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Abstract 

Bayesian Model Averaging (BMA) is a popular approach to combine hydrologic forecasts from 

individual models, and characterize the uncertainty induced by model structure. In the original form of 

BMA, the conditional probability density function (PDF) of each model is assumed to be a particular 

probability distribution (e.g. Gaussian, gamma, etc.). If the predictions of any hydrologic model do not 

follow certain distribution, a data transformation procedure is required prior to model averaging. 

Moreover, it is strongly recommended to apply BMA on unbiased forecasts, whereas it is sometimes 

difficult to effectively remove bias from the predictions of complex hydrologic models. To overcome 

these limitations, we develop an approach to integrate a group of multivariate functions, the so-called 

copula functions, into BMA. Here, we introduce a copula-embedded BMA (Cop-BMA) method that 

relaxes any assumption on the shape of conditional PDFs. Copula functions have a flexible structure and 

do not restrict the shape of posterior distributions. Furthermore, copulas are effective tools in removing 

bias from hydrologic forecasts. To compare the performance of BMA with Cop-BMA, they are applied to 

hydrologic forecasts from different rainfall-runoff and land-surface models. We consider the streamflow 

observation and simulations for ten river basins provided by the Model Parameter Estimation Experiment 

(MOPEX) project. Results demonstrate that the predictive distributions are more accurate and reliable, 

less biased, and more confident with small uncertainty after Cop-BMA application. It is also shown that 

the post-processed forecasts have better correlation with observation after Cop-BMA application. 

This article has been accepted for publication and undergone full peer review but has not been
through the copyediting, typesetting, pagination and proofreading process which may lead to
differences between this version and the Version of Record. Please cite this article as an
‘Accepted Article’, doi: 10.1002/2014WR015965
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1. Introduction

Reliability of hydrologic forecasts is affected by several sources, including the uncertain and 

inaccurate meteorological forcing, initial condition at forecast date (e.g. soil moisture, groundwater level, 

snow water equivalent, etc.), and erroneous model structure and parameters. There are several techniques 

to quantify the uncertainty in short- and long- term hydrologic forecasts, including Generalized 

Likelihood Uncertainty Estimation (GLUE; Beven and Binley, 1992), Bayesian Recursive Estimation 

(Thiemann et al., 2001), Bayesian Total Error Analysis (BATEA; Kavetski et al., 2002; Kuczera et al., 

2006), Data Assimilation (Moradkhani et al., 2005, Moradkhani et al., 2012), Bayesian Model Averaging 

(Duan et al., 2007), and Bayesian hierarchical models (Huard and Mailhot, 2008; Najafi and Moradkhani, 

2013). 

One of the primary techniques to reflect different uncertainties in hydrological forecasts is to create 

an ensemble of forecast trajectories (McEnery et al., 2005; Seo et al., 2006; Olsson and Lindstrom, 2008; 

Moradkhani and Sorooshian, 2008; DeChant and Moradkhani, 2011; Moradkhani et al., 2012; Madadgar 

and Moradkhani, 2011; Pagano et al., 2013; Madadgar et al., 2014). An ensemble of streamflow forecasts, 

the so-called Ensemble Streamflow Prediction (ESP; Day, 1985) may be generated by forcing a 

hydrologic model with an ensemble of historical climate observations or the climate forecasts from 

numerical climate models. Some recent developments to improve the forecast skill of ESPs include 

integrating data assimilation to ESP to more correctly account for uncertainty in initial conditions 

(DeChant and Moradkhani, 2011) and weighting ESP traces (Najafi et al., 2012). Very recent study by 

DeChant and Moradkhani (2014) has provided an integrated approach to account for both initial condition 

and model structural uncertainties in seasonal streamflow forecast. 

Aside from traditional ESP, some techniques develop the probability distribution of forecast to 

account for different sources of uncertainty. The forecast probability distribution is usually assumed to be 

a multivariate normal distribution joining the observed and predicted variables (Kelly and Krzystofowicz, 

1997; Schaake et al., 2007; Todini, 2008; Zhao et al., 2011; Ye et al., 2014). Using the multivariate 

normal distribution requires the transformation of non-Gaussian variables to standard normal variates 
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which can affect the accuracy of estimated probability distribution (Brown and Seo, 2012; Madadgar et 

al., 2014). Brown and Seo (2012) discussed the difficulties in parametric estimation of the conditional 

probability distribution of observation given forecast and proposed a non-parametric technique to 

approximate the full conditional probability distribution with a discrete set of thresholds for observed 

variable. However, Madadgar et al. (2014) argued the accuracy of the non-parametric distribution (Brown 

and Seo, 2012) for being highly dependent on the number of observation thresholds and applied copula 

functions (Joe, 1997; Nelsen, 1999) to develop a new technique for estimating the conditional probability 

distribution and post-processing the forecast of hydrologic models. 

Since copula functions can model the correlation structure among the variables in hydrologic 

processes, they have been examined in several hydrologic applications (Favre et al., 2004; Bárdossy, 

2006; Shiau, 2006; Salvadori and De Michele, 2010; Kao and Govindaraju, 2010; Madadgar and 

Moradkhani, 2013a). Unlike other approaches for estimating the conditional probability distributions, 

copula functions join variables via their marginal distributions; and hence, the unknown and complex 

relationships in hydrological processes do not hinder modelling the joint behavior of variables. Copula 

functions are not restricted to any particular type of parametric functions (e.g. normal distribution) for the 

marginal distributions or the joint probability distribution. According to the promising results of using 

copula functions in post-processing of hydrologic forecasts, Madadgar and Moradkhani (2013b, 2014) 

applied copula functions to obtain the conditional probability of future droughts within Bayesian network 

of sequential events. 

Uncertainties in hydrologic predictions are partially due to model structure, parameterization, and 

spatial discretization of physical processes. Since any hydrologic model is a simplified representation of 

complex physical processes in the hydrologic system, the assumptions in model conceptualization cause 

hydrologic predictions to become inaccurate and imprecise. To address this, several techniques have been 

developed to combine the prediction of multiple models to reduce model uncertainty through multi-model 

combination (e.g., Duan et al., 2007; Hsu et al., 2009; Najafi et al., 2011; Parrish et al., 2012). An 

attractive attribute of multi modeling is that the forecast skill of a multi-model ensemble is generally 
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better than the participating models alone. Weigel et al. (2008) discussed the overconfidence of single-

model ensembles may be reduced through a multi-model approach, where the ensemble spread becomes a  

more appropriate representation of the uncertainty. A well-known approach to combine an ensemble of 

models is model averaging, which is a linear combination of different models. Some model-averaging 

techniques such as equal weights, Granger-Ramanathan averaging (Granger and Ramanathan, 1984), 

Bates-Granger averaging (Bates and Granger, 1969), AIC and BIC-based model averaging (Buckland et 

al. 1997; Burnham and Anderson 2002; Hansen, 2008) take the linear average of the deterministic outputs 

and produce a combined single-value forecast (Diks and Vrugt, 2010). Despite the promising 

performance of these model-averaging techniques, Hoeting et al. (1999) argued that the weights could not 

properly reflect the strength of single models and recommended the use of Bayesian Model Averaging 

