

Murad Benjadid Tanmoy

Single Sign-OnFeature For
Customer Life-Cycle Management Application

Subtitle

Helsinki Metropolia University of Applied Sciences

Bachelor of Engineering

Information Techlology

Thesis

5 May 2017

 Abstract

Author(s)
Title

Number of Pages
Date

Murad BenjadidTanmoy
Single Sign-On (SSO) Feature For Customer Life-Cycle Man-
agement Application

29 pages
5 May 2017

Degree Bachelor of Engineering

Degree Programme Information Technology

Specialisation option Software Engineering

Instructor(s)

TeroNurminen, Principal Lecturer

Signing into an application is the most critical part of any application, especially for an enterprise
business application that needs to handle critical and highly sensitive user Information. An applica-
tion like “SELFCARE”, which is thenewest and most recent product from Tecnotree Corporation
must guarantee information security to its customers before delivering the product.

However added security along with the immensecomplexity that comes with large-scale enterprise
business applications can make signinginto an application very cumbersome especially in this case
because the project application depends on a number of other applications to get its data to work
.The main goal of the thesis was to find the best way to implement an architecture for singing into
the application without sacrificing any security.

The SSO feature was successfullyimplementedas an architecture for signing in to the project appli-
cation. After implementation of the feature it showed strong evidence that it highly improved the
usability of the application. A number of penetration testswereconducted by the security analyst to
find any vulnerability of the implemented architecture. No security flaws were reported, whichproves
the architecture has excellent security. The project application wasdelivered as a product to its cus-
tomer in Iran in July 2016. Currently the application is used by millions of users, with no complaints
about the security and sign-on features. Aninitial report from the customer shows the product is a
success.

Keywords SSO,JSON,API,OAuth2, Puppet, SAML

Contents

1 Introduction 1

2 Introduction to SSO and JSON Web Token (JWT) 2

3 Architecture 4

4 Supported Protocols 6

4.1 OAuth2 6

4.2.. . SAML 9

5 Application Integration 10

5.1 Enabling SSO Functionality 10

5.1 Service Registration 11

5.1.1 Manual registration 11

5.1.2 Registration via SOAP 12

5.1.3 Authorization Code Grant 14

5.1.4 Implicit Grant 15

5.1.5 Password Grant 16

5.1.6 Client Credentials 16

5.2 OAuth2 Token Response Content 17

5.2.1 OpenID Connect Token 17

5.3 Operations with Valid Tokens 18

5.3.1 Obtaining User Profile 18

5.3.2 Permission handling 19

5.3.3 Token Validation 19

5.3.4 Token Refresh 20

5.3.5 Token Revocation 21

5.4 HTTPS Certificates 21

5.5 SCIM Provisioning Interface 21

5.5.1 SCIM Schema Claims 22

5.5.2 Read and Search Operations 23

5.5.3 Create Operation 24

5.5.4 Replace Operation 24

5.5.5 Delete Operation 24

5.5.6 Bulk Requests 24

5.5.7 Restrictions with SCIM 25

6 Conclusion

28

References 27

1

1 Introduction

Nowadays competition to survive and generate revenue for software companies in the

high stake digital market is immense. Software companies are not only required to

create high quality software but also to integrate all the latest technologies in their

products. Customers are becoming more and more demanding and always asking for

the latest technologies for their products. One of the most recent trends for web based

application is to feature single centralized login feature. And SSO based authentication

provides most technologically advanced solution in this field.

The case company of this project is Tecnotree Corporation which is a telecommunica-

tion BSS (Business Support Solution) company founded in 1978 in Espoo Finland. The

company was previously known as Tecnoman. In 2008 it acquired Indian Telecommu-

nications Company Life Tree Coverage for USD46 million dollars and thus abbreviated

to Tecnotree. Unfortunately, due to decline profit the company was subjected to bank-

ruptcy in 2010. However, the company started to make slow comeback from 2012, and

by 2015 its net sales reached to USD80 million. This success is partly due to providing

the latest technology based software for its clients.

In 2015 the company successfully negotiated a contract with the MTN group, a multina-

tional telecommunications company based in South-Africa to provide an application to

manage mobile and other subscriptions provide by the MTN group. Surveys and re-

search by MTN shows they spend a huge amount of money for setting up call and ser-

vice centers for their customers, to troubleshoot customer complaints. If they can pro-

vide an application through which customers can manage their own subscriptionsthey

can reduce huge load from their call centers and thus they can save money.

According to the contract the application should have all the latest technologies and the

application should be highly user friendly and very easy to use. Since the SSO feature

is the latest in the field of authentication technology, it was decided to implement this

feature in the application. The application was named “SELF CARE” and I was as-

signed to implement the user authentication feature for the application.

The goal and objective of this thesis to introduce token based SSO authentication,

steps, proceduresand to successfully implement a SSO architecture based application

2

. Any future company application can use this thesis asa guide, if they decided to use

the same authentication architecture.

