一報告—

Report

Report on the Southern Ocean Continuous Plankton Recorder (SO-CPR) Standards Workshop 2016: SCAR SO-CPR Database Expert Group

Kunio T. Takahashi^{1,2*}, John A. Kitchener³, Karen Robinson⁴ and Graham W. Hosie⁵

南極研究科学委員会の連続プランクトン採集器データベース グループワークショップ 2016 報告

高橋邦夫^{1,2*} · John A. Kitchener³ · Karen Robinson⁴ · Graham W. Hosie⁵

(Received May 7, 2017; Accepted June 4, 2017)

要旨: 2016年12月12-16日にオーストラリア南極局にて「南極研究科学委員会(以下 SCAR)連続プランクトン採集器(以下 CPR)データベース専門家グループワークショップ2016」を開催した。南大洋 CPR 観測プロジェクトを主導する日本、オーストラリア、ニュージーランドの実務担当者の間で、観測データの品質管理、種同定やデータ分析手法の再確認、および今後の活動についての詳細な討議を行った。前半はこれまでのプロジェクト活動を総括し、各国のマネージメントの状況を確認し、さらには将来的な観測計画を議論した。後半は動物プランクトンの種同定リストの更新のため、具体的な分類カテゴリーの種同定を実施した。特に有孔虫とオキアミ類の幼生期について、確認を行った。まとめられた種同定基準を用いて新たなマニュアル作成を開始することになった。今後、2年に一度を目途にプロジェクト参加国の技術者を集めたワークショップを開催し、各国間で統一された試料処理およびデータ管理を維持していくことを目指すこととなった。

Abstract: The "Southern Ocean Continuous Plankton Recorder (SO-CPR) Survey Standards Workshop" was held at the Australian Antarctic Division on 12–16 December 2016. The purposes of the workshop were to confirm that consistent and high standards of species identification, methodology, and data quality were being maintained amongst the main analysts in the SO-CPR Survey, and to discuss future training methods, including a SO-CPR manual that will include a counting rule book, and a future road map for the SO-

¹ 情報・システム研究機構国立極地研究所、National Institute of Polar Research, Research Organization of Information and Systems, 10-3 Midori-cho, Tachikawa, Tokyo 190-8518.

² 総合研究大学院大学複合科学研究科極域科学専攻. Department of Polar Science, School of Multidisciplinary Sciences, SOKENDAI (The Graduate University for Advanced Studies), 10-3 Midori-cho, Tachikawa, Tokyo 190-8518

³ オーストラリア南極局. Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050,

⁴ ニュージーランド国立水圏・大気圏研究所、 National Institute of Water and Atmospheric Research Ltd., Private Bag 14-901, Kilbirnie, Wellington, New Zealand.

⁵ アリスター・ハーディ卿海洋科学財団. Sir Alister Hardy Foundation for Ocean Science, Citadel Hill, Plymouth PL1 2 PB, UK.

^{*} Corresponding author. E-mail: takahashi.kunio@nipr.ac.jp

^{© 2017} National Institute of Polar Research

CPR program. During the workshop we discussed a range of topics including: taxonomic resolution issues (particularly for Foraminifera and euphausiid larval identification and staging); laboratory methods (preservation and storage, with emphasis on maintaining correct pH); shipboard techniques; training methods; data handling (metadata, database, data sharing); gap analysis (spatial, temporal, data, quantitative); and future workshops/conferences, including comprehensive training workshops for emerging SO-CPR survey partners (India). We agreed that there should be a larger workshop every two years to ensure that the high standards of the SO-CPR program are maintained.

Keywords: Continuous Plankton Recorder

1. Background

The Southern Ocean Continuous Plankton Recorder (SO-CPR) Survey commenced in 1991 with the purpose of mapping spatial and temporal variations in zooplankton patterns, and to make use of the sensitivity of plankton to environmental change as an early indicator of the health of the Southern Ocean ecosystem (Hosie *et al.*, 2003). A continuous plankton recorder (CPR) can continuously collect surface zooplankton over a distance of 450 nautical miles during a single tow at normal ship speed. This enables rapid sampling over large areas, and mapping of the distribution of the surface zooplankton community in relation to ocean environments at large oceanic scales. The SO-CPR Survey involves numerous countries and analyses conducted by experienced and well recognized plankton and Antarctic researchers, albeit in several widely separated laboratories. Consequently, when we meet we take every opportunity to run workshops on methods and taxonomy to ensure that for quality control and assurance purposes the highest standards in procedures and identification are maintained.

