
Portland State University
PDXScholar
Electrical and Computer Engineering Faculty
Publications and Presentations Electrical and Computer Engineering

2-2015

Semi-modular Delay Model Revisited in Context of Relative
Timing
Hoon Park
Portland State University, parkhoon@gmail.com

Anping He
Lanzhou University

Marly Roncken
Portland State University

Xiaoyu Song
Portland State University

Let us know how access to this document benefits you.
Follow this and additional works at: https://pdxscholar.library.pdx.edu/ece_fac

Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical
and Computer Engineering Commons

This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty
Publications and Presentations by an authorized administrator of PDXScholar. For more information, please contact pdxscholar@pdx.edu.

Citation Details
Park, Hoon; He, Anping; Roncken, Marly; and Song, Xiaoyu, "Semi-modular Delay Model Revisited in Context of Relative Timing"
(2015). Electrical and Computer Engineering Faculty Publications and Presentations. 307.
https://pdxscholar.library.pdx.edu/ece_fac/307

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by PDXScholar

https://core.ac.uk/display/84827045?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://pdxscholar.library.pdx.edu?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/ece?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://library.pdx.edu/services/pdxscholar-services/pdxscholar-feedback/?ref=https://pdxscholar.library.pdx.edu/ece_fac/307
https://pdxscholar.library.pdx.edu/ece_fac?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
https://pdxscholar.library.pdx.edu/ece_fac/307?utm_source=pdxscholar.library.pdx.edu%2Fece_fac%2F307&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:pdxscholar@pdx.edu

The Semi-Modular Delay Model Revisited in
the Context of Relative Timing

Hoon Park, Anping He, Marly Roncken, Xiaoyu Song

We present a new definition of semi-modularity to accommodate relative
timing constraints in self-timed circuits. While previous definitions
ignore such constraints, the new definition takes them into account. We
illustrate the difference on a design solution for a well-known speed-
independent circuit implementation of the Muller C element and a set of
relative timing constraints that renders the implementation hazard-free.
The old definition produces a false semi-modularity conflict that cannot
exist due to the set of imposed constraints. The new definition correctly
accepts the solution.

Introduction: Semi-modularity is a well-known paradigm for designing
hazard-free self-timed digital circuits. Relative timing is an alternative
paradigm, used for the same purpose. The two paradigms were introduced
independently, and for different reasons. We will show that this overlap
in purpose unnecessarily limits the set of relative timing constraints.

Semi-modularity requires that a digital signal change—when enabled—
must happen before it is disabled. Semi-modularity played a key role
in the early development of computer aided design tools for self-timed
systems. Introduced by Raymond Miller [1], it was the starting point
for the first generation of self-timed design and analysis tools [2, 3, 4].
The early focus was on generating circuits that—though large and slow—
were correct, independent of the gate and wire delays in the design.

Armed with theory and tools, the next generation could switch gear.
Focus shifted to speed and energy efficiency, which were achieved by
exchanging delay-insensitivity for extra delay assumptions formulated
as relative timing constraints [5, 6, 7, 8, 9]. But the definitions of
semi-modularity were neither re-examined nor adapted in the context of
relative timing. In this paper, we will show the need for and present a new
definition of semi-modularity that is aware of relative timing constraints.

Semi-modularity—old definition: Semi-modularity expresses that a
digital signal change—when enabled—must happen before it is disabled.
It’s a “no transition left behind” type of paradigm. Transitions in a digital
circuit refer to gate or wire transitions. Both types of transitions can be
modeled as gate transitions, by adding “dummy” buffer gates in each wire
branch [10].

