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Abstract
Free and Open Source Software (FOSS) components are ubiquitous in both proprietary

and open source applications. In this dissertation we discuss challenges that large software

vendors face when they must integrate and maintain FOSS components into their software

supply chain. Each time a vulnerability is disclosed in a FOSS component, a software

vendor must decide whether to update the component, patch the application itself, or just do

nothing as the vulnerability is not applicable to the deployed version that may be old enough

to be not vulnerable. This is particularly challenging for enterprise software vendors that

consume thousands of FOSS components, and offer more than a decade of support and

security fixes for applications that include these components.

First, we design a framework for performing security vulnerability experimentations. In

particular, for testing known exploits for publicly disclosed vulnerabilities against different

versions and software configurations.

Second, we provide an automatic screening test for quickly identifying the versions of

FOSS components likely affected by newly disclosed vulnerabilities: a novel method that

scans across the entire repository of a FOSS component in a matter of minutes. We show

that our screening test scales to large open source projects.

Finally, for facilitating the global security maintenance of a large portfolio of FOSS

components, we discuss various characteristics of FOSS components and their potential

impact on the security maintenance effort, and empirically identify the key drivers.

Keywords Security Vulnerabilities; Security Maintenance; Third-party Components;

Free and Open Source Software; Vulnerability Screening Test
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Chapter 1

Introduction

According to a recent Black Duck study [149], more than 65% proprietary applications

leverage Free and Open Source Software (FOSS) components: this choice speeds up ap-

plication development and flexibility [77], because FOSS components can be (and often

are) used “as-is” without any modifications [90, 137]. The price to pay are security flaws

being found in these components, in particular, for web applications which are the tar-

get of many well known exploits and a fertile ground for the discovery of new security

vulnerabilities [142], especially when the source code is publicly available.

Since the security of a software product depends on the security of all its components,

securing the whole software supply chain is of utmost importance for software vendors.

Thus, FOSS components should be subject to the same security scrutiny as one’s own

code1 [103].

FOSS components impose particular challenges as well as provide unique opportunities.

For example, FOSS licenses contain usually a very strong “no warranty” clause and no

service-level agreement. On the other hand, FOSS licenses allow to modify the source

code and, thus, to fix issues without depending on (external) software vendors.

When addressing FOSS security in an academic setting, the most debated question is

whether FOSS is more or less secure than proprietary software [72,75,143]. This discussion

received a new impetus since Heartbleed (CVE-2014-0160), Shellshock (CVE-2014-6271),

Apple’s GoToFail bug (CVE-2014-1266), or Microsoft’s sChannel flaw (CVE-2014-6321).

Yet, we would like to argue that the ultimate answer for this question may not be that

important from the point of view of the software industry: certain FOSS components

may be the de-facto standard for some applications, and certain FOSS components may

offer functionalities that are very expensive to re-implement. Indeed, this debate distracts

from more pressing issues that we describe below.

Consider the following (daily) scenario in the activities of software vendors: when a new

1For example, SAP, a large European software vendor, runs static code analysis tools to verify the combined code bases

of its applications and FOSS components [29].
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CHAPTER 1. INTRODUCTION

vulnerability in a FOSS component is discovered, the vendor has to verify whether it affects

customers who consume software solutions into which that particular FOSS component

was bundled. If the answer is positive, the vendor has to provide support (issue updates,

or provide custom security fixes) to all customers that are (or may be) affected by the

vulnerability.

For instance, in Enterprise resource planning (ERP) systems and industrial control

systems the need for such an activity may occur years after deployment of the selected

FOSS component. The more pressing issues in which the software vendors are interested

in comprise of assessing not only the direct impact of vulnerabilities in third-party com-

ponents on their products, but also in assessing the impact on the effort associated with

the security maintenance of such components.

1.1 Problems of Secure FOSS Integration and Consumption

The above scenario includes many important aspects, which we break down into several

sub-problems below:

Problem 1 : Besides the vulnerabilities discovered in a FOSS component that may affect

the application that consumes it, the security of a software offering depends on the rest of

its constituents as well. A successful exploitation may be possible not only because of the

vulnerabilities in the source code, but also because of the environments on which appli-

cations are deployed and run: such execution environments usually consist of application

servers, databases and other supporting applications (including the aforementioned FOSS

components). As a part of necessary activities for securing the software supply chain, it

is important to test whether known exploits for software components can be reproduced in

different settings, and understand their potential effects.

Problem 2 : Indeed, to obtain a vulnerability proof-of-concept, a vendor may test a

product that contains a potentially vulnerable FOSS component against a working exploit,

but for many vulnerabilities there are no public exploits immediately available [8]. Even if

such exploits exist, they must be adapted to trigger the FOSS vulnerability in the context

of the consuming application, which requires significant effort. An alternative is to apply

static analysis security testing tools (SAST) against the FOSS component. Unfortunately,

it is difficult for vendors to locate sources of security vulnerabilities within the sheer

number of FOSS components, especially when they are used as “black boxes” [90, 137].

Such an analysis requires a solid understanding of the source code of a component in

question and its usage context [90]. It also requires a significant expertise in chosen

SAST tools [18], as these tools can generate thousands of potentially false warnings for

large projects. Further, the analysis may require days for processing even a single ‘FOSS-

release’ ‘main-application’ pair [2]. All this significantly complicates the task of security

2
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analysis of third-party FOSS components and increases the chances that vulnerabilities in

these components will be left unresolved by vendors [62]. Moreover, when several FOSS

releases are used in many different products, the above solutions do not scale: thus, we

need to understand what could be an accurate and efficient screening test for the presence

of a vulnerability within many (older) versions of a FOSS component?

Problem 3 : When such a screening test is available, it can be used for company-wide

estimates to empirically assess the likelihood that an older version of a FOSS component

may be affected by a newly disclosed vulnerability, as well as the potential maintenance

effort required for upgrading or fixing that version. For this task, it is important to un-

derstand which characteristics of a FOSS component (number of contributors, popularity,

lines of code or choice of programming language, etc.) are likely to be sources of “trou-

bles” for security maintenance (the number of vulnerabilities of a FOSS product is only a

facet of a trouble, as a component may be used by hundreds of products). Can different

models for maintenance of FOSS components, as well as different factors that characterize

these components, have significantly different impact on the global security maintenance

effort of large software vendors?

1.2 Contributions

The aim of this dissertation is to assist software vendors in identifying relevant properties

of FOSS components that would facilitate their security maintenance, as well as finding

evidence that can be used for identifying which versions of FOSS components across the

third-party component portfolio of vendors may be affected by known or newly disclosed

security vulnerabilities. This would allow vendors to quickly identify which customers may

be affected and plan their security maintenance activities accordingly. We also propose

models that focus on the actual effort of security maintenance required for resolving these

security issues. The main contributions of this dissertation are as follows:

A case study at a large software vendor, aimed at identifying the factors to consider

when evaluating the impact of FOSS selection choices on the security maintenance

effort.

An open source framework for performing security vulnerability experimentations and

testing, in particular, obtaining evidence that would show whether existing exploits

for known vulnerabilities can be reproduced in different settings and environments,

for better understanding of their technical impact, and facilitating discovery of new

vulnerabilities.

An automatic scalable vulnerability screening test for estimating the likelihood of

an older version of a FOSS component to be affected by a newly disclosed vulnerabil-

3



CHAPTER 1. INTRODUCTION

ity, using the vulnerability fix. We also provide an insight on the empirical probability

that a version of a potential vulnerable component might not actually be vulnerable

if it is too old (or that its update might be likely costly). We provide a manual vali-

dation of the method, as well as an empirical analysis of the trade-offs between the

likelihood that an older version is affected by a newly disclosed vulnerability and the

potential maintenance effort required for upgrading to a fixed version (using popular

FOSS projects), showing that the approach scales to thousands of revisions of large

code bases.

A model for assessing the impact of various characteristics of FOSS components on the

security maintenance effort of a large portfolio of FOSS components. We empirically

test these factors, impacting the global vulnerability resolution process of third-party

components of a large software vendor, on three different maintenance models:

1. The centralized model, where vulnerabilities of a FOSS component are fixed

centrally and then pushed to all consuming products (and therefore costs scale

sub-linearly in the number of products);

2. The distributed model, where each development team fixes its own component

and effort scales linearly with usage;

3. The hybrid model, where only the least used FOSS components are selected and

maintained by individual development teams.

The work on this dissertation was performed in the context of the European Project

no. 317387 SECENTIS in collaboration with an industrial partner – SAP. This work

represents the research carried out by the author, and its outcome may not necessarily

represent the official position of SAP.

1.3 Dissertation Structure

This dissertation is structured as follows:

Chapter 2 provides some background on FOSS software and the broad issues of secu-

rity certification of third-party components, as well as the identification of vulnerabilities.

This chapter was partially published in:

[48] S. Dashevskyi, A. D. Brucker, and F. Massacci. “On the Security Cost of Using

a Free and Open Source Component in a Proprietary Product”. In Proceedings of

the 2016 Engineering Secure Software and Systems Conference, 2016.

Chapter 3 describes a case study at a large European software vendor which integrates

a large number of FOSS components into its products, and for which the present research

is relevant: (1) we describe the challenges that the vendor faces when consuming third-

party FOSS components; (2) discuss the process of building a theory on various FOSS

4



1.3. DISSERTATION STRUCTURE

maintenance aspects based on internal discussions with vendor’s software developers and

researchers; and (3) provide our understanding of various processes of FOSS maintenance

and consumption adopted by the vendor. A part of the content of this chapter was

submitted to:

[46] S. Dashevskyi, A. D. Brucker, and F. Massacci. “On the Security Maintenance

Cost of Open Source Components”. Submitted to ACM Transactions on Internet

Technology (Special Issue on the Economics of Security and Privacy).

Chapter 4 describes TestREx – a framework for repeatable exploits that allows

performing penetration and security testing, in particular running and adapting exploits

against potentially vulnerable web applications to identify whether they are affected by

the vulnerability. This chapter is the result of a joint work with Daniel Ricardo Dos

Santos, a fellow PhD student. This chapter was partially published in:

[49] S. Dashevskyi, D. R. Dos Santos, F. Massacci, and A. Sabetta. “TestREx: a

testbed for repeatable exploits”. In Proceedings of the 7th USENIX Workshop on

Cyber Security Experimentation and Test, 2014.

[136] A. Sabetta, L. Compagna, S. Ponta, S. Dashevskyi, D.R. Dos Santos, and F.

Massacci. “Multi-Context Exploit Test Management”. US Patent App. 14/692,203,

2015.

Chapter 5 describes the screening test for estimating whether a given vulnerability

is present in a version of a FOSS component. Our analysis supports software vendors in

prioritizing their FOSS related maintenance and development efforts. We showed that it

can scale to large open source projects. This chapter will be submitted to:

[47] S. Dashevskyi, A. D. Brucker, and F. Massacci. “A Screening Test for Disclosed

Vulnerabilities in FOSS Components”. To be submitted to ACM Transactions on

Software Engineering.

Chapter 6 illustrates our models for assessing the impact of various characteristics of

FOSS components on the effort required for their security maintenance, and provides an

empirical analysis of these factors. This chapter was partially published in:

[48] S. Dashevskyi, A. D. Brucker, and F. Massacci. “On the Security Cost of Using

a Free and Open Source Component in a Proprietary Product”. In Proceedings of

the 2016 Engineering Secure Software and Systems Conference, 2016.

[46] S. Dashevskyi, A. D. Brucker, and F. Massacci. “On the Security Maintenance

Cost of Open Source Components”. Submitted to ACM Transactions on Internet

Technology (Special Issue on the Economics of Security and Privacy).

Finally, Chapter 7 reflects on the main contributions of this work, and provides

discussion on the future work.
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Chapter 2

Background

This chapter aims to provide the background on the consumption of third-party FOSS

components, as well as to discuss the broad issues of security certification of third-party

components.

2.1 Overview of Third-party Components

Proprietary software development usually consumes several types of third-party compo-

nents. The most important components (either whole sub-systems, or libraries) are:

• Outsourced development and sub-contracting: components are developed by a differ-

ent legal entity based on a custom contract. As the software is implemented based

on a customer-specific contract and is uniquely tailored to its business needs [159],

the consuming party can specify the required compliance and security guidelines.

Depending on the contract, such components can be either shipped in the binary or

in the source form.

• Proprietary (standard) software components: components are licensed from a third-

party. For this third-party, this is a standard offering, i.e., the same component is

offered to multiple customers. Thus, there is only a very limited room for, e.g., influ-

encing the security development processes at the supplier. Usually, such components

are shipped as binaries.

• FOSS components: grant free access to the source code, as well as the freedom

to distribute modified versions, provided that certain licensing restrictions are re-

spected [134]. There are many open source licenses that describe different legal

aspects in different ways, including the detailed conditions under which FOSS can

be distributed (see [33] and [133] for a comprehensive discussion on FOSS licenses).
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2.2 What Makes FOSS Special?

FOSS components share aspects with both outsourced development and subcontracting,

as well as with standard proprietary software components. For example, FOSS compo-

nents can be modified, adapted, and maintained by the customer (this is what they have

in common with outsourcing and subcontracting).

Similarly to standard proprietary software components, FOSS components usually pro-

vide a fixed set of interfaces and functionalities that consuming products need to be

adapted to (instead of having a custom made component that “just fits”). Technically,

FOSS licenses are particular legal contracts that determine the rules under which a soft-

ware component can be used [33, 57]. Thus, one could expect that there is no need to

handle them differently from non-FOSS third-party components, but this is not the case.

In practice, there are at least five aspects that are often considered to be special:

1. As FOSS components are easily available without initial costs, this might misguide

developers to use them without properly assessing their licenses in detail [134]. For

large software vendors, the legal check of the software license and the warranty is a

part of the purchasing process: the derivative work that may be created by making

custom fixes of FOSS components and re-distributing them is an important aspect.

For instance, licenses such as GNU GPL1, require any derivate work to be distributed

under the same license, which may not be acceptable for proprietary software vendors.

It may be also difficult to identify what is exactly the derivative work in some cases

– this may create additional problems for proprietary vendors (see Carver [33] for a

more comprehensive discussion on open source software licenses and potential legal

issues). As FOSS components are often simply downloaded from the Internet, it may

be more difficult for vendors to enforce legal checks.

2. When FOSS components are being integrated into the target application, it increases

the overall costs of the resulting software product due to additional development and

maintenance activities [3]. Indeed, as pointed by Ven and Mannaert [162], the most

preferred way to cut these costs is contributing fixes back to the FOSS community.

Unfortunately, on practice this strategy is applicable for small generic fixes, that are

also useful for the community. There may be specific and more extensive modifica-

tions (including fixing newly disclosed vulnerabilities for older versions of a FOSS

component) that are important for specific business users, but not for the FOSS

community. The authors [162] argue that these more extensive fixes may require

different strategies such as updating only over specific periods of time (for backward

compatibility), or forking a component (for custom modifications). Regardless of

which of the latter strategies is chosen, this often results into significant additional

work due to maintenance.

1 https://www.gnu.org/licenses/gpl-3.0.en.html
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3. Most FOSS licenses contain rather strong “no warranty” clauses. For instance,

the GNU GPL license contains the following disclaimer: “THERE IS NO WAR-

RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICA-

BLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-

RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM AS

IS WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-

PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE

PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,

YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR

CORRECTION”. The Mozilla Public License2 contains similar clause. Such dis-

claimers often come together with the lack of a contractual binding maintenance

model. Thus, when using FOSS, one needs to decide how this can be mitigated.

This can be done either by entering a commercial agreement with a company that

offers support for FOSS components [57], or by investing into the in-house mainte-

nance. The lack of documentation in FOSS projects [16, 153] may prevent in-house

developers from learning, thus increasing potential maintenance costs.

4. Proprietary software vendors are often unable to influence development processes and

patch release policies of consumed FOSS components [153], which may complicate

maintenance tasks in case vendors have to provide own support for the components.

Given that vulnerability patching is prioritized among other maintenance tasks [13],

it is nearly impossible to establish the equilibrium between patch releases in FOSS

components and updates of versions used by proprietary vendors (see [34] for a

discussion).

5. In particular, security response processes for proprietary software often try to release

detailed information about a vulnerability only after a patch was released. The goals

are to provide customers a safety period to patch their systems before a vulnerability

gets publicly known as well as not publishing fixes that can be transformed into zero

day vulnerabilities for the previous versions of the product. This might conflict,

on one hand with FOSS licenses that require to contribute changes back to the

community and, on the other hand, with security response processes set up by the

FOSS projects – publishing a security patch in the source code form can be considered

as making a vulnerability publicly known (see [130]).

Some of the above aspects are based on empirical studies that are already five to ten

years old. As in the last decade the awareness of software security increased both in FOSS

development, as well as in proprietary software industry, there is a risk that not all of the

findings are still applicable. For example, many larger FOSS projects nowadays support

2https://www.mozilla.org/en-US/MPL/2.0/
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confidential reporting of security issues, as well as responsible patching and disclosure

processes. Thus, for such projects, the aspect (4) may be less of an issue.

There are also indirect consequences of the freedoms and additional opportunities

provided by FOSS licenses. For example, if the maintenance model of a proprietary

component does not fit the needs of consuming software product, one needs to negotiate

a custom support contract, or search for alternative offerings. FOSS components provide

at least two additional opportunities:

1. Apart from the original developers of a FOSS project, there may be other companies

that can offer commercial support and bug fixes. Thus, it is possible to select between

different maintenance offerings for the same component.

2. As the source code is available and modifications are allowed (under certain condi-

tions), one can fix issues independently from the developers of a FOSS component.

Unfortunately, these opportunities also lead to certain risks (see, for example, points

(3) and (4) above).

2.3 Certification and Empirical Assessment of Third-party

Software

2.3.1 Selection and Integration of FOSS components

There exist numerous works [16, 45, 77, 102, 153] that investigate various aspects of open

source software components lifecycle, including scenarios when these components are in-

tegrated into (or re-used by) proprietary applications, as well as discuss the importance

of FOSS for the modern software development [9, 58, 89,104].

Stol and Babar [153] perform a systematic literature review of scientific publications

to identify challenges in integrating open source components into proprietary software

products. The authors identified that among the main challenges there are the product

selection, the lack of comprehensive information, and maintenance considerations. For

instance, insufficient documentation may interfere with the developers’ ability to learn

how to use a component, and the lack of time for performing a thorough evaluation of

a component may cause additional problems in the future (including security). Addi-

tionally, weak community and lack of support for a FOSS component may result into

additional expenses for a company that is using this component. Earlier, Merilinna and

Matinlassi [102] provided an overview of practices for combining open source integration

techniques. The authors [102] also point out that the lack of proper documentation is a

big challenge of adopting FOSS.

Ayala et al. [16] performed an interview within several software companies, and report

their findings about how these companies collect information about FOSS components.

They identified that they are often selected based on the previous experience, even without
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considering alternatives. Thus, according to the study [16], experience was one of the key

factors for the component evaluation. Also, according to the results of their interview,

some developers mentioned that insufficient documentation within many FOSS projects

is indeed a significant problem.

Often, the decision about integration of a FOSS component is made after an appropri-

ate candidate is evaluated against a certain set of criteria. Since every software vendor

(or a development team) may have its own set of evaluation criteria, this process may be

completely ad-hoc [102, 153], or being constantly revised, and, therefore, differ not only

from company to company, but even from case to case.

To tackle the problem, researchers proposed various selection and evaluation models

for FOSS. Ahmad and Laplante [5] proposed a systematic approach for evaluating open

source software against a set of factors that include functionality, licensing, evolution

speed, longevity, community, quality of documentation and support. Aiming to answer

the question “which factors are considered for open source software selection?”, they

developed a framework that simplifies the decision making process for humans. For vali-

dating their method, the authors performed a survey with human participants, indicating

that functionality was the most important selection factor, according to their responses.

However, the approach does not consider any properties of FOSS projects relevant to

software security.

Wheeler [166] described a generic process for evaluating open source software, which

is based on identifying proper candidates, gathering information about the candidates

(reading reviews), and analyzing the shortlist of candidates in more depth. The important

factors to consider include functionality, market attributes, support and maintenance,

various quality attributes, security and legal aspects. For assessing the security, the

author proposed to use static analysis tools (such as Coverity and Fortify), vulnerability

reports, as well as the common criteria evaluation. While using various tools for security

code analyses is a common industrial practice [29], it may be very difficult to perform it

for a large number of FOSS components (see Problem 2 in Chapter 1).

Several works [5, 14, 15, 139, 140] are focused on the overall software quality and func-

tionality as the main selection criteria, with little or no emphasis on software security.

Ardagna et al. [10] proposed FOCSE - the framework for selecting FOSS components that

provides security-related functionality. This framework is based on the set of features of

FOSS projects that could be aggregated and weighted, providing a unified qualitative

measure. Some of these features may be only obtained having a privileged access to the

development information. The approach is suitable for making a decision between several

security-related FOSS projects, as well as for making a choice between other types of

projects. However, it does not include any explicit security metrics that would help to

reason about the security of a FOSS project itself.

Samoladas et al. [139] proposed a model that supports automated software evalua-
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tion, specifically targeted on open source. The set of metrics considered by the model

is represented by the code quality metrics (including security), and community quality

metrics (mailing list, documentation and developer base). While this model takes secu-

rity into account, it comprises of only two variables: “null dereferences” and “undefined

values”. This limitation was a deliberate choice of the authors [139] in order to facilitate

the automation of the metrics collection process.

Del Bianco et al. [51] developed QualiPSo - the methodology for assessing the FOSS

development processes. Instead of providing measures for selecting or integrating FOSS

components, it aims for providing FOSS developers with metrics that could be used to

assess and improve the quality of their projects, increasing the trustworthiness between

FOSS projects and their potential consumers.

Wheeler and Khakimov [167] published a white paper that describes the Census 3

project of Core Infrastructure Initiative. The authors describe a set of publicly available

metrics that should be considered for identifying important (for their set of features)

projects that have security problems due to the lack of resources (investments, developers).

While this methodology cannot be directly used for FOSS project comparison, it provides

an interesting set of metrics and insights that are worth to be considered when selecting

open source components for consumption from the security point of view.

2.3.2 Empirical Assessment of Vulnerabilities

An extensive body of research explores the applicability of various metrics for estimating

the number of bugs and security vulnerabilities of a software component. Apart from

factors that characterize the overall quality, security, and liveness of software projects,

software development companies that are using these projects could employ various pre-

diction approaches from the literature for assessing the security status of a FOSS project.

The simplest such factor is time (since release), and the corresponding model is a

Vulnerability Discovery Model. Massacci and Nguyen [96] provide a comprehensive survey

and independent empirical validation of several vulnerability discovery models. Several

other metrics have been used: code complexity metrics [113, 145, 146], developer activity

metrics [25,145], static analysis defect densities [163], frequencies of occurrence of specific

programming constructs [141, 164], etc. We illustrate some representative cases with

Table 2.1.

Although our focus are security vulnerabilities that may stand aside from generic soft-

ware bugs (e.g., errors in functionality), Ozment [120] showed that methods for estimating

trends in generic bugs used in software engineering literature can be also applied for se-

curity vulnerabilities.

The works by Ostrand et al. [118] and Bell et al. [25] aimed on predicting files in new

3https://www.coreinfrastructure.org/programs/census-project

12

https://www.coreinfrastructure.org/programs/census-project


2.3. CERTIFICATION AND EMPIRICAL ASSESSMENT OF THIRD-PARTY
SOFTWARE

Table 2.1: Vulnerability and bug prediction approaches

We provide a brief overview of various approaches for bug prediction in the existing literature (we refer the

reader to [71] and [125] for a more complete discussion).

Paper Predictors Bug data Predicted vars

Ostrand et al. [118] Bug and change

histories of files

Internal data on previous re-

leases of a commercial system

Files with largest

bug concentration

Nagappan & Ball [109] Relative Code churn Internal defect dataset (Win-

dows Server 2003)

Bug density

Shin & Williams [146] Complexity metrics MFSA, NVD, Bugzilla Vulnerable

functions

Nguyen & Tran [113] Member and

Component depen-

dency graphs,

Complexity metrics

MFSA, NVD Vulnerable

functions

Shin et al. [145] Complexity metrics,

Code churn,

Developer activity

MFSA, Red Hat Linux package

manager

Vulnerable files

Walden & Doyle [163] Static analysis

vulnerability density

NVD Number of

vulnerabilities

Bell et al. [25] Developer metrics Internal data on previous re-

leases of a commercial system

Files with largest

bug concentration

Massacci & Nguyen [96] Known

vulnerabilities

MFSA, NVD, Bugzilla, Mi-

crosoft Security Bulletin, Apple

Knowledge Base, Chrome Issue

Tracker

Number of

vulnerabilities

Scandriato et al. [141] Frequencies of prog.

constructs

SAST warnings (Fortify SCA) Vulnerable files

Walden et al. [164] Complexity metrics,

Frequencies of prog.

constructs

NVD, Security notes from a

project

Vulnerable files

releases of software projects that may have the largest concentration of bugs, so that

they can be prioritized for testing. The work by Ostrand et al. [118] considered bug

modification histories of files in previous releases, while the follow-up study by Bell et

al. [25] used the information about individual developers: the authors of both studies had

access to the industrial systems of the same vendor that they used for evaluating their

work. The authors of [25] find evidence that prediction capabilities of the previous model

in [118] improve when adding the cumulative number of developers as an additional factor.