(BMA). BMA combines the forecast PDF of different models and build a weighted predictive distribution 

out of them.  Neuman (2002) discussed the computational effort and prior information required in BMA 

and proposed a maximum likelihood version of BMA, which later initiated the application of BMA in 

subsurface hydrology (Ye et al., 2004). Thereafter, several other studies have reported BMA application 

in groundwater hydrology and hydraulics (e.g. Tsai and Li, 2008; Rojas et al, 2010; Ye et al., 2010). In 

order to calculate the weight of each forecast model, Raftery et al. (2005) used Expectation-Maximization 

algorithm (EM) and estimated the weights based on the performance of each model during a training 

period. They applied BMA in developing the predictive PDF of an ensemble of meteorological forecasts, 

which motivated several applications of BMA in surface hydrology (Vrugt et al., 2006; Duan et al., 2007; 

Vrugt and Robinson, 2007; Ajami et al., 2007). In a climate change impact study, Najafi et al. (2011) used 

the BMA framework to incorporate the outputs of different hydrologic models forced by a group of 

downscaled Global Climate Models (GCMs). Recently, Mӧller et al. (2013) evaluated the joint behavior 

of weather quantities in a two-step approach using BMA and multivariate functions; where in the first 

step, BMA applied to post-process the forecast ensembles of several meteorological variables, and in the 

second step, a Gaussian copula estimated the multivariate distribution of forecast variables. 
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In standard BMA (Raftery et al., 2005), the conditional PDF of each individual model is assumed to 

follow a normal distribution, which is valid for only a limited group of forecast variables, e.g. temperature 

and sea-level pressure. For other variables such as precipitation or streamflow, the normal distribution 

might be a poor choice (Sloughter et al., 2006), and gamma distribution might be a better alternative for 

representing the posterior distribution of model outputs (Vrugt and Robinson, 2007; Sloughter et al., 

2010). However, data transformation is usually required in a BMA application to transform the model 

forecasts to the space of posterior distribution. In a recent study by Parrish et al. (2012) the Gaussian 

assumption of the likelihood function was relaxed by combining sequential data assimilation and BMA. 

The proposed method showed greater skill and reliability in high ranges of hydrograph volatility. 

This study seeks to integrate a group of multivariate functions, called copula functions, into BMA to 

estimate the posterior distribution of model forecasts. This approach removes the need to assume the form 

of the posterior distribution, and eliminates the data-transformation procedure. Application of copula 

functions in post-processing of hydrologic forecasts (Madadgar et al., 2014) and estimating the 

probability of future droughts (Madadgar and Moradkhani, 2013b and 2014) have indicated the capability 

of copula functions in estimating the conditional probability of hydrologic forecasts. In addition to the 

integration of these functions into BMA, copula functions can be utilized in any Bayesian formulation 

where a conditional PDF should be approximated. 

The main contribution of copula-integrated BMA is the estimation of posterior distribution with the 

help of copula functions. Some limitations of standard BMA method such as independency of prediction 

models remains unchanged in the new method. It should be noted that a key requirement for reliable 

performance of BMA is to select independent models (mutually exclusive). Without independent models, 

the uncertainty of predictive distribution will be overestimated. On the other hands, the models should be 

collectively exhaustive to assure capturing the observation variability within the ensemble. With the 

limitations in model selections, however, it is not practically possible to have a mutually exclusive and 

collectively exhausted (MECE) ensemble of models (Refsgaard et al., 2012). One approach to assure the 

collectively exhaustive criterion is to construct a large ensemble of models, which may violate the 
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mutually exclusive criterion. Therefore, it is important to establish a balance in constructing the ensemble 

so that the MECE criterion is met. The same challenge is expected for Cop-BMA method, since the 

overall structure of both methods is similar. 

This paper is organized as follows. Section 2 describes the standard BMA, and Section 3 introduces 

the new integrated copula-BMA model. Section 4 explains the hydrologic models and the study river 

basins, and Section 5 describes the verification measures employed to compare the performance of model 

averaging techniques. Section 6 discusses the results, and finally, Section 7 summarizes the major 

remarks of the study. 

2. Bayesian Model Averaging (BMA)

Bayesian Model Averaging (BMA) is an approach to combine the forecast densities predicted by 

different models, producing a new forecast PDF. According to BMA, the predictive distribution of a 

forecast variable 𝑦, given the independent predictions of 𝑘 models,[𝑀1, 𝑀2, … ,𝑀𝑘], and the observations

during the training period, 𝑌, can be expressed by the law of total probability as: 

𝑝(𝑦|𝑀1, 𝑀2, … ,𝑀𝑘 , 𝑌) =  ∑𝑝(𝑀𝑖|𝑌) 𝑝(𝑦|𝑀𝑖 , 𝑌)

𝑘

𝑖=1

(1) 

In Eq. 1, 𝑝(𝑦|𝑀𝑖 , 𝑌) is the posterior distribution of 𝑦 given the model prediction, 𝑀𝑖, and training

data, 𝑌. More simply, 𝑝(𝑦|𝑀𝑖 , 𝑌) is the forecast PDF of y given model 𝑖. 𝑝(𝑀𝑖|𝑌) is the likelihood of

model prediction being correct, given the observations, 𝑌, during the training period, which reflects the 

performance of model 𝑖 in predicting the forecast variable during the training period, such that 

∑ 𝑝(𝑀𝑖|𝑌)
𝑘
𝑖=1 = 1. Since the posterior probabilities of model predictions sum to unity, 𝑝(𝑀𝑖|𝑌) is the

weight of model 𝑖; and therefore, the BMA approach returns the weighted average of forecast PDF 

generated by each model. While Eq. 1 shows the general form of the BMA forecast density, model 

predictions are time-variant, where 𝑦 and 𝑀𝑖 in Eq. 1 are replaced by 𝑦𝑡 and 𝑀𝑖
𝑡, respectively. Hence, Eq.

1 may be re-written as follows: 
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𝑝(𝑦𝑡|𝑀1
𝑡 , 𝑀2

𝑡 , … ,𝑀𝑘
𝑡 , 𝑌) =  ∑𝑤𝑖  𝑝(𝑦

𝑡|𝑀𝑖
𝑡 , 𝑌)

𝑘

𝑖=1

(2) 

Since 𝑤 is estimated from the model performance during the training period, it is static for each model. 

Application of BMA requires the model forecasts, 𝑀𝑖, to be bias-corrected; that is, the expected value

of observation should be equal to the expected value of forecasts for each model (𝐸[𝑌 − 𝑀𝑖] = 0). If

model forecasts are biased, any bias-correction methods such as linear regression should be applied prior 

to BMA implementation and the bias-corrected forecasts (fi
t) should replace the original model

predictions (Mi
t) (Raftery et al., 2005):

fi
t = ai + bi Mi

t (3) 

Where, fi
t is the bias-corrected forecast; and {ai, bi} are the coefficients of linear regression model.