The Scientific Committee on Antarctic Research (SCAR) Expert Group on CPR Research (EG-CPR) was established to assist development and expansion of CPR research in the Southern Ocean and Antarctic waters. At the SCAR Standing Scientific Group–Life Science (SSG-LS) business meeting in Malaysia in August 2016, the EG-CPR was assessed in relation to progress and its continuation beyond the usual eight-year duration for expert groups. The success and output of the group was noted. It was decided that the group will continue but transition to form the SO-CPR Database Group, which will be focused more on maintaining quality control and assurance of data entered into the SCAR SO-CPR Database. This will be achieved primarily by conducting taxonomic and methodological standardization and training workshops.

The terms of reference for the SO-CPR Database Expert Group are to:

- 1. continue to develop and maintain the SO-CPR Database and improve access for users;
- 2. ensure quality assurance and control of the data through regular training and standardization workshops; and
- encourage other nations, especially developing Antarctic nations, to participate in the workshops, and so improve the spatial and temporal coverage of CPR tows around Antarctica.

An important future task aimed at maintaining high quality data is to develop and enhance the skills of current and new technicians. As a first step it is necessary to confirm

that the methods and identification procedures yield consistent high quality taxonomic results.

2. Purpose of the workshop

The primary aim of the workshop was to confirm that the three main analysts involved in the SO-CPR survey are maintaining consistent high standards in relation to species identifications, methods, and data quality. A secondary aim of the workshop was to discuss future training methods, including production of a SO-CPR manual that contains a counting rule book, and a future roadmap for the SO-CPR program. This workshop followed on from the 2010 Tokyo Standards Workshop (Takahashi *et al.*, 2011), which was held to ensure quality control in the analysis of zooplankton species, and associated survey and laboratory methods

3. Workshop agenda and participants

Five participants from three countries attended the workshop (Table 1), including three CPR analysts (one from each country). The agenda for the workshop is shown in Table 2.

4. Workshop summary

4.1. Taxonomic resolution issues

The 2.5-day workshop focused on the resolution of issues associated with the taxonomic identification of species currently registered in the SO-CPR database (Fig. 1); most of the time was spent considering Foraminifera and euphausiid larvae.

At the time of the 2010 Tokyo workshop, pelagic foraminiferans were considered to comprise one species (*Neogloboquadrina pachyderma*) south of the Sub-Antarctic Front (SAF). A biogeographic study of Southern Ocean foraminiferans (Meilland *et al.*, 2016) has

Name	Position	Affiliation	Countory
Kunio Takahashi	Assistant Professor, Director SO-CPR	National Institute of Polar Research	Japan
Graham Hosie	Emeritus Life Fellow, CPR Ambassador	Sir Alister Hardy Foundation for Ocean Science	Australia
John Kitchener	CPR Senior Analyst, Co- Chair SCAR EG-CPR	Australian Antarctic Division	Australia
Karen Robinson	Plankton Analyst	National Institute of Water and Atmospheric Resarch	New Zealand
Andrew Davidson	Senior Research Scientist	Australian Antarctic Division	Australia

Table 1. Workshop participant list.

Table 2. Agenda for the "SO-CPR Standards Workshop".