Nagappan and Ball [109] evaluated code churn metrics for predicting bug densities in

software, showing that metrics taken from development history can be a good predictor
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for the largest clusters of generic software bugs.

Shin and Williams [146] evaluated software complexity metrics for identifying vul-

nerable functions. The authors collected information about vulnerabilities in Mozilla

JavaScript Engine (JSE) from Mozilla Foundation Security Advisories (MFSA)4, and

showed that nesting complexity could be an important factor to consider. The authors

indicate that their approach had a small number of false positives, but at the cost of

having false negatives. In a follow-up work, Shin et al. [145] also analyzed several de-

veloper activity metrics showing that poor developer collaboration can potentially lead

to vulnerabilities, and that complexity metrics alone are not sufficient for vulnerability

prediction. Similarly to [109], the authors of [145] suggest that code churn metrics are

better indicators for approximate locations of vulnerabilities than complexity.

Nguyen and Tran [113] built a vulnerability prediction model using dependency graphs

as intermediate representation of software, and applying machine learning techniques to

train the predictor. They used several static analysis tools for computing source code

metrics, and tools for extracting dependency information from the source code, adding

this information to the graphs that represent a software application. To validate the

approach, the authors analyzed Mozilla JSE. In comparison to [146], the model had a

slightly bigger number of false positives, but less false negatives.

Walden and Doyle [163] used static analysis for predicting web application security

risks. They measured the static analysis vulnerability density (SAVD) metric across ver-

sion histories of five PHP web applications, which is calculated as the number of warnings

issued by the Fortify SCA5 tool per one thousand lines of code. The authors performed

multiple regression analyses using the SAVD values for different severity levels as explana-

tory variables, and the post-release vulnerability density as the response variable, showing

that the SAVD metric could be a potential predictor for the number of new vulnerabilities.

Scandriato et al. [141] proposed to use a machine learning approach, mining source code

of Android components and tracking the occurrences of specific patterns. The authors

used the Fortify SCA tool as the source of ground truth: if the tool issues a warning

about a file, this file is considered to be vulnerable. However, it may not be the case as

static analysis tools can have many false positives, and authors verified manually only the

alerts for 2 applications out of 20. The results show that the approach had good precision

and recall when used for prediction within a single project. Walden et al. [164] confirmed

that the vulnerability prediction technique based on text mining (described in [141]) could

be more accurate than models based on software metrics. They have collected a dataset

of PHP vulnerabilities for three open source web applications by mining the National

Vulnerability Database (NVD) and security announcements of those applications. They

have built two prediction models: (1) a model that predicts potentially vulnerable files

4https://www.mozilla.org/en-US/security/advisories/
5http://www8.hp.com/us/en/software-solutions/static-code-analysis-sast/
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based on source code metrics; and (2) model that uses the occurrence of terms in a PHP

file and machine learning. The analysis shows that their machine learning model had

better precision and recall than the code metrics model, however, it is applicable only for

scripting languages (and must be additionally adjusted for languages other than PHP).

The biggest challenge in applying the results of empirical research in general, as well as

empirical research that aims on security vulnerabilities, is the availability of the informa-

tion that can be used to for evaluation of various heuristics or methods - the ground truth

data. In particular, choosing the right source of vulnerability information is crucial, as

any vulnerability prediction approach highly depends on the accuracy and completeness

of the information in these sources. Massacci and Nguyen [95] addressed the question of

selecting the right source of ground truth for vulnerability analysis. The authors of [95]

show that different vulnerability features are often scattered across vulnerability databases

and discuss problems that are present in these sources. Additionally, the authors provide

a study on Mozilla Firefox vulnerabilities. Their example shows that if a vulnerability

prediction approach is using only one source of vulnerability data (e.g., MFSA), it would

actually miss an important number of vulnerabilities that are present in other sources

such as the NVD. Of course, the same should be true also for the cases when only the

NVD is used as the ground truth source for predicting vulnerabilities.

2.4 The Economic Impact of Security Maintenance

The cost of general software maintenance is well investigated in the literature. Banker

and Slaughter investigated how software maintenance in organizations can be improved

to achieve economical benefits [22]. They find support for the hypothesis that software

maintenance can be characterized by scale economies, grounded on the observation that a

significant part of the maintenance effort spent by developers is understanding the software

to be modified (or patched) [21,59]. Several other software maintenance models considered

the developers’ familiarity with the software as an important factor as well [20,21,35].

The maintenance of software components from security economic perspective is rela-

tively unexplored. Previous research on software economics focused on different choices

such as, for example, buying a component versus building it from scratch [42], consider-

ing trade-offs between component costs and system’s requirements [41], or optimizing the

coupling and cohesion characteristics of component-based systems [88].

The major focus of the software engineering research so far has been on predicting soft-

ware vulnerabilities (see [96]) and the security choices for different maintenance (patching)

strategies. Stol and Babar described the challenges of integrating FOSS components into

proprietary software, according to the past literature [153]. They identify maintenance

among the most important challenges, suggesting that there may be no immediate costs

while selecting FOSS components, but costs will eventually emerge during the consump-
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tion phase as the natural phenomenon of deteriorating software.

The consumption costs of FOSS components can be generated by delays due to software

incompatibility of a newer version of a component with the target application, component

failures (which imply reputation costs as well), maintenance of older versions of compo-

nents, and creating patches [157]. Specifically, security patches that a proprietary vendor

has to apply and distribute to end customers require significant increase in vendor’s soft-

ware maintenance efforts [20, 22]. There could be various other reasons why security

patches provided by FOSS developers cannot be applied effortlessly: for instance, due to

large number of vulnerabilities being disclosed periodically,6 or the fact that third-party

security patches should be additionally verified, or the patch has to be applied for all sup-

ported versions of a proprietary application that relies on potentially unsupported version

of a third-party component being patched.

Conceptually, there is a distinction between consumers – parties that are using the

software, and providers – development teams or organizations that provide the software

and support it. For instance, the security patch management model by Cavusoglu et

al. [34] specifies the costs of a consumer that emerge due to potential security damage

(not applying a patch in time) and update (identifying, testing, and installing patches).

According to the model, the providers’ costs are generated by patch release (developing

and shipping a patch) and reputation losses (vulnerabilities exploited before patches are

released). This implies different types of costs for different parties, however, for our

scenario, a proprietary software vendor would have to bear all these costs. This is because

such vendors are consumers with respect to FOSS components, and, at the same time,

they are providers with respect to their end customers (as FOSS components are bundled

with original applications).

6For example, the study by Eric Rescorla [130] suggests that vulnerability discovery/fix rates for software projects do

not decrease through their lifetime.
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Chapter 3

An Exploratory Case Study at a

Large Software Vendor

In this chapter we report on the exploratory case study that we performed at the premises

of a large software vendor. The study aimed to explore the current approach and experi-

ence of our industrial partner in integrating FOSS components securely into its software

supply chain, as well as to identify the most urgent problems that require attention. We

describe the secure software development process used by our industrial partner and the

place of FOSS components within this process, the selection and consumption of FOSS

components, and discuss the relative importance of security maintenance of such compo-

nents.

3.1 Introduction

The integration of FOSS components into products of proprietary software vendors is a

complex problem that spans different issues at development and maintenance steps. For

instance, at development time, development teams must ensure that FOSS components

adhere to the same standard as a typical vendor’s product.

To this end, our aim was to understand the role of FOSS components within the soft-

ware supply chain of a large proprietary software vendor. We followed Yin [169] as a

guidance on conducting case studies for performing our study. Various techniques exist

for knowledge elicitation [76], and structured and semi-structured interviews are consid-

ered to be among the most important sources of information [169]. We used purposive

sampling [70] while performing informal discussions with developers, and members of Se-

curity Testing and Maintenance teams. We conducted a case study at the premises of our

industrial partner for exploring the following questions:

1. What is the actual secure software development process of an industrial company,

how is it managed, and what is the place of FOSS components within this process?
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2. How are FOSS components selected for consumption, and which are the roles and

activities involved in the choice and integration of FOSS components?

3. How is security maintenance of FOSS components managed, and what is its relative

importance for the software supply chain of our industrial partner?

A total period of 15 months was spent by the author of this dissertation on the premises

of our industrial partner, including 12 months at the Research Lab, and 3 months with

the Security Testing team at the main headquarters. During the latter time period, the

author of this dissertation worked closely with Dr. Achim D. Brucker, who at that time

had been a member of the Central Security Testing team for 8 years.

We collected notes, memos, and emails. We could not hold formally recorded in-

terviews, as they would require an extremely heavy and lengthy authorization process

through the legal department.

We were also making internal presentations to validate our insights, and to capture

the variety of roles and activities related to the secure integration and consumption of

FOSS components for our industrial partner at that time. Dr. Brucker, being the “key

informant” in Yin’s terminology [169], suggested the participants of these meetings, and

provided the necessary introductions and background details to the participants. The

set of participants consisted of interested software developers and security researchers,

employed by our industrial partner. During that time period, we also had an opportu-

nity to present parts of this work to a much broader audience of software developers at

the yearly development kick-off meeting, organized by our industrial partner internally.

During this meeting, we had in-depth discussions with software developers who confirmed

our understanding of the FOSS integration and maintenance problems of our industrial

partner, and allowed us to define our further steps.

3.2 Secure Software Development Lifecycle

The first finding concerns the secure software development process and the place of FOSS

components within it. From what we understood during our meetings with members of the

Central Security Team, our industrial partner follows a Security Development Lifecycle

(SDL) process1, the main steps of which are split into the following phases:

• Preparation: this phase consists of activities related to security awareness trainings

for developers and team managers. One of the purposes of these activities is to raise

awareness for security implications of using third-party FOSS components during

product development.

• Risk Identification: development teams, together with the local security experts,

1This SDL is only one example of a security development lifecycle, and our study is not specific to this particular security

development process. For example, it is similarly applicable to Microsoft’s SDL [78].
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organize various threat modeling activities. The goal of these activities is to identify

potential application-specific risks of all third-party components (including FOSS)

and their attack surfaces.

• Development: this phase includes activities of planning the development of a new

product (or a new product version). In particular, it covers:

– Planning of Security Measures, which describes the mitigation of the previously

identified security risks. For example, it also includes the security testing plan

that describes a product specific, risk-based security testing strategy that ensures

that the security measures are implemented correctly. This security measures

plan needs to cover both in-house development and all kinds of third-party com-

ponents.

– Secure Development, using defensive implementation strategies such as secure

code guidelines and implementation best practices. While this step is mostly

focused on the in-house development, third-party components might influence it

as well (e.g., developers might consider to limit the usage of potentially insecure

interfaces of third-party components). Moreover, for FOSS components the same

techniques (e.g., static code analysis) could be used for the security assessment.

– Security Testing, which ensures that the planned security measures (including

defensive implementation strategies) are implemented and are effective in pre-

venting security threats.

• Transition: this phase is performed by the Security Validation team, which is an

independent control entity that acts like the first customer, and performs security

assessment of the final product. Depending on the previous risk assessment, this may

include architectural security analyses, code reviews, or penetration testing. Any

security issues found during this step, regardless whether they are in own coding or

third-party components, need to be fixed before the actual shipment.

• Utilization: during this phase, the Security Response team handles the communica-

tion with customers and external security researchers about reported vulnerabilities,

as well as ensures that development and maintenance teams fix the reported issues

(including down-ports to all supported releases and all their third-party components

as required by the support agreements).

According to the SDL process defined by our industrial partner, the secure consumption

of FOSS components requires attention in all its phases. However, applying standard

secure development procedures to all FOSS components (for instance, performing static

code analyses) requires solid understanding of the source code, the architecture, and

the use case of each FOSS component – which may be costly for a large number of
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FOSS components (see [29] for further details on applying static analysis in the industry).

Therefore, our industrial partner is exploring risk-based security assessment approach as

a part of the secure development activities (see [19] for example), which motivated the

work carried out in this dissertation. The risk-based approach would, for instance, favor

the search for the factors that help to estimate the security risk and the maintenance

effort associated with the consumption of particular FOSS components, that are easier to

obtain and to assess.

Figure 3.1: Descriptive statistics of FOSS components used or requested by internal projects

The two figures characterize the sample of the most popular 166 FOSS projects used and requested by different

internal projects of our industrial partner: the figure on the left illustrates the sample in terms of the size of the

code base implemented in a specific programming language, while the figure on the right illustrates the distribution

of the number of usages/requests of FOSS components.
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In order to understand the role of FOSS components in the development process of

our industrial partner, we collected data for 166 most popular FOSS projects that were

requested by developers of internal projects as components during the last five years2.

We learned that the number of FOSS components per product may vary: for example,

while traditional ERP systems written in proprietary languages (e.g., ABAP or People-

Code) usually do not contain many FOSS components, the situation is quite the opposite

for recent cloud offerings, such as the ones based on OpenStack3 or Cloud Foundry4. As

we can see from Figure 3.1, FOSS components are integrated into (or requested for inte-

gration by) a large number of projects of our industrial partner. Figure 3.1a illustrates

2This information is publicly available and can be reconstructed from the bill of materials of individual projects found

on the web community of the vendor (although, it was significantly easier to collect this information using the internal

sources).
3https://www.openstack.org/
4https://www.cloudfoundry.org/
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the cumulative size of the code bases of the components in the sample broken down by dif-

ferent programming languages in which they were implemented: the distribution suggests

that the largest code base corresponds to Java.

Figure 3.1b shows the distributions of the number of internal projects that are using

(or have requested) a FOSS component from the sample, divided by Java and non-Java

components: these distributions also suggest the prevalence of Java-based components in

comparison to non-Java components. To verify this difference, we used non-parametric

Wilcoxon test, since the data that we collected is not normally distributed (Shapiro-Wilk

test returned p < 0.05), and it contains unpaired samples. The results of Wilcoxon

test confirmed that Java-based components are indeed more used (or requested) by the

developers of our industrial partner in comparison to the others: the two distributions

have small-to-medium and statistically significant difference (p < 0.05, Cohen’s d = 0.44).

Table 3.1: Popular Java projects used by our industrial partner

Our communications with our industrial partner allowed us to identify several Java projects that we felt to be

among the most interesting and challenging ones when they are to be integrated (or are already integrated) as

components.

Project
Total

commits

Age

(years)

Avg.

commits

(per year)

Total

contributors

Current

size

(KLoC)

Total

CVEs

Apache Tomcat (v6-9) 15730 10.0 1784 30 883 65

Apache ActiveMQ 9264 10.3 896 96 1151 15

Apache Camel 22815 9.0 2551 398 959 7

Apache Cxf 11965 8.0 1500 107 657 16

Spring Framework 12558 7.6 1646 416 997 8

Jenkins 23531 7.4 2493 1665 505 56

Apache Derby 7940 10.7 742 36 689 4

Table 3.1 describes several popular (both externally and internally) Java projects that

we are allowed to directly disclose. Our communications with developers of our industrial

partner suggested that these projects are among the most interesting and challenging

ones when they are to be integrated (or are already integrated) as components. For each

project, the table lists various characteristics that describe its popularity and size, as well

as the number of historical vulnerabilities that affect different versions of Java sources.

3.3 FOSS Components Approval Processes

To address the second question that concerns the processes for selection of FOSS com-

ponents, we identified how this selection is managed, and which are the critical roles and
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activities connected which the selection process.

Our industrial partner has formal processes in place for integration of third-party

FOSS components into its products (inbound approval), as well as for releasing their own

software products as FOSS, and contributing to already existing FOSS projects (outbound

approval). These processes are similar to the inbound and outbound approval processes

described by Goldman and Gabriel [65, Chapter 7]: they also start with legal and business

case checks, as well as identification and assessment of various risks. These risks may

include potential intellectual property infringement, possible lack of support from FOSS

communities, and the quality of the source code and the corresponding documentation

that is intended as a contribution to FOSS communities. Additionally, our industrial

partner has implemented checks for potential security risks for both processes.

Typically, both inbound and outbound approval processes require vast expert knowl-

edge, therefore for different phases of these processes different experts may be involved:

for instance, the security checks are mostly carried out by the Central Security Team,

while legal checks are performed by the legal department. However, all phases of both

inbound and outbound processes may be carried out by the same experts (or teams of

experts), as there is no strict requirement that they should be separated.

3.3.1 Outbound FOSS Approval Process

The outbound process is started when a product group either wants to release a component

using a FOSS license, or to contribute to a FOSS project. This process includes, among

others:

• Legal and license check: is the license chosen to publish the product compatible with

the dependencies and/or the license of the project to which the contribution will be

made?

• Business case check: can this contribution under a FOSS license be justified from a

business perspective? Are the interactions with the FOSS communities well defined?

Are there internal resources for the maintenance and support?

• Security check: does this contribution comply to the Product Security Standard5?

It must have the same level of security assurance as the rest of the products, since

its quality directly reflects on the company.

3.3.2 Inbound FOSS Approval Process

The inbound process is started by software product groups that intend to integrate a FOSS

component in the product they are developing. They must perform a request and specify

how the component will be integrated, as well as which functionality of the component

will be used. Among other activities, this process includes the following:

5See Brucker and Sodan [29] for more information about the Product Security Standard used by our industrial partner.
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• Legal and license check: is the license of a FOSS component compliant to the license

of a product into which it is integrated? Are all requirements of the license (e.g.,

contributing patches back to the community) understood and documented?

• Business case check: what is the significance of the technology that will be inte-

grated? Are there viable alternatives? How this technology will be distributed and

maintained? In comparison to the outbound approval process, the business case check

here is more lightweight.

• Security check: does the component comply to the Product Security Standard? Are

there unpatched security vulnerabilities that may affect customers? Are the security

patches provided by the FOSS developers in a timely manner?

Yet, with respect to the inbound FOSS approval process, security checks are an ingredi-

ent, but not the main decision point. First, certain FOSS components may be the de-facto

standard (e.g., Apache Hadoop6 for big data), so that the end customers of our industrial

partner may expect them to be used. Second, FOSS components may offer functionalities

that are very expensive to re-implement, so FOSS it is the most economical choice [90],

and there might be only one FOSS component with the desired functionality to choose

from. Finally, a component that is better in terms of security in comparison to the similar

ones, may not fit because of a restrictive license.

3.3.3 Security Checks Revisited

For both inbound and outbound approval processes, it is required to perform security

checks for ensuring that the FOSS component adheres to the same standard as the rest

of the products of our industrial partner. This is rather easy to achieve for FOSS con-

tributions (outbound), as this code was being developed by the internal developers using

the SDL. In contrast, for the consumed third-party FOSS components, assessing the

compliance to the Product Security Standard is difficult, as development teams usually

have very limited knowledge about the (secure) development process used to develop a

FOSS component and, moreover, often lack detailed knowledge about the actual imple-

mentation. Still, to ensure the security of the products offered by our industrial partner,

including consumed FOSS components, the general guidance is to treat third-party FOSS

components as own coding with respect to security.

Since 2010, static application security testing (SAST) is widely used by the developers

of our industrial partner (we refer to Brucker and Sodan [29] for more details), and there

is a number of SAST tools used in the industry as a whole (such as HP Fortify7, Synopsis

Coverity8, or Checkmarx9) as a part of the inbound approval process by development

6https://hadoop.apache.org/
7http://www.fortify.com
8http://www.coverity.com
9http://www.checkmarx.com
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teams that request FOSS components. If the analysis of findings of SAST tools shows

that there are exploitable vulnerabilities, mitigation measures are put in place. The latter

could, for instance, result in developing a fix for the FOSS component, or implementing

certain usage restrictions (or workarounds) such as white-listing of user input before it

reaches the FOSS component. As the analysis of SAST results requires a solid under-

standing of the source code, the architecture and the use case of the FOSS component

under analysis, the requirement to statically analyze all FOSS components is a big burden

to the development teams.

3.4 FOSS Maintenance And Response

After we identified how the choice of FOSS components is carried out, our final task

was to understand the relative importance of the security maintenance of chosen FOSS

components, as well as how the maintenance is managed.

The maintenance activities have a significant economic impact that is often not per-

ceived by the “lay users”, as they are used to the “monthly upgrade” process of web

browsers and their plug-ins. Large-scale enterprise software, such as ERP systems, or

industrial control systems are the back-bone of the businesses and, thus, enterprise soft-

ware customers are often rather conservative in upgrading (or replacing) their on-premise

software solutions.

Figure 3.2 shows the distribution of customers, as of 2014, of a large on-premise pro-

prietary product: the y-axis shows the number of customers (systems), and the x-axis

shows the year in which a certain version of the software was released: most customers

were using systems that are between eleven and nine years old. To meet the demands

of the customers, our industrial partner offers support and maintenance, and for selected

products – mainstream support for a number of years and, additional, customer-specific

extended maintenance for several additional years. Thus, all third-party components (in-

cluding FOSS) must be as well supported with security fixes for the same amount of

time.

As customers expect support and maintenance for the complete software solution, our

industrial partner must also ensure maintenance for all integrated third-party components.

This includes security fixes for all such components that require to upgrade or modify

the product (resulting in a security upgrade or a patch that fixes, e.g., Heartbleed10 or

POODLE11), but also issuing articles and security notes that inform customers about

fixing security issues in the environment their system is operated on (e.g., recommending

upgrades of a Linux distribution that customers might use to operate the system).

For pure cloud offerings (e.g., Software-as-a-Service), the situation can be the opposite:

10http://heartbleed.com/
11https://www.oracle.com/technetwork/topics/security/poodlecve-2014-3566-2339408.html
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The distribution (as of 2014) shows #systems (blue) and #customers (red) using the releases of an ERP application

that are released in the year x (values on the y-axis are omitted for confidentiality). In 2014, most customers used

versions (and corresponding FOSS components) that were between 9 and 11 years old.

Figure 3.2: ERP application releases and #customers still using them

cloud offerings usually have rapid release-cycle and, thus, do not require a long mainte-

nance phase – it is more important here whether a consumed third-party component can

be upgraded easily.

As integrated FOSS components may be heavily modified or merged into the code

base of the in-house software products (or integrated prior to the existence of a software

inventory), there exists a problem of identifying the FOSS components that are used

across the software portfolio. For instance, the study by Davies et al. [50] discusses the

importance of identification of open source Java components, as well as proposes effective

heuristics to identify them.

To mitigate this problem, our industrial partner has a FOSS component inventory,

which was created using the Black Duck12 solution. We learned that developers of our

industrial partner use the high-level information provided by this solution and similar

sources to learn about characteristics of FOSS components and make decisions about

them. This information is easily available (at least internally), and contains data such

as the age of a FOSS project, the information about its historical vulnerabilities (mostly

taken from the NVD), and various cumulative data that can be extracted (not without an

effort) from the source code repositories of these projects: the current size of their code

bases, the number of contributors, commits, and similar. We as well used this software

inventory to extract the data on the most popular FOSS projects that we discussed in

Section 3.2.

Table 3.2 summarizes the vulnerability types reported for these FOSS components in

the National Vulnerability Database (NVD). This distribution suggests that the most

prevalent historical vulnerability type is denial of service – the absence of such vulnera-

12http://www.blackduck.com
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Table 3.2: Historical vulnerabilities of 166 FOSS components

The table shows the distribution of historical vulnerability types in the sample of the most popular FOSS projects

used or requested by our industrial partner. The distribution suggests that denial of service was the most prevalent

vulnerability – the absence of such vulnerabilities is critical for business software solutions.

Vulnerability type Portion Vulnerability type Portion

Denial of Service 30.8% Gain Privileges 3.1%

Code execution 20.3% Directory Traversal 2.4%

Overflow 16.6% Memory Corruption 2.2%

Bypass Something 10.3% CSRF 0.9%

Gain Information 7.1% HTTP response splitting 0.3%

XSS 5.9% SQL injection 0.1%

bilities is critical for business software solutions that must be constantly available online.

Also, vulnerabilities of this type may be particularly hard to identify with conventional

static analysis [36]. Given the numbers of internal projects that use and request FOSS

components, the problem of their security maintenance becomes of great importance.

3.5 Preliminary Findings

Our discussions with software developers, security and maintenance experts of our indus-

trial partner allowed us to identify the heuristics and best practices that development

teams and product owners are following to support secure integration of FOSS compo-

nents into their software supply chain. We base our further line of work on some of these

insights, however we do not deal with most of the organizational measures.

We split these findings into the following two parts: (1) a checklist for product own-

ers and developers that they follow both when selecting a FOSS component, and when

integrating the component into a software product, and (2) organizational and process

improvements that provide the overall environment for using FOSS securely.

3.5.1 FOSS Integration and Maintenance Checklist

We have identified the following points that our industrial partner considers for secure

selection of FOSS components (inbound FOSS approval process that we describe in Section

3.3.2), as well as for integration with new or existing software products when considering

future maintenance (the utilization phase of the SDL process that we describe in Section

3.2):

• How widely is a component used within the software portfolio of our industrial part-

ner? Those components that have been already used in some products require lower

effort, as licensing checks are already done, and internal technical expertise can be
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tapped. Thus, the effort for fixing issues or integrating new versions can be shared

across multiple development teams.