A digital gate can be described as a boolean function, F, from its inputs,
ini,i=1 ..n , to its outputs. For simplicity and without loss of generality, the
focus in this paper is on single-output gates. A gate whose output, out, is
consistent with its inputs is said to be stable—its output and next output,
out′, have the same value as the function value on the current inputs:

out = F (in1, · · · , inn) ∧ out′ = out (stable)

A gate whose output is inconsistent with its inputs is said to be unstable—
its output differs from the function value on its inputs:

out 6= F (in1, · · · , inn) (unstable)

An unstable gate can become stable by changing either its output or its
inputs. Semi-modularity allows the output but forbids the input change.

Our execution model for changes is based on finite traces of events, i.e.
gate or wire transitions, and on an interleaving semantics that represents
parallel events by arbitrary sequential orderings of the events. The
resulting single event orderings are also used to model the delays of
the events, relative to each other. This is a standard execution model
for analyzing self-timed designs. Under this model, semi-modularity for
gates with arbitrary transition delays can be formulated as follows:

Definition 1 (semi-modular gate delay model—original version):
An unstable gate sees no changes until its output changes, i.e.

out 6= F (in1, · · · , inn) →
([out′ = F (in1, · · · , inn) ∨ out′ = out]

∧ F (in ′1, · · · , in ′n) = F (in1, · · · , inn))

Relative Timing constraints: Only a small class of self-timed circuits can
work correctly under arbitrary gate and wire delays. Most of the early
circuits had relative timing constraints, though these might have been
called “isochronic forks” [11] and gone unidentified because wire delays
were often ignored at the time. Relative timing constraints specify event
orderings that—when obeyed—guarantee correct operation of the circuit.
There are various ways to express these constraints. In this paper, we
follow [8, 9] and express them as triples (POD, EARLY, LATE), where:

• POD is the “point of divergence” event that causes the target events.
• EARLY is the target event following POD that must happen first.
• LATE is the target event following POD that must happen last.

Relative timing constraints are guaranteed by adjusting the delay settings
of gates and wires in the circuit, and validated using static timing analysis.

We can integrate relative timing constraints into our execution model
by adjusting the way an unstable gate may change. In particular, we
must avoid gate changes that conflict with the relative timing constraints
in the circuit. We do this as follows. For every gate output, out, with
rising or falling transition out+ or out- used as a LATE event of some
relative timing triple (POD, EARLY, LATE), we block the gate transition
whenever we’ve seen POD but not yet EARLY. This blocking procedure
is easy to implement [9]. We assume that it is available in our execution
model as a boolean function, block(.), operating on transitions—e.g.
block(out+) holds if and only if out+ is blocked by a constraint. Fig. 1
summarizes which output changes are enabled in the new model, and
introduces some graphical notations to help visualize what’s going on.

00

10

out+

11

01

out-

11

out-

bb

out+-

11

01

out-

00

out+

00

10

out+

Fig. 1 Summary of enabled and forbidden output transitions in the new
execution model, illustrated for an inverter which executes the boolean
function out = ¬in . The b’s at the top right are both 0 or both 1. We color the
unstable gates white, the stable gates grey. We add red stripes to gates with
blocked output transitions: / or \ or /\ indicate that respectively the rising,
the falling, or both transitions are blocked. Only the four upper-left gates are
enabled to change their output and become the stable lower-left gates.

Semi-modularity—new definition: As illustrated in Fig. 1, a gate output
change under the new execution model is enabled if and only if the gate
is unstable (for its given inputs and output) and the transition that causes
the output change is not blocked by relative timing constraints. As before,
semi-modularity requires that a digital signal change—when enabled—
must happen before it is disabled. This leads to the following definition
of semi-modularity in the new execution model with relative timing:

Definition 2 (semi-modular gate delay model—new version):
An unblocked unstable gate sees no changes until its output changes, i.e.