Defining the posterior distribution of Eq. 2 is a significant challenge in deterministic modeling of 

hydrologic variables, where the forecast probability is not basically estimated by the model. In order to 

approximate the forecast probability, it has become a common practice to assume the posterior 

distribution as a Gaussian function, with mean 𝑓𝑖
𝑡 and variance 𝜎𝑖

2; i.e. 𝑝(𝑦𝑡|𝑓𝑖
𝑡 , 𝑌)~ 𝑔(𝑦𝑡|𝑓𝑖

𝑡 , 𝜎𝑖
2). The

variance 𝜎𝑖
2 reflects the uncertainty of the 𝑖𝑡ℎ model in respect with the mean. Despite the computational

convenience of using a Gaussian distribution, the Gaussian assumption is not valid for all types of 

forecast variable. For non-Gaussian variables, a power transformation is needed to map the variables from 

their original space to a Gaussian space. Box and Cox (1964) proposed Box-Cox transformation as a 

general form of power transformation. The one-parameter Box-Cox transformation is defined as follows: 

fi,t
(λ)
= 

{
 
 

 
 fi,t

λ − 1

λ
 λ ≠ 0

ln(fi,t)  λ = 0

(4) 

Where, fi,t is the bias-corrected forecast of model i at time t; λ is the Box-Cox coefficient; and fi,t
(λ)

 is

the transformed, bias-corrected forecast of model i at time t. The Box-Cox transformation is applied to 
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the observation and unbiased forecast of each model. Since several optimization algorithms may involve 

in estimating the Box-Cox coefficient (λ) in Eq. 4, this study sets the value of λ equal to the average 

amount obtained from seven different methods as presented in Asar et al. (2014), including Shapiro-Wilk 

and Shapiro-Francia tests (Shapiro and Wilk, 1965), Cramer-von Mises test (Cramer, 1928), Pearson Chi-

square test (Pearson, 1900), Lilliefors (Kolmogorov-Smirnov) test (Lilliefors, 1967), Jarque-Bera test  

(Jarque and Bera, 1987), and artificial covariate method (Dag et al., 2013). Finally, the K-S test statistics 

is utilized to prove the Gaussianity of transferred data. 

The variance (𝜎𝑖
2) and weight (𝑤𝑖) of each forecast model can be estimated by the log-likelihood

function. Setting the vector of parameters as 𝜃 = {𝑤𝑖 , 𝜎𝑖
2, 𝑖 = 1. . 𝑘}, the log-likelihood function of 𝜃 can

be approximated as follows: 

𝑙(𝜃) = 𝑙𝑜𝑔 (∑𝑤𝑖  .  𝑝(𝑦|𝑓𝑖 , 𝑌)

𝑘

𝑖=1

) (5) 

Since the analytical solution to maximize the log-likelihood function is complex, Raftery et al. (2005) 

suggested a procedure called the Expectation-Maximization (EM) algorithm. This is an iterative 

algorithm with an embedded optimization component to update the weights and variances of posterior 

distributions until a termination criterion (|(𝑙(𝜃𝐼𝑡𝑒𝑟) −   𝑙(𝜃𝐼𝑡𝑒𝑟−1)| <  𝜀) is achieved. In the first

iteration(Iter = 1), the initial weight and variance for each model are set to wi,Iter = 
1

k
and  σi,Iter

2 =

1

k
∑

∑ (yt−fi
t)
2k

i=1

T
T
t=1 . As the EM algorithm proceeds, wi and σi

2 are updated as follows:

𝑤𝑖,𝐼𝑡𝑒𝑟 =  
1

𝑇
∑𝑧𝑖,𝐼𝑡𝑒𝑟

𝑡

𝑇

𝑡=1

𝜎𝑖,𝐼𝑡𝑒𝑟
2 = 

∑ 𝑧𝑖,𝐼𝑡𝑒𝑟
𝑡 .  (𝑦𝑡 − 𝑓𝑖

𝑡)
2𝑇

𝑡=1

∑ 𝑧𝑖,𝐼𝑡𝑒𝑟
𝑡𝑇

𝑡=1

𝑧𝑖,𝐼𝑡𝑒𝑟
𝑡 =

𝑤𝑖,𝐼𝑡𝑒𝑟−1 . 𝑔(𝑦
𝑡|𝑓𝑖

𝑡 , 𝜎𝑖,𝐼𝑡𝑒𝑟−1
2 )

∑ 𝑤𝑖,𝐼𝑡𝑒𝑟−1 . 𝑔(𝑦
𝑡|𝑓𝑖

𝑡 , 𝜎𝑖,𝐼𝑡𝑒𝑟−1
2 )𝑘

𝑖=1

(6) 
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𝑙(𝜃𝐼𝑡𝑒𝑟) = 𝑙𝑜𝑔(∑𝑤𝑖,𝐼𝑡𝑒𝑟

𝑘

𝑖=1

∑𝑔

𝑇

𝑡=1

(𝑦𝑡|𝑓𝑖
𝑡 , 𝜎𝑖,𝐼𝑡𝑒𝑟

2 )) 

Where, T is the length of the training period; and z is a latent variable. All other variables are defined 

the same as in the previous equations. 

In assigning the weights, Refsgaard et al. (2012) and Rojas et al. (2010) discussed that model 

rankings are not necessarily similar for both training and testing periods. They argued that how much the 

ranking would be stable where the conditions or even variables used in validation period are different 

from those used for calibration of the multi-modelling method. In other words, the optimal weights during 

the calibration period may not remain optimal for the validation period. However, if the training period 

can reasonably capture the overall behavior of each model, the rankings are probably similar for both 

calibration and validation period. 

3. Copula-Embedded Bayesian Model Averaging (Cop-BMA)

As described in section 2, the BMA predictive distribution is a weighted average of forecast PDFs 

which are generally assumed to be a parametric distribution, e.g. Gaussian distribution. Here, we explain 

a procedure that when combined with BMA, it relaxes the assumption on posterior parametric 

distribution. This can modify the BMA predictive distribution and increase the multi-modeling reliability. 

To find the posterior distribution, we replace the parametric distribution 𝑔(𝑦|𝑓𝑖 , 𝜎𝑖
2) with a group of

multivariate functions called copula, which have been reported as promising tools in hydrological 

forecasts. Madadgar et al. (2014) used copula functions to post-process the hydrologic forecasts and 

determined the streamflow forecast probability distribution. Following the similar statistical approach, 

this study employs copula functions to estimate the posterior distribution of forecast variables for each 

model, i.e. 𝑝(𝑦𝑡|𝑓𝑖
𝑡 , 𝑌), .

Copulas are multivariate distribution functions on the 𝑛-dimensional unit cube. The variables of 

copula function are uniformly distributed on the interval[0, 1], i.e. 𝐶: [0, 1]𝑛 → [0, 1](Joe, 1997; Nelsen,
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1999). Using Sklar’s theorem (Sklar, 1959), a multivariate distribution, 𝑃(𝑥1. . 𝑥𝑛), can be expressed by

copula functions as follows: 

𝑃(𝑥1, … , 𝑥𝑖 , … , 𝑥𝑛) = 𝐶[𝑃(𝑥1), … , 𝑃(𝑥𝑖), … , 𝑃(𝑥𝑛)] = 𝐶(𝑢1, … , 𝑢𝑖 , … , 𝑢𝑛)
(7) 

where, 𝐶 is the Cumulative Distribution Function (CDF) of the copula; and 𝑃(𝑥𝑖) is the marginal

distribution of 𝑥𝑖 being uniform on the interval [0, 1], which is also denoted by 𝑢𝑖.  If a copula’s CDF is

absolutely continuous, its PDF can be expressed as: 

𝑐(𝑢1, … , 𝑢𝑛) =  
𝜕𝑛𝐶(𝑢1, … , 𝑢𝑛)

𝜕𝑢1…  𝜕𝑢𝑛
(8) 

Using the PDF of copula (Eq. 8), the joint probability density function of (𝑥1. . 𝑥𝑛) can be defined as

follows: 

𝑝(𝑥1, … , 𝑥𝑛) = 𝑐(𝑢1, … , 𝑢𝑛)∏ 𝑝(𝑥𝑖)
𝑛

𝑖=1
 (9) 