2 Introduction to SSO and JSON Web Token (JWT)

Authentication means verifying user credentials and establishing user identity whereas

authorization deals with access control to certain allocated resources. SSO is strictly an

authentication mechanism, it only deals with establishing an identity of the user and

then sharing that information with the subsystem. Usually the Lightweight Directory

Access Protocol (LDAP) and stored LDAP databases on stored served is used for the

process. [6] SSO can be defied as property of access control and using this property

user can be authenticated to multiple connected system or systems without the need to

provide different user credentials. [7]

The SSO authentication is designed to address the issue of cross domain authentica-

tion. For example, if a web application is developed in domain A and developers de-

cided to deploy the application to domain B, then how to authenticate the users for do-

main B who are already logged into to domain A. In this case,a session sharing solu-

tion cannot be implemented across cross domain due to browser’s same origin pol-

icy.[6] The same origin policy restricts how resources originating form one origin inter-

actwith resources that are originatefrom adifferent origin. That means cross domain

information sharing is not possible. [8]

Let us assume that the URL for domain A is

http://selfcare.company.com/dir/page.htmlIt will fail to share session information if the

application is deployed to domain B if the URL for the domain B is

such,https://selfcare.company.com/secure.htmlhere the protocol is differ-

ent,http://selfcare.company.com:81/dir/etc.htmlhere the port is differ-

ent,http://espoo.company.com/dir/other.htmlhere the host is different.

There are several different SSO protocols namely Open ID Connect, SAML, Facebook

Connect, Microsoft Account etc. I have used SAML SSO protocol for this application.

The reason for using SAML protocol is discussed in sectionr4.2 under Supported pro-

tocols. The central concept for all this protocol is basically the same, that is a central

domain or authentication server is used for authentication. The authentication server is

http://selfcare.company.com/dir/page.html
https://selfcare.company.com/secure.html
http://selfcare.company.com:81/dir/etc.html
http://espoo.company.com/dir/other.html

3

responsible for the generation of JSON (JavaScript Object Notation Syntax) web token

which is unique and encrypted with JWE, JWE stands for JSON Web Encryption it en-

crypts resources with JSON-based cryptographic algorithm. This token cannot be al-

tered and usually have a time limit for its validity after it expires, and no longer cannot

be used as an authentication token. [9]

JSON Web Token (JWT) is a standard for passing JSON encoded information securely

between two parties. The reason why JWT has gained so much popularity recently is

that it can be transmitted by query, header and with the body of the post request due to

its very compact size, enabling developer to develop an architecture totally based on

APIs (Application Programming Interface). [10]Other benefits of using tokens over tra-

ditional methods are:

A. Scalability: Since the token contains all the necessary information’s for authen-

tication it frees server from storing any session state, thus it is stateless and can

scaled very easily.

B. Ease of generation of tokens: Since token generation is decoupled from token

verification it enables the user to manage the signing of tokens in different serv-

ers or to use different compiles like Auth0 for the purpose. [10]

C. Greater access control: A token can carry a payload which may contain all the

user roles and permissions and as well as resources the user is allowed to ac-

cess thus enabling greater access control

The token can be passed to the client and other associated domains for authentication.

The token contains all the information to correctly identify and verify the user and

his/her credentials.

4

3 Architecture

I have designed the architecture as such that the application communicates with the

SSO serverusing standard OAuth2/openid connect or SAML protocol, WSO2 identity

server was used here as SSO identity server. WSO2 is a third-party product, the detail

description of its functionality is beyond the scope of this thesis however a product de-

scription can be found in reference [1]. The protocols define how SSO server can be

utilized to obtain tokens representing user authentication and authorization. In addi-

tion, the clients use the SSO server to access user profile information and token

verification.

By default, WSO2 is connected to TAP’s (virtual network kernel also known as network

tap [11]) internal LDAP. Any number of external LDAP (Light Weight Directory Access

Protocol) or AD (Active Directory) servers can be configured as additional user stores.

AD is a Microsoft specific directory service it supports a number of other protocols

along with LDAP protocols to query data. Due to customer request, I made the decision

to keep latest one AD server, so that the client could access data through Microsoft

technologies

Figure 1, SSO architecture

5

Figure 1 shows us the basic functionality of SSO architecture, here the client first

makes an authorization request to the authorization server, to get any LDAP service

the client is required to get authenticated first. The authorization server authorizes the

client after the authentication is done by WSO2 to access LDAP services. LDAP by

default requires the information about who is accessing the data, so that it can decide

whether the client is allowed to see the data. Only after the successful authentication

and authorization of

the client , the LDAP server receives the actual client request and response with data.

A simple request from the client involves sending username and password, since the

password is received in clear text there is a security concern, because the password

remains in the network and can be read from the network. I decided to use SSL (Se-

cure Sockets Layer) encrypted channel for such operation. [12] The reason I decided to

use SSL is because over the year SSL has been standardized as a standard security

protocol and LDAP servers by default supports SSL protocol functionality.

Commonly the System Server will be used to host SSO functionality. A dedicated serv-

er can be used also if necessary. SSO can be installed on two System Servers and

their databases are replicated. SSO server can be accessed from both System servers

and through VIP or VIPA (Virtua IP address [13]). However, if System Server’s VIP is

changed the session will be lost, since no session data has been saved to the server,

making the architecture totally stateless and highly scalable according to user needs.

 SSO Single Sign On (SSO) is very practical solution to handle complex authentication

feature for modern applications. Here the SSO architecture uses dynamic tokens, in-

stead to session data.Tokens contains all the necessary information’s to authenticate a

user. However for this application I am also using a third party service from WSO2. The

architecture also utilizes the Puppet framework. Puppet provides us the user Interface

to to operate the software. And Manaport is actually our custom user interface that we

build upon the puppet framework.

6

4 Supported Protocols

4.1 OAuth2

The legacy systems were already using OAuth version 1.0 for authentication so I de-

cided to use OAuth2.0 to reduce development time and to remove any complexity for

the implementation of authentication feature. OAuth2 is an open authorization protocol

published in 2012. It is based on OAuth protocol created in late 2006. Currently OAuth2

is used by large internet companies such as Google, Facebook, Yahoo and Microsoft.