SO-CPR standards workshop "SCAR SO-CPR Database Expert Group" ${\bf Agenda}$

12 Dec.	
10:00-12:30	Background and purpose of workshop
	-Report of the SCAR Business meeting in Kuala Lumpur, 2016
	-New terms of reference of SO-CPR Database Task Group
	-Report of the Status Report workshop in Tokyo, 2016
14:00-15:00	Project fund and future workshops
	-Road map for next five years
	-Training workshop for India and Korea
	-Future larger workshop
15:00-17:00	Data base and taxonomic list
	-WoRMS matching
	-Foraminiferans and formalin preservation
12.5	1
13 Dec.	m i i a di la
10:00-12:00	Training methodology
	-Previous workshops
12 20 15 00	-PCI and micro plastic
13:30-15:00	Planning of the India workshop
15:00-17:00	"SO-CPR Manual" and "Counting role book" preparation
14 Dec.	
10:00-11:00	Sample processing situation
11:00-12:00	Instruction of laboratory
12:00-13:00	Taxonomic laboratory work
	-checking specimens (Foraminiferans)
14:30-17:00	Taxonomic laboratory work
	-checking specimens (Foraminiferans)
15 Dec.	
10:00-12:00	Taxonomic laboratory work
	-checking specimens (Foraminiferans & Eupahusiids larvae)
13:30-14:00	Collation of taxonomic list
14:00-16:00	Taxonomic laboratory work
	-checking specimens (All)
16:00-17:00	Collation of taxonomic list
16 Dec.	
10:00-12:00	Taxonomic laboratory work
	-checking specimens (Eupahusiids larvae)
13:30-15:00	Taxonomic laboratory work
	-checking specimens (All)
15:00-16:00	Review of identification and counting rules
16:00-17:00	Workshop report
	1 1

Fig. 1. Photograph showing checking of the taxonomic resolution in the laboratory (left), and assessing the pH of returned samples (right).

since revealed the occurrence of four major species (*N. pachyderma*, *N. incompta*, *Globigerinita uvula*, and *Globigerina bulloides*) south of the SAF. The identification rules and counting points for the four major species and some minor species were checked in the laboratory. We agreed to identify the seven species/taxa of foraminiferans according to the latest version of the species list (Table 3). The identification of euphausiid larvae was also checked, especially northern species including *Euphasusia vallentini* and *E. longirostris*. The taxonomic rules will be further updated in a new laboratory procedures manual.

4.2. Laboratory methods

We discussed the importance of maintaining the correct preservation fluid pH for long-term storage of calcareous shelled zooplankton (Fig. 1). Formaldehyde is readily oxidized by atmospheric oxygen to formic acid, so the CPR samples are fixed using a borax-buffered 4% formaldehyde and seawater solution to prevent shell dissolution. However, we discovered that the pH of the preservation solution for some returned field samples and archived samples had become too acidic (< 7), and many of the archived foraminiferan samples were soft/soggy. Consequently, we agreed to routinely check the pH of the returned samples prior to processing.

The workshop also established a Dropbox folder, which participants can use for collating and archiving, and for exchange of taxonomic notes, guides, drawings, photographs, and other information that will assist analysts and managers.

4.3. Species list

The newest species list for the SO-CPR database was checked using the Taxon Match of the World Resister of Marine Species (WoRMS: http://www.marinespecies.org/index. php) name validation tool. WoRMS is an open-access inventory of all marine species, and is >90% complete (Costello *et al.*, 2013). The tool performs a cross check of the spelling and taxonomic status of species against the WoRMS database, and returns standard taxonomic information with valid names. As a result of using Taxon Match there have been only minor adjustments needed to species/group names: for example, Amphipod to Amphipoda; Medusa to Cnidaria; Squid to Teuthida; Fish to Pisces. We also changed "Small calanoid copepods" to "Calanoida indet (small)" to match similar naming formats used for other

Table 3. Zooplankton species/taxa list for the SO-CPR Survey. C: Calyptopis stage, F: Furcilia stage. *Class; **Phylum; ***Infraclass; ****Subphylum. (1/3)