• Are the technologies used in a FOSS project familiar to the development teams?

Similarly to the above point, if there exists an internal technical expertise in certain

programming languages, frameworks, and development processes, it can be re-used

for lowering the effort of integration and future support of a FOSS component.

• What is the maintenance lifecycle used by the FOSS components? It may be impor-

tant to consider the planned support for FOSS components provided by their own

developers. For example, if the security maintenance support provided by the FOSS

community “outlives” the planned maintenance lifecycle of the consuming propri-

etary product, only the integration of minor releases into proprietary releases would

be necessary.

• How active is the FOSS community? Consuming FOSS from active and well-known

FOSS communities (e.g., Apache) should allow development teams to leverage ex-

ternal expertise, as well as to benefit from externally provided security fixes.

• Are FOSS maintainers providing information about security issues and secure devel-

opment processes? Explicit and up-to-date information about security issues in FOSS

projects provided by FOSS maintainers facilitates timely issue resolution for all con-

sumers. The availability of information about security testing processes within FOSS

projects may facilitate external security assessment by consumers: for instance, FOSS

project maintainers may explicitly state that its developers are using certain security

testing tools, such as public offerings from Coverity (http://scan.coverity.com).

• Does a FOSS component have a large number of dependencies? This is a factor that

becomes even more important after a FOSS component was already selected and

integrated, since all such dependencies have to be maintained. Ideally, all the above

considerations should also apply to the transitive closure of dependencies of a FOSS

component that is to be integrated.

Additional elements, such as license compatibility, or requests from customers that need

integration with their code are also important. However, we do not consider them in this

study. Licenses follow different principles and can be a separate subject for a dissertation

in business and law. For further discussion on alliances for software production see [159],

or [134] on legal issues and licensing models.

3.5.2 FOSS Organizational and Process Measures

From an organizational perspective, we have identified the following processes and cam-

paigns that are used by our industrial partner, and are relevant to the goal of secure

integration of FOSS components into the software supply chain:

• FOSS approval processes are defined and used. Clear definition of the approval pro-
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cesses that describe the necessary steps for using FOSS components, as well as con-

tributing to FOSS, help to make informed decisions about FOSS components, to

avoid unnecessary risks (e.g., intellectual property, or security), as well as to main-

tain the software inventory that mitigates risks that usually may in the consumption

phase (e.g., security maintenance). These approval processes typically cover at least

the license checks, as well as the security and maintenance checks (inbound), and a

compliance check of the security patch strategy (outbound).

• Software inventory is implemented and is regularly updated. A software inventory

that contains information about FOSS components used and their corresponding

versions allows to track the usage of FOSS components through the entire portfolio

of software products. On the other hand, the absence of such an inventory may lead

to the problems of identifying the components and corresponding versions of these

components that constitute a software product – this significantly complicates timely

resolution of security issues. Ideally, this inventory should be managed automatically,

by analyzing the build system or the binaries of the final product (for instance, using

approaches similar to the work of Davies et al. [50]).

• Vulnerability databases are monitored for new vulnerabilities in used FOSS compo-

nents. Regular monitoring of public vulnerability databases and project-specific vul-

nerability data sources for newly disclosed security vulnerabilities in the consumed

FOSS components allows to identify the information that can be used by developers

to timely fix security issues. This also allows to timely inform customers about rel-

evant security issues in third-party FOSS components, so that they can plan their

actions.

• A maintenance strategy that fits the current FOSS usage model is defined and used.

This could range from buying maintenance and support for FOSS components from

third-party vendors, to applying local maintenance when a team that is consuming

a FOSS component is responsible for resolving security issues in them, or to intro-

ducing a centralized maintenance model for the entire company, or a mixture of the

aforementioned options. Having a clear maintenance strategy helps to save precious

development resources. We base the maintenance models that we discuss in Chapter

6 on this insight. Additionally, a maintenance strategy needs to have particular focus

on applying security fixes in timely manner (e.g., down-porting fixes, or upgrading),

as discovery of new vulnerabilities is close to impossible to plan beforehand. Another

important issue that emerged is that there exists a possibility that FOSS components

will be maintained and supported in-house exclusively (e.g., due to the lack of sup-

port from FOSS developers). Therefore, accessing these components in the source

code form may be more preferable.

• An awareness campaign about FOSS components is run. Regular internal seminars

or trainings for developers and product owners on FOSS components, that explain
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the open source software licenses, as well as the associated implications for the effort

of secure integration and maintenance may help to ensure that the above processes

are running as effective as possible.

3.6 Conclusions

The main goal of this study was to identify the current status of handling FOSS compo-

nents within the software supply chain of our industrial partner, as well as to identify the

most important problems in securing these components that require attention the most.

From our communications with software developers and security experts, we under-

stood that the SDL process of our industrial partner consists of several phases, and that

the security of FOSS components is considered throughout the most of them. While the

SDL process dictates that FOSS components should receive the same treatment in all

these phases with no difference to the in-house coding, this rule is difficult to enforce

due to the lack of in-depth knowledge about every component by the in-house software

developers, and the large number of integrated components and their versions.

We observed that our industrial partner is using inbound and outbound FOSS approval

processes that aim to identify various risks that are relevant to either contributing to

FOSS projects (or releasing in-house coding under an open source software license), or to

integrating FOSS components into own products. These two processes consist mainly of

assessing legal, business, and security risks, and may be carried out by different experts

within the company. Note that for the inbound approval process, the security checks may

be only a part of the FOSS selection problem besides legal and business considerations.

However, the importance of the security characteristics of FOSS components may be-

come more apparent at the utilization phase of the SDL process, specifically, during the

maintenance period of a software product. From what we understood by questioning

developers and software experts, security maintenance of these components (updating

different versions of a product because of security issues in FOSS, or providing a custom

fix) generates a significant amount of effort for developers due to the sheer number of

integrated FOSS components, and their different versions. This is also aggravated by the

potential lack of expertise from the in-house developers on every FOSS component that

is being used.

As we looked at the software maintenance processes of our industrial partner in general,

we understood the utmost importance of the security maintenance of third-party FOSS

components, which can potentially generate significant amount of effort for the in-house

developers and software maintenance experts. Therefore, the goal of minimizing these

efforts throughout the entire software product lifecycle (FOSS approval process, SDL

process, as well as maintenance and support processes) motivated the main problems

that we tackle in this dissertation (we outline them in Chapter 1).
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Chapter 4

TestREx: a Testbed for Repeatable

Exploits1

In this chapter we describe our solution to Problem 1 that lies in understanding whether

existing exploits for disclosed security vulnerabilities can be reproduced in different set-

tings and environments.

4.1 Introduction

Web applications are nowadays one of the preferred ways of providing services to users

and customers. Modern application platforms provide a great deal of flexibility, including

portability of applications between different types of execution environments, e.g., in order

to meet specific cost, performance, and technical needs. However, they are known to suffer

from potentially devastating vulnerabilities, such as flaws in the application design or code,

which allow attackers to compromise data and functionality (for instance, see [156,170]).

Vulnerable web applications are a major target for hackers and cyber attackers [142],

while vulnerabilities are hard to identify by traditional black-box approaches for security

testing [44,94,161].

A key difficulty is that web applications are deployed and run in many different exe-

cution environments, consisting of operating systems, web servers, database engines, and

other sorts of supporting applications in the backend, as well as different configurations in

the frontend [94]. This difficulty can be illustrated with typical exploits for the two types

of web application security vulnerabilities: SQL injection exploits (the success depends

on the capabilities of the underlying database and the authorizations of the user who

runs it [156, Chapter 9]), and Cross-site Scripting (XSS) exploits (the success depends

on a specific web browser being used and its rules for executing or blocking JavaScript

1 This chapter is the result of a joint work with Daniel Ricardo Dos Santos, a fellow PhD student in the SECENTIS

project.
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Table 4.1: Available exploits in TestREx corpus

Language Exploits Source

PHP 83 BugBox [114]

Java 10 WebGoat [119]

Server-side JavaScript 7 Own

code [170, Chapter 14]). Such differences in software environments may transform failed

exploitation attempts into successful ones, and vice versa.

Industrial approaches to black-box application security testing (e.g., IBM AppScan2)

or academic ones (e.g., Secubat [83] and BugBox [114]) require security researchers to

write down a number of specific exploits that can demonstrate the (un)desired behavior.

Information about the configuration is an intrinsic part of the vulnerability description.

Since the operating system and supporting applications in the environment can also have

different versions, this easily escalates to a huge number of combinations which can be

hard to manually deploy and test.

We need a way to automatically switch configurations and re-test exploits to check

whether they work with a different configuration. Such data should also be automatically

collected, so that a researcher can see how different exploits work once the configuration

changes. Such automatic process of “set-up configuration, run exploit, measure result”

was proposed by Allodi et al. [7] for testing exploit kits, but it is not available for testing

web applications.

Our proposed solution, TestREx3, combines packing applications and execution envi-

ronments that can be easily and rapidly deployed, scripted exploits that can be automati-

cally injected, useful reporting and an isolation between running instances of applications

to provide a real “playground” and an experimental setup where security testers and re-

searchers can perform their tests and experiments, and get reports at various levels of

detail.

We also provide a corpus of vulnerable web applications to illustrate the usage of

TestREx over a variety of web programming languages. The exploit corpus is summa-

rized in Table 4.1. Some of the exploits are taken from existing sources (e.g., BugBox [114]

and WebGoat [119]), while others are developed by us. For the latter category, we fo-

cused on server-side JavaScript, because of its growing popularity in both open source

and industrial usage (e.g., Node.js4 and SAP HANA5) and, to the best of our knowledge,

the lack of vulnerability benchmarks.

2http://www.ibm.com/software/products/en/appscan
3http://securitylab.disi.unitn.it/doku.php?id=testrex
4http://nodejs.org/
5https://help.sap.com/hana
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4.2 Related Work

Empirical security research has been recognized as very important in recent years [32,

54, 97]. However, a number of issues should be tackled in order to correctly provide

security experimentation setups. These issues include isolation of the experimental envi-

ronment [7,27,30,114], repeatability of individual experiments [7,54], collection of exper-

imental results, and justification of collected data [97].

The use of a structured testbed can help in achieving greater control over the execu-

tion environment, isolation among experiments, and reproducibility. Most proposals for

security research testbeds focus on the network level (e.g., DETER [27], ViSe [12], and

vGrounds [81]). A comparison of network-based experimental security testbeds can be

found in the Master’s thesis by Stoner [154]. On the application level there are signif-

icantly less experimental frameworks. The BugBox framework [114] is one of them. It

provides the infrastructure for deploying vulnerable PHP-MySQL web applications, cre-

ating exploits and running these exploits against applications in an isolated and easily

customizable environment. As in BugBox, we use the concepts of execution isolation and

environment flexibility. However, we needed to have more variety in software configura-

tions and process those configurations automatically. We have broaden the configurations

scope by implementing software containers for different kinds of web applications, and

automatically deploy them.

The idea of automatically loading a series of clean configurations every time before an

exploit is launched was also proposed by Allodi et al. in their MalwareLab [7]. They load

snapshots of virtual machines that contain clean software environment and then “spoil”

the environment by running exploit kits. This eliminates the undesired cross-influence

between separate experiments and enforces repeatability, so we have incorporated it into

TestREx. For certain scenarios, cross-influence might be a desired behavior, therefore

TestREx makes it possible to run an experiment suite in which the experimenter can

choose to start from a clean environment for each individual exploit/configuration pair or

to reuse the same environment for a group of related exploits.

Maxion and Killourhy [97] have shown the importance of comparative experiments

for software security. It is not enough to just collect the data once, it is also important

to have the possibility to assess the results of the experiment. Therefore, TestREx

includes functionalities for automatically collecting raw statistics on successes and failures

of exploits. We summarize the discussed tools and approaches in Table 4.2.

4.3 Overview of TestREx

TestREx was designed to provide testers with a convenient environment for automated,

large-scale experiments. We believe that TestREx is useful for developers as well. To
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Table 4.2: Security testing and experimentation tools

The existing tools and approaches provide various functionalities with respect to deployment (e.g., from running

on a local virtual machine to providing controlled environments on real hardware). Most of the security research

testbeds focus on the network level, while on the application level there are significantly less experimental

frameworks.

Tool Description Exploit types

BugBox [114]
A corpus and exploit simulation environment

for PHP web application vulnerabilities.

Selenium and Metasploit

scripts in Python that exploit

PHP application vulnerabili-

ties.

MalwareLab [7]
A controlled environment for experimenting

with malicious software.

Programs that exploit various

software vulnerabilities or mal-

ware kits.

MINESTRONE [56]

A software vulnerability testing framework for

C/C++ programs. The applications are de-

ployed in virtualized environments via Linux

Containers

Programs that exploit memory

corruption, null pointer, num-

ber handling and resource leak

vulnerabilities in C/C++ soft-

ware.

DETER [27]

A testbed facility that consists of a large set

(around 400) of real machines. The resources

infrastructure can be reconfigured on-the-fly

upon request.

Programs that exploit various

software vulnerabilities or mal-

ware kits.

ViSe [12]

A virtual testbed for reproducing and collect-

ing the evidence of security attacks that is

based on VMWare virtualization environment.

Multi-level attacks that include

network tampering and soft-

ware vulnerability exploitation.

SecuBat [83]

Web vulnerability scanner, that automatically

scans live web sites for vulnerabilities using a

web crawler infrastructure.

Specially crafted HTTP re-

quests that exploit SQLi and

XSS vulnerabilities.

vGround [81]

A virtual playground for malware assessment,

that is created on top of a physical infrastruc-

ture - a machine, a cluster or a multi-domain

overlay infrastructure.

Malicious software such as vir-

tual worms or malware kits.

support this claim, we give an example of a possible loophole in a bug fixing workflow of

a hypothetical company:

• A tester finds a bug and opens a new issue in a bug tracking system. She submits it

as a test case described in natural language, explaining all preconditions and steps

needed to reproduce the bug.

• A manager assigns the issue to a developer. In order to pinpoint the source of the

bug and understand how to fix it, the developer must reproduce the test case in his

own setting. If the tester makes a mistake while creating the test case, the developer
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will be unable to trigger the bug. As a consequence, the developer rejects the fix

request.

• In the worst case, it might take a long time before the bug will be re-discovered and

eventually fixed. In a better case, more resources are wasted if the tester has to

re-describe the bug, and a manager has to re-assign the bug to a developer.

Using TestREx, the tester could create an “executable description” of a bug in the

form of a script, and a packed execution environment that allows to instantly replay the

situation that triggered the bug. Despite taking longer for the tester to initially describe

the bug this way, it has many advantages over the natural language approach. First, the

tester and the developer are ensured that the bug can be reproduced. Second, the test

case can be kept as a template on which future tests can be developed, i.e., the first test

is harder to describe, but future tests can reuse parts of the first one. Third, the test can

be automatically added to a library of regression tests, to ensure that the same bug will

be detected if reinserted in future versions of the application.

4.3.1 Terminology

Before we proceed, we introduce several concepts that we use for further discussion6:

• Image – a snapshot of an application configured to run in a certain software environ-

ment (e.g., an operating system, a web server, and a database engine) that includes

the software environment as well. An image can be instantiated into a container that

a tester can interact with.

• Configuration – Configurations are used for creating images. We use this term to

denote a particular setup for an application and its supporting software components

with particular values of setup parameters (configuration files, packages, etc.), as

well as a set of instructions that are automatically executed in order to create an

image in which these applications and components are “deployed”.

• Container – an instance of an image. This instance represents a certain state of

an application and its software environment, that can be “run” for testing, and

dismissed when testing is over. It can be either started using the pristine state of

its base image (creating a new container, i.e., instance), or resumed from a certain

existing state (re-using a container, that was already instantiated).

6Technically, these concepts are implemented using Docker (https://www.docker.io/) – we describe the implementation

in Section 4.4. However, a different implementation may be obtained using traditional virtual machines to which these

general concepts can be applied as well.
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4.3.2 Typical workflow

An automated testbed should help security researchers in answering (semi) automati-

cally a number of security questions. Given an exploit X that successfully subverts an

application A running on an environment E:

1. Will X be successful on application A running on a new environment E ′?

2. Will X be successful on a new version of the application, A′, running on the same

environment?

3. Will X also be successful on a new version of the application, A′, running on a new

environment E ′?

These questions can be exemplified in the following situation:

Example 1 We have a working SQL injection exploit for the WordPress 3.2 application

running with MySQL and, we would like to know whether (1) the same exploit works for

WordPress 3.2 running with PostgreSQL; (2) the same exploit works for WordPress 3.3

running with MySQL; and (3) the same exploit works for WordPress 3.3 and PostgreSQL.

We use this example throughout the chapter to illustrate the concepts and components

used in the framework.

A key feature that we have sought to implement, is that the architecture of TestREx

should be easily extensible to allow for the inclusion of new exploits, applications, and

execution environments. Figure 4.1 shows a typical workflow when an application and

the corresponding scripted exploits are deployed and run within TestREx:

1. A tester provides the necessary configuration for a specific image, including the

application and software component files, and the scripted exploits to be executed

(the latter is optional, as TestREx also supports manual testing).

2. The Execution Engine component of TestREx builds the image and instantiates

the corresponding container.

3. The Execution Engine runs corresponding exploit(s) against the application con-

tainer,

4. and monitors whether the exploit execution was successful.

5. After the exploit(s) are executed, the Execution Engine dismisses the correspond-

ing container (optionally, further exploits may reuse the same container when the

tester wishes to observe the cumulative effect of several exploits) and cleans up the

environment.

6. The exploit(s) execution report is generated.

One of the main goals of TestREx is to make the testing process as automated as

possible. Another important task is to make it possible to run applications and exploits

in a clean and isolated environment. This is why we included the option of resetting the

state of an application before running a test – this allows to run tests in parallel (see the

point 5 above).
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The workflow of TestREx is straightforward: a tester provides configuration details of an application, its deploy-

ment environment, as well as the exploit scripts; TestREx automates the remaining actions, such as building

and loading the environment, and running and monitoring the exploit.

Figure 4.1: TestREx workflow

TestREx also includes some additional utilities. For instance, the Packing Module

allows to package configurations in compressed archive files that can be easily deployed

in another system running TestREx. Also, the Utilities module includes a collection

of scripts to import applications and exploits from other sources, such as BugBox, and to

manage the containers.

Example 2 The inputs for Example 1 are instantiated as follows:

• Application: There are two applications of interest, each one is a set of .html,

.php and .js files in a Wordpress folder.

• Configuration: There are four configurations of interest, one for WP3.2 with

MySQL, one for WP3.3 with MySQL, one for WP3.2 with PostgreSQL, and one

for WP3.3 with PostgreSQL.

• Image: There are two possible images, one with Ubuntu Linux distribution, Apache

web server and MySQL database engine, and one with Ubuntu, Apache and Post-

greSQL.

• Exploit(s): There is only one exploit – a script that navigates to the vulnerable web

page, interacts with it and injects a payload, simulating the actions of an attacker.
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In our setting, exploits are unit tests: (1) every exploit is self-contained and can be

executed independently; and (2) every exploit is targeted to take advantage of a specific

vulnerability in a given application.

When using the framework in a specific application, the exploit can be written by the

tester or taken from a public source. In any case, the exploit code must be compliant

with what we expect from an exploit, e.g., it must be a subclass of the BasicExploit

class provided with TestREx, and contain metadata that specifies the target image and

describes the exploit script (more details are in Section 4.6.3).

4.4 Implementation

TestREx is implemented in Python, mainly because it allows fast and easy prototyping

and because of the availability of libraries and frameworks, such as docker-py to interface

it with Docker (see below). Below we describe in details the implementation of each

component of the framework.

4.4.1 Execution Engine

The Execution Engine is the main TestREx module that binds all its features together.

It supports three modes of operation: single, batch and manual.

The single mode allows testers to specify and run a desired exploit against a container

that corresponds to the chosen application image just once. This is useful when the tester

wants to quickly check whether the same exploit works for a few different applications,

different versions of the same application or the same application deployed in different

software environments. A “.csv” report is generated at the end of the run.

To run applications and exploits in the batch mode, TestREx loops through a folder

containing exploit files, and runs them against respective containers, generating a sum-

mary “.csv” report in the end. In this mode, the Execution Engine maps exploits to

application images by scanning the metadata in each exploit, where appropriate target

images are specified by the tester.

For manual testing, the Execution Engine instantiates a container based on the cho-

sen application image, and returns the control to the tester (e.g., by opening a web browser

and navigating to the application, or returning a shell). No report is generated in this

case.

The Execution Engine contains an additional setting for handing containers when

chosen exploits are executed: it is possible to either destroy a particular container after

the execution, in order to start with a “fresh” instance of the image for each exploit run;

or to reuse the same container when its state has to be preserved, so that further exploits

may have a cumulative effect that the tester wishes to observe.

38



4.4. IMPLEMENTATION

4.4.2 Applications

Applications are packaged as “.zip” files containing all their necessary code and other

supporting files, such as database dumps. Unpacked applications must be located un-

der the “<testbed_root>/data/targets/applications” folder to be accessible by the

Execution Engine.

Table 4.3: Applications in the corpus

The table shows the applications (real-world and artificial ones) that TestREx currently includes. The

“Containers” column specifies a generic container upon which a specific application image is created, and the

“Source” column specifies the source from which we adapted exploits for these applications.

Language Applications Containers Source

PHP

WordPress, CuteFlow, Horde, PHP Address Book,

Drupal, Proplayer, Family Connections, AjaXplorer,

Gigpress, Relevanssi, PhotoSmash, WP DS FAQ, SH

Slideshow, yolink search, CMS Tree page view, Tiny-

CMS, Store Locator Plus, phpAccounts, Schreikasten,

eXtplorer, Glossword, Pretty Link

ubuntu-apache-

mysql
BugBox

Java WebGoat
ubuntu-tomcat-

java
WebGoat

Server-side

JavaScript

CoreApp, JS-YAML, NoSQLInjection, ODataApp,

SQLInjection, ST, WordPress3.2, XSSReflected, XSS-

Stored

ubuntu-node,

ubuntu-node-mongo,

ubuntu-node-mysql

Our

examples

As an example, we provide some applications with known vulnerabilities (listed in

Table 4.3) most of which are known real-world applications, only some of them being

small artificial examples developed by us to explore security vulnerabilities typical for

server-side JavaScript applications.

4.4.3 Images and Containers

Ideally, security testers should have the possibility of using various types of computing

components and platforms, regardless of the type of underlying hardware and software

that may be available.

To provide testers with the possibility of running applications in various environments

in a flexible, scalable, and cost-effective manner, we employ software images (that are,

implementation-wise, Docker images). Every such image represents a data storage for vir-

tualized computing components or platforms, e.g., operating systems, application servers,

database management systems, and other types of supporting applications.

Instead of creating virtual machines for applications and their software environments,

we instantiate and run containers from corresponding images. These containers are based
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Table 4.4: Software components for generic images currently provided with TestREx

Web server DB engine OS

Apache MySQL Ubuntu

Node.js MySQL Ubuntu

Node.js MongoDB Ubuntu

Tomcat MySQL Ubuntu

on the OCI7 standards, which are nowadays widely accepted in industry as a form of

“lightweight virtualization” at the operating system level. They are sandboxed filesystems

that reuse the same operating system kernel, but have no access to the actual operating

system where they are deployed.

Some initial developments in this area were FreeBSD Jails8, Solaris Zones9, and Linux

Containers10. Currently, Docker is the de facto standard for containers. Docker provides

a format for packing and running applications within lightweight file repositories that are

called Docker containers. We use Docker to create images and instantiate containers.

Images are specified in Dockerfiles (a format defined by the Docker project) – these files

represent configurations to which we refer in Section 4.3.1. Downloading generic software

components and re-creating a Docker container from a corresponding image every time an

application has to be run might be resouce- and time-consuming. Therefore, we use im-

age inheritance supported for Dockerfiles, creating several images for containers that hold

generic software components, and can be reused by certain types of web applications. For

instance, such images may encapsulate an operating system, a web server and a database

engine, and their corresponding containers are instantiated only once. We provide some

predefined images for common environments, using software components shown in Ta-

ble 4.4. We use the following naming convention for such images: “<operating_system>

-<webserver>-<database>-<others>”. In contrast, for images which actually contain

an application to be tested (apart from generic software components) we use a different

naming convention: “<application-name>__[software-image-name]”.

When the Execution Engine invokes an application image, the corresponding con-

tainer will be instantiated and run using Docker. Then, depending on the run setting

(see Section 4.4.1), the container will be handled correspondingly when chosen exploits

are executed (either destroyed, or reused for further exploit runs).

Figure 4.2 gives an intuition on how an image for the WordPress 3.2 application can

be composed with Dockerfiles: the image is created on the basis of two images combining

Ubuntu OS with Apache web server and MySQL database.

7https://www.opencontainers.org/
8https://www.freebsd.org/doc/handbook/jails.html
9https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm

10https://linuxcontainers.org/
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Application images are composed of several “layers”: an operating system, a web server, and a database engine –

the application itself is deployed on top. These components can be combined in all possible configurations supported

by the application.