Alternatively, in statistical applications, the conditional probability distribution of 𝑥1 given 𝑥2 is

expressed as: 

𝑝(𝑥1|𝑥2) =  
𝑝(𝑥1, 𝑥2)

𝑝(𝑥2)
(10) 

Replacing the joint probability distribution of 𝑝(𝑥1, 𝑥2) in Eq. 10 with Eq. 9, the conditional probability

distribution of Eq. 10 can be revised as: 

𝑝(𝑥1|𝑥2) =  
𝑝(𝑥1, 𝑥2)

𝑝(𝑥2)
=  
𝑐(𝑢1, 𝑢2) . 𝑝(𝑥1) . 𝑝(𝑥2)

𝑝(𝑥2)
=  𝑐(𝑢1, 𝑢2). 𝑝(𝑥1) (11) 

Madadgar et al. (2014) applied the joint probability distribution of Eq. 11 in post-processing of 

hydrologic forecasts, finding that the raw forecast of hydrologic models is improved significantly after 

using copula functions. The post-processed forecast was shown to increase reliability while reducing 

uncertainty comparing to the raw forecast. Given the forecast x2, the conditional PDF of observation x1

might be a multi-modal distribution, since the conditional PDF is defined as the product of observation 

PDF and the PDF of copula function. To build the conditional PDF of Eq. 11, Madadgar et al. (2014) 

recommended Monte Carlo sampling from the copula density function, 𝑐(𝑢1, 𝑢2). In the Monte Carlo
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sampling, 𝑢2 is fixed as the CDF of forecast 𝑥2, and 𝑢1 is calculated for each sample from the observation

space. Then, 𝑐(𝑢1, 𝑢2), is computed for each pair of (𝑢1, 𝑢2), and 𝑝(𝑥1|𝑥2) is obtained from Eq. 11. In

this study, we consider 𝑥1 as the quantity to be forecasted  (𝑦𝑡), and 𝑥2 as the 𝑖𝑡ℎ model prediction (𝑓𝑖
𝑡).

Replacing the posterior distribution in Eq. 2 by the conditional probability distribution in Eq. 11, the 

predictive distribution of BMA is updated as follows: 

𝑝(𝑦𝑡|𝑓1
𝑡 , 𝑓2

𝑡 , … , 𝑓𝑘
𝑡 , 𝑌) =  ∑𝑤𝑖  𝑝(𝑦

𝑡|𝑓𝑖
𝑡 , 𝑌)

𝑘

𝑖=1

= ∑𝑤𝑖   𝑐 (𝑢𝑦𝑡 , 𝑢𝑓𝑖
𝑡)

𝑘

𝑖=1

𝑝(𝑦𝑡) (12) 

Using Eq. 12 relaxes any assumption on the type of posterior distribution. Fig. 1 shows the flowchart of 

BMA and Cop-BMA and compares the different steps of each method. As seen in Cop-BMA, the 

posterior distribution, p(y|fi, Y), is directly obtained from Eq. 12 without a need to use EM algorithm.

Another advantage of using copula functions is their strong ability to remove bias from model predictions 

(Madadgar et al., 2014). Therefore, no external bias-correction method is required to be involved in Cop-

BMA. 

After the posterior distribution is defined, their weights are estimated via the EM algorithm (Eq. 6) with a 

few adjustments in some equations: 

𝑤𝑖,𝐼𝑡𝑒𝑟 =  
1

𝑇
∑𝑧𝑖,𝐼𝑡𝑒𝑟

𝑡

𝑇

𝑡=1

𝑧𝑖,𝐼𝑡𝑒𝑟
𝑡 =

𝑤𝑖,𝐼𝑡𝑒𝑟−1 . 𝑝(𝑦
𝑡|𝑓𝑖

𝑡)

∑ 𝑤𝑖,𝐼𝑡𝑒𝑟−1 . 𝑝(𝑦
𝑡|𝑓𝑖

𝑡)𝑘
𝑖=1

= 
𝑤𝑖,𝐼𝑡𝑒𝑟−1 . 𝑐 (𝑢𝑦𝑡 , 𝑢𝑓𝑖

𝑡) . 𝑝(𝑦𝑡)

∑ 𝑤𝑖,𝐼𝑡𝑒𝑟−1 . 𝑐 (𝑢𝑦𝑡 , 𝑢𝑓𝑖
𝑡)𝑘

𝑖=1 . 𝑝(𝑦𝑡)

𝑙(𝜃𝐼𝑡𝑒𝑟) = 𝑙𝑜𝑔(∑𝑤𝑖,𝐼𝑡𝑒𝑟

𝑘

𝑖=1

∑𝑐(𝑢𝑦𝑡 , 𝑢𝑓𝑖
𝑡) . 𝑝(𝑦𝑡)

𝑇

𝑡=1

) 

(13) 

As seen, the calculation of variance in Eq. 6 is not appeared in Eq. 13. Moreover, the posterior probability 

of yt is calculated only once in Eq. 13 and that remains the same for all the iterations. In contrast, the

posterior probability in standard BMA should be re-calculated every time that the variance is updated. In 

addition, Cop-BMA does not need any data transformations; while in standard BMA, it is required to 
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transform data to comply with the distributional property of the variable of interest, such as normal 

distribution in case of streamflow forecast. 

4. Hydrologic Modeling of Study Basins

To compare the performance of the BMA and Cop-BMA methods in streamflow forecasting, 

observed and simulated streamflow of 10 unregulated river basins in the United States were used. The 

data was provided by the Model Parameter Estimation Experiment (MOPEX) project, which is a 

collaborative endeavor supported by several international organizations since 1996. A full description of 

the MOPEX project can be found in Duan et al. (2006). The study basins are located in different climate 

regions of the eight States across the Southeastern quadrant of the United States; i.e. IN, MD, VA, WV, 

IA, NC, LA, and MO. Figure 2 shows the location of river basins, and Table 1 summarizes the 

specifications of each basin. The basin and station IDs are obtained from the United States Geological 

Survey (USGS). The drainage area of the river basins ranges from ~600 to ~2600𝑚𝑖2, and the elevation

of the outlet station varies between 0 and 1950 feet in the North America Vertical Datum of 1988 

(NAVD88) system. The last four columns of Table 1 summarize the climatic characteristics of river 

basins. The river basins are selected from a variety of climate regimes, as indicated by the ratios of P/PE 

(mean annual precipitation, P, to the mean annual potential evapotranspiration, PE) and E/P (mean annual 

evaporation (E) to P). For each basin, the ratio P/PE is estimated for the gridded values of P from the 

Parameter-elevation Relationships on Independent Slopes Model (PRISM) dataset (Daly et al., 1994) and 

gridded values of PE from the National Oceanic and Atmospheric Administration’s (NOAA) Freewater 

Evaporation Atlas (Farnsworth and Peck, 1982). Wet climate regions are expected to have high values of 

P/PE, while dry climate regions should result in low values (Dooge, 1997). Similar to Risley et al., (2011) 

and Najafi et al., (2011), we use the aridity index (α) (Budyko, 1974; Milly and Dunne, 2002) to 

characterize the climate regime of each basin: 
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𝐸

𝑃
=  [𝛼 (tanh

1

𝛼
) (1 − cosh𝛼 + sinh 𝛼)]

2

 (14) 

In Eq. 14, 𝛼 is the aridity index, and E and P are the mean annual evaporation and precipitation, 

respectively. Basins with 𝛼 ≥ 1 are located in water-limited regions, where the evaporation is constrained 

by water supply, implying that the region is dry. In contrary, basins with 𝛼 < 1 are energy-limited, where 

the evaporation is constrained by radiation and temperature (i.e. the region is wet). Given E/P in the left-

hand side of Eq. 14, the value of α can be obtained for each river basin. According to the values of P/PE  

and α in Table 1, basins #7 and #10 are located in dry regions, and basin #8 is located in the wettest 

region, as it has the highest value of P/PE and the lowest value of α. 