For more information see reference. [2]

OAuth2 acts a resource owner that means it has the capability of granting access to

protected resource. This is usually the end-user. The servers hosting protected re-

sources can accept and responding to protected resources via request using access

tokens , since the entire architecture is based on access tokens this is very important

for the functionality of the entire application. Using the OAuth 2 protocol the server is-

sues access tokens to the client after successfully authenticating the resource owner

and obtaining the authorization. Here the client represents the entire application not

just an individual user from server, desktop or other device’s. The client (the applica-

tion) makes the protected resource request on behalf of the resource owner and with

its authorization. Also, I want to mention that OAuth2 now supports the three-legged

authentication, this is where authorization and access token both can be done using

OAuth2. This feature is not supported by OAuth version 1.0a which supports only so

called two-legged authentication where the server is first assured to user identity before

it can use access tokens. So by using SSL and OAuth 2.0 I was able to remove the

need the for argument sorting and signing altogether ,now the client can simply pass

its secret to the server which directly validates it. The OAuth version 2.0 also provide a

new functionality called refresh token.

refresh tokens can be used as an equivalent of permanent password, so when the

server needs access to protected resources it exchanged short lived access tokens

over refresh tokens. Usually the expiration time for this short-lived access tokens is 5

minute.

7

In general, the protocol initiates when the resource owner authenticates itself to the

authorization server. The resulting grant represents resource owner's authorization to

access its protected resources. Clients who have access to a grant may exchange it for

an access token. This token allows direct access to the protected resources.

Figure 2, OAuth2 abstract work flow

Figure 2 illustrates the work flow of OAuth2. Here whenever Client makes any request

the OAuth2 always perform three distinct role they are Resource Owner, Authoriza-

tion Server and Resource Server.When client makes an authorization request, it

grants authorization by acting as a resource owner, after the authorization is verified by

the authorization server it issues access token to the client. Client uses this access

token to get access to protected resources. OAuth 2 acts as a resource server after

getting access token form the client and responds with protected resources. The main

reason I decided to use OAuth over other protocol is because of its simplicity and re-

duced compellability. Most protocols usually require sighing procedure which is not

necessarily very difficult not, but the step is quite complicated. A simpler and efficient

protocols mean client can easily connect to the server service making the application to

work faster, this is huge benefit if the application is deployed in a low bandwidth inter-

net area. Since the product is intended for Iranian market, were internet bandwidth is

very low and usually internet is also very expensive this protocol provides additional

benefits.

8

The abstract flow is divided in three phases. The first one ensures that the client has

permission from resource owner to act on its behalf. In second phase this permission is

exchanged into a temporary token. In the third part the token is used to access pro-

tected resources.

The client implementations vary and have different requirements the OAuth2 defines

four authorization grant types. Each grant is essentially the result of successfully com-

pleting the first phase of the protocol. The way a grant is obtained depends on its type.

 Table 1 Additional roles of OAuth 2

Grant Type Description

Authorization Code Grant is obtained by directing the resource owner to the
authorization server. After successful authentication, the
resource owner is directed back to the client with the
authorization code. Client can then exchange the grant
to an access token with the authorization server.

Implicit Grant Simplified version of authorization code designed for in-
browser clients. In this flow the access token is issued
directly after authentication instead of requiring the client
to swap authorization code for it. This simplification re-
duces the number of round trips required to obtain an
access token. However, is also means that the authori-
zation server cannot authenticate the client which initi-
ated the flow.

Password Grant Resource owner’s credentials can be used directly as an
authorization grant to obtain an access token. This re-
quires that the credentials are exposed to the client. This
is acceptable only if there is a high degree of trust be-
tween the user and the client (e.g. a desktop program)
or when other grant types are not available.

Client Credentials Clients may use their own credentials as an authoriza-
tion grant when the scope is limited to the protected re-
sources under the control of the client.

Table 1 describes other additional roles and benefits of using OAuth 2 besides the

main functionality which were mentioned earlier. OAuth2 protocol defines two end-

points that the authorization server must implement. Authorization endpoint is used to

9

initiate the protocol and to obtain a grant. Token endpoint is to exchange grants to

access tokens.

.

The requests made to these endpoints differ based on which grant type is used. Grant

types password and client credentials involve only the token endpoint. The third

phase of the protocol is not defined fully in OAuth2 specification. Access token must be

used to access the protected resource, but possible interaction between the authoriza-

tion server and the resource server, the token validation is performed by OAuth2.

4.2 SAML

Security Assertion Markup Language or SAML is an authorization protocol commonly

used in enterprise applications such as SAP and Salesforce. [14] The TAP provided

SSO implementation supports SAML and applications may choose to use it. I have

used SAML in this project for two reasons. These are:

A Standard:

The SAML standardized formatted is designed to be able to integrate with any system

regardless of their implementation. Thus, developers can approach a more flexible and

open architecture without thinking about vendor specific compatibility issues.

B Security:

The projection application deals with very sensitive user information details and infor-

mation security is the most information factor for this project. SAML grantees a secure

point single point of authentication. By providing a single point of authentication it en-

sures that user credentials never left the firewall boundary.

 So, the application does not need to store any identities, SAML does this providing a

strong security layer called the leverage public key (PKI) which also protects attack

against assert identities Further description of SAML is beyond the scope of this docu-

ment. [14]

10

5 Application Integration

5.1 Enabling SSO Functionality

This chapter describes the integration and deployment procedure of the system. After

the initial deployment the access configuration is done via Manaport (Tecnotree specif-

ic user interface for the identity server) and add SSO template for the system server.