(out 6= F (in1, · · · , inn)

∧ [(out ∧ ¬block(out-)) ∨ (¬out ∧ ¬block(out+))])
→

([out′ = F (in1, · · · , inn) ∨ out′ = out]
∧ F (in ′1, · · · , in ′n) = F (in1, · · · , inn))

Comparison: We will use use the design setup in Fig. 2 to illustrate the
different execution semantics for Definitions 1 and 2. Fig. 2 shows a well-
known circuit implementation of the Muller C element, with its intended
behavior specified as a signal transition graph, and four relative timing
constraints represented as (POD, EARLY, LATE) triples. The circuit uses
two input signals, A and B, and one output signal, C. Initially, all three
signals are 0: the specification starts in the double circle, and the initial
values for internal signals in the circuit are indicated in the picture. We
follow the color scheme of Fig. 1. The white (unstable) inverters represent
the environment, and the grey (stable) nand gates represent the Muller
C element proper. The circuit is intended to be speed-independent—i.e.
wire transitions can be ignored. The circuit gates are addressed by their
output signal name. Signals observable to the specification may have two
names— e.g. A and a represent the same signal.

A+B+

B+A+

A-B-

B-A-

C+C-
c

A

B

C

a

b

0

0

0

ac

bc

1

1

1

ab

Constraints:
(c+, ac-, a-)
(c+, ac-, c-)
(c+, bc-, b-)
(c+, bc-, c-)

Fig. 2 Design setup for a speed-independent Muller C element, with its
specification (left), circuit (middle), and relative timing constraints (right).
The inverters execute out=¬in , the nand gates out=¬(in1 ∧ · · · ∧ inn).

c+

b-

bc+

state = s0 state = s3

state = s4 state = s5

state = s6 state = s7

state = s8

c

A

B

C

a

b

1

0

1

ab

ac

bc

1

0

1

c

A

B

C

a

b

0

0

1

ac

bc

1

1

1

a-
ac+

c

A

B

C

a

b

1

0

1

ab

ac

bc

1

1

1

c

A

B

C

a

b

1

0

1

ac

bc

1

0

1
ac-

c

A

B

C

a

b

1

0

1

ac

bc

1

1

0

c

A

B

C

a

b

1

0

1

ab

ac

bc

0

1

0

ab+

c

A

B

C

a

b

1

1

1

ac

bc

0

1

1

c

A

B

C

a

b

1

1

1

ac

bc

0

1

0

bc-

c

A

B

C

a

b

0

0

0

ac

bc

1

1

1

c

A

B

C

a

b

1

1

0

ac

bc

0

1

1

a+
b+
ab-

state = s9 state = s11

ac-

ab

ab

ab

ab ab

ab ab

with old semi-modular definition

with new semi-modular definition

Fig. 3 Event trace in the new execution model. Events from s0 to state s8 are
allowed under the old and new definitions of semi-modularity. With the old
definition, the trace cannot exit s8 without violating relative timing or semi-
modularity—the red box shows the forbidden exit with the semi-modularity
violation. With the new definition, there is no semi-modularity violation—the
trace proceeds correctly from s8 to state s11—as shown in the green box.

To examine if the circuit with the relative timing constraints behaves as
specified, we modeled the design set-up of Fig. 2 in NuSMV [12], using
the standard interleaving model and both the old and the new definition of
semi-modularity. The model checker reports a semi-modularity conflict
when we use the old definition, Definition 1, but it reports that the
design behaves as specified when we use the new version, Definition 2.
Fig. 3 shows the states and event trace leading up to the semi-modularity
conflict under the old definition:

s0
a+−→ b+−→ab−−→ s3

c+−→ s4
bc−−→ s5

b−−→ s6
ab+−→ s7

bc+−→ s8

The transitions from initial state s0 to state s8 are allowed under both the
old and the new definition of semi-modularity. All four relative timing
constraints kick in at state s4, after POD event c+, and start blocking the
LATE events, a- and b- and c-, until the constraints are released by the
corresponding EARLY events, ac- or bc- or both. Event b- is released
first, in state s5. The other two remain blocked up to and including s8.