Streamflow observations were reported at USGS gage stations as listed in Table 1, and streamflow 

simulations are available via MOPEX dataset. Seven different hydrologic models, as listed in Table 2, are 

used to estimate the streamflow at the outlet of each river basin. The first three models in Table 2 (SAC, 

GR4J, SWB) are conceptual, lumped-parameter, rainfall-runoff hydrologic models and the rest (ISBA, 

NOAH, SWAP, VIC) are land-surface models. Interested readers are encouraged to study the references 

of each model as provided in Table 2. 

5. Performance Assessment of Multi-modeling Techniques

In this section, the performance of Cop-BMA and BMA are compared using different verification 

measures. Accuracy, reliability, sharpness, and overall skill of the forecast predictive distribution are 

evaluated for each method. 

Accuracy: Forecast accuracy is evaluated by Mean Relative Absolute Error (MRAE) and Kling-

Gupta Efficiency (KGE; Kling et al., 2012) metrics. MRAE varies [0,∞) with perfect forecast at 

MRAE = 0, and KGE varies (−∞, 1] with perfect forecast at KGE = 1. In deterministic forecasts, these 

metrics evaluate the agreement between the simulation (𝑦𝑠) and observation (𝑦𝑜) as follows:

MRAE =
1

T
 ∑

|yo
t − ys

t|

yo
t

T

t=1

(15) 
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KGE = 1 − √(𝑟 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2 

Where; 

𝛽 =  
𝜇𝑠
𝜇𝑜

𝛾 =  
𝐶𝑉𝑠
𝐶𝑉𝑜

= 

𝜎𝑠
𝜇𝑠⁄

𝜎𝑜
𝜇𝑜⁄

(16) 

Where 𝜇𝑜 and 𝜇𝑠 are the mean of observed and simulated variable, respectively; 𝛽 is an indicator of

bias; 𝑟 is the correlation coefficient between the observation and simulation; 𝐶𝑉 is the coefficient of 

variation; 𝜎𝑜 and 𝜎𝑠 are the standard deviation of observation and simulation; and 𝛾 is variability ratio. In

perfect forecast, where KGE equals unity, the 𝑟 = 𝛽 = 𝛾 = 1. According to Eq. 16, 𝛽 < 1 corresponds 

with an overall negative bias, in which 𝜇𝑠 < 𝜇𝑜. Similarly, 𝛽 > 1 indicates a positive bias in forecast.

While MRAE and KGE are clearly defined for deterministic forecasts, they cannot directly apply to 

probabilistic forecasts where the final forecast product is in the form of a predictive distribution.  In such 

applications, 𝑦𝑠
𝑡 in Eq. 15 is replaced by the expected value of the estimated predictive distribution,

𝐸(𝑦𝑡|𝑀1
𝑡 . . 𝑀𝑘

𝑡). The same replacement occurs in the calculation of 𝑟, 𝜇𝑠, and 𝐶𝑉𝑠 in Eq. 16.

Reliability: Forecast reliability is indicated by the supportive quantitative scores of predictive 

quantile-quantile (Q-Q) plot (Laio and Tamea, 2007; Thyer et al., 2009). In the predictive Q-Q plot, the 

quantiles in which the observations fall within the forecast distribution are compared to the cumulative 

uniform distribution, 𝑈[0,1]. A guide to interpreting the predictive Q-Q plot is provided in Fig. 3. While 

the Q-Q plot of a perfect forecast follows the uniform line, it falls below or above the uniform line in 

biased forecasts (Fig. 3a). The PDF of biased forecast is located behind/ahead of the actual PDF of 

observation, indicating a negative/positive bias, respectively (Fig. 3b). Such definition of 

negative/positive bias is consistent with the definition of bias in Eq. 16 (𝛽). For example, the PDF of 

forecast with negative bias (Fig. 3b) demonstrates the overall smaller value of forecasts comparing with 

observations (𝜇𝑠 < 𝜇𝑜  ⇒ 𝛽 < 1), and vice versa.
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If the Q-Q plot crosses the uniform line and has a small slope around the quantile 0.4-0.6, then the 

predictive uncertainty is overestimated or the forecast is underconfident. Conversely, a Q-Q plot with 

high slope around the midrange quantile (0.4-0.6) demonstrates the underestimation of uncertainty and 

overconfidence of forecast. The Q-Q plots associated with overconfident and underconfident forecasts in 

Fig. 3a cross the uniform line at quantile 0.5, indicating the median of forecast and observation 

distributions are superimposed as shown in Fig. 3b. Underestimation or overestimation of uncertainty 

indicates too little or too large spread of predictive distribution, respectively. Note that in Fig. 3, the 

illustrated forecasts are either purely biased or purely under-/overconfident, which might be rare in real 

applications. Operational forecasts are usually both positively/negatively biased and under-/overconfident 

to some extent. 

In addition to the visual interpretations, a few quantitative scores can be computed from a Q-Q plot 

for probabilistic verification of forecasts. There are two reliability measures described by Q-Q plot, 𝛼 and 

𝜀: 

𝛼 = 1 − 2 [
1

𝑇
∑|𝑃𝑡(𝑦𝑜

𝑡) − 𝑈(𝑦𝑜
𝑡)|

𝑇

𝑡=1

] 

𝜀 = 1 − 
1

𝑇
∑𝐼[𝑃𝑡(𝑦𝑜

𝑡) = 1 𝑜𝑟 𝑃𝑡(𝑦𝑜
𝑡) = 0]

𝑇

𝑡=1

(17) 

In Eq. 17, 𝑃𝑡(𝑦𝑜
𝑡) is the non-exceedance probability of observation using the forecast CDF, 𝑈(𝑦𝑜

𝑡) is the

non-exceedance uniform probability of observation, and 𝐼 is the indicator function. In Eq. 17, 𝛼 is a 

measure of the uniformity of the Q-Q plot, and it varies between 0 (worst reliability) and 1 (perfect 

reliability), and 𝜀 measures the portion of observations that occurs inside the predictive distribution, and it 

varies between 0 (worst reliability) and 1 (perfect reliability). 

Sharpness: Sharpness or precision of the predictive distribution is measured by the third score derived 

from the Q-Q plot, 𝜋, defined as follows: 
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𝜋 =  
1

𝑇
∑

𝐸(𝑦𝑡|𝑀1
𝑡 . . 𝑀𝑘

𝑡)

𝜎[𝑦𝑡|𝑀1
𝑡 . . 𝑀𝑘

𝑡 ]

𝑇

𝑡=1

(18) 

𝐸(𝑦𝑡|𝑀1
𝑡 . . 𝑀𝑘

𝑡) and 𝜎[𝑦𝑡|𝑀1
𝑡 . . 𝑀𝑘

𝑡] are the expected value and the standard deviation of the predictive

distribution at time 𝑡. Larger values of 𝜋 are the result of smaller standard deviations of the forecast 

distribution, indicating a greater sharpness or precision. Given two forecasts with same reliability, the 

forecast with larger 𝜋 is preferred, because it has greater sharpness or less uncertainty.  