The SSO template is found from Additional templates list on node metadata editor in

the Manaport. After that I made all the necessary changes for the additional templates,

then I deployed the system server to start SSO service. The SSO deployment confi-

gures the SSO to use the System Server’s internal LDAP as authentication source. The

usersrequired by the application must be inserted to the LDAP database on System

server. This can be done via Manaport user manager or from the command line.

11

Figure 3, Manaport User Interface

Figure 3 shows how to create a test a user for the application using Manaport user in-

terface. After the completion user receives a unique username and password. Man-

aport is only for developers, admins and application testers. The use of user interface

greatly reduces time and fatigue of creating new user, deleting user and updating exist-

ing user. The same procedure can be done using console but that requires more time

and prone to bugs.

To verify that the functionality is available, we need to login to the WSO2 admin con-

sole at: https://<SS IP>:9443/carbon. Here /carbon is Manaport specific it opens up

the admin user interface and SS IP depends on which server the application is running.

The default credentials are username:admin and password:admin. After providing

the credentials the Manaports redirects to user creation page, from here a new user

can be created.

5.1 Service Registration

Each SSO service (or application) must register to the SSO server before anything can

start. The server will assign credentials for the app. These are used to identify the

source of incoming authentication requests. The registration process can be completed

either manually via Web GUI or using a SOAP API. I find it easy to use Web GUI since

it prompts messages if invalid information’s are provided during the registration process

on the other hand the SOAP(Simple Object Access Protocol) API crashes after if some

information is in valid after the registration process, which is very annoying to my con-

sideration .

5.1.1 Manual Registration

Manual registration is only for admins and developers testing the system, during the

development and testing phase of the application, it was needed many times to try to

register into and remove a user from the system and manual registration was used for

the above situation. To perform manual registration admin into login to the WSO2 ad-

min interface at https://<SS IP>:9443/carbon with credentials admin/admin.From the

Main –tab admins add a new service provider and fill in the name of the application and

a short description.

12

Next the admin needs to create application specific OAuth2 configuration under in-

bound authentication configuration ->OAuth/OpenID Connect Configuration. This part

is required a callback address that SSO server uses to direct requests back to the ap-

plication.

Since I was using JavaScript based clients(Application), the implicit grant type this is

the same URL the application is served from. The callback address is expected to be

https only. Https is not enforced but using plain http will leak tokens to anyone capable

to monitor traffic between the authorization server and the client.

Registration is now complete. Client credentials are visible under OAuth2 configuration.

Figure 4, OAuth2 client registration user interface

Figure 4 shows the user interface provided by OAuth 2 for the client registration. Once

the registration is completed, the client credentials are visible under OAuth2 configura-

tion The ID and secret must then be made available for the client.

5.1.2 Registration via SOAP

The WSO2 Identity Server provides a SOAP API which I used for service/application

registration, this is the ideal and recommended registration procedure. The SOAP API

is called OAuthAdminService.

13

The SOAP calls can be done with HTTP Basic authentication with provided user-

name/pw credentials. To register the following I made API calls, using the OAuthAd-

minService.Then I register the application with registerOAuthApplicationData. The

registration data needs application name, callback URL for the application, allowed

grant types here I provided authorization code, OAuth version which is 2.0. After that I

generated Application key and Secret key using WSO2 identity server and I used

them for the authentication process which done by using getOAuthApplicationData-

Name SOAP call. To make the API call I had to provide application name as parameter

for the GET request. The API response carries the OAuthConsumerKey and OAuth-

ConsumerSecret

Listing 1 Request and response format of SOAP API call

<soapenv:Envelopexmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://org.apache.axis2/xsd"
xmlns:xsd1="http://dto.oauth.identity.carbon.wso2.org/xsd">

<soapenv:Header/>

<soapenv:Body>

<xsd:registerOAuthApplicationData>

<xsd:application>

<xsd1:OAuthVersion>Oauth-2.0</xsd1:OAuthVersion>

<xsd1:applicationName>TestApp</xsd1:applicationName>

<xsd1:callbackUrl>https://<host>/<callback></xsd1:callbackUrl>

<xsd1:grantTypes>authorization_code implicit</xsd1:grantTypes>

</xsd:application>

</xsd:registerOAuthApplicationData>

</soapenv:Body>

</soapenv:Envelope>

The getOAuthApplicationDataByName response:

<soapenv:Envelopexmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/">

<soapenv:Body>

<ns:getOAuthApplicationDataByAppNameResponsexmlns:ns="http://org.apache.axis2/
xsd">

<ns:returnxsi:type="ax2324:OAuthConsumerAppDTO"
xmlns:ax2324="http://dto.oauth.identity.carbon.wso2.org/xsd"
xmlns:ax2326="http://oauth.identity.carbon.wso2.org/xsd" xmlns:xsi="

14

Listing 1 shows how the standard SOAP calls are made, here I used Java based API

calls. This section describes the authentication procedure clients need to implement.

The implementation depends on which grant types the clients choose to support. The

recommended grant type is authorization code. Other grant types may be used only if

authorization code is not suitable to the use case.

All HTTP requests in this section are made using application/x-www-form-

urlencoded format unless stated otherwise. The token response is similar for each

grant type. It is described in more detail in section5.4

5.1.3 Authorization Code Grant

This section describes in detail the functionality and format of the authorization code,

authorization code is the recommended grant type for server side applications. Client

initiates the login flow by sending a request to authorization endpoint.

https://<SSO IP>:9443/oauth2/authorize

Parameter Value

client_id Client specific OAuth2 ID obtained when the application
was registered to the SSO server

client_secret Client specific OAuth2 key obtained when the application
was registered to the SSO server

response_type Fixed to code. This initiates authorization code flow.

redirect_uri The callback URL defined during the application registra-
tion

scope Fixed to openid. SSO server will not reply to user profile
requests if this is not set.

state Optional. A client-determined value used to maintain state
between the request and the callback. This value is in-
cluded in the server response when redirecting the user-
agent back to the client.