Under the old definition, the trace stops at s8—execution cannot exit s8,
because all possible exits would violate either a relative timing constraint
or semi-modularity. The forbidden exit causing the semi-modularity
conflict is shown in the red box in the picture: event ac- causes the
unstable gate c to see its boolean input function ¬(ab∧ ac∧ bc) change
from 1 to 0, before its output changes, i.e. before c-.

The new definition sees no semi-modularity conflict: c- is not enabled in
s8, because it is blocked by a relative timing constraint, as indicated by
the red stripes (\) for gate c. Under the new definition, execution proceeds
correctly from s8 to state s11, and from there back to the initial state.

So, the execution model with Definition 1 finds the circuit with the four
relative timing constraints incorrect. With Definition 2, it finds that the
combination behaves as specified. In other words, the four constraints are
rejected under Definition 1 and accepted under Definition 2.

Conclusion: Semi-modularity was—and is—an important paradigm in
designing self-timed circuits that behave correctly independent of the gate
and wire delays in the circuit. New design trends for fast and energy-
efficient self-timed circuits have increased the role of relative timing to
fine-tune the circuits to better performance levels. But the event orderings
expressed by relative timing interfere with the orderings imposed by
“old school” semi-modularity. The paper solves this by providing a new
definition of semi-modularity that fits rather than fights relative timing.

Hoon Park, Marly Roncken, and Xiaoyu Song (Asynchronous Research
Center & ECE Department, Portland State University, USA)

Anping He (School of Information Science and Engineering, Lanzhou
University, China)

E-mail: hoon@cecs.pdx.edu

References

1 R. Miller, Switching Theory Volume 2: Sequential Circuits and
Machines, Chapters 9–10. John Wiley & Sons, 1965.

2 Victor Varshavsky (Ed.), Self-Timed Control of Concurrent Processes.
Kluwer Academic Publ., 1990.

3 T. Meng, Synchronization Design for Digital Systems. Kluwer
Academic Publ., 1991.

4 L. Lavagno and A. Sangiovanni-Vincentelli, Algorithms for Synthesis
and Testing of Asynchronous Circuits. Kluwer Academic Publ., 1993.

5 R. Negulescu, “Process Spaces and Formal Verification of
Asynchronous Circuits,” PhD thesis, U. Waterloo, Canada, 1998.

6 K. Stevens, R. Ginosar, and S. Rotem, “Relative timing,” in Proc. Adv.
Research in Asynchronous Circuits and Systems, 1999, pp. 208–218.

7 J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
A. Yakovlev, Logic Synthesis of Asynchronous Controllers and
Interfaces. Springer-Verlag, 2002.

8 Y. Xu, “Algorithms for Automatic Generation of Relative Timing
Constraints,” PhD thesis, U. Utah, USA, 2011.

9 K. Desai, K. S. Stevens, and J. O’Leary, “Symbolic Verification of
Timed Asynchronous Hardware Protocols,” in Proc. IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2013, pp. 147–152.

10 J. Sparsø and S. Furber (Eds.), Principles of Asynchronous Circuit
Design: A Systems Perspective. Kluwer Academic Publ., 2001.

11 A. Martin, “The Limitations to Delay-Insensitivity in Asynchronous
Circuits,” in Proc. Advanced Research in VLSI, 1990, pp. 263–278.

12 R. Cavada, A. Cimatti, C. Jochim, G. Keighren, E. Olivetti, M. Pistore,
M. Roveri, and A. Tchaltsev, “NuSMV 2.4,” 2013, http://nusmv.fbk.eu/.

2

http://nusmv.fbk.eu/
http://nusmv.fbk.eu/

	Portland State University
	PDXScholar
	2-2015

	Semi-modular Delay Model Revisited in Context of Relative Timing
	Hoon Park
	Anping He
	Marly Roncken
	Xiaoyu Song
	Let us know how access to this document benefits you.
	Citation Details

	Introduction
	Semi-modularity—old definition
	Relative Timing constraints
	Semi-modularity—new definition
	Comparison
	Conclusion