Another measure indicating the effects of sharpness on the reliability of predictive distribution is 

called confidence, as introduced by Moradkhani et al. (2012). The confidence score indicates that if the 

forecast is overconfident (too little spread) or underconfident (too large spread). The score is originally 

defined for verification of forecast ensembles, but is considered here for predictive distributions instead. 

To calculate the confidence score in this study, we build an ensemble of forecast values by extracting the 

[
1

100
,
2

100
, … ,

99

100
] quantiles from the forecast probability distribution. Then, the relative location of 

observation at time 𝑡(𝑦𝑡) from the 𝑖𝑡ℎ upper and lower quantiles (𝑃1,𝑖and𝑃2,𝑖) is obtained, and the

confidence score is expressed as follows: 

𝑧𝑡 = 
1

𝑁
∑𝑥𝑖

𝑁

𝑖=1

 ,     𝑥𝑖 = {
1 𝑦𝑜

𝑡 > 𝑦𝑖
𝑡

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑃1,𝑖 = 
𝑖

𝑁
 ,      𝑃2,𝑖 =  1 −

𝑖

𝑁

𝑊𝑖 = 
1

𝑇
∑𝜆𝑡

𝑇

𝑡=1

  ,     𝜆𝑡 = {
1  𝑃1,𝑖 < 𝑧𝑡 < 𝑃2,𝑖
0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐶 =  
2

𝑁
∑[(𝑃2,𝑖 − 𝑃1,𝑖) − 𝑊𝑖]

𝑁/2

𝑖=1

(19) 

𝑧𝑡 is the quantile of the predictive distribution in which the observation at time 𝑡is located, 𝑁 is the size of

forecast ensemble (here 𝑁 = 100), 𝑊𝑖 is the frequency that the observationfalls between the 𝑖𝑡ℎ

predictive bounds, and 𝐶 is the confidence value. The 𝐶 > 0  indicates overconfidence and 𝐶 < 0 

indicates underconfidence of predictive distribution. 
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6. Results and Discussion

BMA and Cop-BMA are employed to combine the streamflow forecast of an ensemble of seven 

hydrologic models. Daily forecast of streamflow is available for all river basins over the time period of 

1960-1997. However, to avoid missing values in daily forecasts, we used 5-day forecasts (accumulated 

daily forecasts over five days) in our analyses. The first 3-year period (1960-1962) is used as the spin-up 

period for each hydrologic model, and the rest (1962-1997) is used for training and validating each 

method. In training phase, the parameters of each method are calibrated over the period of 1962-1987 at 

the USGS gage stations as listed in Table 1, and in validation phase, multi-modeling methods are applied 

to the remaining dataset (1988-1997). To consider the seasonality effects, multi-modeling is repeated for 

each particular month of year; that is, the 5-day forecast of the seven hydrologic models are treated 

separately for Jan, Feb, etc. At the end, the entire timeseries of 5-day forecast is built including all 12 

months to check the performance of each multi-modeling method. In BMA, the calibration parameters are 

wi and σi
2; while in Cop-BMA, they are wi and those associated with copula function (Eq. 11) including

the parameters of marginal distributions, uy and uMi
, and the parameters of the PDF of copula, c.

In Cop-BMA application for a certain month of year, it is required to find the best probability 

distribution fitting the associated observations and model forecasts. Seven different probability 

distributions, including Gamma, Gaussian, Lognormal, Generalized Extreme Value (GEV), Exponential, 

Weibull, and Gumbel distributions are tried in this study. The method of Maximum Likelihood 

Estimation (MLE) is used for parameter estimation of each distribution, and the Kolmogorov-Smirnov 

(K-S) and the Akaike Information Criterion (AIC; Akaike, 1974) tests are then applied to find the best 

marginal distribution. The goodness of a certain distribution given a significance level (α=0.05 in this 

study) is indicated by the p-value of K-S test, and its superiority over other competing distributions is 

evaluated by the AIC test. After finding the best marginal distributions, a copula function is required to 

link the CDF of model forecasts and observations. Among different alternative copulas, the most 

desirable is the one giving the best connection between variables. In this study, five copula functions are 
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tested: Gaussian and t from Elliptical copulas, and Gumbel, Clayton, and Frank from Archimedean 

copulas. Then, the parametric bootstrap procedure (Genest and Rémillard, 2008) was utilized to estimate 

the Cramér–von Mises statistic (Sn) and the associated p-value in order to choose the best copula

function. The Sn and p-values indicated that the Gumbel copula gives the best fit for the Cop-BMA

application in this study. 

As explained earlier, the streamflow forecast of seven hydrologic models are available for each river 

basin of Table 1. The MRAE scores over the validation period (1988-1997) are calculated for each 

hydrologic model (Table 3) before and after the application of multi-modeling methods. The MRAE 

scores also indicate that the performance of land-surface models (ISBA, NOAH, SWAP, VIC) is not as 

good as the rainfall-runoff models (SAC, GR4J, SWB). This is mainly due to the different procedures 

used for the calibration of each model (Nasonova et al., 2009). It can also partially refer to the model 

structure, formulation of physical processes, and dissimilar sources of forcing dataset for each model. A 

general observation of Table 3 is that the hydrologic forecast of dry basins has lower quality than wet 

basins (compare the results of basins #7 and #10 with basin #8), which can be explained by various 

challenges in low-flow modeling such as imperfect forcing data and inaccurate estimation of model 

parameters in dry basins (Nasonova et al., 2009). 

Table 3 also reports the results of combining hydrologic forecasts and examines the effectiveness of 

BMA and Cop-BMA methods for each river basin. For all river basins, the performance of Cop-BMA is 

better than standard BMA. The MRAE of Cop-BMA is smaller than the best individual forecast for each 

river basin. On the other hand, BMA could constantly outperform the best individual forecast except for 

three river basins (#1, #8, #9). One reason of smaller MRAE after Cop-BMA comparing with BMA is 

that the copula functions are very efficient at removing bias from model forecasts (Madadgar et al., 2014). 

They consider the dependencies and correlations between forecasts and observations, leading to 

significant reduction of errors and biases. Therefore, application of copula functions in BMA would not 

need a simple bias correction such as linear regression prior model averaging procedure anymore. 

Moreover, the superior performance of Cop-BMA might be partially due to the weight of each individual 
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model, which is directly affected by the estimation of posterior distributions. This issue is illustrated in 

Fig. 7 and will be discussed later.  

Figure 4 shows the bar plots of KGE score and its components r, β, and γ (Eq. 16) after model 

averaging. For each river basin, the KGE score is significantly greater after Cop-BMA application in 

comparison with BMA. The percentage of KGE improvement after Cop-BMA is from 10% in basin #4 to 

200% in basin #9. The correlation coefficient between forecast and observation is quite smaller after 

BMA application (comparing with Cop-BMA) in basin #8 and #10. It varies between 0.53 for basin #10 

and 0.87 for basin #4 after BMA multi modeling, while it remains constantly above 0.8 after Cop-BMA 

application for all river basins except basin #10 (R=0.73). Regarding the bias score, both models reach 

almost similar results except for three river basins (#1, #8, #9). According to the definition of bias in Eq. 