. Table 2 Request parameters for authorization endpoint

Table 2 describes the necessary parameters required for a successful request to au-

thorization endpoint, if it fails the server responds with 404 Not Found status code.

Next steps of authorization are performed by the SSO server. First the user-agent is

15

directed to the generic login page. After successful login SSO server generates the

grant and redirects the user-agent to the application callback.

The callback must extract the authorization code from the server response. The code

can then be exchanged for an access token utilizing the token endpoint:

https://<SSO IP>:9443/oauth2/token

Parameter Value

client_id Client specific OAuth2 ID obtained when the application
was registered to the SSO server

client_secret Client specific OAuth2 key obtained when the application
was registered to the SSO server

redirect_uri The callback URL defined during the application registra-
tion

grant_type Set to authorization code.

code Received authorization code

 Table 3 Request parameters for token endpoint.

Table 3 describes the parameters needed to make any request to token endpoint. The

token endpoint validates the client credentials and the authorization code. If valid, the

authorization server responds with access tokens and with HTTP status code 200.

However, if the operation fails it sends 405 Method Not Found status code.

5.1.4 Implicit Grant

The implicit Grant is the most important authentication flow for this application, since

most of the user for this application is expected to be browser based. Implicit Grant

flow is suitable for in-browser clients. Login flow with implicit grant does not involve

temporary authorization code. Instead the access token is given directly to the client

after successful authentication. This grant type does not include client authentication

because client credentials can’t be hidden from the user. Furthermore, the access to-

ken is encoded into the redirection URI which may expose it to the user and other ap-

plications running on the same device. Application initiates the login flow with a request

to authorization endpoint.

https://<SSO IP>:9443/oauth2/authorize

16

The request must have following parameters, must have client_id, response_type, redi-

rect_uri,scope and state. Here state is optional, A client-determined value used to

maintain state between the request and the callback. This value is included in the serv-

er response when redirecting the user-agent back to the client

Next the user-agent is directed to the generic login page. After successful login SSO

server generates the token and directs it to the application callback using URL frag-

ments. The client is expected to parse the token from the response.

5.1.5 Password Grant

Password grant is the most easy to use authentication flow, the reason why I used this

authentication flow is to help the application testing team. This authentication flow is

suitable for test automation and unit testing of registration of a user. However it is not

recommended for applications at all because the user credentials are exposed to the

application. Any data that is present in the client side of the application is prone to se-

curity risk. The flow consists of a single request to the token endpoint:

https://<SSO IP>:9443/oauth2/token

The request parameters are same as the other authentication request, except for two

additional parameters. These are username and password which are owner’s name

and owner’s password respectively. SSO server responds directly with the access to-

ken. This flow does not involve user-agent redirections. The request is a POST request

and if successful the server responds with HTTP 200 OK response.

5.1.6 Client Credentials

Client credentials can be used in situations where the client needs to access resources

which are not tied to a specific resource owner. The flow consists of a single request to

the token endpoint:

https://<SSO IP>:9443/oauth2/token

The request is made with two additional parameters, client secret (client specific

OAuth2 Id is obtained when the application is registered to the SSO server) and grant

17

type which is fixed to client credentials. The request is a post request and if successful

the status code is 200 OK.

5.2 OAuth2 Token Response Content

This section describes the content of the response after successful request had been

made. The response from token endpoint contains the access token issued by the

server the token type defines what kind of token was returned. Currently only bearer

tokens are supported. The response token has also a time limit which can be found

under parameter expires_in and it is usually in millisecond format. I had to convert it

every time during the development of the application. The refresh token is optional it is

additional token that can be used to renew the access token. Refresh token is not in-

cluded in implicit grant flow. The scope parameters contain the scope for which the

token was issued. In practice this is always fixed to openid.Along with refresh to-

ken.id_token is also an optional parameter.

5.2.1 OpenID Connect Token

Access tokens using openid scope are accompanied with JSON Web Token.The to-

ken is base64 encoded. The data is in three parts separated with dots. The first part

defines the signature algorithm. The second part contains the claims and the third part

contains the signature

Claim Name Explanation

iss Issuer claim The iss (issuer) claim identifies the principal that
issued the JWT. The processing of this claim is
generally application specific. OPTIONAL

sub Subject claim The sub (subject) claim identifies the principal that
is the subject of the JWT. The Claims in a JWT are
normally statements about the subject. OPTIONAL

aud Audience claim The aud (audience) claim identifies the recipients
that the JWT is intended for. OPTIONAL

exp Expiration time
claim

The exp (expiration time) claim identifies the expi-
ration time on or after which the JWT MUST NOT
be accepted for processing. OPTIONAL

nbf Not before claim The nbf (not before) claim identifies the time be-
fore which the JWT MUST NOT be accepted for

18

Claim Name Explanation

processing. OPTIONAL

iat Issued at claim The iat (issued at) claim identifies the time at
which the JWT was issued. This claim can be
used to determine the age of the JWT. OPTIONAL

jti JWT ID claim The jti (JWT ID) claim provides a unique identifier
for the JWT. OPTIONAL

 Table 4 Token content [4].