Figure 4.2: Wordpress3.2 ubuntu-apache-mysql image

4.4.4 Configurations

Implementation-wise, configurations correspond to the contents of Dockerfiles and sup-

porting scripts that specify how an application can be installed and run in a container,

including, e.g., prerequisites such as preloading certain data to a database, creating

users, and starting a server. Additionally, configuration data for applications may in-

clude databases and application data.

The configuration files must be placed in a separate folder under the configurations

root folder (“<testbed_root>/data/targets/configurations”). We use the following

naming convention to simplify matching configuration files with images that can be created

using them: “<app-name>__<app-container-name>”.

Example 3 A configuration folder for the application “Wordpress_ 3. 2 ”, might have the

names “Wordpress_ 3. 2_ _ubuntu-apache-mysql ” or “Wordpress_ 3. 2_ _ubuntu-

apache-postgresql ”, depending on the image that is intended for it.

Listings 4.1 and 4.2 present an example of a Dockerfile and a “run.sh” file, used to

configure a WordPress 3.2 application within the “ubuntu-apache-mysql” image.

In Listing 4.1, line 1 specifies that the image for this application is built on top of the

“ubuntu-apache-mysql” image. In lines 2 and 3, the application files are copied to the

“/var/www/wordpress” folder in the image and in lines 4 and 5, the “run.sh” script is

invoked inside the container.

1 FROM ubuntu−apache−mysql

2 RUN mkdir / var /www/ wordpress
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3 ADD . / var /www/ wordpress

4 RUN chmod +x / var /www/ wordpress /run . sh

5 CMD cd / var /www/ wordpress && . / run . sh

Listing 4.1: Dockerfile example

1 #!/ bin /bash

2 mysq ld sa fe &

3 s l e e p 5

4 mysql < database . s q l

5 mysqladmin −u root password toor

6 apache2ct l s t a r t

Listing 4.2: Shell script file example

In Listing 4.2, lines 2-5 are used to start the database server and pre-load the database

with application data. Line 6 starts the Apache web server.

4.4.5 Exploits

Table 4.5 shows the classification of typical security flaws that might be present in both

client- and server-side parts of a web application11, which can be tested with TestREx.

In TestREx, exploits may be any executable file that, when executed in a specified

context, provide testers with unauthorized access to, or use of functionality or data within

that context. Exploits include any sequence of steps that must be taken in order to cause

unintended behavior through taking advantage of a vulnerability in an application and/or

surrounding environment. For example, exploits may be used to provide access to sensitive

data, such as financial data or personal data. Exploits may hijack capabilities or other

functionalities of applications and cause the applications to perform tasks that are not

desired by authorized users, such as tracking user activities and reporting on these to the

unauthorized user of the exploit. Other types of exploits may allow unauthorized users

to impersonate authorized users.

Still, the above description of an exploit is quite vague, and may lead to having many

automated exploit scripts that are not compatible due to various differences in their

implementation (e.g., as a consequence it may be difficult to run them in a batch, and/or

use them to produce a unified testing report). To avoid these potential problems, we

implemented exploits as a hierarchy of Python classes that have the following minimal

set of properties: (1) every exploit contains metadata describing its characteristics such

as name, description, type, target application and container; (2) exploit classes must pass

logging information and results of the run to the Execution Engine, providing a way for

the Execution Engine to know that the exploit execution was successful.

11This classification is according to the OWASP TOP 10: https://www.owasp.org/index.php/Top_10_2013-Top_10
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Table 4.5: Security flaws of web applications

The following security flaws may be present in web applications regardless of their implementation and

deployment details. Yet, their successful exploitation strongly depends on the actual variant of deployment (e.g.,

MongoDB versus MySQL database, type and version of the web server, etc.).

Security flaw Description Tech.

impact
SQL/NoSQL

injection

(SQLi/NoSQLi)

User input is used to construct a database query and is not properly sanitized,

allowing a malicious user to change the intended database query into an arbi-

trary one. Threats: Information Disclosure, Data Integrity, Elevation

of Privileges.

Severe

Code injection Similar to SQLi/NoSQLi, however, instead of a database, user input is exe-

cuted by a code/command interpreter. Malicious payload can be executed on

both client and server, and may result into a complete takeover of the host

machine on which the vulnerable application runs. Threats: Information

Disclosure, Data Integrity, Elevation of Privileges, Host Takeover.

Severe

Cross-site scripting

(XSS)

Each time a user-supplied data is being displayed in a web browser, there is

a risk of XSS attacks: attacker can supply JavaScript code that either gets

executed in a victim’s browser and stealing victim’s credentials or making

actions on her behalf. Almost any source of data can be an attack vector (e.g.,

direct user input, data coming from a database, etc.). Threats: Information

Disclosure, Elevation of Privileges.

Moderate

Cross-site

request forgery

(CSRF)

CSRF attacks take advantage of benign applications that allow attackers to

act on their behalf: user is secretly redirected from a trusted page to attacker’s

page, and user’s authentication information is used by an attacker. Applica-

tions that allow manipulations with DOM container of its pages are vulnerable.

Threats: Session/Credentials Hijacking.

Moderate

Unvalidated

URL redirects

URL redirects instruct the web browser to navigate to a certain page. While

this feature can be useful in many different contexts, developers should be

careful and restrict user manipulations with a destination page: an attacker

may conduct phishing attacks using a trustworthy website that has this vul-

nerability. Threats: Open Redirect.

Moderate

Sensitive data

disclosure

Sensitive/Personal data is attractive for attackers per definition, therefore the

goal of most of attacks is to get a piece of such data. Since personal data is

usually protected by law regulations, every such data flow in a web applica-

tion must be protected against injection and interception attacks, as well as

overly detailed error messages and application logic flaws that disclose context

information to potential attackers. Threats: Information Disclosure.

Severe

Test code leftovers A tester may insert a piece of testing code into the application and forget to

remove it upon release. This can lead to any kind of unexpected behavior:

for example, anyone could get access to the application with a login ’Bob’

and a password ‘123’ gaining full administrator access. Such forgotten pieces

of test code are indistinguishable from maliciously crafted backdoors per se.

Threats: Backdoor.

Severe

Using known

vulnerable

components

If vulnerable versions of third-party components are used (e.g., an open source

library) in a web application, an attacker can identify known vulnerabilities

and perform a successful attack. In many cases, developers are not aware of

all components they are using for their application. Vulnerable component de-

pendencies aggravate the problem. Threats: Potentially all of the above.

May

vary
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We also incorporate the Selenium Web Driver 12 for implementing exploits, as it can

be used to simulate user/attacker actions in a web browser, and provides all necessary

means to automate them. Additionally, it supports JavaScript execution and DOM in-

teraction [114]. Every Selenium-based exploit in the framework is a subclass of the

BasicExploit class, which encapsulates basic Selenium functionality to automate the

web browser (e.g., “setUp()” and “tearDown()” routines, logging and reporting, etc.).

To create a new exploit, the tester has to create a new exploit class, specify the exploit-

specific metadata and override the “runExploit()” method by adding a set of actions

required to perform an exploit. The success of an exploit run is also verified within the

“runExploit()” method - this might be different for every exploit – this allows us to

handle complex exploits that are not always deterministic. For such cases, the exploit can

be specified to run a certain number of times until it is considered a success or a failure.

The current implementation of TestREx exploits allows testers to interact with a

vulnerable web application via a web browser, and is targeted at attacking (and changing

the state of) that web application only. However, it is possible to develop other classes

of exploits for exploring more complex scenarios that allow to go beyond testing for the

presence of a vulnerability using a web browser. For instance, a vulnerability in a web

application may be used as an entry point for installing a backdoor to the machine where

this application is deployed (e.g., chaining the path traversal vulnerability in Apache

Tomcat CVE-2008-2938 to obtain a local web server’s account, and obtain the root shell

using another vulnerability of Apache Tomcat – CVE-2016-1240 ).

4.4.6 Report

Different context conditions may transform failed exploit attempts into successful ones,

and vice versa. A given exploit test may include a number of possible combinations

of applications, execution environments, and exploits, each of which may be configured

in various ways. For example, an exploit that may be successful in exploiting a first

application in a first environment may not be successful in exploiting the same application

in a second environment, but may be successful in exploiting a second application in the

second environment. Moreover, upon determining a success of a given exploit, it will be

necessary to make some change to the application and/or execution environment, which

will necessitate yet another testing (re-testing) of the previously successful exploit to

ensure that the change will prevent future successful exploits.

Therefore, we include reporting functionality: whenever TestREx runs an exploit, it

generates a report that contains the information about its execution. A report is a “.csv”

file that the Execution Engine creates or updates every time it runs an exploit. Every

report contains one line per exploit that was executed. This line consists of the exploit

12http://docs.seleniumhq.org/projects/webdriver/
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and the target application names, identifier of an application-specific container, the type

of the exploit, the exploit start-up status, the exploit execution result, and a comment

field that may include other information that might be exploit-specific. Along with this

report, the Execution Engine maintains a log file that contains information which can

be used to debug exploits.

Example 4 The listing below shows a single entry from the Wordpress 3 2 XSS exploit

that was run against the WordPress 3.2 application.

1 Wordpress 3 2 XSS , Wordpress3 . 2 , ubuntu−apache

2 −mysql , XSS , CLEAN, SUCCESS, SUCCESS, 30 .345 ,

3 Exp lo i t s f o r ”XSS v u l n e r a b i l i t y in WordPress app”

Listing 4.3: An example of the report file entry after the exploit run

4.5 Evaluation

As a starting point in evaluation our framework, we successfully integrated 10 examples

from WebGoat [119], as well as the corresponding vulnerable web application. We have

also developed exploits for 7 specially crafted vulnerable applications, in order to demon-

strate different types of exploits for SQL injection, NoSQL injection, stored and reflected

XSS, path traversal and code injection vulnerabilities in server-side JavaScript applica-

tions. The path traversal and the code injection examples take advantage of vulnerabilities

discovered in Node.js modules [115,116].

Table 4.6: Number of exploits in the corpus

The table lists the number of exploits in the current corpus of TestREx, broken down by a vulnerability type

and a programming language of the vulnerable portion of the source code that makes the exploitation possible.

Exploit #PHP #Java #Server JS

Cross-site scripting 46 2 3

SQL injection 17 2 1

Code injection 7 - 1

Authentication flaw 4 3 -

Information disclosure 2 - -

Local file inclusion 2 - -

Cross-site request forgery 2 - -

Denial of service 1 - -

Database backdoor - 1 -

Parameter tampering - 2 -

Path traversal - - 1

The framework also supports the possibility of importing applications and exploits from

BugBox, and similar testbeds. An automated script copies the applications and exploits
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into the corresponding folders under the framework, and creates identical configuration

files for every application, using Apache as a web server and MySQL as a database server.

We are able to run most of the BugBox native exploits and collect statistics without

modifying their source code.

Table 4.6 summarizes the types of exploits that we tested in various applications using

TestREx: we can see that TestREx supports a variety of typical web application

security flaws.

4.6 Contributing to TestREx

Here we describe in more detail the steps needed to add an experiment to TestREx,

given an existing application. These steps consist of: adding an application; creating

configuration files for images; instantiating containers; creating and running exploits.

Again, we use WordPress 3.2 as the example application.

4.6.1 Deploying an Application

We again use Wordpress 3.2 as an example. The code of the application must be copied

into a separate folder under the applications root “<testbed_root>/data/targets/

applications”. The folder name must correspond to a chosen name of the application

in the testbed.

To deploy the WordPress 3.2 application, copy all of its files to the folder “<testbed_

root>/data/targets/applications/WordPress_3_2”.

4.6.2 Creating Configuration Files and Building Containers

If there are no generic images that might be reused for creating a new image for the

application set up, this image must be created in the first place. Configuration files

for generic images are located under the “<testbed_root>/data/targets/containers”

folder.

In our example, we create a generic image with the ubuntu-apache-mysql name,

since the application requires Apache as a web server and MySQL as a database engine.

To do this, we create a Dockerfile under “<testbed_root>/data/targets/containers/

ubuntu-apache-mysql” that contains the code shown in Listing 4.4, and build it with

the script located under “<testbed_root>/util/build-images.py”.

1 FROM ubuntu : r a r i n g

2 RUN apt−get update

3 RUN DEBIAN FRONTEND=n o n i n t e r a c t i v e apt−get −y i n s t a l l mysql−c l i e n t mysql−s e r v e r

apache2 l ibapache2−mod−php5 php5−mysql php5−ldap

4 RUN chown −R www−data :www−data / var /www/

5 EXPOSE 80 3306
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6 CMD [ ”mysqld” ]

Listing 4.4: The Dockerfile for creating the ubuntu-apache-mysql generic image

As a next step, we create configuration files for the image that will hold the ap-

plication, extending the above generic image. We create a new Dockerfile and a shell

script file under the “<testbed_root>/data/targets/configurations/Wordpress_3_

2__ubuntu-apache-mysql” folder (see Listings 4.1 and 4.2 in the Section 4.4.4 for the

code examples).

There is no need to manually invoke Docker for instantiating a container based on this

image for running exploits or manual testing, as Execution Engine does it automatically.

4.6.3 Creating and Running an Exploit

Finally, we create an exploit for the Wordpress 3.2 application by creating a Python

class under the “<testbed_root>/data/exploits” folder. As mentioned in the previous

sections, to ensure integration with the Execution Engine, the new exploit class must

be a subclass of the already existing BasicExploit class. As a last step, we specify the

exploit’s metadata using the attributes dictionary, and specify the steps required to run

the exploit within the “runExploit()” method (see Listing 4.5).

1 from Bas i cExp lo i t import Bas i cExp lo i t

2 c l a s s Exp lo i t ( Bas i cExp lo i t ) :

3 a t t r i b u t e s = {
4 ’Name ’ : ’ Wordpress 3 2 XSS ’ ,

5 ’ De s c r ip t i on ’ : ”XSS attack in Wordpress 3 . 2 ” ,

6 ’ Target ’ : ”Wordpress3 . 2 ” ,

7 ’ Container ’ : ’ ubuntu−apache−mysql ’ ,

8 ’Type ’ : ’XSS ’

9 }
10

11 de f runExplo i t ( s e l f ) :

12 w = s e l f . wrapper

13 w. nav igate ( ” http :// l o c a l h o s t :49160/ wordpress /wp−admin/ post−new . php? pos t type

=page” )

14 ‘ ‘ ‘

15 ‘ ‘ ‘

16 c o n t e n t e l t = w. f i n d ( ” content ” ) . c l e a r ( )

17 c o n t e n t e l t . keys ( ”<s c r i p t>a l e r t (\”XSS ! ! \ ” )</s c r i p t>” )

18 w. f i n d ( ” pub l i sh ” ) . c l i c k ( )

19

20 w. nav igate ( ” http :// l o c a l h o s t :49160/ wordpress /? page id=23” )

21 a l e r t t e x t = w. c a t c h a l e r t ( )

22 s e l f . a s s e r t I n ( ”XSS” , a l e r t t e x t , ”XSS” )

Listing 4.5: Wordpress 3 2 Exploit.py file contents
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Listing 4.5 shows the stored XSS exploit for the Wodpress 3.2 application. The script

navigates to the login page of the Wordpress application, logs in as the administrator (the

full list of steps is shortened in the listing for the sake of brevity), and creates a new post

putting the <script>alert(‘XSS‘)</script> string as the content. To verify whether

the exploitation was successful, the script navigates to the newly created post and checks

if an alert box with the “XSS” message is present.

1 #1 : Manual mode

2 sudo python run . py −−manual −−image

3 [ app−name ] [ image−name ]

4

5 #2 : S i n g l e e x p l o i t mode

6 sudo python run . py −−e x p l o i t [ exp l o i t−name ] . py

7 −−image [ app−name ] [ image−name ]

8

9 #3 : Batch mode f o r a s i n g l e a p p l i c a t i o n

10 sudo python run . py −−batch

11 −−image [ app−name ] [ image−name ]

12

13 #4 : Batch mode f o r a l l a p p l i c a t i o n s

14 sudo python run . py −−batch

Listing 4.6: Running modes in TestREx

Listing 4.6 shows the list of commands for different running modes in TestREx:

1. To run the application container for manual testing, a tester has to use the “–

manual” flag and the corresponding application image. TestREx will run the con-

tainer and halt, waiting for the interrupt signal from the tester. In this mode, when

the container is up, the application can be accessed from a web browser by navigating

to “http://localhost:49160”.

2. In the single mode a tester can select a specific exploit and run it against a specific

application image.

3. In the batch mode for a single application, a tester has to specify the running mode as

“–batch”, and select the desired application image. TestREx will invoke a Docker

container for the image, search for the exploits that are assigned to the application

(through exploits’ metadata), and run all of them one by one.

4. Finally, if a tester specifies nothing but the “–batch” running mode, TestREx will

invoke containers for all application images that are currently in the corpus, and run

all corresponding exploits against them.

By default, the exploit execution report is saved into the “<testbed_root>/reports/

ExploitResults.csv” file. In order to specify a different location for the results, the

tester may add an additional parameter to the run command:

--results new/location/path.csv.
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4.7 Potential Industrial Application

There are several uses of TestREx that we are exploring in an industrial setting, covering

different phases of the software development lifecycle and fulfilling the needs of different

stakeholders. In the following we summarize the directions that we deem more promising.

4.7.1 Support for Internal Security Testing and Validation

Automated validation and regression testing. As a part of the software development

lifecycle, TestREx can be used to check for the absence of known vulnerabilities or to

perform regression tests (for instance, as a part of automated Continuous Integration

processes) to verify that a previously fixed vulnerability is not introduced again. In

large corporations, the results of these tests are part of the evidence needed in order

to pass quality assurance gates. Currently, the process of producing such evidence is

mostly relying on manual work, which increases the costs, potential errors, and decreases

the predictability of the final result. To this end, TestREx can be used to accelerate

and improve the effectiveness and the predictability of quality assurance processes: a

company can maintain a corpus of exploits and configurations stored in a corporate-wide

repository (updating configurations and exploits on a periodic basis if necessary), and use

it to perform automated tests all along the development cycle.

Support for penetration testing. An important problem arising in penetration

testing of large systems is the complexity of setting-up and reproducing the conditions

of the target system – typically involving many hosts and software components, each of

which may need to be configured in a specific way. A key strength of our framework is the

ability to capture these configurations as reusable scripts; this requires a non-negligible

effort, but the results can be reused across different pen-testing sessions. This has the

advantage of providing automation, reproducibility, and the ability to proceed stepwise

in the exploration of the effect of different configurations and versions of the software

elements on the presence (or absence) of vulnerabilities in the system.

4.7.2 Support for Testing of Third-parties Applications

Security testing of cloud-based applications. One valuable use of TestREx is for

cloud-based applications. In this scenario, a Cloud Service Provider (CSP) provides the

platform on which an Application Provider (AP) may run their applications. CSPs allow

the same application to be provided in different platforms. However, such variations in

context correspond to potential difficulties in ensuring reliable and complete security test-

ing, because successful protection against an exploit in one context may prove unsuccessful

in another context. In this setting, TestREx can provide highly adaptable, flexible, effi-

cient, and reliable testing for different configurations, without requiring highly-specialized
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knowledge or abilities on the part of the security tester. For example, the security tester

may be an employee of a CSP, which must provide evidence to the AP that the CSP

platform is secure. In turn, the security tester may be a member of the AP, who needsto

perform an independent testing of one or more platforms or platform providers.

“Executable documentation” of vulnerability findings. When a vulnerability

is found in a product, the ability to reproduce an attack is a key to the investigation of

the root cause of the issue and to providing a timely solution. The current practice is

to use a combination of natural language and scripting to describe the process and the

configuration necessary to reproduce an attack. Unfortunately, the results may be erratic

and may complicate the security response. TestREx exploit scripts and configurations

can be seen as “executable descriptions” of an attack. The production of exploits and

configurations could not just be the task of the security validation department, but also

of external security researchers, for which the company might set up a bounty program

requiring that vulnerabilities are reported in the form of TestREx scripts.

4.7.3 Analysis and Training

Malware analysis. Malicious applications, also known as malware, are applications

intentionally designed to harm their victims, by, e.g., stealing information or taking control

of the victim’s computer. Malware in general, and especially web malware, are known to

react differently to different environments (usually to avoid detection) [38,93]. Containers

provide safe and repeatable environments for malware analysts to run their experiments.

One possible use of TestREx is as a highly configurable sandboxing environment, where

malware analysts can run potentially malicious applications in different configurations of

an application to study its behavior. Another possible use is as a honeypot generator.

Honeypots [37] are intentionally vulnerable applications deployed on a network to capture

and study attacks.

Part of a training toolkit. Security awareness campaigns, especially secure coding

training, are commonly conducted in large enterprises, also in response to requirements

from certification standards. From our own experience with TestREx, we believe that

writing exploits may be an effective way to acquire hands-on knowledge of how security

vulnerabilities work in practice, and how to code defensively in order to prevent them: we

successfully used TestREx for teaching a Master course13 on security vulnerabilities in

web applications. To quickly create a large corpus of artificially vulnerable applications for

training purposes, it is possible to start from well-known applications and use vulnerability

injection, as done in [60, 122]. This way, we can easily create multiple examples for each

category of vulnerabilities, with different levels of complexity for detection or exploitation.

13A past edition of the “Offensive Technologies” course provided by University of Trento (http://securitylab.disi.

unitn.it/doku.php?id=course_on_offensive_technologies).
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4.8 Conclusions

In this chapter, we presented TestREx, a Framework for Repeatable Exploits that com-

bines a way of packing applications and execution environments, automatic execution of

scripted exploits, and automatic reporting, providing an experimental setup for security

testers and researchers. TestREx provides means for the evaluation of exploits, as the

exploits are reproduced in a number of different contexts, and facilitates understanding of

effects of the exploits in each context, as well as discovery of potential new vulnerabilities.

We also provide a corpus of applications and exploits, either adapted from the existing

works, or developed by us – we collected it to test the variety of applications and exploits

that can be handled by TestREx.

4.8.1 Lessons learned

We can summarize the key lessons learned during the design and development of TestREx

as follows: (1) build on top of existing approaches; (2) have a simple and modular archi-

tecture; (3) find reliable information on applications, exploits and execution environments

in order to replicate them.

Building on top of the existing work, like we did with BugBox [114] for the format

of our exploits, and MalwareLab [7] for the vulnerability experimentation design, was

extremely valuable. This simplified our design and development time, and allowed us

to quickly add a large corpus of applications and exploits on which we could test our

implementation.

Having a simple and easily extensible architecture was crucial in the development of

TestREx, because this allows replacing the supporting frameworks (such as Selenium

and Docker), selecting those that best fit the tester’s purposes.

When adding the experiments to TestREx corpus, we soon learned that writing

configuration files for application containers required the most effort. This is partially

because the information on how to configure an application for a certain environment

may be not detailed enough and may require additional knowledge from a tester. Also, in

many cases, publicly available exploit descriptions are vague, limited to a proof-of-concept

(which may not necessarily work), and often lack information on how to reproduce them in

a specific software environment. This makes replication of the exploits a time consuming

problem, even for experienced developers – which is one of suitable scenarios for which

TestREx is intended.

4.8.2 Future work

When stating Problem 1 we discussed that successful exploitation may depend on specific

software environments in which a vulnerable application is deployed. A possible extension
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of the approach may be in including additional tools (for instance, tools that allow to

instrument the code of an application) that would allow to test whether a certain exploit

failed because of the aspects of the software environment (e.g., the database engine is

MongoDB instead of MySQL), or the exploit failed because of some other reasons (e.g.,

there is a bug in the exploit itself, or the application is already protected against the

exploit).

It is also possible that other types of exploits, such as malware, may run successfully on

a physical machine, but not in virtual environments [126]. Our current focus is on checking

whether atomic exploits are successfully executed against particular vulnerabilities of web

applications deployed in particular software environments. Still, checking the success of

malware that implements detection evasion mechanisms may be an interesting line of

future work.

Another potential line of future work is expanding the current vulnerability corpus

by taking public exploits from, e.g., Exploit-DB and reconstructing the corresponding

vulnerable environments in TestREx. This activity will be useful for performing an

evaluation of the framework in order to identify its interesting potential extensions (for

instance, introducing new classes of exploits, or configurations).

We also plan to extend the architecture of TestREx to add support for plugins.

Plugins (e.g., proxy tools, vulnerability scanners) could be used to facilitate activities

such as penetration testing, vulnerability analysis, and malware analysis, mentioned in

Section 4.7.
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Chapter 5

A Screening Test for Disclosed

Vulnerabilities in FOSS Components

This chapter describes our solution to Problem 2 of secure FOSS consumption, which

concerns fast and efficient identification of FOSS versions that are likely affected by a

newly disclosed vulnerability. We provide a screening test: a novel, automatic method

based on thin slicing, for quickly estimating whether a given vulnerability is present in a

consumed FOSS component by looking across its entire repository in a matter of minutes.

We show that our screening test scales to large open source projects that are routinely used

by large software vendors, scanning thousands of commits and hundred thousands lines

of code. Further, we provide insights on the empirical probability that for the sample of

projects on which we ran our test a potentially vulnerable component might not actually

be vulnerable after all.