16, both methods generally underestimate the mean flow (negative bias); however, Cop-BMA is more 

promising in locating forecasts close to observations. Unlike bias, the variability of forecast is 

significantly different between the two methods (Fig. 4d). Results indicate that the variability of forecast 

is larger after Cop-BMA but still less than the sufficient variability (i.e. γ = 1). Except for three cases 

(basins #1, #5, #10), Cop-BMA could perfectly capture the variability of observed flow (γ ≈ 1), while 

BMA could only capture the 80 percent of variability in most of the river basins. 

For probabilistic verification of forecasts, the predictive Q-Q plots are illustrated for all ten river 

basins in Figure 5. Overall, the Q-Q plot indicates the higher reliability and smaller bias of Cop-BMA 

forecasts as compared with BMA. In basin #9, the bias is quite large after BMA application which has 

been already expressed in Fig. 4c. There is an obvious negative bias in basins #1 and #8, and a clearly 

positive bias in basin #7 after the application of each method. Regarding forecast reliability, the area 

between the Q-Q plot and the uniform line for a few river basins (i.e. #2, #3, #7) is approximately the 

same for the two methods. Then, it is expected that the α scores (Eq. 17) be similar for those river basins. 

In terms of predictive uncertainty, it is seen that the BMA forecasts are underconfident (i.e. overestimated 

uncertainty) for most of the river basins, whereas Cop-BMA forecast is underconfident just in few basins, 

mainly #6, #9, #10. However, in cases with small reliability and large bias (i.e. basins #1, #7, #8, #9 after 
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the application of either method), a visual inspection of the Q-Q plot cannot give sufficient information 

on the under-/overconfidence of predictive distribution; hence, the quantitative measures such as 

sharpness (𝜋) can help verify the predictive uncertainty. Note that, in hydrological applications, 

improving the forecast reliability and accuracy is the first priority, whereas sharpness (precision) is at the 

second place. However, for similarly reliable forecasts, the one with higher sharpness is desirable. 

Figure 6 shows forecast reliability, sharpness, and confidence of BMA and Cop-BMA forecasts for 

each basin. According to Eq. 17, the value of 0 for 𝛼 and 𝜀 indicates a poor reliability and the value of 1 

indicates a perfect reliability. As seen, Cop-BMA forecast is generally more reliable than BMA forecast 

in respect with α. In particular, the results of basin #9 show a significant improvement from α = 0.64 for 

BMA forecast to α = 0.89 for Cop-BMA forecasts (i.e. 40% increase in reliability). As a reminder, α is a 

measure of closeness of the Q-Q plot to the line 1:1 and the results in Fig. 6a have been already expected 

from the visual inspection of the Q-Q plots in Fig. 5. With respect to ε, BMA and Cop-BMA could both 

capture the observations within the predictive uncertainty; however, BMA performs better than Cop-

BMA in basins #2 and #3. However, sharpness (π) is much greater after Cop-BMA application (Fig. 6c). 

A large value of π implies a small standard deviation of the predictive distribution (Eq. 18), indicating 

large sharpness and small predictive uncertainty. Small uncertainty of the predictive distribution in Cop-

BMA forecasts implies that the proposed Cop-BMA is a more precise approach. It should be noted that 

the total variance of predictive distribution is a combination of two terms: between-model variance and 

within-model variance (Duan et al., 2007). The first term represents the ensemble spread, and the second 

term represents the within-ensemble spread and is proportional to the variance of posterior distribution. 

According to the sharpness results (Fig. 6c), the total predictive variance is reduced by replacing the 

Gaussian posterior distribution with the PDF generated by copula functions. Since the between-model 

variance remains the same in both methods, it appears that the within-model variance is reduced after 

copula application. However, the C values in Fig. 6d indicate that the predictive distributions of both 

methods are rather underconfident in most of the study basins. Generally, the Cop-BMA forecasts are 
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more confident with smaller uncertainty. In basin #8, the predictive distribution of Cop-BMA is 

overconfident and highly precise as indicated by π and C values. In basin #1, the BMA forecast is 

overconfident according to its C value; however, it is less sharp than Cop-BMA forecast. It should be 

noted that more sharpness does not necessarily imply more confidence. According to the definition of 𝜋 

and C (Eq. 18 and 19), the value of 𝜋 shows the sharpness or precision of the forecast distributions, while 

the value of C shows the confidence of forecast, which is related to how the observed values are 

distributed within the predictive distribution. In other words, a sharp distribution might be underconfident 

according to the relative location of the observation within the forecast distribution. Then, a sharp 

distribution might still be underconfident.  

For better understanding the reasons behind the different performance of BMA and Cop-BMA, the 

weights assigned to each forecast model are plotted in Fig. 7. Each data point shows the weight obtained 

in BMA against the weight obtained in Cop-BMA for each individual model for a certain month of year; 

that is, there are 84 data points (7 (models) x 12 (months) = 84) in each subplot.  Except in a few river 

basins, the correlation of weights obtained from the two multi-modeling methods is very small, which can 

clearly explain the different performance of BMA and Cop-BMA. As seen in Eq. 6 and 13, the weight of 

each model is defined as a function of latent variable (z), which is directly calculated from the posterior 

probability of training dataset. While the EM algorithm may have possibly converged to local optimums 

in either multi-modeling method, the considerable role of posterior distribution in EM results is certainly 

approved. Even using global optimization methods is not likely to change the final weights obtained by 

the EM algorithm (Vrugt et al., 2008). Therefore, the influence of Cop-BMA is not only limited to the 

definition of posterior distributions, it also affects the performance of EM algorithm and the weights 

obtained for each forecast model. 

7. Summary and Conclusion

Inaccurate and unreliable forecasts in hydro-meteorology are the artifacts of different sources of 

uncertainties propagated into the system. These include the forcing data, model structure, model 
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parameters and system initial condition. A well-known approach to characterize and reduce the model 

structural uncertainty in hydrologic predictions is to combine an ensemble of model predictions in a 

multi-model framework. Among several multi-modeling approaches, Bayesian Model Averaging has 

found more interest in research and operational settings. BMA returns the predictive distribution of 

forecast variables as a weighted average of posterior distributions. The weights of participating models 

are defined proportional to the performance of each model during a training period. In BMA, the EM 

algorithm is traditionally used to approximate the parameters of posterior distributions in an iterative 

procedure, which repeats until a pre-defined termination criterion is achieved. Since deterministic models 

do not create any probability distribution for their forecast,, the posterior probability is assumed to follow 

a particular distribution such as Gaussian or gamma distribution. However, if the forecast variable is not 

following a particular distribution, data transformation might be needed before and after multi modeling, 

which had been shown to possibly damage the forecast skill of the predictive distribution. Furthermore, a 

bias-correction procedure is usually required in BMA applications. 

Given the abovementioned limitations, this study employed a group of multivariate functions 

(copulas) to modify the structure of the BMA technique. Since copula functions have shown success in 

different hydrologic forecasting applications, this study utilized them in model averaging to find the 

posterior distribution of data given model predictions. The new method, Cop-BMA, is more flexible in 

defining the posterior distribution and does not impose any restriction on the type of distribution. 