Table 4 describes different fields that are present in a decoded token. All this informa-

tion is necessary for successful authentication, and token’s ability to carry all this infor-

mation in encoded format insures not only security but also efficiency.

5.3 Operations with Valid Tokens

The architecture uses token based authentication instead of using session base user

authentication to improve security. Unlike session based authentication the authentica-

tion tokens are not present on the on the browser making the application more secure.

The SSO server generates new access token with every new request with predated

time of its validity. The validation time can be set to any but its recommend and used in

this project as 30 minutes after that the token expires and send failure JSON response

with 401 status code.

Resource servers are expected to validate the token before serving the re-

sources.Clients must include the access token in every request to protected resources.

The token is set in the authorization header, the token type must be capitalized when

making requests to the authorization server. For example:

Authorization: Bearer d11826442326856d5e9747ed777c8f11

5.3.1 Obtaining User Profile

19

User profile information is available inuserinfo endpoint.https://<sso

ip>:9443/oauth2/userinfo?schema=openid.The endpoint supports only openid schema.

Requests must include an authorization header with a valid access token. This access

token must have openid scope.

5.3.2 Permission Handling

Manaport is an unique product of Tecnotree , it is basically only an user interface the

user info must come below format to access the functionality Manaport. The wildcard

(*) at the end of permission string denotes all possible permissions after it. It is the ap-

plications responsibility to expand the wildcard operation and act accordingly. If there

are no permissions, the full permission entry may be missing. The permissions may

also appear in the string in any order.The wildcarded permissions may overlap with

each other. For example, it is possible the permission set

has “platform.*,platform.alarms,*” The user info as requested from the userinfo end-

point contains the user’s authorisation information in form of permissions, as follows:

”permissions”: ”<comma separated permission list>”,

5.3.3 Token Validation

The authorization server does not provide an endpoint for simply determining the status

of given token. For now, I have decided that the user info endpoint (described in the

previous section) is used for this purpose, if needed the endpoint can easily be confi-

gured. The user profile is available only when presented with a valid access token. An

invalid token will return with HTTP 400 error code. Token format is depended on the

protocols. SAML protocols only supports SAML tokens and OAuth2 supports JWT

based tokens. Here the authorization protocols are only concerned about the token

format the application doest not need to care about the formats of the tokens and how

they are handled. The mechanics of token validation involves well-formed tokens, to-

kens are coming from correct and indented authority and after the token are verified

they are meant for the correct application. Well-formed tokens mean nobody has tam-

20

pered with the tokens, the tokens are received before they have been expired and it is

correctly formatted containing all the necessary fields. Tokens are designed in such a

way that they clearly display information about their origin and they are unambiguous

as much possible. This is to Identify the Intended authority easily.

5.3.4 Token Refresh

Token Refresh is a very special type of token supported by OAuth to authenticate

client. Usually the user needs to get a new token very time the tokens expires and then

re-authenticate to the system but with refresh token user does not need to re-

authenticate. It acts a permanent token similar to passwords provided by user. They

are received via OAuth API. In the OAuth dashboard, a refresh token is clearly visible

and from here the admin can revoke re re-issue a refresh token. To get a refresh token

authentication request must go through the authorize end and it is required to send

device name as parameter within the request. The device name can have any value for

example a valid mobile number can be used as a device name. Since there is no time

limit for the expiration of a refresh token, it is very important to revoke them time to

time. OAuth has a management API to revoke a refresh token.

 The revoke request needs to send id of the refresh token to be revoked. The request is

DELETE CRUD operation and if successful the server responded with 204 status code.

And the credentials are no longer exists in the server,Authorization server issues new

refresh tokens along with access tokens. The refresh tokens can be used to obtain a

new access token when the current one has expired. OAuth also have management

API dashboard user interface, which provides the easiest option to revoke refresh to-

kens. But the API is much more programmable. I have programmed the authentication

as such that it calls the management API every 24 hour to revoke the refresh token.

This ensures enhanced security.

21

5.3.5 Token Revocation

Access tokens and refresh tokens can be revoked. OAuth 2 guidelines suggests that

every implementation of OAuth must have an access token revocation functionality.

[15] A token revocation request is made at the revocation end point URL, it is a POST

request and contains the id of the access token to be revoked. I have programmed the

application as such that submitting any revocation request the server first need to vali-

date the client information to authenticate the client and to check if he have rights to

perform such operation.

Revocation request must contain the token and its type. Requests must be sent with an

authorization header containing a valid access token or with basic OAuth using client

credentials.After revocation attempts to access protected resources must fail due to

invalid access token

5.4 HTTPS Certificates

All operations with authorization server must be secure. The server certificates in TAP

2.3 / TAP 2.4 releases are pre-generated with a fixed common name. This will cause

hostname validation errors when forming https connections.Server certificates are

stored in a JKS file at path:

/opt/wso2/repository/resources/security/wso2carbon.jks

Keystore password is wso2carbon. Command keytool can be used to interact with

the file. The key entry for the server is wso2carbon and the certificate is

wso2carbon.cert.

5.5 SCIM Provisioning Interface

SCIM stands for System for Cross-domain Identity Management, it was designed to

manage identities of cloud based applications, SCIM provides the vital cross domain

functionality for the SSO architecture that this thesis paper thrives to achieve. SCIM

interface can be used to create, modify and delete user and group information. The

22

interface is enabled by default. All requests to the interface must be done with creden-

tials of an admin user or with credentials of a service provider (OAuth client key/secret

work).