5.1 Introduction

Software vendors that ship FOSS components to their customers as parts of their software

applications must provide maintenance support for the software as a whole, including the

consumed FOSS libraries. Therefore, if a vulnerability is reported, e.g., in the NVD

(https://nvd.nist.gov/) about those FOSS libraries, the vendor is called to make a

decision: (1) the upgrade requires minimal effort as the FOSS methods, and its APIs

have not changed between the old deployed version and the new fixed version; (2) the

consuming application is not using the vulnerable part of the FOSS component; (3) the

application may already have code that protects itself against the vulnerability; (4) the

old version of the FOSS component may be not affected at all because the vulnerable

code was not yet introduced1.

1Vulnerability databases (e.g., NVD) over-approximate the classification by using a default claim “version x and all prior

versions”, so public data is not reliable for old components.
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If a new vulnerability is disclosed and fixed in the current version of a FOSS component,

the vendor of the consuming application must assess (i) which (often more than 5 years

old) releases are vulnerable and (ii) what actions should be taken to resolve issues for

its different customers. One simple solution would be to just update the used version

of a component as soon as a fix is available. This is the model many free, no-warranty,

software clients (e.g. Google Chrome and Mozilla Firefox), but it is often not applicable to

components used in business software, control systems, etc. Economic theory [55,79,107]

dictates that if updates are costly (e.g., regression testing, re-licensing licensing fees, re-

certification of compliance, users’ training, etc.) and problematic [131], and new features

are not needed, customers will stay with old but perfectly functioning versions of the

main application – we illustrated this empirically for an ERP product with Figure 3.2

in Chapter 3: significant number of customers used applications which were between five

and nine years old. These applications included FOSS components that were “new” at

the deployment time, but are now several years old. As a result, an enterprise system may

be bundled with a FOSS release which is several years older than the currently available

FOSS version. Thus, for an enterprise software vendor, addressing the above questions

(i) and (ii) is far from trivial [90].

Unfortunately, is difficult for vendors to locate defects in a FOSS component used as

a “black box” [90, 137], and therefore these vulnerabilities have higher chances of being

left unresolved [62]. To identify the above cases, a vendor may test its application against

a working exploit, but for many vulnerabilities there are no public exploits [8]. Even

if published exploits exist, they must be adapted to trigger the FOSS vulnerability in

the context of the consuming application. An alternative is to apply static application

security testing tools (SAST) against the FOSS component. Such analysis requires a solid

understanding of the FOSS source code [90], as well as expertise in SAST tools [18], as

they can generate thousands of potentially false warnings for large projects. Further, the

analysis may require days for processing even a single ‘FOSS-release’ ‘main-application’

pair [2]. If several FOSS releases are used in many different products [48] the above

solutions do not scale.

This chapter presents our solution to the difficulties of identifying which older versions

of FOSS components that software vendors ship to their customers are likely to be affected

by newly disclosed vulnerabilities. We build on the intuition by Hindle et al. [74]:“semantic

properties of software are manifest in artificial ways that are computationally cheap to

detect automatically, in particular when compared to the cost [. . . ] of determining these

properties by sound (or complete) static analysis” in the direction of “soundiness” [92] to

provide an automatic scalable method for performing such estimates using vulnerability

fixes. Our solution provides an insight on the empirical probability that a potential

vulnerable component might not actually be vulnerable if it is too old (or its update

might be likely costly).

54



5.2. RESEARCH QUESTIONS

Table 5.1: Maintenance Cycles of Enterprise Software

Maintenance cycles of ten years or more are common for software used in enterprises. During this period,

vendors need to fix security issues without changing either functionality or dependencies of the software.

Product Release EoLife ext. EoL

Microsoft Windows XP 2001 2009 2014

Microsoft Windows 8 2012 2018 2023

Apache Tomcat 2007 2016 n/a

Red Hat Ent. Linux 2012 2020 2023

SAP SRM 6.0 2006 2013 2016

Siemens WinCC V4.0 1997 2004 n/a

Symantec Altiris 2008 2013 2016

5.2 Research Questions

The presence of a long lifecycle is not a characteristic that is inherent only to ERP

software. Table 5.1 provides an illustrative example of the life-cycle of several products

with respect to the maintenance, from operating systems to web servers, from industrial

control software to security products. For example, Red Hat Enterprise Linux released in

2012 has an extended support for 11 years (until 2023). Siemens WinCC v4.0 (software

for industrial control systems) had a lifetime of 7 years, and Symantec Altiris (service-

oriented management software) released in 2008 has an extended lifetime of 8 years.

Security experts, developers and customers have, naturally, different priorities when

deciding whether a component should be upgraded, fixed or left alone: security experts

want to minimize the attack surface and, thus, prefer upgrades of potential vulnerable

components over staying with old versions. Developers and customers try to minimize

maintenance and operational risks of changes and, thus, prefer staying with an old version

if the security risk in doing so is low.

Either way, we need to allocate resources to either port each application release, or au-

dit their security. For example, developers could use Wala [150] or Soot [160] to construct

a program slice on the vulnerable release, focusing only on the relevant subset of the vul-

nerable component. This slice could be later used by a sound SAST tool to ascertain that

the vulnerability is indeed not present. Unfortunately, neither precise program slicing, nor

a precise SAST tool scales well to large programs: tools providing a precise analysis can

take days for one version of a component [2] or generate too many false alarms [17,135] –

this approach would not make it possible to manage the situation depicted in Figure 3.2

(Chapter 3), where we must assess several FOSS versions at once.

To focus our efforts on the actual vulnerable products, we must tentatively identify

within minutes (not hours or days) all products that are likely affected by the vulnerability.

We need the software equivalent of a clinical screening test [68]: something that may be
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neither (formally) sound, nor complete, but works well enough for practical problem

instances and is fast and inexpensive2. Therefore, our first research question is as follows:

RQ1: Given a disclosed security vulnerability in a FOSS component, what could be an

accurate and efficient screening test for its presence in previous revisions of the com-

ponent?

Once we have such a screening test, we may use it for company-wise estimates to

empirically assess the likelihood that an older version of a FOSS component may be

affected by a newly disclosed vulnerability, as well as the potential maintenance effort

required for upgrading or fixing that version:

RQ2: For how long the vulnerable coding is persistent in FOSS code bases since its in-

troduction? What are the overall security maintenance recommendations for such

components?

5.3 Related Work

5.3.1 Identifying the vulnerable coding

As our RQ1 is concerned with finding an appropriate technique for capturing a vulnera-

ble code fragment using vulnerability fixes, we build upon Fonseca and Vieira [61] as the

basis for our idea of using an intra-procedural fix dependency sphere that we introduce

in Section 5.5.4. The authors of [61] compared a large sample of fixes for injection vul-

nerabilities to various types of software faults in order to identify whether security faults

follow the same patterns as general software faults: their results show that only a small

subset of software faults are related to injection vulnerabilities, also suggesting that faults

that correspond to this vulnerability type are rather simple and do not require a complex

fix. Also, the work by Thome et al. [158] shows that sound slices for this type of vul-

nerabilities are significantly smaller than traditional program slices, and that control flow

statements should be included into slices. Therefore, we collect control-flow statements

as well, in contrast to the original approach of thin slicing [150] on which we build our

implementation for capturing vulnerable code fragments using vulnerability fixes.

Modern static analysis tools such as Wala3, and Soot4 can be used for extracting the

vulnerable coding using security fixes. These tools implement different slicing algorithms

that work over byte code, offering various features and trade-offs such as redefining the

notion of relevance of statements to the seeds [150] or improving the precision of interme-

diate program representation [66]; simplifying the notion of inter-procedural dependencies

2A sound and complete solution is formally impossible to achieve: Rice’s theorem states that no recursive program can

take a non-trivial set of programs (e.g., all past releases of a FOSS component) and produce the subset of programs satisfying

a non-trivial property [147, Proof 5.28, pp243] (e.g., containing a semantically equivalent fragment of the vulnerable code

fragment).
3http://wala.sourceforge.net/wiki/index.php/Main_Page
4https://sable.github.io/soot/
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for efficient slicing of concurrent programs [127]; and defining slices that capture specific

classes of security vulnerabilities [158]. Acharya and Robinson [2] evaluated the applica-

bility of static slicing to identifying the impact of software changes. Their findings suggest

that for small programs (and change-sets) static slicing can be used effectively, but it faces

serious challenges when applied routinely against large systems: they report that the build

time for the intermediate representation of one version of a project took about four days

and observed that one must investigate and resolve various accuracy trade-offs in order

to make large-scale analysis possible.

Thome et al. [158] implemented a lightweight program slicer that operates on the

bytecode of a Java program and allows to extract all sources and sinks in the program for

computing a program chop that would help software developers to perform faster audits

of potential XML, XPath, and SQL injection vulnerabilities. It runs significantly faster

than traditional slicing evaluated by Acharya and Robinson [2], however, still, it was

close to impossible for our scenario (assessing thousands of revisions within seconds) to

use precise tools based on byte code, as they require to build source code and resolve all

dependencies as well. We found that for versions of Java projects which are older than

five years from now, the latter could be very challenging. Moreover, we are interested

in particular vulnerable code fragments that correspond to confirmed vulnerability fixes,

but not in the whole set of slices that may contain all possible potentially vulnerable code

fragments. Still, the approach by Thome et al. [158] can be used as a second-level test

after our screening.

Considering the above, we have reverted to thin slicing [150] and modified the original

algorithm to include the control flow statements, and limit the scope of slicing to the

methods, where a security vulnerability was fixed.

To identify whether the library is called within the context of an application that

consumes it, the approach by Plate et al. [123] can be also used as an additional test after

our screening. However, the approach [123] cannot replace our own test as it requires to

call a fully-fledged static analyzer to extract the call graph and fail our requirement of

being inexpensive.

5.3.2 The SZZ approach: tracking the origin of the vulnerable coding

It is well known that to manually identify when exactly a certain vulnerability is intro-

duced into a software component is a long process. For example, Meneely et al. [101]

studied properties of source code repository commits that introduce vulnerabilities –

the authors manually explored 68 vulnerabilities of Apache HTTPD5, and they took

six months to finish their analysis.

5We did not include this project to our sample as it is written in C, while our current implementation supports only

Java.
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Many studies on mining software repositories aim at solving the problem of manual

analysis [86, 112, 148], allowing to automate this tedious task. The seminal work by

Sliwerski, Zimmermann, and Zeller, widely known as SZZ [148], provided an empirical

study on the introduction of bugs in software repositories, showing how to locate bug fixes

in commit logs and how to identify their root causes. Their method had inspired the work

by Nguyen et al. [112] on which we also build our approach. Unfortunately, the original

SZZ approach has several limitations [86]: for instance, SZZ identifies the origin of a line

of code with the “annotate” feature of the version control system, therefore it could fail

to identify the true origin of that line of code when the code base is massively refactored

(e.g., the line of code is moved to another position within its containing method). In

our case, such a limitation would be a problem, since the code of the projects that we

considered has been massively changed over the course of time (for example, see Figure 5.4

in Section 5.7). Therefore, we adopted the heuristics by Kim et al. [86]: we perform cross-

revision mapping of individual lines from the initial vulnerability evidence and associate

them with their containing files and methods. This allows us to track the origin of lines

of code even if they are moved, or their containing file or method is renamed, or they are

moved to another location within the code base.

5.3.3 Empirical studies on trade-offs between the security risk posed by the

presence of the vulnerable coding and the maintainability

Di Penta et al. [52] performed an empirical study analyzing the decay of vulnerabilities

in the source code as detected by static analysis tools, using three open source software

systems. The decay likelihood observed by the authors [52] showed that most of potential

vulnerabilities tend to be removed from the system before major releases (shortly after

their introduction), which implies that developers may prioritize security issues resolution

over regular code changes. One of the questions that the authors in [52] aimed to answer is

similar to the first part of our RQ2, however we use a different measure of the vulnerable

coding: the lines of code relevant to a security fix as opposed to the lines of code relevant

to a static analysis warning. Moreover, our main focus is on distinct vulnerabilities that

already have evaded static analysis scans and testing by developers, therefore they will

likely show different decay.

For assessing various “global” trade-offs between a vulnerability risk that a component

(or a set of components) imposes and its maintainability, one feasible option is to employ

various risk estimation models. Samoladas et al. [139] proposed a model that supports

automated software evaluation, and specifically targets open source products. The set of

metrics considered by the model is represented by various code quality metrics (including

security), and community quality metrics (e.g., mailing lists, the quality of documentation

and developer base). While this model takes security aspects into account, they are
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represented only by two source code metrics: “null dereferences” and “undefined values”,

which is largely insufficient to cover the vulnerability fixes in our sample (see Table 5.4).

Zhang et al. [173] proposed an approach for estimating the security risk for a software

project by considering known security vulnerabilities in its dependencies, however the

approach does not consider any evidence for the presence of a vulnerability. Dumitras

et al. [53] discussed a risk model for managing software upgrades in enterprise systems.

The model considers the number of bugs addressed by an update and the probability

of breaking changes, but cannot be applied to assess individual components. As such

approaches would not allow to answer the second part of our RQ2, we resort to the code-

base evidence for telling whether it is likely that a certain version of a component imposes

security risk.

5.4 Terminology and Definitions

In this Section we briefly introduce the terminology used in the chapter:

Fixed revision r1: the revision (commit) in which certain vulnerability was fixed.

Last vulnerable revision r0: the last revision in a source code repository that con-

tained a specific vulnerability, which was eventually fixed by r1.

Initial vulnerability evidence E[r0]: the set of lines of code that correspond to the

vulnerable source code fragment in r0, obtained using changes between r0 and r1.

Vulnerability evidence E[r−i]: the set of lines of code from the initial vulnerability

evidence, that are still present in some revision r−i that precedes r0.

Repository difference diff(r−i, r−i+1): the set of lines of code changed (deleted and

added) when changes from r−i to r−i+1 were made.

Deleted lines del(r−i, ri+1): the set of lines of code deleted when changes from r−i to

ri+1 were made, s.t. del(r−i, ri+1) ⊆ diff(r−i, ri+1).

Added lines add(r−i, ri+1): the set of lines of code added when changes from r−i to ri+1

were made, s.t. add(r−i, ri+1) ⊆ diff(r−i, ri+1).

Source code of a revision code(r−i): the set of lines of code that belong to the source

code of r−i.

Set of relevant methods methods(locs, code(r−i)): set of methods to which certain

lines of code locs ⊆ code(r−i) belong.

Set of lines of code relevant to a set of methods code(methods−i): the set of lines

of code that belong to the specified set of methods, s.t. code(methods−i) ⊆ code(r−i).

Set of defined variables def(s): the function that returns a set of variables which val-

ues are defined or re-defined in a statement s.

Set of referenced variables ref(s): the function that returns a set of variables which

values are used in s.

Statement predicate isPredicateOf(s1, s2): this function indicates whether a state-
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ment s1 is a conditional statement, and a statement s2 is statement execution of

which depends upon s1 (e.g., is a part of then or else branches of a conditional

expression in Java).

5.5 Vulnerability Screening

We start answering RQ1 by discussing several alternative techniques for performing

screening tests for the likelihood of vulnerability presence.

As the fixed version r1 of a FOSS component is usually made available when a vulner-

ability is publicly disclosed, the information about source code modifications for imple-

menting the fix transforming the last vulnerable version r0 to r1 can be used to understand

where the vulnerable part in the source code is located [111,148,176]. Then, the approx-

imate code fragment that is responsible for a vulnerability can be identified and tracked

backwards in the source code repository history to identify a version that is not yet vul-

nerable [112].

Figure 5.1 illustrates an example for the vulnerability evolution in Apache Tomcat 6

(CVE-2014-0033): developers prohibited rewriting the URL string while handling session

identifiers but a flag was not checked correctly and attackers could bypass the check and

conduct session fixation attacks. The vulnerability was fixed in revision r1(1558822) (on

16.01.2014) by modifying the incorrect check (line 5) in r0(1558788)6, making it impossible

to set a different session identifier and rewrite the URL (lines 6 and 7). Searching for the

presence of these lines in previous versions, reveals that in r1−i(1149130) (on 21.07.2011)

neither the check nor the session fixation lines are present. At that point in time, the

URL rewriting set-up was not yet introduced by developers, and hence the code base is

not yet vulnerable (to this attack).

Indeed, the absence of the vulnerable code fragment in some version r−i that is older

than the fixed r1 is an evidence , as opposed to a proof , that this version is potentially

not vulnerable: the vulnerable lines of code might be present in a different form or even

in completely different, refactored files. If security fixes are rather local [112], these code

lines constitute a prima facie evidence that we should allocate SAST, testing, or code

auditing resources to analyze in depth the versions that correspond to the revisions where

the vulnerable coding is still present, whilst having a more relaxed attitude on those

versions preceding r−i.

Let code(r0) be a source code fragment that represents a vulnerable version of software

application r0 that also contains a vulnerability V ⊆ code(r0), which is responsible for an

unwanted behavior. What is currently known, is that r0 contains the vulnerability, and

the next revision of this program r1 is fixed. It is unknown, however, whether an older

6Changes in one file may correspond to ordered but not necessarily consecutive revisions, because Subversion uses

repository global commit IDs.
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In Apache Tomcat 6, CVE-2014-0033 is fixed at revision 1558822 (=r1) on 16/01/2014. Revision 1558788 (=r1)

is the last vulnerable revision that lacks a check on whether the URL rewriting setting is disabled. The revisions

prior and including 1149130 (=ri) from 21/07/2011 and earlier are not vulnerable to CVE-2014-0033, as the

vulnerable feature is not present in these revisions.

Figure 5.1: Not all code declared vulnerable is actually so (CVE-2014-0033).

variant of the program r−i where i ≥ 1 contains this vulnerability as well.

This problem is similar to the screening tests used by clinicians to identify a possible

presence of a disease in individuals [68]. In our case, we treat all revisions prior to r0

(which is surely vulnerable) as those that potentially have the vulnerability, while different

vulnerability evidences obtained from the fix are the metric that we use to separate the

vulnerable part of the population from the non-vulnerable one.

Algorithm 1 illustrates a generic screening method for the potential presence of the

vulnerable coding:

1. Init(r0, r1) is an abstract function that, using diff(r0, r1) operation from the source

code repository, retrieves the changes made during the fix and infers the code frag-

ment responsible for the vulnerability – the initial vulnerability evidence E[r0]. An

example of such evidence can be the source code lines that were directly modified

during a fix (such evidence is considered by the original SZZ approach by Sliwerski

et al. [148], as well as by the method proposed by Nguyen et al. [112]). However,
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these modified lines of code may be not the ones actually responsible for the vulner-

ability, therefore we consider several other alternatives which we discuss in the next

subsections.

2. for each revision r−i, where i ≥ 1, the current vulnerability evidence is represented

by the lines of code from the initial vulnerability evidence that are still present in

r−i. We use the function Track(r−i, r−i+1, E[r−i]) that keeps track of these lines of

code individually, as suggested by Kim et al. [86].

3. for each revision r−i, where i ≥ 1, there is a test Test(r−i) which is essentially a binary

classifier that tells whether r−i is likely vulnerable, based on the current vulnerability

evidence and a reliability parameter δ. This parameter can be different for actual

screening methods that use different vulnerability evidence extraction techniques.

Algorithm 1 Generic screening test using vulnerability evidence

Extract the vulnerability evidence using the last vulnerable revision r0 and the fixed revision r1:

E[r0] ← Init(r0, r1) (5.1)

For each revision r−i, where i ≥ 1, the evidence is computed as follows:

E[r−i] ← Track(r−i, r−i+1, E[r−i+1]) (5.2)

Check, whether the source code of r−i is still likely to be vulnerable:

Test(r−i) =

r−i is vuln. if |E[r−i]|
|E[r0]| > δ

r−i is not vuln. otherwise
(5.3)

The key question, however, is how to identify the right Init(r0, r1) function for the test?

As this is the primary concern of our RQ1, we start off with describing several candidates

and explaining how each of them works.

5.5.1 Deletion Screening

A prior work by Nguyen et al. [112] (inspired by the work of Sliwerski et al. [148]) has

shown that the presence of the lines of code deleted during a security fix for a browser

component may be a good indicator on the likelihood that older software versions are still

vulnerable: if at least one line of the initial evidence is present in a certain revision, this

revision is considered to be still vulnerable.

The results in [112] suggest that the source code of the files and methods in which a

security vulnerability was fixed may be not yet vulnerable at the point where they were

first introduced into the code base of a project, so that the portion of the source code

in these files and methods that is actually responsible for a vulnerability was added later

during further development.
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The approach works as follows:

1. It starts by collecting the deleted lines of code from a vulnerability fix – deletion

vulnerability evidence;

2. Then, it goes iteratively over older commits/revisions in the source code repository

and checks for the presence of these lines;

3. Finally, it stops either when none of the lines from the initial evidence are present,

or when all commits/revisions are processed. When a vulnerability is fixed by only

adding lines of code, there will be no evidence to track, and the authors in [112]

conservatively assume that in such cases the whole version prior the fix (namely,

code(r0)) is vulnerable. This screening test was appropriate for the empirical analysis

of Vulnerability Discovery Models, which are typically based on NVD and its cautious

assumption “r0 is vulnerable and so are all its previous versions” (see [112]), as this

would create a consistent approximation of the NVD.

Essentially, the overall approach can be seen as an instance of the generic screening

test that we defined in Algorithm 1. In this particular case, threshold δ = 0, and our

functions are instantiated as follows:

Initd(r0, r1) =

{
code(r0) if del(r0, r1) = ∅
del(r0, r1) otherwise

(5.4)

Track(r−i, r−i+1, E[r−i]) = E[r−i+1] ∩ code(r−i) (5.5)

Test(r−i) = |E[r−i]| > δ = 0 (5.6)

For security management this may be at the same time overly conservative and too

liberal as the presence of the deleted lines may not be necessary for the vulnerability to

exist (see [112] for a discussion on such cases).

5.5.2 Method Screening

An alternative simple heuristic is the following one: “if a method that was changed during

a security fix is still present in an older version of a software product, this version is still

vulnerable”, under the conservative assumption the methods modified during the fix are

responsible for a vulnerability. Again, this rule is likely imprecise but fast and inexpensive.

We instantiate the screening test for this heuristic as follows:

methods1 ← methods(add(r0, r1), code(r1)) (5.7)
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methods0 ← methods(del(r0, r1), code(r0)) (5.8)

Initm(r0, r1) = (code(r0) ∩ code(methods1)) ∪ code(methods0) (5.9)

For Track and Test we use the same functions as for the deletion screening. However,

tracking the presence/absence of vulnerable methods (or a change in their size) may be

still overly conservative, because for cases when a method did not contain vulnerable code

since it was first introduced, it may be still reported as vulnerable.

5.5.3 “Combined” Deletion Screening

For the original deletion screening test (see Section 5.5.1), if lines were only added during

a fix, there are no cues on where vulnerable code could be located. Therefore, we can

combine the original test with the method tracking: when a vulnerability was fixed only

adding lines of code, we assume that the whole method (or methods) where these lines

were added are responsible, otherwise, the technique works exactly as the original one (as

before, δ = 0)

Inited(r0, r1) =

{
Initm(r0, r1) if del(r0, r1) = ∅
del(r0, r1) otherwise

(5.10)

Track(r−i, r−i+1, E[r−i]) = E[r−i+1] ∩ code(r−i) (5.11)

Test(r−i) = |E[r−i]| > 0 (5.12)

5.5.4 Fix Dependency Screening

Finally, we assume that not always the entire source code of fixed methods is responsible

for the occurrence of a vulnerability. For instance, Fonseca and Vieira [61] empirically

show that most of injection vulnerabilities may be due to a missing call to a sanitizer

function, which is typically located at methods where user input is processed. Therefore,

we need to devise a better approximation of the vulnerability evidence.

Let F be the fixed lines of code obtained with diff(r0, r1). In order to fix the lines of

code F ⊆ code(r0), a developer might need to consider several other lines of code related

to F – the actual vulnerable code fragment F ′. Such expansion from F to F ′ can be

progressively scaled by a parameter k: an expansion Dk(code(r0) , F ) that, given a code

fragment code(r0) and the fixed lines of code F , returns the lines of code that F depends-

on or that are dependent-on F for k steps according to some criteria for the notion of
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dependency. By D∗(code(r0) , F ) we identify the transitive closure of these dependencies,

such that F ′ ⊆ D∗(code(r0) , F ) ⊆ code(r0) – the fix dependency sphere7 of the code

fragment F .

Therefore, we instantiate another screening test that considers the source code depen-

dencies of the fixed source code fragment as follows:

Initfd(r0, r1) = D∗(code(r1) , add(r0, r1)) ∩D∗(code(r0) , del(r0, r1)) (5.13)

Track(r−i, r−i+1, E[r−i]) = E[r−i+1] ∩ code(r−i) (5.14)

Test(r−i) =
|E[r−i]|
|E[r0]|

> δ (5.15)

5.6 Implementing the Fix Dependency Sphere

We implemented the dependency expansion D∗ as a generalized intra-procedural version

of thin slicing introduced by Sridharan et al. [150], which improves over the notion of

statement relevance of the original slicing algorithm by Weiser [165] to avoid collecting

overly large slices. However, our implementation is intra-procedural and operates directly

on the source code. It is possible to use precise tools such as Wala and Soot, but we have

already noted that they would take too long and require too much expertise (see [2,18]).