Order	Taxa	Order	Taxa
Amphipoda	Amphipoda indet	Calanoida	Calanoides macrocarinatus
Amphipoda	Brachyscelus crusculum	Calanoida	Calanus australis
Amphipoda	Cyllopus lucasii	Calanoida	Calanus propinquus
Amphipoda	Cyllopus magellanicus	Calanoida	Calanus simillimus
Amphipoda	Dairella californica	Calanoida	Calanus sp.
Amphipoda	Hyperia sp.	Calanoida	Calocalanus sp.
Amphipoda	Hyperia spinigera	Calanoida	Candacia bipinnata
Amphipoda	Hyperiella antarctica	Calanoida	Candacia cheirura
Amphipoda	Hyperiella dilatata	Calanoida	Candacia falcifera
Amphipoda	Hyperiella sp.	Calanoida	Candacia maxima
Amphipoda	Hyperiidae indet	Calanoida	Candacia sp.
Amphipoda	Hyperoche medusarum	Calanoida	Centropages aucklandicus
Amphipoda	Hyperoche sp.	Calanoida	Centropages bradyi
Amphipoda	Phronima sp.	Calanoida	Centropages sp.
Amphipoda	Platysceloidea indet	Calanoida	Clausocalanus brevipes
Amphipoda	Primno macropa	Calanoida	Clausocalanus laticeps
Amphipoda	Scina sp.	Calanoida	Clausocalanus sp.
Amphipoda	Themisto australis	Harpacticoida	Clytemnestra sp.
Amphipoda	Themisto gaudichaudii	Hexanauplia*	Copepoda indet
Amphipoda	Themisto sp.	Hexanauplia*	Copepoda nauplius indet
Amphipoda	Vibilia antarctica	Calanoida	Ctenocalanus citer
Amphipoda	Vibilia armata	Calanoida	Ctenocalanus sp.
Amphipoda	Vibilia sp.	Cyclopoida	Cyclopoida nauplius indet
Branchiopoda*	Branchiopoda indet	Calanoida	Drepanopus sp.
Chaetognatha**	Chaetognatha indet	Calanoida	Euaugaptilus sp.
hragmophora	Eukrohnia hamata	Calanoida	Eucalanus hyalinus
Aphragmophora	Pseudosagitta gazellae	Calanoida	Eucalanus sp.
Aphragmophora	Pseudosagitta sp.	Calanoida	Euchirella rostrata
Aphragmophora	Sagittidae indet	Calanoida	Euchirella rostromagna
Aphragmophora	Solidosagitta marri	Calanoida	Euchirella sp.
Choreotrichida	Tintinnina indet	Harpacticoida	Euterpina sp.
Cirripedia***	Cirripedia cyprid	Calanoida	Haloptilus oxycephalus
Cirripedia***	Cirripedia nauplius	Harpacticoida	Harpacticoida indet
Diplostraca	Evadne sp.	Calanoida	Heterorhabdus austrinus
Diplostraca	Podon sp.	Calanoida	Heterorhabdus lobatus
Siphonophorae	Abylidae indet	Calanoida	Heterorhabdus sp.
Siphonophorae	Chelophyes sp.	Poecilostomatoida	Heterorhabdus spinifrons
Cnidaria**	Cnidaria indet	Calanoida	Lubbockia sp.
Siphonophora	Siphonophora nectophore	Calanoida	Lucicutia sp.
Siphonophora	Siphonophora sp.	Calanoida	Mecynocera clausi
Varcomedusae	Solmundella bitentaculata	Calanoida	Mesocalanus tenuicornis
Calanoida	Acartia danae	Calanoida	Metridia gerlachei
Calanoida	Acartia sp.	Calanoida	Metridia lucens
Calanoida	Aetideus sp.	Calanoida	Metridia sp.
Calanoida	Calanoides acutus	Calanoida	Microcalanus pygmaeus

Table 3. Zooplankton species/taxa list for the SO-CPR Survey. C: Calyptopis stage, F: Furcilia stage. *Class; **Phylum; ***Infraclass; ****Subphylum. (2/3)