SCIM interface can operate with any user store where the SSO server has write

access. The target user store must be specified in all operations by prefixing the us-

er/group name with the user store ID. The default user store ID for LDAP located on

System Server is ROOT. Any operation targeting the LDAP must then specify the re-

source names endpoints. SCIM is based on an object model where resource is the

main denominator and all the SCIM objects are based on it. [16] In SCIM is encoded

and represented as an JSON object that has id, username etc. All the attributes have

string value. SCIM also uses group to give an organizational structure to the provi-

sioned resources, to manipulate this resources SCIM has a REST API that supports all

the CRUD operations. SCIM is used to simplify user management in the cloud by defin-

ing a schema for representing user and groups [5] SCIM provides following endpoints:

 https://<SSO SERVER>:9443/wso2/scim/Users

 https://<SSO SERVER>:9443/wso2/scim/Groups

 https://<SSO SERVER>:9443/wso2/scim/Bulk

Operations targeting single users or groups are done via the resource type specific

endpoint. Alternatively, bulk endpoint can be used for provisioning large sets of users

or groups.

SCIM API is used by making HTTP requests to the above endpoints. The type of the

request defines the API function (GET, POST, PUT, DELETE). The request must be

authorized with a Bearer token or HTTP basic auth. The content type is application/json

with function specific payload.In general, the API will return 200 OK and applica-

tion/json data for a successful request. Modifications to existing resources are done

with replace operation. SCIM specification defines an update operation, but WSO2

does not support it.

5.5.1 SCIM Schema Claims

SCIM supports a set of user/group attributes defines by the SCIM schema

(urn:scim:schemas:core:1.0). The schema and its attributes are shown in the WSO2

GUI (Configure -> Claim Management).This mapping is used to configure which data

23

store attributes map to which API attributes. For example, when a new user is added

her username is passed through the API as a value for

urn:scim:schemas:core:1.0:userName. In LDAP the username value would be stored to

uid attribute.By default the SCIM mapping is incomplete regarding the Platform LDAP.

The following claims must be mapped manually.

Claim MappedAttributes Description

Id scimid;ROOT/labeledUri Unique ID of the SCIM re-

source

Meta - Created createdDate;ROOT/carLicense Creationtimestamp

Meta - LastModified lastModifiedDate;ROOT/gecos Modificationtimestamp

Meta - Location l;ROOT/homePostalAddress Unique URI for this SCIM

resource. Accessing the

URI will display the re-

sources data

 Table 5 SCIM schema.

Table 5 illustrates the claims that can be made using SCIM schema. WSO2 supports

mapping attributes to multiple user stores. The user stores are separated with semico-

lons. The mapping is given as <User store ID>/<attribute>. In the above table the map-

pings refer to the internal WSO2 user store (no ID) and the Platform LDAP (ROOT/*).

The target LDAP attributes defined in the table work, but they are subject to change.

If the claims are not mapped properly SCIM API requests will likely dump Java excep-

tions.

5.5.2 Read and Search Operations

SCIM can be used to dump the data of any user or group. The API provides ways to

access a single resource, all resources of given type or all resources that match a

search query.Read and search requests must include an authorization header with

valid bearer token or use basic auth.

24

5.5.3 Create Operation

To create a resource (user or group), send an HTTP POST request to the resource

specific endpoint. The request must be authorized with a Bearer token or HTTP basic

auth. The content type is application/jsonand it is a POST request. The URL of the re-

quest have a version number so that different versions of the SCIM API can be used at

the same time. To check the available version SCIM provides a ServicProviderConfig

end-point. The minimal payload can be extended by defining additional user/group

attributes. The available attributes depend on the SCIM claim configuration. On suc-

cess request the server responds with 201 status code.

The response contains the created the resources with unique id and meta data. The

response also contains a location header to point where the resources can be fetched

next. The service providers added meta data to make the resources complete.

5.5.4 Replace Operation

Replace operation is used to modify the attributes of existing user or group. The target

data will be completely replaced with the data given in the request. It is essential that

the request defines values for all attributes even if they do not change.Replace opera-

tion works for groups in the same way as for users.

5.5.5 Delete Operation

Delete operation removes the target user or group from the user store. This is done

with http DELETE request to the unique URL of the target resource. I have decided not

to permanently delete the resources due regulation concerns, but if DELETE request

has been made on any user or group the server returns 404 error code without perma-

nently deleting the user.

5.5.6 Bulk Requests

25

Bulk requests can be used to run a large set of SCIM operations using a single re-

quest. All bulk requests use the same endpoint regardless of whether they target users

or groups. The bulk requests basically consist of a set of individual SCIM operations.

BulkId for each operation must be unique. It is used to identify the operations and their

response. BULK requests are optional operation provided by SCIM. Bulk request is

only used if user decided to send a very large collection of resources using HTTP API

methods.Other operations (read, search, replace) can be used in the bulk request in

the same way. Attribute method controls which operation is called. If a bulk request is

successful the server responds with code 200 OK.

5.5.7 Restrictions with SCIM

SCIM interface in the current builds suffers from several problems. SCIM can manage

only those users/groups that have been created by SCIM, claim mapping configuration

must be performed manually. Some attributes (permissions) are not available via the

mapping.User passwords must be plaintext for SCIM API which is not ideal. Have rais-

es serious security issue. The SCIM protocol is totally based on REST API and it is

assumed that any application using SCIM uses restful APIs. But in practical situation

this is not always true. It is very hard to create an application entirely using custom AP-

sI. So, there will be always some third part API which are not Restful. These might

cause the SCIM protocol to crash. During the development and testing phase I have

not suffered such problems but it might happen and the application might needed to be

upgraded with a different protocol to support cross-domain functionality.