They should be run after the screening test on the candidate vulnerable versions.

In our case, the lines modified during a vulnerability fix are seeds, and, similarly

to [150], a slice includes a set of producer statements for the seeds. To identify simple

dependencies between statements we look for relevance relations between variables in

them. We also include a set of explainer statements that are relevant to the seeds. These

are the following types of statements:

1. Producer statements: “[...] statement s is a producer for statement t if s is a part

of a chain of assignments that computes and copies a value to t” [150]. This is an

assignment of a value to a certain variable.

2. We distinguish the following types of explainer statements:

(a) Control flow statements: the statements that represent the expressions in

the condition branches under which a producer statement will be executed (this

concept is taken from [150] as well). A statement s is control-dependent on a

conditional expression e if e can affect whether s is executed. A statement s is

7This concept is similar to the notion of k-dependency sphere introduced by Renieris and Reiss [129] for dependencies

in fault localization.
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flow-dependent on a statement t if it reads from some variable v that is defined

or changed at t, or there exists a control flow path from t to s on which v is not

re-defined.

(b) Sink statements – represents a statement that corresponds to a method call

which has a parameter to which a value flows from a producer statement. A

statement k is a relevant sink of the statement s if k is a procedure call and k is

flow-dependent on s.

Algorithm 2 Forward Slices of Relevant Variables

Set Relf (s)← def(s) if any of the following holds

1. s ∈ Seeds ∧ def(s) 6= ∅
2. there exists a preceding t such that:

(a) ref(s) ∩Relf (t) 6= ∅, or

(b) isPredicateOf(t, s) ∧Relf (t) 6= ∅
Set Relf (s)← ref(s) if any of the following holds

1. s ∈ Seeds ∧ def(s) = ∅
2. there exists a preceding t s.t. ref(s) ∩Relf (t) 6= ∅

Otherwise Relf (s)← ∅

Algorithm 3 Backward Slices of Relevant Variables

Set Relb(s)← ref(s) if any of the following holds:

1. s ∈ Seeds
2. there exists a preceding line t s.t.

def(t) ∩Relb(s) 6= ∅
// conservative: ignore step (3) for “light” slicing

3. there exists a preceding line t s.t.

t ∈ Sinks ∧ ref(t) ∩Relb(s) 6= ∅
4. there exists a succeeding t s.t.

isPredicateOf(s, t) ∧Relb(t) 6= ∅
Otherwise set Relb(s)← ∅

Therefore, our implementation proceeds as follows:

1. We start with the set of seed statements Seeds used as the slicing criteria, where

every criterion can be represented as a tuple 〈s, V 〉 (similarly to Weiser’s slicing

criterion [165]) where s is the seed statement, and V is the set of variables of interest

in that statement.

2. Then, for every statement in the slicing criteria s, we recursively identify the set of

relevant variables that are dependent-on or influence the relevant variables in s (Relf
and Relb) using Algorithms 2 and 3.

3. The final slice will include all statements in the method, for which there is at least

one variable that is relevant to the seeds.

When a statement s is a sink of the form s(x, y, z), and we collect this statement because
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the parameter x is a variable that is relevant at some other statement t, we conservatively

consider that x becomes relevant at s. However, we also consider the parameters y and

z to become relevant at s since x may be changed inside of s, as well as its value may be

passed to y and/or z.

Since this may be too conservative, as we may end up collecting too many statements

that are not actually relevant to the seeds, we also implemented a light variant of this

slicing that ignores the effect of the parameters: if a sink statement s of the form s(x, y, z)

will be included into a slice because of the parameter x, then we assume that neither x,

nor other parameters are changed inside of s, therefore their relevance will not be prop-

agated further (we empirically compare these two variants and discuss their performance

in Section 5.8).

5.7 Data Selection

During an empirical study on the drivers for security maintenance effort that we describe

throughout Chapters 3 and 6, we had informal discussions with software developers and

maintenance experts of our industrial partner. We understood that maintenance decisions

over a potentially vulnerable FOSS component can be taken on ad-hoc, component-by-

component basis. For example, a component may be forked due to porting, changing a

subset of features, or performing custom fixes for security bugs (as well as other technical

modifications) [117,132,151].

The unlikely, but not a rare decision to down-port a security fix8 may happen due to

a combination of reasons:

1. The newer version of a FOSS component that provides the fix is largely incompatible

with the coding of the application that consumes it, thus there is significant effort

involved in migrating the application;

2. The internal changes of the library are of limited concern for the developers of the

consuming application unless the functionality have been changed – the latter change

is often being captured by a change in the APIs [23,131];

3. The community that maintains the component is not likely to provide the solution

for a specific security problem with an outdated version9.

Our selection of FOSS projects is based the case study that we describe in Chapter 3,

and on what we felt to be the most challenging and interesting projects. They are typ-

ical, popular, and large Java-based components of similar size that have been actively

maintained for more than seven years. Table 5.2 lists the sample of FOSS projects on

8An example of forking and long-term maintenance is SAP’s decision to provide its own Java Virtual Machine

for several years “because of end of support for the partner JDK 1.4.2 solutions”. See http://docplayer.net/

22056023-Sap-jvm-4-as-replacement-for-partner-jdks-1-4-2.html.
9This could happen when the old version of a FOSS component is affected by a vulnerability but it is not supported by

its developers (e.g., EOL of Tomcat 5.5), or it is not actively maintained at the moment.
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Table 5.2: The sample of FOSS projects used in this chapter

The FOSS projects from our sample have been actively developed over several years (e.g., the commit speed is

between 742 and 2551 commits per year). For each component, the table lists the number of CVEs that affect

Java sources that we analyzed, and the total number of CVEs. While Apache Tomcat is older than 10 years, its

current trunk in the source code repository starts with version 6.0.0.

Project
Total

commits

Age

(years)

Avg.

commits

(per year)

Total

contributors

Current

size

(KLoC)

Total

CVEs

Processed

CVEs

µ files

touched

per fix

Apache

Tomcat (v6-9)

15730 10.0 1784 30 883 65 22 1.5

Apache

ActiveMQ

9264 10.3 896 96 1151 15 3 1.5

Apache

Camel

22815 9.0 2551 398 959 7 3 1.0

Apache

Cxf

11965 8.0 1500 107 657 16 10 2.0

Spring

Framework

12558 7.6 1646 416 997 8 5 1.6

Jenkins 23531 7.4 2493 1665 505 56 9 1.9

Apache

Derby

7940 10.7 742 36 689 4 3 2.7

which we ran our screening tests, including the total numbers of CVEs for each project

that exist in the NVD, as well as the number of CVEs that we analyzed (for which we

could identify the corresponding fix commits in their source code repositories). Figure 5.2

shows the distribution of vulnerability types from our analyzed sample of 55 CVEs.

We identify vulnerability types of every CVE from our sample according to their descriptions in the NVD. This

distribution suggests that the most prevalent type of vulnerabilities of the sample is Injection (including XSS,

CSRF, command/code execution), however it does not significantly outnumber other types (except Path traversal).

Figure 5.2: The distribution of vulnerability types

From our communications with developers we also understood that a simple metric for
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change, the number of changed API, is of greater interest for developers, as their focus is

to use the FOSS component as a (black box) library.

To collect the data, we examine the textual description of vulnerabilities from public vulnerability databases (e.g.,

the NVD) and search for references to the actual commits fixing the vulnerability. This information can be present

in the NVD, commit logs of the projects, or security notes.

Figure 5.3: Software infrastructure for obtaining the aggregated evidence

Figure 5.3 describes the software infrastructure we set up for collecting the data. We

first take the textual description of vulnerabilities from public vulnerability databases

such as the NVD, and search for the references to the actual commits that fixed the

vulnerability: this information can be either present in the vulnerability description, or in

the “references” section, or mentioned in the security notes related to the vulnerability.

Alternatively, it can be also present in the commit logs of the project’s source code

repository. While this activity can be automated, as it was done by Nguyen et al. [112],

we chose to perform it manually. It was shown by Bird et al. [28] that automatic collection

of such information may be biased, moreover, apart from looking at the NVD and commit

logs (this process can be easily automated), we had to resort to looking into various

security notes, bug trackers, and other third-party sources that do not belong to the

actual projects (this process is difficult to automate).

After the vulnerability fix commit information is consolidated, we invoke the Reposi-

tory utility component that automates various operations over source code repositories: it

instantiates a particular Repository wrapper that corresponds to a certain repository type

(currently we support Git and Apache Subversion). For every vulnerability, Repository

wrapper iterates backwards over the set of commits starting from a vulnerability fix com-

mit, and invokes the Vulnerability evidence extractor component for obtaining the various

types of vulnerability evidences: at present we implemented all algorithms discussed in

Section 5.5.

To provide also the demographics on the “number of API changes” that can cause
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For every commit in which we tracked the vulnerable coding, we collected the number of public methods that were

changed with respect to the public methods in corresponding fixes. The only exception was Jenkins – for this

project we measured the number of changed methods in all commits (not only in those in which the vulnerable

coding was present), as we found out that the repository history of this project was malformed (see Section 5.8 for

an explanation). This distribution gives an intuition on the amount of such changes within each project.

Figure 5.4: API changes statistics per project

problems when updating older vulnerable versions of FOSS components (shown on Figure

5.4), we include the Changes extractor component:

1. For each commit in which we track vulnerable coding, we identify all Java files; for

each Java file, we count and sum the number of public methods;

2. Then, we take the difference between each such commit and the commit of the

corresponding fix and count the number of public methods that are not present in

the fix, or could have been changed (looking at method signatures);

3. We record the number of changed methods in the current commit with respect to

the fix using the above two numbers.

After the vulnerability data is processed and all evidences are extracted, they are

aggregated and stored in a CSV file or a MongoDB database which can be used for

further analysis.

Figure 5.5 shows the distributions of the number of files10 and methods that were

modified for fixing CVEs from our sample, as well as the code churn11. In most cases

(51 out of 55), at most 5 files were modified, while in 29 cases only 1 file was modified.

Additionally, in 40 cases the code churn was at most 50 lines of code. This gives us an

10Here we count only Java files, excluding unit tests.
11It is difficult to automatically calculate modified lines using the diff tool, therefore we calculate code churn as the sum

of deleted and added lines as a superset that contains changed lines as well.
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The majority of security fixes from our sample were rather “local”, not spanning across many files, methods, and

lines of code.

Figure 5.5: The distribution of files and methods changed during a security fix

intuition that the majority of fixes were rather “local” and not spanning across multiple

files, methods, and commits (which would possibly require a more complex evidence

extraction mechanism).

For 49 out of 55 CVEs a fix was performed with a single commit. For every of the

other 6 CVEs that were fixed with several commits, we used an ad-hoc procedure:

1. For each such commit, we extracted and tracked the initial vulnerability evidence

independently (with (5.1) and (5.2) from Algorithm 1);

2. We aggregated the vulnerability evidences chronologically (with revision numbers)

by CVE identifiers, in particular making sure that if the evidence overlaps (e.g., the
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same method was changed with different commits), we do not include the same lines

of code as the evidence again;

3. For such aggregated evidence, we applied the test (5.3) from Algorithm 1.

A possible phenomenon that we feared was that our implementation of fix dependency sphere (see Section 5.6)

could have saturated the analysis by including the whole method where the vulnerable code was present. This is

not happening in our sample of projects, as the vulnerable code is not totally mingled with other functionalities

present in the method.

Figure 5.6: Comparing the initial amount of lines of code obtained with conservative fix dependency

screening versus the initial size of the entire fixed method

5.8 Validation

In this Section we describe validation process that we performed to answer the part of

RQ1 about the accuracy and performance of the proposed vulnerability screening test,

and to assess the overall usefulness of the approach for the problems outlined in Section

5.2. The empirical evaluation of the lightweight slicer for finding security features inherent

for injection vulnerabilities by Thome et al. [158] reports the running time between 50

seconds to 2 minutes on a project that has 28 KLoC on average. Table 5.3 reports the

runtime of our approach over the entire repository: while we cannot directly compare the

running time of our implementation of extracting the fix dependency sphere and the slicer
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Table 5.3: Runtime performance of fix dependency evidence

The vulnerability screening test can provide an approximate evidence (based on actual code) about the presence

of the newly discovered vulnerabilities by scanning the entire lifetime of a FOSS project in matter of minutes.

Precise (but costly) static analyses can be deployed after that step, in surgical fashion.

Project Analysed Data Time (in sec)

#Commits #MLoCs mean (std)

Apache Tomcat 141016 186.331 35 ( 19 )

Apache ActiveMQ 11598 27.904 28 ( 21 )

Apache Camel 8892 4.706 16 ( 7 )

Apace Cxf 53822 28.525 49 ( 33 )

Spring Framework 17520 3.854 44 ( 35 )

Jenkins 8039 9.416 16 ( 10 )

Apache Derby 7588 5.597 17 ( 11 )

by Thome et al. [158]12, the running time of our entire approach is comparable, which

shows that it is practical.

Next, we review the vulnerabilities in our data set, and analyze their fixes to understand

whether the fix dependency sphere would capture them. The results of this analysis for the

conservative fix dependency screening are summarized in Table 5.4: it lists descriptions

of vulnerability types (taken from OWASP Top 1013), as well as descriptions of typical

fixes for these vulnerabilities. The “completeness” column describes the dependencies of

a fix that will be captured by the fix dependency sphere D∗(code(r0) , F ). We claim that

for these vulnerability types and fixes D∗(code(r0) , F ) includes the fragment of the code

responsible for the vulnerability. Therefore, tracking the evolution of D∗(code(r0) , F )

from r0 and downwards may be a satisfying indicator for the presence of a vulnerability.

12As we only extract the relevant code within a set of methods (it takes less than a millisecond), while the slicer by

Thome et al. [158] extracts all potentially relevant sources and sinks.
13https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
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Initially, we selected 25 vulnerabilities for a manual validation, however, after initial

inspection we decided to exclude four vulnerabilities of the Jenkins project, as we observed

that the whole repository layout was deleted and copied over several times – this would

make our current automatic analysis incomplete (it stops when there is no more evidence,

and currently we did not implement heuristics that would allow to identify such corner

cases), and significantly complicate the manual analysis.

For each of the selected vulnerabilities, we identified the set of ground truth values as

follows:

1. We performed source code audits starting from the last vulnerable revision r0, moving

backwards through the repository history.

2. When we observed that any of the files initially modified to fix a vulnerability had

some changes in an earlier revision, we manually checked whether the vulnerability

in that revision was still present.

3. We stopped the analysis either on a revision that we find to be not yet vulnerable

(this implies that all earlier revisions are not vulnerable as well – we did several spot

checks going further past the first non-vulnerable revision an that was indeed the

case), or until we reached the initial revision of the repository.

The final sample for the manual assessment consisted of 126 data points across the

total of 126193 revisions, which corresponds to histories of 21 CVEs: we went backwards

iteratively, and for many revisions the vulnerability evidence did not change. Therefore,

we had to check only those points where it did actually change. The manual assessment

was carried out by three experts, who were cross-checking and discussing the results

among them before arriving at the final conclusion.

In this way, we manually annotated every revision from r0 and backwards with ground

truth values, obtaining the ground truth binary classifier:

Testgt(ri) =

{
1 if ri is still vulnerable

0 otherwise

Then, we ran every variant of the vulnerability screening test described in Section 5.5,

and compared the results with the ground truth. For every revision ri < r0 (where i < 0),

this comparison had the following result:

1. True positive: a revision was correctly classified as vulnerable (e.g., a test marks the

revision as vulnerable, and we identified that it is indeed vulnerable with our ground

truth analysis);

2. False positive: a revision was incorrectly classified as vulnerable (type I error of a

classifier);
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3. True negative: a revision was correctly classified as non-vulnerable;

4. False negative: a revision was incorrectly classified as non-vulnerable (type II error

of a classifier).

As a part of the answer to RQ1, we wanted to understand whether our fix dependency

variants of the vulnerability screening test (see Section 5.5.4) show results that are signifi-

cantly different in comparison to the existing work of Nguyen et al. [112] and the simplest

possible heuristic that can be expressed as “if the vulnerable piece of code (methods that

were fixed) does not exist yet, the vulnerability does not exist as well”.

Figure 5.7 shows the performance of the variants of the vulnerability screening test in

terms of true positive (Sensitivity) and false positive (1-Specificity) rates, when compared

to the ground truth classifier. We discuss the results below.

The “method screening” test did not show very high performance with most values

of the threshold δ. However, when δ is set to 0, the classifier is marking a revision

vulnerable based on just the presence or the absence of these methods, which may be a

good vulnerability indicator when security is the only factor that matters, as its Sensitivity

is equal to 1. Still, this strategy may have too many false positives in case affected methods

were not vulnerable right from the point when they were introduced (Specificity = 0.002).

This may result in potentially high security maintenance effort.

The “combined deletion screening” test showed similar performance to the above vari-

ant of the test, however it has slightly smaller Sensitivity (which does not contradict

with the false negative error rate reported by Nguyen et al. [112]), as in several cases the

deleted lines disappear before the actual vulnerable part of a method is gone.

The “light fix dependency screening” test shows significantly better performance when

the threshold δ is set to 0.5 and 0.2. With δ = 0.5, Sensitivity = 0.863, with Specificity =

1.0 (no false positives); while with δ = 0.2, Sensitivity equals to 1.0. However, in the latter

there are much more false positives (Specificity = 0.218). The amount of false positive

results may be not important for a security assurance team, as long as Sensitivity is close

to 1.0 [18]. On the other hand, for making quick estimates, significantly cutting down

the number of false positives may be more preferable. Thus, the above threshold values

may represent the trade-offs between the two conflicting goals: (1) the limited amount

of development resources that dictates to prioritize only the work that is necessary, and

(2) the requirement to provide maximum security assurance regardless the cost. In the

first case, most of vulnerable revisions will be recognized correctly so that the appropriate

action can be taken immediately, but there is still a small chance that some significantly

older vulnerable revisions will be marked as safe. In the second case, no revisions will be

incorrectly classified as non-vulnerable, but developers may spend a lot of additional work

on false positives – this case is still better than looking at the presence of a vulnerable

method, as it provides the same level of assurance with significantly smaller number of
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false positives.

On the other hand, the “conservative fix dependency screening” test yields more false

positives after δ > 0.5, however, for δ > 0.2 it is the same as the light test. This is

because for some of the vulnerabilities from our manual sample, the conservative test

yields a larger initial vulnerability evidence fragment capturing more lines of code within

a method that are not relevant to the vulnerable code fragment. Therefore, in such cases

initial vulnerability evidence decays slower than the initial vulnerability evidence for the

light test, showing different results at certain thresholds.

Table 5.5: Performance of the screening tests

The Precision for each test reflects the likelihood that a vulnerable revision will be correctly identified as such

by the test, while the Negative Precision suggests the opposite – the likelihood of a non-vulnerable revision to be

correctly identified as non-vulnerable. The results show that either variant of the fix dependency screening has

better discriminative capabilities than the variants of the test based on the presence of deleted lines, or the size

the affected methods.

Screening test Threshold Sensitivity Specificity Precision Neg. Precision

Method δ > 0.0 1.000 0.002 0.927 1.000

screening δ > 0.2 0.905 0.002 0.920 0.002

(Section 5.5.2) δ > 0.5 0.801 0.224 0.929 0.082

δ > 0.8 0.653 1.000 1.000 0.186

“Combined”

deletion screening

(Section 5.5.3)

δ > 0.0 0.982 0.002 0.925 0.010

Light fix δ > 0.2 1.000 0.218 0.941 1.000

dependency

screening
δ > 0.5 0.863 1.000 1.000 0.367

(Section 5.5.4) δ > 0.8 0.457 1.000 1.000 0.128

Conservative fix δ > 0.2 1.000 0.218 0.941 1.000

dependency

screening
δ > 0.5 0.742 1.000 1.000 0.235

(Section 5.5.4) δ > 0.8 0.458 1.000 1.000 0.128

However, Sensitivity and Specificity are the general characteristics of a test where the

population does not affect the result. To account for the prevalence [68] of the vulnerable

revisions we also calculate Precision and Negative Precision of the tests, which account for

the test predictive capabilities. These values are shown in Table 5.5 alongside Specificity

and Sensitivity. The values of these metrics show that the “fix dependency” variants of

the screening test have better discriminative capabilities than other variants of the test

we tried.

As can be seen from Table 5.5, the light fix dependency test (δ > 0.5) had no false pos-

itives, but had false negatives; in contrast, the conservative fix dependency test (δ > 0.2)

had no false negatives, but had false positives. Therefore, we approximate the potential
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The “combined” deletion screening test could almost always identify a vulnerable revision (Sensitivity =

0.982), but almost always failed to distinguish a revision that is not yet vulnerable. The method screening

test with δ = 0 (a revision is classified as vulnerable when affected methods are present) could always identify a

vulnerable revision (Sensitivity = 1.0), but had the same problem as the deletion screening (Specificity = 0.002).

At the same time, both light and conservative fix dependency screening tests show significantly better performance

than just looking at the deleted lines or the method(s) size: both in terms of true positive and false positive rates.

Figure 5.7: ROC curves for different variants of the vulnerability screening test

error rates for both tests – we use the Agresti–Coull confidence interval [4], that requires

to solve for p the following formula:

|p̂− p| = z ·
√
p · (1− p)/n, (5.16)

where p – is the estimated proportion of vulnerable (non-vulnerable) revisions; p̂ – is

the sample size proportion of vulnerable (non-vulnerable) revisions over the total sample

of revisions n; and z = 1.96 – is the coefficient for the 95% confidence interval. We have

chosen a large sample of CVEs for manual verification since it corresponds to a large

sample of revisions n, which ensures small margin of error. Thus, we have a potential

error rate for the tests as follows:

• The light fix dependency test with δ > 0.5 had the 0% error rate when classifying non-

vulnerable revisions (no false positives), and 13.7%±0.2% error rate when classifying

vulnerable revisions (few false negatives);

• The conservative fix dependency test with δ > 0.2 had the 78.3% ± 0.8% error rate
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when classifying non-vulnerable revisions (significant number of false positives), and

0% error rate when classifying vulnerable revisions (no false negatives).

These results allow us to provide an answer to RQ1: tracking the presence/absence of

the vulnerable methods or lines of code deleted during a security fix may be not sufficient

from the security maintenance management perspective. Still, fairly simple heuristics that

capture the lines of code that are potentially relevant to the vulnerable part of a method

can be more suitable for this task.

5.9 Decision Support for Security Maintenance

For those FOSS components, where upgrading to the latest version would likely require a

low effort, we just might want to update them – even if the security risk is comparatively

low. For components where the upgrade (or fixing) effort is high, we still can do a more

expensive and more precise analysis. Still, getting an immediate estimate on the trade-

offs between the upgrade effort and the likelihood of the security risk is the key for not

wasting the (limited) available resources on FOSS components that are unlikely to be

vulnerable, or are likely easy to upgrade.

Therefore, to answer RQ2, and provide an insight on whether developers could extract

quick indicators for security maintenance decisions on FOSS components they consume,

we performed an empirical analysis of the persistence of potentially vulnerable coding in

source code repositories of the chosen projects. We also extracted the amount of changes

between each revision and the fix in terms of changed public API, which we use as a proxy

for the overall changes that may complicate component updates, increasing maintenance

costs (see Section 5.7).

First of all, upon disclosure of a new vulnerability, developers could use a “local”

decision support that would allow them to identify the vulnerability risk for a version of a

FOSS component in question, as well as the likelihood that the component can be updated

without any major efforts. If an easy update is not possible (and for considerably older

versions of software components this is rarely the case), the value of the vulnerability

risk indicated by the presence of the vulnerable coding may be a useful indicator for

the maintenance planning. With Figure 5.8, we illustrate such a decision support for

developers: this information is generated by running the conservative fix dependency

screening test for CVE-2014-0035 (Apache CXF). We take the absolute value of the

vulnerability evidence as the potential security risk, and measure the changes in the API

between each revision and the fix for this CVE as a proxy for the upgrade effort. If a

version of a FOSS component is not older than 2000 revisions back from the fix (approx.

1-2 years), it may be preferable to update the component, as most of the vulnerable coding

is present, and difference in the API with respect to the fix is only starting to accumulate.
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On the other hand, if it is older than 5000 revisions back from the fix (more than 5 years),

it may be more preferable to take no action, as most of the potentially vulnerable coding

is gone, and changes accumulated between that point in time and the fix are too many.

For cases when the version of interest lies somewhere between these two areas, a custom

fix may be implemented.
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As we move backward from the fix in the revision history, the coding that is responsible for a vulnerability possibly

disappears (red curve, shows the absolute value of evidence in LoC), whereas other changes in the code base start

to accumulate (blue curve is the amount of API that changed in a certain revision with respect to the fix that

represents the effort of upgrading from that point to the fix). A very old version may require to change 13000+

public methods for a vulnerability that may be very unlikely to be there (85% chances, see Figure 5.9). Thus, the

position of the revision of interest in this diagram provides developers with a good insight on what decision to

make.