Although BMA is not either theoretically limited to a certain type of posterior distribution, the uni-modal 

distributions such as Gaussian or gamma distribution are commonly used as posterior distributions. In 

contrast, Cop-BMA has a flexible structure which allows the posterior distribution to have any uni-modal 

or multi-modal shape depending on the copula function. By relaxing the assumptions on the type of 

posterior distribution, data transformation would not be required. Furthermore, Cop-BMA can effectively 

remove the bias of initial forecasts by itself and do not need any external bias-correction method. 

This study applied BMA and Cop-BMA in streamflow forecasting of 10 unregulated river basins with 

a large range of drainage area located in different climate regimes of the Southeastern United States. 
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Seven hydrologic models with different complexities, including rainfall-runoff and land-surface models, 

were used for streamflow forecasts of each river basin. The streamflow forecast, observation, and 

hydrologic characteristics of each river basin are available via the MOPEX project. Using different 

verification measures, BMA and Cop-BMA were compared in estimating the predictive distribution of 

streamflow. 

Cop-BMA displayed better deterministic skill than BMA in this study. According to the MRAE and 

KGE scores, forecast accuracy increased significantly after applying Cop-BMA in all river basins. Results 

of KGE scores showed higher correlation coefficient between observation and forecasts, less bias, and 

better variability ratio after Cop-BMA application. The probabilistic skill of predictive distributions was 

evaluated by four different scores, including three scores derived from the predictive QQ plot (𝛼, 𝜀, 𝜋), 

and Confidence score (C). The results of QQ plot showed more reliable, less biased, and more confident 

forecasts after applying Cop-BMA. Comparing with BMA, the predictive distribution estimated by Cop-

BMA was more precise with small uncertainty. Moreover, our results confirmed the impact of posterior 

distribution in calculating the weights of individual models by EM algorithm. The small correlation 

between models’ weights obtained in each multi-modeling method clearly explained the significant role 

of posterior distribution in the performance of EM algorithm in finding the optimal weights. 

The results of this study are encouraging for further integration of copula functions into hydro-

meteorological applications where unknown conditional distributions are required to be estimated. The 

flexible structure of copula functions allows Cop-BMA to be applied to a large number of variables in 

hydrology, meteorology, and climatology (e.g. precipitation, temperature, wind speed, sea level pressure). 

In the application of Cop-BMA, the key requirement is to find an appropriate marginal distribution for 

each variable, and with the availability of wide range of parametric distributions, it is always likely to find 

a marginal distribution with a reasonable fit. 
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Table captions 

Table 1: Specifications of ten study basins located in the Eastern United States 

Table 2: List of the hydrologic models used in this study 

Table 3: Forecast accuracy indicated by Mean Relative Absolute Error (MRAE) for the time period of 

1988-1997 before and after the application of either model averaging technique  
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Figure captions 

Figure 1: Flowchart of BMA vs Cop-BMA. 

Figure 2: Location of ten study basins in different climate regions across the United States. 

Figure 3: Schematic of a) the predictive Q-Q plot (adapted from Laio and Tamea, 2007) and b) the 

corresponding pdfs to different interpretations. The solid, thick pdf is the actual pdf of observation. 

Figure 4: Comparing the performance of BMA and Cop-BMA indicated by a) KGE (Eq. 16), and its 

components: b) correlation coefficient, c) bias, and d) variability ratio. 

Figure 5: Comparison of predictive QQ plot produced by BMA vs Cop-BMA for all river basins. 

Figure 6: Comparing the performance of BMA and Cop-BMA indicated by a-b) reliability (Eq. 17), c) 

sharpness (Eq. 18), and d) confidence (Eq. 19). 

Figure 7: Comparing the weights of 7 hydrologic models for 12 months after the application of BMA and 

Cop-BMA for each basin. 



Table 1: Specifications of ten study basins located in the Eastern United States 

Basin # USGS ID Area 
(mi2) Station Name Station ID Lon. ° Lat. ° Elev. 

(ft) P/PE E/PE E/P α* 

1 5120205 598 
East Fork White River at 
Columbus, IN 03364000 -85.93 39.20 603 1.21 0.77 0.64 0.85 

2 2070009 970 
Monocacy River at Jug 
Bridge near Frederick, MD 01643000 -77.37 39.40 231 1.15 0.76 0.66 0.91 

3 2080104 1156 
Rappahannock River near 
Fredericksburg, VA 01668000 -77.53 38.31 70 1.2 0.77 0.64 0.87 

4 5020001 1375 
Tygart Valley River at 
Philippi, WV 03054500 -80.04 39.15 1280 1.76 0.87 0.49 0.59 

5 2070001 1480 
South Branch Potomac 
River near Springfield, WV 01608500 -78.65 39.45 561 1.64 0.86 0.52 0.64 

6 5050002 1680 
Bluestone River near 
Pipestem, WV 03179000 -81.01 37.54 1527 1.5 0.83 0.55 0.69 

7 7080209 1686 English River at Kalona, IA 05455500 -91.71 41.47 633 0.89 0.67 0.75 1.19 

8 6010105 1879 
French Broad River at 
Asheville, NC 03451500 -82.58 35.61 1950 2.34 0.96 0.41 0.47 

9 8070202 1884 
Amite River near Denham 
Springs, LA 07378500 -90.99 30.46 0 1.46 0.83 0.57 0.71 

10 11070207 2590 
Spring River near Waco, 
MO 07186000 -94.57 37.25 834 0.96 0.69 0.72 1.07 

* Aridity index, Eq. 13.



Table 2: List of the hydrologic models used in this study  

Model ID Full Name/Developer Developer 

SAC (Burnash et al., 1973) Sacramento Soil Moisture Accounting National Weather Service (NWS), USA 

GR4J (Perrin et al., 2003) Génie Rural à 4 paramètres Journalier Cemagref, France 

SWB (Schaake et al., 1996) Simple Water Balance National Weather Service (NWS), USA 

ISBA (Noilhan and Planton, 
1989) 

Interactions between Soil-Biosphere-
Atmosphere Météo France, France 

NOAH (Chen et al., 1996) NOAH model National Weather Service (NWS), USA 

SWAP (Gusev and 
Nasonova, 1998) Soil Water Atmosphere Plant Russian Academy of Sciences, Russia 

VIC (Liang et al., 1994) Variable Infiltration Capacity University of Washington/Princeton 
University, USA 



Table 3: Forecast accuracy indicated by Mean Relative Absolute Error (MRAE) for the time period of 

1988-1997 before and after the application of either model averaging technique.   

Basin # 
Single Model Model Averaging 

SAC GR4J SWB ISBA NOAH SWAP VIC BMA Cop-BMA 

1 0.67 0.46 0.71 0.58 0.54 0.74 0.74 0.56 0.32 

2 0.58 0.49 0.47 0.54 0.56 0.83 0.63 0.42 0.32 

3 0.52 0.45 0.50 0.46 0.65 0.63 0.66 0.40 0.31 

4 0.93 1.87 1.18 1.82 1.83 3.06 2.00 0.64 0.42 

5 0.84 0.73 0.66 0.65 0.70 0.73 0.83 0.51 0.36 

6 0.65 1.10 0.62 0.76 0.57 1.17 1.09 0.52 0.32 

7 2.03 3.79 2.61 1.92 2.30 3.92 2.38 1.49 1.02 

8 0.32 0.16 0.32 0.27 0.20 0.34 0.26 0.36 0.15 

9 0.61 0.48 0.43 0.46 0.40 0.63 0.88 0.51 0.24 

10 1.13 1.18 1.09 0.96 1.11 1.17 1.32 0.81 0.47 
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