Order	Taxa	Order	Taxa
Harpacticoida	Microsetella norvegica	Decapoda	Decapoda megalopa indet
Harpacticoida	Microsetella rosea	Decapoda	Decapoda nauplius indet
Harpacticoida	Microsetella sp.	Decapoda	Decapoda phyllosoma indet
Calanoida	Neocalanus gracilis	Decapoda	Decapoda zoea indet
Calanoida	Neocalanus tonsus	Decapoda	Munida gregaria
Cyclopoida	Oithona frigida	Decapoda	Nematocarcinus longirostris
Cyclopoida	Oithona similis	Decapoda	Sergestidae indet
Cyclopoida	Oithona sp.	Stomatopoda	Squilla sp.
Poecilostomatoida	Oncaea curvata	Noctilucales	Noctiluca scintillans
Poecilostomatoida	Oncaea sp.	Echinoidea*	Echinoidea larvae
Calanoida	Onchocalanus sp.	_	Egg indet
Calanoida	Paracalanus sp.	_	Egg mass
Calanoida	Paraeuchaeta antarctica	Euphausiacea	Euphausia crystallorophias
Calanoida	Paraeuchaeta barbata	Euphausiacea	Euphausia crystallorophias calyptopis
Calanoida	Paraeuchaeta biloba	Euphausiacea	Euphausia crystallorophias furcilia
Calanoida	Paraeuchaeta exigua	Euphausiacea	Euphausia frigida
Calanoida	Paraeuchaeta sp.	Euphausiacea	Euphausia frigida calyptopis
Calanoida	Paraheterorhabdus farrani	Euphausiacea	Euphausia frigida furcilia
Calanoida	Paralabidocera antarctica	Euphausiacea	Euphausia hanseni furcilia
Calanoida	Pleuromamma abdominalis	Euphausiacea	Euphausia longirostris
Calanoida	Pleuromamma borealis	Euphausiacea	Euphausia longirostris calyptopis
Calanoida	Pleuromamma gracilis	Euphausiacea	Euphausia longirostris furcilia
Calanoida	Pleuromamma piseki	Euphausiacea	Euphausia lucens
Calanoida	Pleuromamma robusta	Euphausiacea	Euphausia recurva
Calanoida	Pleuromamma sp.	Euphausiacea	Euphausia similis
Calanoida	Pleuromamma xiphias	Euphausiacea	Euphausia similis furcilia
Calanoida	Rhincalamus gigas	Euphausiacea	Euphausia spinifera
Calanoida	Rhincalanus gigas nauplius	Euphausiacea	Euphausia spinifera calyptopis
Calanoida	Rhincalamus sp.	Euphausiacea	Euphausia spinifera furcilia
Poecilostomatoida	Sapphirina sp.	Euphausiacea	Euphausia superba
Calanoida	Scaphocalanus farrani	Euphausiacea	Euphausia superba C1
Calanoida	Scolecithricella minor	Euphausiacea	Euphausia superba C2
Calanoida	Scolecithricella sp.	Euphausiacea	Euphausia superba C3
Calanoida	Calanoida indet (small)	Euphausiacea	Euphausia superba calyptopis
Calanoida	Stephos longipes	Euphausiacea	Euphausia superba F1
Calanoida	Subeucalanus longiceps	Euphausiacea	Euphausia superba F2
Calanoida	Subeucalanus sp.	Euphausiacea	Euphausia superba F3
Calanoida	Sulcanus conflictus	Euphausiacea	Euphausia superba F4
Calanoida	Temora turbinata	Euphausiacea	Euphausia superba F5
Poecilostomatoida	Triconia antarctica	Euphausiacea	Euphausia superba F6
Crustacea****	Crustacea nauplius indet	Euphausiacea	Euphausia superba furcilia
_	Nauplius indet	Euphausiacea	Euphausia triacantha
Ctenophora**	Ctenophora indet	Euphausiacea	Euphausia triacantha calyptopis
Cumacea	Cumacea indet	Euphausiacea	Euphausia triacantha furcilia
Decapoda	Decapoda (natant) indet juv	Euphausiacea	Euphausia vallentini

Table 3. Zooplankton species/taxa list for the SO-CPR Survey. C: Calyptopis stage, F: Furcilia stage. *Class; **Phylum; ***Infraclass; ****Subphylum. (3/3)