Figure 5.8: Trade-off curves for one vulnerability of Apache CXF (CVE-2014-0035)

To sketch a trade-off model that would allow to perform a retrospective analysis for

“global” security maintenance of the whole FOSS component, we attempt to generalize

the above “local” decision support. Similarly to Nappa et al. [110], who employed survival

analysis to analyze the time after a security patch is applied to a vulnerable host, we used

it to analyze the persistence of vulnerable coding that we extracted from the sample of

FOSS projects (shown in Table 5.2) with our screening tests. Survival analysis is the
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field of statistics that analyzes the expected duration of time before an event of interest

occurs [106], it is being widely used in biological and medical studies.

In our scenario, time goes backwards (from the fix), and we identify the following

event affecting every pair of (CVE, FOSS) as an individual entity, depending on one’s

considerations:

Security Risk: the event whose probability we measure is “the ratio of the vulnerability

evidence E[ri−1]/E[r0] in a screening test falls below δ”.

This event corresponds to the likelihood of the presence of the coding that is responsi-

ble for the vulnerability. To identify how this security risk may change over time, which is

the concern of our RQ2, we computed the survival probabilities of vulnerable code frag-

ments using the light fix dependency screening with δ > 0.5, conservative fix dependency

screening with δ > 0.2, method screening with δ > 0, and “combined” deletion screening

tests (the variants of the screening test which performance we show in Figure 5.7). We

performed survival analysis using the survfit14 package in R, fitting the Kaplan-Meier

non-parametric model (The Nelson-Aalen model gives the same qualitative result).

Figure 5.9 shows these survival probabilities: the vulnerable coding tends to start dis-

appearing after 1000 commits (approximately 1 year preceding the fix), as already at 2000

revisions back there are 60% chances that the vulnerable coding is still there according

to the evidence collected by conservative fix dependency screening (red curve). At 6000

revisions back (approx. 4 years) there is only 30% chance that the vulnerable coding sur-

vived, according to the same evidence. The curve that represents the probability of being

vulnerable according to the evidence obtained with light fix dependency screening (blue

curve) decays even faster. While the difference between the conservative fix dependency

screening and method/deletion evidence presence is not that obvious on this figure, it is

still significant (recall Figure 5.7).

Finally, we sketch the “global” decision support that represents the trade-offs that can

be considered for the security maintenance of a FOSS project (RQ2), we further combine

the survival curves for vulnerability evidences obtained with light and conservative fix

screening tests over the set of vulnerabilities for the Apache Tomcat project, using the

average values of API changes per project. Figure 5.10 represents the “global” trade-off

decision support for the Apache Tomcat project, that consists of the following elements:

1. The dashed red line corresponds to the conservative probability that the vulnerable

coding has survived at a certain point in time – this is based on the conservative fix

dependency screening with δ > 0.2 (our manual assessment for this test in Section

5.8 showed no false negatives, but a considerable amount of false positives).

2. The solid red line corresponds to the lightweight probability that the vulnerable

coding is still there – this is based on the light fix dependency screening with δ > 0.5

(our manual assessment for this test in Section 5.8 showed no false positives and a

14https://cran.r-project.org/web/packages/survival/survival.pdf
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The vulnerable coding tends to start disappearing after 1000 commits (<= 1 year preceding the fix), as already

at 2000 revisions back there are 60% chances that the vulnerable coding is still there according to the evidence

collected by conservative fix dependency screening (red curve). Further back (after approx. 6 years), there is only

a small probability that a component is vulnerable.

Figure 5.9: Survival probabilities of the vulnerable coding with respect to different variants of the screen-

ing test

low number of false negatives).

3. Each point on the solid blue line corresponds to the number of the API changed in a

certain revision in comparison to the fix: these are the aggregated average numbers

taken for the whole project sample (the two dashed lines are the .95% confidence

interval).

Figure 5.10 gives a recommendation to developers to update their versions of a com-

ponent on a yearly basis, as after that time the vulnerability risk is likely to be still high,

and the API changes tend to grow fast. The average amount of API changes15, as well

as both risk values, suggest that the security assessment should be performed when a

version of interest lags for around 3-4 years behind the fix (between 4000 and 6000 com-

mits). Here the down-port decision could be evaluated, considering that the conservative

risk estimate is still high at this point. Alternatively, if the lightweight risk estimate

15A certain older revision ry may actually have less API changes with respect to the fix than a certain newer rx for a

simple reason, that ry has less functionality than rx – this may be the reason why the amount of API changes that we

observe in Figure 5.10 is not as “linear” as in Figure 5.8.
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is tolerable, developers may already prefer to take no action at this point. Looking at

both conservative and lightweight probabilities for the vulnerability risk and the average

amount of the API changes, the point after 8000 commits could be the one at which the

“do not touch” decision might be the only reasonable choice.
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As we move back from the fix in the revision history, the probability that a revision is still vulnerable (red solid

and dashed curves) holds high within the first 2 years before the fix (around 4000 revisions back). At the same

time, the average amount of API changes (blue curve, the two dashed blue curves are the .95% confidence interval)

accumulates fast – this may be the right time for an update. Further back, between approx. 3 and 4 years before

the fix, the amount of changes does not grow significantly, but the vulnerability risk is still relatively high – this

may be the time frame for a thorough security assessment of a version in question. Further back (after approx. 4

years before the fix), the vulnerability risk falls down, and changes begin to accumulate even more – here the “do

not touch” decision might be the only reasonable choice.

Figure 5.10: “Global” trade-off curves for 22 vulnerabilities of Apache Tomcat

5.10 Threats to Validity

In our approach the construct validity may potentially be affected by the means of data

collection and preparation, the selected sample of FOSS projects, and the accuracy of the

information about security fixes in them:

• Misleading commit messages. As pointed by Bird et al. [28] (and from our own

experience), linking CVE identifiers to specific commits in source code repositories is
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not trivial: developers may not mention fix commits in the NVD and security notes,

and they may not mention CVE identifiers within commit logs. Also, automatic

extraction of bug fix commits may introduce bias due to misclassification (e.g., a

developer mentions a CVE identifier in a commit that is not fixing this CVE). To

minimize such bias, we collected this data manually, using several data sources,

including third-party sources that do not belong to the actual projects. Manual data

collection allowed us to additionally verify that every vulnerability fix commit that

we collected is indeed a fix for a particular CVE, therefore we do not have the latter

bias of misclassification.

• Tangled code changes in vulnerability fixes. There is a potential bias in bug-fix

commits, such that along with fixing relevant parts of the functionality, developers

may introduce irrelevant changes (e.g., refactor some unrelated code). Kawrykow

and Robillard [85], and Herzig et al. [73] explored to what extent bug-fix commits

may include changes irrelevant to the original purpose of the fix: while they show

that there may be significant amount of irrelevant changes for general bugs, Nguyen

et al. [112] observed that for the majority of security fixes this was not the case – this

is also supported by our findings of very “local” changes (Figure 5.5). The subset of

vulnerabilities that we checked manually did not contain such refactorings.

• Incomplete or broken histories of source code repositories. The commit history of

FOSS projects may be incomplete (e.g., migrating to different types of version control

systems, archiving or refactoring), limiting the analysis capabilities. We checked the

repository histories of all seven projects in our sample finding them all to be complete,

except for Jenkins. In case of Jenkins, at one point in time the whole repository layout

was deleted, and then re-created again. Our current implementation does not handle

such cases, as it works under the assumption that repositories are complete and

well-structured. Still, such cases (and similar ones) can be handled automatically,

extending the current implementation with more heuristics.

• Existence of complex “architectural” vulnerabilities. We improved over the work by

Nguyen et al. [112] by using slicing over the source code albeit limiting the scope

of the slice to distinct Java methods. This may be not adequate for sophisticated,

“architectural”, vulnerabilities. Nguyen et al. [112] have reported only a handful of

vulnerabilities in the Firefox and Chrome browsers that required to look at many files

and therefore called for inter-procedural slicing analysis (we also found few of such

vulnerabilities in our study). Hence, a prima facie evidence is that such complex

and rare vulnerabilities can be considered as outliers from the perspective of our

methodology. In such complex cases, additional analysis would be anyhow needed.

• Human error. Our manual validation of the screening tests over the subset of vul-
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nerabilities might be biased due to human errors and wrong judgement. In order to

minimize such bias, manual checks were performed by three different experts, who

were cross-checking and discussing the results of each other.

The internal validity of the results depends on our interpretation of the collected data

with respect to the analysis that we performed. We carefully vetted the data to minimize

the risk of wrong interpretations. We did not create exploits to test the actual behavior of

various versions against selected vulnerabilities (as it is close to impossible), performing

manual code audits instead.

The external validity of our analysis lies in generalizing to other FOSS components.

It depends on the representativeness of our sample of FOSS applications from Table

5.2, and the corresponding CVEs. As the FOSS projects that we considered are widely

popular, have been developed for several years, and have a significant number of CVEs,

those threats are limited for FOSS using the same language (Java), and having the same

popularity. Generalization to other languages (such as C/C++) should be done with care,

looking at Table 5.4.

5.11 Conclusions

We presented an automated, effective, and scalable approach for historical vulnerability

screening in large FOSS components, consumed by proprietary applications. Our ap-

proach represents an enhancement of the original SZZ approach [148] and its successors

(e.g., Nguyen et al. [112]), and can be applied to identify changes inducing generic soft-

ware bugs. However, the fixes of such bugs should have similar properties as the security

vulnerabilities that we discuss in this chapter (see Table 5.4), and should be “local”.

Otherwise, different heuristics for extracting the evidence may be needed.

While our current prototype is limited to vulnerabilities in Java source code, the ap-

proach can be extended to other programming languages and configurations. In practice,

it depends on the availability of a program slicer for a particular programming language.

Currently, our experimental validation has focused on a selection of software compo-

nents motivated by the needs of the security team at large enterprise software vendor. It

can be adapted to support other scenarios: e.g., for development teams to assess whether

the vulnerable functionality is actually invoked by a consuming application (as in Plate

et al. [123]), or for security researchers to improve the quality of vulnerability database

entries (as in Nguyen et al. [112]).
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Chapter 6

Effort Models for Security

Maintenance of FOSS Components

This chapter is motivated by the need of our industrial partner to estimate the effort

for security maintenance of FOSS components within its software supply chain. We

aim to assist in resolving Problem 3 of secure FOSS consumption (see Chapter 1) by

understanding whether various characteristics of a FOSS component (e.g., the number of

contributors, the popularity, the size of the code base, etc.) may indicate the potential

sources of “troubles” when it comes to the security of an application that consumes the

component. We investigated the publicly available factors to identify which ones may

impact the security maintenance effort.

6.1 Introduction

For most software vendors, FOSS components are an integral part of their software supply

chain. Initially, we started to work with the Central Security Team of our industrial

partner in order to validate whether static analysis (which was already used successfully

in the industry [19, 29]) can be used for assessing the security of FOSS components. We

realized that, while being the original motivation, it may be not the most urgent question

to answer. A more important task may be to allow the development teams to plan the

future security maintenance effort due to FOSS components.

In case of our industrial partner, who ships the software that is used over very long

time periods (i.e., decades) by its customers, it is very common that this software contains

old versions of FOSS components, which are not necessarily supported by the open source

community. In this scenario, it becomes very important to be able to estimate the required

security maintenance effort, which may be either caused by down-porting a fix to the

actual consumed version, or by upgrading it.

During the course of the case study that we describe in Chapter 3, we identified that
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the developers of our industrial partner use a software inventory that contains high-level

information about FOSS components. After one of the internal presentations that we held

on the premises of our industrial partner at that time, we asked the following question to

the audience: “Think of different characteristics of FOSS projects for a moment. If you

are selecting one as a component for your own application, which of its characteristics

would you consider important from the security point of view?”. The majority of responses

were almost equally divided by the community factors (e.g., is the community alive?, does

the community have good a reputation? ), the popularity of a project (e.g., the number

of users and the age), as well as security-related characteristics (e.g., the history of past

vulnerabilities, and whether the developers of a project are using security code analysis

tools). The information about most of these characteristics can be found by looking into

this software inventory (which mostly contains publicly available information about FOSS

projects collected from different sources), and we were not surprised that the developers

were mentioning them.

As our goal is to identify which of the factors the developers can take into account,

when considering the security maintenance of projects that include FOSS components,

we had deliberately chosen to use the data that was present in that software inventory

(and similar data sources), as it is readily available to the developers, and this is what

they use when dealing with FOSS components. We formulate our research question as

follows:

RQ3 Which factors have a significant impact on the security effort to manage a FOSS

component in different maintenance models?

We concentrated our collaboration on performing a study over the 166 FOSS compo-

nents that we identified during our exploratory case study (see Section 3.2 in Chapter 3).

We extracted different publicly available characteristics of these components, and used

them as factors. We sketched different security maintenance models for assessing whether

these factors may impact the future security maintenance of the internal projects that

use these components.

The case study described in Chapter 3 also helped us to delineate the key features that

a model for capturing the economics of software maintenance should have for extending

it to security. We build on the seminal study of Banker et al. [20] on the variables that

impact the software maintenance as a whole. One of the first challenges we have to face, in

comparison to Banker et al. [20], is that we cannot measure the software vendor working

hours on security maintenance alone (as this data is not separable from the “functional”

maintenance), nor we can measure them on each consumed FOSS component (as this

data is simply not available). Hence, we need to identify suitable proxies.

In the present study we adopted several elements of the Grounded Theory approach

initially proposed by Glaser and Strauss [64]. The goal of this approach is to construct

a theory based on a phenomenon that can be explained with data [69]. The approach
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follows the principle of emergence [67]: the data gain their relevance within the analysis

through the systematic generation and interactive conceptualization of codes, concepts

and categories. Data that are similar in nature are grouped together under the same

conceptual heading (category). Categories are developed in terms of their properties and

dimensions, and finally they provide the structure of the theory [155].

To identify the right factors to consider when evaluating the impact of FOSS com-

ponents on the security maintenance effort, we incorporate several maintenance models:

(1) distributed, where each development team fixes its own set of components, and

the security maintenance effort scales linearly with the number of used components; (2)

centralized, where the vulnerabilities of a FOSS component are fixed centrally and

then pushed to all consuming products (and therefore the effort scales sub-linearly in the

number of products); and (3) hybrid, in which only the least used FOSS components are

selected and maintained by individual development teams.

We consider these distinctions between the models, as we try to take into account the

software familiarity aspect discussed in studies by Banker et al. and Chan et al. in [20,

21,35]: in centralized and hybrid security maintenance models, a proprietary software

vendor could have a centralized team of experts that consolidates the necessary knowledge

about the population of FOSS projects used internally. In these models, the “bulk”

security issue resolution may be beneficial when the number of usages of a component is

high. These models are further discussed in Section 6.3.

6.2 A Conceptual Model of Business And Technical Drivers

A key question is how to capture the security maintenance effort in broad terms. We

identified four main areas that impact the maintenance effort due to security. Figure 6.1

summarizes the relationships between them. The main areas are as follows:

1. Proxy for code complexity: this area of factors comprises of various quantitative char-

acteristics of FOSS projects that represent their overall complexity. This complexity

may have an impact on the number of disclosed vulnerabilities, thus affecting the

maintenance effort of resolving them.

2. FOSS community: this area includes both quantitative and qualitative factors that

reflect characteristics of community around a FOSS project, being a function of the

project’s general popularity and the appeal to contributors. This area also reflects

the chances that a project will be selected as a component by external developers.

Some of the factors from the previous category and the present one may belong to

both areas at the same time (e.g., the popularity of used technologies, such as the

programming language used for implementation), therefore we group them into the

sub-area that represents the ease of analysis for security researchers.
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The key drivers for the security maintenance effort are represented by suitable proxies (defined above), each of

them corresponds to an area of factors that may impact the global security maintenance.

Figure 6.1: The model for the impact of various factors on the security maintenance

3. Secure development and testing: the factors that characterize how well secure devel-

opment and testing activities are built into the lifecycle of a FOSS project. These fac-

tors may influence the potential security issues that the consumers of FOSS projects

may face.

4. Maintenance and contribution models: the factors that identify the response, main-

tenance and support processes within a FOSS project. This particular area rep-

resents the appeal of a FOSS project for potential consumers with respect to the

maintainability and support in general, as well as the availability of security-related

information about the project.

Although many of the factors from the above areas are not specific to security and are

used as general predictors for software bugs, we show in Section 2.3.2 (Chapter 2) that

there are works such as Ozment [120], Shin and Williams [146], Shin et al. [145], that

support their relevance to the security vulnerabilities.

In Section 6.4 we discuss the potential data sources from which various factors can be

collected. Below we describe each area of impact in detail.

92



6.2. A CONCEPTUAL MODEL OF BUSINESS AND TECHNICAL DRIVERS

Table 6.1: Proxy for code complexity drivers

Factor Source Collection

method

Description References

Size Open Hub,

code repository

Automatic The total size of the code

base of a project (LoC).

[31], [63], [87], [24], [172], [20]

Changes Open Hub,

code repository

Automatic The development activ-

ity of a project (e.g.,

the added/deleted lines of

code)

[109] [63] [175] [145] [84] [171]

Commits Open Hub,

code repository

Automatic The total number of the

source code commits.

[109] [145] [171]

Age Open Hub,

code repository

Automatic The age of a project

(years).

[121] [171] [84]

6.2.1 Proxy For Code Complexity Drivers

The age of a project (#Age), its size (#Size), and the number of changes (#Changes)

are traditionally used in various studies that investigate defects and vulnerabilities in

software [63, 87], software evolution [24, 31] and maintenance [171]. For example, the

study by Koru et al. [87] demonstrated a positive relationship between the size of a code

base (LoC) of a project and its defect-proneness. Zhang [172] evaluated the LoC metric

for the software defect prediction and concluded that larger modules tend to have more

defects.

The number of security bugs can grow significantly over time [91], and many works

(see [63, 84, 109, 145, 171, 175]) suggest a positive relation between the number and the

frequency of changes in the source code (#Changes in time: e.g., commits, added/deleted

lines of code), and the number of software defects1.

Table 6.1 summarizes the factors that we identified for this area of impact.

6.2.2 FOSS Community Drivers

Several studies considered the popularity of FOSS projects as being relevant to their

quality and maintenance [128,138,171]. It is a folk knowledge that “Given enough eyeballs,

all bugs are shallow” [128], meaning that FOSS projects have the unique opportunity to be

tested and scrutinized not only by their developers, but by their user community as well.

In our case, we also assume that the overall popularity (the number of users, developers,

etc.) will impact the chances that a particular FOSS component will be selected, thus,

the user count (#Users) impacts the overall number of vendor’s products that consume

the component. The number of downloads (#Downloads) can serve as another alternative

1We consider security vulnerabilities to be particular software defects (see [168]), which may be impacted by these factors.
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Table 6.2: FOSS community drivers

Factor Source Collection

method

Description References

Popular

programming

language

Project website,

Open Hub,

code repository

Automatic The project is mostly writ-

ten in Java, C, C++, PHP,

JavaScript, SQL, etc.

[98] [118]

Developers Project website,

Open Hub,

code repository

Automatic The number of unique de-

velopers.

[145] [171] [25]

Users Project website,

Open Hub

Automatic The user count of a project

(Open Hub).

[128] [124] [1] [171] [138]

[167]

Downloads Project website,

CII Census

Semi-

automatic

The number of downloads

of project releases or pack-

ages.

[43]

measure for popularity [43]. Apart from the popularity measure, the number of developers

(#Developers) of a software product may serve as an independent factor that impacts the

number of bugs or vulnerabilities in that product (for instance, see [25]).

Understanding how software works is a necessary prerequisite for successful software

maintenance and development (see [21, 22, 59]). Ostrand et al. [118] observed that in

multi-language projects the files that are implemented in certain programming languages

may contain more bugs than the others. While the authors [118] did not suggest that

certain languages may be more prone to bugs, they stress the importance of considering

various programming languages in connection to the number of bugs.

Also, according to the vulnerability discovery process model described by Alhazmi et

al. [6], the longer is the active phase of a software the more attention it will attract, and

the more malicious users will get familiar with it to “break” it (as an additional side-effect

of using a popular programming language or a popular technology).

Table 6.2 summarizes the factors that we identified for this area of impact.

6.2.3 Secure Development, Testing, Maintenance And Contribution Drivers

Secure design specifications help the developers (especially the less experienced ones)

to build a more secure product [99]. The availability of such documentation for external

reviewers helps to eliminate the security defects at the early stage of product development.

Additionally, the practice of internal reviews (e.g., the source code commits are checked

before the code is pushed into production) improves the overall quality and the security

of the product [100]. Finally, the presence of the secure coding standards as a taxonomy

of common programming errors [82, 144] (which had led to security vulnerabilities in the

past) reduces the amount of future vulnerabilities and the efforts for security maintenance.
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Wheeler [166] suggested that successful FOSS projects should use static analysis se-

curity testing (SAST) tools, which should at least reduce the amount of trivial vulner-

abilities [39] (see [40] for the examples of such vulnerabilities). Penetration testing and

dynamic analysis security testing (DAST) tools facilitate the early discovery of security

vulnerabilities [11], while maintaining the security regression tests for past vulnerabilities,

and tests for the security-critical functionality ensure that the same (or similar) security

issues are not re-introduced, thus lowering the security maintenance effort.

Planned maintenance and support for FOSS projects can be a critical factor that in-

fluences the choice of a project as a component: this will enable consumers to plan ahead

when they should make a decision on whether to select a replacement project when the

maintenance becomes too costly, or fork a FOSS project and provide support internally.

The ease of contribution to the project (such as clear guidelines for new developers and

transparent contribution processes) may prevent the necessity of forking a project.

The same is true for development and distribution models of a FOSS project: if these

models do not match the models used by their consumers (or are not taken into ac-

count), this may bring disturbances to the software maintenance processes of consumers,

significantly increasing the corresponding efforts.

There are several security related-factors that may not impact the security maintenance

effort significantly, but have a direct effect on the reputation a project, making it more or

less appealing for selection. For instance, a project that provides means for downloading

its source and binary packages securely (via https, cryptographically signed or hashed)

protects its users from the malware that malicious third parties could inject into down-

loads. Additionally, the private vulnerability reporting process allows them to issue a fix

in a timely manner and notify their commercial partners before the vulnerability will be

publicly known.

Finally, the presence of a list of known past vulnerabilities maintained by the project

could as well simplify the task of identifying whether certain versions of that project are

vulnerable.

Table 6.3 summarizes the factors that we identified for this area of impact.

6.3 From Drivers to Effort Model for FOSS Maintenance

In Chapter 3 we have sketched some of the security activities that a development team

must perform during the maintenance phase. Unfortunately, a team is normally assigned

to several tasks, with security maintenance being only one of them. Therefore, it is

close to impossible to get analytical accounting for security maintenance to the level

of individual vulnerabilities. Furthermore, when a FOSS component is shared across

different consuming applications, each development team can differ significantly in the

choice of the solution and hence in the effort to implement it.
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Table 6.3: Secure development and testing, maintenance and contribution model drivers

Factor Source Collection

method

Description References

Security tests Project website,

code repository

Manual The test suite contains tests for

past vulnerabilities (regression)

and/or tests for security func-

tionality.

[166], [167], [1],

[40], [20]

Private vuln.

reporting

Project website Manual There is a possibility to report

security issues privately.

[105]

SAST/DAST tools Project website,

code repository,

Coverity website

Manual A project is using security code

analysis tools during develop-

ment.

[166], [167], [1], [39]

Secure design

specs

Project website,

documentation

Manual The secure design specification

of the project is documented.

[99]

Penetration

testing

Project website,

documentation

Manual The penetration testing is per-

formed regularly by the project

developers.

[11]

Coding

standards

Project website,

documentation,

code repository

Manual Secure coding standards are

documented.

[20], [82], [144]

List of known

vulnerabilities

Project website,

vulnerability

databases

Manual Past security vulnerabilities of

the project are documented and

are publicly available.

[167]

Devel. & distr.

model

Project website,

documentation

Manual The patch and release cycles are

documented.

[174]

Planned support

& maintenance

Project website,

documentation

Manual The maintenance roadmap and

support cycles for different ver-

sions of a project are docu-

mented.

[166]

Ease of

contribution

Project website,

documentation,

code repository

Manual Clear guidelines for new devel-

opers or potential contributors

are present.

Checked commits Project website,

documentation,

code repository

Manual There exists a review process for

new contributions, including se-

curity code reviews.

[100], [167]

Secure

downloads of

releases

Project website,

package

distribution stats.,

CII Census

Manual The project provides means for

downloading the source code

or binaries securely (e.g., https

protocol, cryptographic signa-

tures).
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Banker et al. [20] have already shown that maintenance models do not scale linearly,

and that software maintenance may be affected by economies of scale. Preliminary discus-

sions with developers and researchers of our industrial partner suggested the combination

of vulnerabilities of the FOSS component itself and the number of company’s products

using it can be a satisfactory proxy for the security maintenance effort. A large number

of vulnerabilities may be the sign of either a sloppy process or a significant attention by

hackers and may warrant a deeper analysis during the selection phase or a significant re-

sponse during the maintenance phase. This effort is amplified when several development

teams are asking to use a FOSS component, as a vulnerability which eschewed detec-

tion may impact several hundred products and may lead to several security patches for

different products.

