work, Lakin et al. [17] designed and simulated a system based on 
enzymatic chemistry, capable of learning linear functions of the form k,x, + k2x2. 
The system used more reactions (27 VB. 18) and did not reach the performance of the 
AASP. In addition, the AASP can learn more types of functions and the performance 
was evaluated more precisely over 10,000 instead of 10 trials. 

Because the number of species and reactions is in the range of other state-of
the-art circuits, a wet chemical implementation, in particular using DNA-strand dis
placement [18, 191 and deoxyribozymes [20, 21], is within reach. As opposed to our 
previous designs using simple binary signals, the AASP would allow to measure and 
deliver medication with precise concentration levels in a smart and adaptive way. By 
integrating the AASP with a chemical delay line as proposed in [12], we could also 
tackle time-series prediction. Consequently, chemical systems would be able monitor 
concentrations of selected molecular species and respond if a severe event, defined as 
a linear or nonlinear temporal concentration pattern, occurs. Such a system would 
be highly relevant where the quantity or type of the drug required could be adjusted 
in real-time with complex relations among species, e.g., produced by cancer cells. 
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Figure 4: AASP learning examples for selected functions. The left column shows 
concentration traces of the weights, the right column the filtered output, the target 
output, and the absolute error. 
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