Order	Taxa	Order	Taxa
Euphausiacea	Euphausia vallentini calyptopis	Gastropoda*	Gastropoda indet
Euphausiacea	Euphausia vallentini furcilia	Thecosomata	Limacina sp.
Euphausiacea	Euphausiidae calyptopis indet	Gastropoda*	Pteropoda indet
Euphausiacea	Euphausiidae furcilia indet	Gymnosomata	Spongiobranchaea australis
Euphausiacea	Euphausiidae indet	Teuthida	Teuthida indet
Euphausiacea	Euphausiidae metanauplius indet	Isopoda	Isopoda indet
Euphausiacea	Euphausiidae nauplius indet	Bivalvia*	Bivalvia larvae
Euphausiacea	Nematoscelis megalops	Mysida	Mysidae indet
Euphausiacea	Nyctiphanes australis	Ostracoda*	Ostracoda indet
Euphausiacea	Nyctiphanes australis calyptopis	Chordata**	Pisces egg
Euphausiacea	Nyctiphanes australis furcilia	Chordata**	Pisces larvae
Euphausiacea	Thysanoessa gregaria	Myctophiformes	Myctophidae indet
Euphausiacea	Thysanoessa gregaria calyptopis	Perciformes	Pleuragramma antarctica
Euphausiacea	Thysanoessa gregaria furcilia	Myctophiformes	Protomyctophum sp.
Euphausiacea	Thysanoessa macrura	Phyllodocida	Alciopidae indet
Euphausiacea	Thysanoessa macrura C1	Phyllodocida	Iospilidae indet
Euphausiacea	Thysanoessa macrura C2	Phyllodocida	Lopadorrhynchidae indet
Euphausiacea	Thysanoessa macrura C3	Phyllodocida	Maupasia sp.
Euphausiacea	Thysanoessa macrura calyptopis	Phyllodocida	Pelagobia longicirrata
Euphausiacea	Thysanoessa macrura F1	Phyllodocida	Phalacrophorus pictus
Euphausiacea	Thysanoessa macrura F2	Phyllodocida	Phalacrophorus sp.
Euphausiacea	Thysanoessa macrura F3	Polychaeta*	Polychaeta indet
Euphausiacea	Thysanoessa macrura F4	Polychaeta*	Polychaeta larvae
Euphausiacea	Thysanoessa macrura F5	Phyllodocida	Tomopteris carpenteri
Euphausiacea	Thysanoessa macrura F6	Phyllodocida	Tomopteris sp.
Euphausiacea	Thysanoessa macrura furcilia	Phyllodocida	Travisiopsis levinseni
Euphausiacea	Thysanoessa macrura metanauplius	Phyllodocida	Travisiopsis sp.
Euphausiacea	Thysanoessa sp.	Phyllodocida	Typhloscolex muelleri
Euphausiacea	Thysanoessa sp. furcilia	Phyllodocida	Vanadis antarctica
Foraminifera**	Foraminifera indet	Phyllodocida	Vanadis longissima
Rotaliida	Globigerina bulloides	Radiozoa**	Radiozoa indet
Rotaliida	Globigerinita uvula	Appendicularia*	Appendicularia indet
Rotaliida	Globorotalia sp.	Doliolida	Doliolidae indet
Rotaliida	Neogloboquadrina incompta	Copelata	Fritillaria sp.
Rotaliida	Neogloboquadrina pachyderma	Copelata	Oikopleura sp.
Rotaliida	Turborotalita quinqueloba	Pyrosomatida	Pyrosomatidae indet
Thecosomata	Clio pyramidata	Salpida	Salpa fusiformis
Thecosomata	Clio sp.	Salpida	Salpa sp.
Gymnosomata	Clione limacina antarctica	Salpida	Salpa thompsoni
Gymnosomata	Clione sp.	Salpida	Thalia sp.

groups in the list. We updated the list to the latest version, which currently includes 260 species/taxa (Table 3).

4.4. Database

The SCAR SO-CPR Database is registered with the Australian Antarctic Data Centre (AADC), and can be accessed at http://data.aad.gov.au/aadc/metadata/metadata.cfm?entry_id=AADC-00099. From there it is distributed to various databases including GACS, biodiversity.aq, OBIS, GBIF, the Atlas of Living Australia, and others.