The multi-valued attributes make resource manipulation very clumsy. SCIM unfortu-

nately does not pay any attention to this issue which is very disappointing. Problem is

mostly because every value need a unique key but multi-valued attributes seems to

lack this key. The way I tried to solve this issue is by turning very list of arrays into a

dictionary and providing each of them with a unique meaningful free identifier. SCIM is

one of the first protocols to use PATCH HTTP verb. PATCH is used when it is needed

to update a part of resource not the entire resource. PUT is used if we want to update

the entire resource. PACTH allows part of a resource to be modified, added or deleted.

When I used PATCH with SCIM protocol it looks very troublesome to me. One major

issue that I had is that it always gives me 200 OK code for all PATCH requests. So I

26

have no way to know whether the right changes has been made. This is also very dis-

appointing considering that this is very easy problem to fix but obviously lacks attention

from SCIM developers to fix the Issue. I was forced to use PUT methods instead to

PATCH to make minor changes to allocated resources. I hope they will soon address

this issue and will improve their product.

6 Conclusion

In conclusion, the goal of the thesis was to build a working architecture for an applica-

tion with SSO functionality with cross-domain compatibility. As a result of the project

the application “SELF CARE” was produced that has the architecture to support all

SSO functionality. Due to its cross-domain functionality the application can be deployed

27

at any domain at any time, without making any major changes to its backend logic.

During development of this software we have tested all the SSO functionality by dep-

loying the application in several virtual machines running in different ports. During the

testing phase I have not noticed any major Issues, except some minor issues regarding

SAML protocol.

I believe a better a protocol can be used in future instead to SAML to improve the per-

formance of the overall system.

The application has already been delivered to our client in Iran, “SELF CARE” went live

in August 2016. Currently the application is used by millions of MTN customers, it was

a successful deployment to MTN’s own server. The initial user view suggest a success-

ful application launch and introduction on SSO feature into the “SELF CARE” applica-

tion enables a smooth transition of an old CLM application that MTN was using which

was decommissioned after the new launch. The new selfcare application uses all the

existing API from the decommissioned application thank to the SSO feature reducing

huge amount of development and deployment costs.

MTN wanted this application to reduce the cost of operating their call and service cen-

ters, no data is yet available to suggest that the application has managed to achieve it’s

goal of reducing costs. It will take more than two to three years for the application be

stable, during this time we plan to improve the application by carefully going thorough

test and customer user experience data. But I am quite hopeful, as more and more

customers starts using our application and understands it’s benefits they will eventually

become less depended to the call centers.

To summarize my work for this thesis project, I have successfully designed and imple-

mented a Single Sing On (SSO) architecture for a very complex Application. I have

tested the application during production and after deployment to a number of customer

domains, the application and the SSO architecture performed perfectly, which is very

satisfactory and encouraging for my future projects.

References

1 WSO2 Identity Server[online] URL:

http://www.peterjthomson.com/2009/08/difference-between-marketing-andde

http://www.peterjthomson.com/2009/08/difference-between-marketing-andde

28

 sign/. Accessed January 1, 2016.

2. The OAuth 2.0 Authorization Framework [online] URL:

http://tools.ietf.org/html/rfc6749.Accessed January 1, 2016

3. WSO2 Identity Server[online] URL:

http://www.peterjthomson.com/2009/08/difference-between-marketing-andde

 sign/.

 Accessed January 3, 2016.

4 JSON Web Token [online] URL:

https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-32. Accessed March

 20, 2016.

5 Cross-domain Identity Management [online] URL:

https://www.simplecloud.info/.

 Accessed April 3 2017

6 What is how does Single Sign On Authentication works [online] URL:

https://auth0.com/blog/what-is-and-how-does-single-sign-on-work.

 Accessed April 25 2017

7 Single sign-on [Online] URL:

https://en.wikipedia.org/wiki/Single_sign-on .

 Accessed April 25 2017

8 Same-origin policy [Online] URL:

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy.

 Accessed April 25 2017

9 JSON Web Encryption (JWE) [Online] URL:

https://tools.ietf.org/html/rfc7516.

 Accessed April 25 2017

10 Token Based Authentication Made Easy [Online] URL:

https://auth0.com/learn/token-based-authentication-made-easy.

 Accessed April 25 2017

11 TUN/TAP [Online] URL:

 https://en.wikipedia.org/wiki/TUN/TAP.

 Accessed May 1 2017

http://tools.ietf.org/html/rfc6749
http://www.peterjthomson.com/2009/08/difference-between-marketing-andde
https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-32
https://www.simplecloud.info/
https://auth0.com/blog/what-is-and-how-does-single-sign-on-work
https://en.wikipedia.org/wiki/Single_sign-on
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy
https://tools.ietf.org/html/rfc7516
https://auth0.com/learn/token-based-authentication-made-easy

29

12 LDAP unix [Online] URL:

http://www.tldp.org/HOWTO/LDAP-HOWTO/authentication.html

 Accessed April May1 2017

13 Virtual IP address [Online] URL:

https://en.wikipedia.org/wiki/Virtual_IP_address.

 Accessed May1 25 2017

14 Dev Overview of SAML[Online] URL:

https://developers.onelogin.com/saml.

 Accessed May 2 2017

15 Token Revocation [Online] URL:

https://tools.ietf.org/html/rfc7009.

 Accessed May 2 2017

16 SCIM [Online] URL:

http://www.simplecloud.info/.

 Accessed May 2 2017

30

Appendix 1

1 (1)

Appendix 2

1 (1)