5. Future directions

5.1. Status Report

We proposed production of a special report to SCAR on the status and trends of Southern Ocean zooplankton, as a last task of the EG-CPR of eight years. This would be based primarily on SO-CPR data (cross-referenced with other studies, if available), and would collate current knowledge of the status of zooplankton including known species, community structure and biogeography, and perhaps assessment of their possible roles in the ecosystem. Much of this work has already been published in CPR-based research papers, atlases, reviews, and theses (>50 in total). The report will also identify any trends (seasonal or long-term) in relation to changes in abundance, shifts in distribution, timing of events, or changes in composition and community composition. It will bring together in one document all information derived from 25 years of the SO-CPR Survey. We set the aim of completing the report for presentation at the SCAR Business Meeting and Open Science Conference in Switzerland 2018.

5.2. India training workshop

To date we have surveyed approximately 70% of the Southern Ocean, but clearly there are distinct gaps where sampling has been limited or has not occurred because of the lack of shipping activity. To expand the program we are at various stages of involving and assisting other nations (new ToR 3) in participating. We are planning a training workshop for 2017 to help India initiate Southern Ocean CPR work. The International Indian Ocean Expedition (IIOE) provides the opportunity to address the paucity of knowledge of Indian Ocean plankton, and subsequently contribute to understanding of their role in ecosystem dynamics. We have had discussions with scientists at the Goa National Centre for Antarctic and Oceanic Research (NCAOR) about running a CPR from Goa to Antarctica during the annual resupply of India's Antarctic station. To achieve this we will need to provide the necessary training to participants. We discussed the format for the Indian workshop.

5.3. Future workshops/conferences

The next "SCAR Biology Symposium" will be held in Leuven, Belgium, in July 2017, and the "SCAR Business Meeting and Open Science Conference" will be held in Davos, Switzerland in 2018. We will encourage high-level attendance by participants in our project, and a SO-CPR Database Group meeting to discuss the development of our CPR program will be held in association with the symposium.

The new SO-CPR Database Group will focus more on maintaining the quality control and assurance of data entered into the SCAR SO-CPR Database. Our dataset is an important SCAR Business Product, and is dependent on regular taxonomy and methodology standardization workshops to maintain and ensure quality assurance and control of the data. We agreed that there should be a larger workshop every two years to ensure that the high standards of the SO-CPR program are maintained. We will plan a larger standardization workshop in 2018. Countries interested in joining SO-CPR will be encouraged to participate in those workshops.

Acknowledgements

The workshop was supported financially or through in-kind support by the SCAR Expert Group on CPR Research. We are particularly grateful to the AAD for its generous support in organizing and hosting the workshop.

References

- Costello, M.J., Bouchet, P., Boxshall, G., Fauchald, K., Gordon, D., Hoeksema, B.W., Poore, G.C.B., van Soest, R.W.M., Stöhr, S., Walter, T.C., Vanhoorne, B., Decock, W. and Appeltans, W. (2013): Global Coordination and Standardisation in Marine Biodiversity through the World Resister of Marine Species (WoRMS) and Related Databases. PLoS ONE, 8, e51629, doi:10.1371/journal.pone.0051629.
- Hosie, G.W., Fukuchi, M. and Kawaguchi, S. (2003): Development of the Southern Ocean Continuous Plankton Recorder survey. Prog. Oceanogr., **58**, 263–284, doi:10.1016/j.pocean.2003.08.007.
- Meilland, J., Fabri-Ruiz, S., Koubbi, P., Lo Monaco, C., Cotte, C., Hosie, G.W., Sanchez, S. and Howa, H. (2016): Planktonic foraminiferal biogeography in the Indian sector of the Southern Ocean: Contribution from CPR data. Deep Sea Res. Part I Oceanogr. Res. Pap., 110, 75-89, doi:10.1016/j.dsr.2015.12.014.
- Takahashi, K.T., Hosie G.W., Kitchener, J.A., McLeod, D.J., Stevens, C., Robinson, K., Jonas, T. and Fukuchi, M. (2011): Report on the Southern Ocean Continuous Plankton Recorder (SO-CPR) Standards Workshop: SCAR Expert Group on CPR Research. Nankyoku Shiryô (Antarctic Record), 55, 279–286.