We also considered the option of using the number of exploits from the Offensive Secu-

rity database (http://www.offensive-security.com) as an alternative metric. Num-

bers of vulnerabilities and exploits have a strong correlation in our sample of projects

(Spearman’s rho = 0.71, p < 0.01) – it could be because security researchers can create

exploits to test published vulnerabilities and, alternatively, they can create exploits to

test a vulnerability they have just found (for which a CVE entry does not yet exist). We

tested both values without finding significant differences and, for simplicity, we use the

number of vulnerabilities as the proxy for effort since this was considered by developers a

“standardized” information available from known trusted sources, whereas exploits would

come from less neutral sources.

We assume that the effort structure has the following form:

e = efixed +
m∑
i=1

ei (6.1)

where ei is a variable effort that depends on the i-th FOSS component, and efixed is a

fixed effort that depends on the security maintenance model (e.g., the initial set up costs).

For example, with a distributed security maintenance approach an organization will have

less communication overhead and more freedom for developers in distinct product teams,

but only if a small number of teams are using a component.

Let |vulns i| be the number of vulnerabilities that have been cumulatively fixed for the

i-th FOSS component and let |products i| be the number of proprietary products that use

the component:

1. In centralized model a security fix for all instances of a FOSS component is issued

once by the Central Security team of the company and then distributed between

all products that are using it. This may happen when, as a part of FOSS selection

process, development teams must choose only components that have been already

used by other teams and are supported by the company. To reflect this case, the

effort for security maintenance in this model scales logarithmically with the number
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of products using a FOSS component.

ei ∝ log
(
|vulns i| · |products i|

)
(6.2)

2. Distributed model covers the case when security fixes are not centralized within a

company, so each development team has to take care of security issues in FOSS com-

ponents that they use. In this scenario the effort for security maintenance increases

linearly with the number of products using a FOSS component.

ei ∝ |vulns i| · |products i| (6.3)

3. Hybrid model combines the two previous models: security issues in the least con-

sumed FOSS components (e.g., used only by lowest quartile of products consuming

FOSS) are not fixed centrally. After this threshold is reached and some effort lin-

early proportional to the threshold of products to be considered has been invested,

the company fixes them centrally, pushing the changes to the remaining products.

ei ∝

|vulns i| · |products i| if |products i| ≤ p0

p0 · |vulns i|+ log
(
|vulns i| ·

(
|products i| − p0

))
otherwise

(6.4)

As shown in Figure 6.2, hybrid model is a combination of distributed and centralized

models, when centralization has a steeper initial effort. The point V0 is the switching point

where the company is indifferent between centralized and distributed effort models.

Hybrid model captures the possibility of a company to switch models after (or before) the

indifference point. The fixed effort of centralized model is obviously higher than the

one of distributed model (e.g., setting up a centralized team for fixing vulnerabilities,

establishing and communicating a fixing process, etc.).

Hence, we extend the initial function after the threshold number of products p0 is

reached, so that only a logarithmic effort is paid on the remaining products. This has the

advantage of making the effort ei continuous in |products i|. An alternative would be to

make the effort logarithmic in the overall number of products after |products i| > p0. This

would create a sharp drop in the effort for the security maintenance of FOSS components

used by several products after p0 is reached. This phenomenon is neither justified on the

field, nor by the economic theory. In the sequel, we have used for p0 the lowest quartile

of the distribution of the selected products.

We are not aiming to select a particular model – we consider them as equally possible

scenarios. Our goal is to see which of the FOSS characteristics can have an impact on

the security maintenance effort when such models are in place, keeping in mind that this

impact could differ from one model to another.

We now define the impact that the characteristics of the i-th FOSS component have

on the expected effort ei as a (not necessarily linear) function fi of several variables and
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Number of products

Effort

hybrid
model

distributed
model

centralized
model

V0

initial
effort
(β0)

Centralized model has initial set up costs β0 (setting up and training the team, communications overhead, etc.),

and the effort scales logarithmically with the number of applications where components are used, and the number

of vulnerabilities in them. Distributed model does not suffer from β0, but the growth in effort is linear, which

generates additional costs when the number of usages of a component is large. Hybrid model is a combination of

distributed and centralized models, when centralization has a steeper initial cost. V0 is the switching point in

the number of usages where a company is indifferent between the previous two models.

Figure 6.2: Illustration of the three effort models

a stochastic error term εi:

ei = f(xi1, . . . , xil, yil+1, . . . , yim, dim+1, . . . , dn) + εi (6.5)

The variables xij, j ∈ [1, l] impact the effort as scaling factors, so that a percentage

change in them also implies a percentage change in the expected effort. The variables

yij, j ∈ [l + 1,m] directly impact the value of the effort. Finally, the dummy variables

dij, j ∈ [m + 1, n] denote qualitative properties of the code captured by a binary classifi-

cation in {0, 1}.
For example, in our sample of FOSS components, the 36-th component is “Apache

CXF”, and the first scaling factor for effort is the size of the code base of the component

(LoC), so that xi,1
.
= locsi, and x36,1 = 868, 183.

Given the above classification, we can further specify the impact equation for the i-th

component as follows

log(ei) = β0 + log

(
l∏

j=1

(xij + 1)βj

)
+

m∑
j=l+1

βi · eyij +
n∑

j=m+1

βi · dij + εi (6.6)

where β0 is the initial fixed effort for a specific security maintenance model.

All three models reflect to a certain extent on the experience of our industrial partner

in managing the security maintenance of FOSS components. These models focus on

technical aspects of security maintenance of consumed FOSS components, putting aside
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all organizational aspects2 such as the overhead of communications between different

development and maintenance teams, and interactions with customers. The models aim

to reflect (on the abstract level) how the cumulative maintenance effort will look like when

all FOSS components are fixed by a single team, many independent teams, or a mixture

of both.

Currently, we do not consider how exactly the knowledge about software security,

domain-specific knowledge about FOSS components, and other types of expertise may be

distributed within various teams in the three models (for example, centralized model

could have specialists that have in-depth knowledge in software security, but only high-

level knowledge about every FOSS component used company-wise, while in distributed

model the members of independent teams could have less knowledge in software security,

but much more knowledge of the FOSS components that they actually use). This may

affect, for example, how much effort does it take to perform fixes in certain locations of

FOSS components. These knowledge distributions may vary from company to company

and from team to team. It would be interesting to study how various differences in

expertise may affect the security maintenance effort with actual development teams in

several large software development companies – this could be a potential line for future

work.

6.4 Identification of Empirical Data

We considered the following public data sources to obtain the factors of FOSS projects

that could impact the security effort in maintaining them:

1. National Vulnerability Database (NVD) – the US government public vulner-

ability database. We use it as the main source of public vulnerabilities in FOSS

components (https://nvd.nist.gov/).

2. Open Sourced Vulnerability Database (OSVDB) – an independent public

vulnerability database. We use it as the secondary source of public vulnerabilities to

complement the data that we obtain from the NVD (http://osvdb.org).

3. Black Duck Code Center – a commercial platform for the open source governance

that can be used within an organization for the approval of the usage of FOSS

components by identifying legal, operational and security risks that can be caused

by these components. We use the installation of our industrial partner to identify

the most “interesting” FOSS components.

4. Open Hub (formerly Ohloh) – a free offering from Black Duck supported by

an online community that maintains statistics which represent various properties

of FOSS projects. Additionally, Open Hub retrieves data from the source code

repositories of FOSS projects (https://www.openhub.net/).

2For organizational aspects see [26].
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5. Coverity Scan Service website – in 2006 Coverity started the initiative of pro-

viding free static security testing code scans for FOSS projects, and many of the

projects have registered since that time. We use this website as one of the sources

that can help to infer whether a FOSS project is using SAST tools (https://scan.

coverity.com/projects)

6. Core Infrastructure Initiative (CII) Census – the experimental methodology

for parsing through the data of open source projects to help identify projects that

need some external funding in order to improve their security. We use a part of their

data3 to obtain information about Debian installations which is used within Census

as the measure of popularity of a project, and which we use as an additional measure

of popularity as well.

After searching for factors in a smaller sample of 50 projects we understood that only

variables that could be extracted automatically and semi-automatically are interesting

for the maintenance phase. Gathering the data manually introduces bias and limits

the size of a data set that we can analyze, and, therefore, the validity of the analysis

at all. Further, from the software vendor’s perspective, this data cannot be effectively

collected and monitored on a periodic basis. Thus, we removed the manual variables and

expanded the initial data set up to 166 projects (projects that are consumed by at least 5

products as indicated in the Black Duck repository of our industrial partne): we showed

the descriptive statistics of these projects earlier in Table 3.2 and Figure 3.1 (Chapter

3). Moreover, in spite of their intuitive appeal, we excluded dummy variables related to

the programming languages4 from the data analysis, because we realized that almost all

projects have components of both, so these variables would not be discriminating. We

also had to exclude other dummy variables (e.g., related to the presence of security tests,

or usages of SAST/DAST tools), as we realized that, given the amount of projects that

we considered, the most accurate way to extract this information is manual exploration.

However, even manual work would not be able to resolve the bias: when we could not

answer the question “are the developers of a project using SAST/DAST tools?” by looking

at various sources, it could only mean that we failed to find this information, and that

the answer to this question is unknown.

We also tried to find commonalities between FOSS projects in order to cluster them.

However, this process would introduce significant human bias. For example, the “Apache

Struts 2” FOSS component is used by the vendor as a library in one project, and as a de-

velopment framework in another one (indeed, it can be considered to be both a framework

and a set of libraries). If we “split” the “Apache Struts 2” data point into another two in-

stances marked as “library” and “framework”, this would introduce dependency relations

3https://www.coreinfrastructure.org/programs/census-project
4Such as variables that indicate whether there are parts of the code base written in programming languages without a

built-in memory management, or in scripting languages that could be prone to code injection vulnerabilities (see [167]).
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between these data points. Assigning arbitrarily only one category to such data points

would also be inappropriate. A comprehensive classification of FOSS projects would re-

quire to perform a large number of interviews with developers to understand the exact

nature of the usage of a component and the security risk. However, it is unclear what

would be the added value to developers of this classification and the time spent for the

interviews.
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The number of added and deleted lines of code could not be used as independent variables, since they have a

strong correlation with each other (as well as with the total number of lines of code, and other variables). On the

other hand, the fraction of changed lines of code by the total size (locsEvolution) can be used as an independent

predictor. The red triangles show the fraction of lines of code in scripting languages, the black circles show other

languages. The axes are logarithmic.

Figure 6.3: The rationale for using the locsEvolution metric
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Table 6.4: Cross correlations of the explanatory variables

(a) Spearman correlation coefficients

userCount debianInst contribs locs locsEvolution

years 0.47 0.47 0.09 0.33 0.04

userCount 0.45 0.34 0.35 0.19

debianInst -0.01 -0.01 -0.15

contribs 0.39 0.31

locs -0.12

(b) Variance inflation factors

Variable VIF

years 1.27

userCount 1.11

debianInst 1.18

contribs 1.12

locs 1.14

locsEvolution 1.02

As we are interested in performing a regression analysis to assess the impact of in-

dividual explanatory variables on the dependent variable – the maintenance effort, we

had to alter the number of variables in the analysis, as some of the initial variables that

we considered have strong correlations with each other: for instance, we had to remove

the number of commits as it strongly correlates with the size of the code base and the

number of developers. To assess the potential impact of the popularity of a programming

language, we tried to divide the size of the code base into two different variables: one of

them showing the size of the code base written in popular languages (e.g., Java, C/C++,

PHP, JavaScript), and the other showing the size of the code base implemented in other

less popular languages (e.g., Lisp, Scala). Eventually, we understood that it would in-

troduce the same multi-collinearity problem. Additionally, the numbers of deleted and

added lines of code has a strong correlation with the numbers of commits and developers,

and the size of the code base.

For the latter, we had to come up with another metric that would capture the changes

to the source code – locsEvolution. Figure 6.3 illustrates why we could not use the

added and deleted lines of code as factors, as they correlate with each other and with the

total lines of code locs. As locsEvolution does not have a strong correlation with locs,

it can be used as an independent variable.

Finally, we performed the correlation analysis of the remaining variables in order to

determine whether the multi-collinearity problem remains – Table 6.4. We first built the

correlation matrix using Spearman rank correlations: as can be seen from Table 6.4a,

there are weak-to-moderate correlations in some of the variables. However, according to

Stevens [152, pp74], the presence of such correlations does not necessarily affect the regres-

sion results. Therefore, we also calculated the variance inflation factors of each variable

(Table 6.4b), which is a widely used measure for assessing the degree of multi-collinearity

of independent variables. According to the rule of thumb proposed by Myers [108, pp369],

these values are acceptable and indicate that the selected explanatory variables do not

have significant cross influences.

103



CHAPTER 6. EFFORT MODELS FOR SECURITY MAINTENANCE OF FOSS COMPONENTS

Table 6.5: Variables used for analysis

The table provides a short description of each selected explanatory variable, as well the rationale for including it

into the models. The last column shows the expected impact that a variable may have on the effort (positive or

negative).

Factor Description Rationale Exp.

β

locs (xij) Number of lines of code in various

programming languages (excluding

the source code comments).

The more there are lines of code, the more

there will be new vulnerabilities.

+

locsEvolution (yij) The fraction of the total number of

added and deleted lines of code by

the total number of lines of code.

We could not use the added/deleted lines

as factors, as they have a strong corre-

lation with each other, and with the to-

tal lines of code. As locsEvolution does

not have a strong correlation with the to-

tal lines, it can be used as an indepen-

dent variable that reflects the total level

of changes in a project.

+

userCount (yij) The number of active users (mea-

sured by Open Hub).

The more popular the project is, the more

it is likely that new vulnerabilities will be

discovered by the users.

+

debianInst (yij) The number of package downloads

from the Debian repository.

This variable provides an additional mea-

sure for popularity, however, these two

factors are not exactly correlated, as

some software is usually downloaded from

the Web (e.g., Wordpress), so it may

be unlikely that someone would install it

from the Debian repository, even if a cor-

responding package exists. On the other

hand, some software may be distributed

only as a Debian package.

+

years (yij) The age of a project (in years). More vulnerabilities can be discovered

over time.

+

contribs (yij) The number of unique contributors

for the whole history of the source

code repository of a project.

Too few contributors might induce vul-

nerabilities, as there may be not enough

workforce or expertise to catch security

defects before releases, so that other peo-

ple report them (resulting in CVE en-

tries).

−

Table 6.5 lists the set of finally selected explanatory variables, and shows their expected

impact on the security maintenance effort with respect to the model in Section 6.3. Table

6.6 shows the descriptive statistics of the response and explanatory variables.
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Table 6.6: Descriptive statistics of the variables used for the analysis

Statistic

Variable Min 1st Quartile Median Mean 3rd Quartile Max

log(effort centralized) 0.51 1.29 1.49 1.50 1.75 2.32

log(effort distributed) 0.69 3.64 4.44 4.81 5.76 10.13

log(effort hybrid) 0.69 3.24 3.78 4.12 4.94 8.42

years 1.00 7.00 10.00 10.27 13.80 28.00

userCount 0.00 9.00 52.00 258.00 178.00 9390.00

log(debianInst+1) 0.00 3.76 7.25 6.56 9.46 12.08

contribs 1.00 15.00 32.00 115.20 101.20 1433.00

log(locs) 7.88 10.70 12.02 11.89 13.09 16.96

locsEvolution 0.53 1.58 1.96 2.09 2.53 6.46

6.5 Analysis

To assess the potential impact of individual factors that characterize FOSS components

on the security maintenance effort, we employ the least-square regression (OLS). This

method assumes that the regression function is linear in the input, allowing for an easy

interpretation of the impact dependencies between explanatory and response variables,

as well as predictions of potential future values of the response. Most of other regression

methods can be perceived as modifications of the linear regression method that is relatively

simple and transparent as opposed to its successors [80, Chapter 3].

Our reported R2 values (0.21, 0.34, 0.42) and F-statistic values (7.17, 13.46, 19.28)

are acceptable, as our purpose is to see which variables have the impact. We have not

considered the variables in Table 6.3, as they cannot be automatically collected by the

vendor. Thus, we can only explain part of the variance.

The results of estimates for each security effort model are given in Table 6.7. These

results show that there is a positive relation between the size of the code base locs and

the effort variable (statistically significant only in distributed and hybrid models).

Zhang [172] and Koru et al. [87] show a positive relation between the size of a code base

and the number of defects (which is a component of the effort in our model).

The locsEvolution and contribs variables do not seem to have an impact. We

expected the opposite result, as many works (e.g., [63,109,145]) suggest a positive relation

between the number and the frequency of changes and defects. However, these works

assessed the changes with respect to distinct releases or components, while we are using

the cumulative number of changes for all versions in a project; we may not capture the

impact because of this.

Security bugs grow over time [91], which can be explained by the interest of attack-
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Table 6.7: Regression Results

locs has positive and statistically significant impact in distributed and hybrid models. years has positive and

statistically significant impact in all three models. userCount and debianInst have statistically significant, but

small impact in all three models.

Centralized model Distributed model Hybrid model

Intercept 8.90 · 10−1 (3.89)*** 1.83 (2.15)* 7.92 · 10−1 (1.21)

years 1.97 · 10−2 (2.64)** 8.14 · 10−2 (2.93)** 7.12 · 10−2 (3.34)**

userCount 7.86 · 10−5 (2.12)* 5.02 · 10−4 (3.63)*** 4.09 · 10−4 (3.86)***

debianInst 1.75 · 10−6 (2.54)* 9.31 · 10−6 (3.63)*** 8.51 · 10−6 (4.33)***

contribs −1.17 · 10−4 (−0.85) −5.33 · 10−4 (−1.04) −2.32 · 10−4 (−0.59)

log(locs) 3.02 · 10−2 (1.48) 1.56 · 10−1 (2.06)* 1.95 · 10−1 (3.35)**

locsEvolution 2.43 · 10−4 (0.43) 1.04 · 10−3 (0.49) 1.21 · 10−3 (0.75)

N 166 166 166

Multiple R2 0.21 0.34 0.42

Adjusted R2 0.18 0.31 0.40

F-statistic 7.17 (p < 0.01) 13.46 (p < 0.01) 19.28 (p < 0.01)

Note, t-statistics are in parentheses. Signif.codes: * 1%, ** 0.01%, *** 0.001%

ers [6], and the vulnerability discovery rate being highest during the active development

phase of a project [95]. Our results show that years - the age of a project, has a significant

impact in all three models, thus supporting these observations.

We found that in our models the number of external users (userCount and debian-

Inst) of a FOSS component has a small but statistically significant impact. This could

be explained by the intuition that only a major increase of the popularity of a FOSS

project could result in more development teams that select the project for consumption,

and that not every user would have enough knowledge in software security for finding and

reporting new vulnerabilities.

6.6 Threats to validity

The construct validity might be affected by errors in the data collection process, as well

as the accuracy of data in the data sources that we used. To combat the first threat we

carefully checked the collected data, removing duplicates and performing manual spot

checks. The latter threat should be minimal, as we used the same data sources that the

developers of our industrial partner are typically using.

The internal validity might suffer from wrong interpretation of the results and the choice

of the dependent variable. We could not measure the direct security maintenance effort

(e.g., working hours of developers) as it is not separable from the regular maintenance,

and it could not be separated by distinct FOSS components. Therefore, we had to choose
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a proxy variable for the security maintenance effort that consists of the number of publicly

known vulnerabilities in a FOSS component and the number of usages of these components

in the internal software applications. While this approximation may lead to a potential

threat to validity, we selected this dependent variable as being relevant to the security

maintenance effort based on our discussions with the developers and researchers of our

industrial partner (being also limited on the data that is available to the developers of

our industrial partner).

To minimize the threats due to potential lack of generalizability and potential over-

fitting of the results, we had to limit the number of independent variables that we con-

sidered for regression analysis. Therefore, our conclusions are based on the analysis of a

subset of factors that we initially identified. Moreover, as we were deliberately using only

the high-level information that is available to the developers of our industrial partner,

there could be a lack of causation between the factors that we assessed and our measure

of the effort. Still, our findings are supported by the existing literature on software defect

and vulnerability prediction, which lets us to assume that this threat is minimized.

The external validity might suffer from the lack of generalizability. The sample of FOSS

projects that we considered is relevant for our industrial partner, which may not be the

case for other software vendors. Still, the majority of FOSS components correspond to the

Java ecosystem, and Java is one of the most popular programming languages (according to

TIOBE index5). This suggests that the study is likely relevant for other software vendors

as well.

6.7 Conclusions

In this chapter, we have investigated publicly available factors that can impact the effort

required for performing security maintenance within large software vendors that have

extensive consumption of FOSS components. We have defined three security effort models

– centralized, distributed, and hybrid, and selected variables that may impact these

models. We automatically collected data on these variables from 166 FOSS components

currently consumed by the products of our industrial partner, and analyzed the statistical

significance of these variables.

As a proxy for security maintenance effort of consumed FOSS components we used

the combination of the number of products using these components, and the number of

known vulnerabilities in them. As the summary of our findings, the main factors that

influence the security maintenance effort whose are its age, size, and popularity. In fact,

the external popularity of a FOSS component has statistically significant but small impact

on the effort, meaning that only large changes in popularity will have a visible effect.

5http://www.tiobe.com/tiobe-index/
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We had to limit the number of variables that we consider in our effort models to

avoid potential over-fitting and the lack of generalizability of the results. This is a direct

consequence of the fact that the ground truth data is difficult to obtain, and the amount

of data that is available is not uniform across all population of FOSS projects.
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Chapter 7

Conclusions and Future Work

The aim of this dissertation is to aid large software vendors (in particular, our industrial

partner), that integrate many FOSS components into their software products, in facili-

tating security maintenance of these components: we provide a solution for testing and

adaptation of existing exploits against web applications to identify whether vulnerabili-

ties can be reproduced in specific environments in which these applications are deployed

(Chapter 4); we propose a vulnerability screening method for identification of versions

likely affected by a newly disclosed vulnerability (Chapter 5); finally, we assess the of

impact of various FOSS component characteristics on their security maintenance effort

(Chapter 6).

In Chapter 4 we discussed TestREx– a testbed for repeatable exploits. The work be-

hind TestREx is currently protected with a US patent [136], and, besides expanding our

corpus, we intend to apply TestREx for several research activities, such as large-scale

testing of static analysis tools and semi-automatic generation of test cases for web applica-

tions. We also used it successfully for teaching a Master course on security vulnerabilities

in web applications.

To move towards the generation of test cases, we plan to refine our implementation of

exploit scripts into a hierarchy of exploit classes that would help to write exploits faster.

This could be achieved by factoring common attributes of exploit types and altering the

exploit attributes in case if a given exploit did not work. Another possible future direction

for TestREx can be in helping testers to find various sets of software environments that

serve as the necessary pre-condition for a certain vulnerability exploit to successfully

execute.

In Chapter 5 we discussed the vulnerability screening method for estimating the like-

lihood of an older version of a FOSS component to be affected by a newly disclosed

vulnerability, using the vulnerability fix. The software prototype that implements the

method can be used as a standalone tool, or be integrated into other tools that already

exist and are used by the developers during the SDL phase or post-release maintenance
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activities. Currently, we are actively refining the research prototype for the possibility

of further integration with the existing toolchain of our industrial partner. To improve

the vulnerability screening we see several lines of future work that would allow to better

understand the “quality-versus-speed” trade-offs as well as to extend the scope of our

approach:

• Improve the quality of the vulnerability screening by associating changes across mul-

tiple files, as well as investigating the impact of more precise slicing algorithms.

However, we do not expect a significant improvement in the latter direction as, in

our experience, vulnerabilities were mostly fixed locally by modifying few lines.

• Improve the quality of estimation of the update effort by including changes in build

dependencies (direct and transitive), which might influence the estimate. For exam-

ple, consider an application that only runs on Java 1.4 and a FOSS upgrade that

would require Java 1.8: to resolve this dependency conflict, either the fixes for the

FOSS components need to be back-ported to Java 1.4, or the entire application needs

to be ported to Java 1.8.

• Extend the approach to more programming languages and test the approach on

different types of projects.

In Chapter 6 we have investigated the publicly available factors that can impact

the effort required for performing security maintenance of FOSS components in soft-

ware products of our industrial partner. We have defined three security effort models –

centralized, distributed, and hybrid, and selected variables that may impact these

models. We automatically collected data on these variables from 166 FOSS components

currently consumed by various products of our industrial partner, and analyzed these

models. As a proxy for security maintenance effort of consumed FOSS components we

used the combination of the number of products using these components, and the num-

ber of known vulnerabilities in them. As the summary of our findings, the main factors

that influence the security maintenance effort are the amount of lines of code of a FOSS

component, the age of the component, and its popularity. We have also observed that the

external popularity of a FOSS component has statistically significant but small impact

on the effort, meaning that only large changes in popularity will have a visible effect.

For further development of security maintenance effort models, we plan to collect a

wider dataset on FOSS projects and their factors (as well as their vulnerabilities), and

assess the potential effect of these other factors. Using this data for the effort prediction

is also a promising direction for the future work.

110



Bibliography

[1] Mark Aberdour. Achieving quality in open-source software. IEEE Software,

24(1):58–64, 2007.

[2] Mithun Acharya and Brian Robinson. Practical change impact analysis based on

static program slicing for industrial software systems. In Proceedings of the 33rd

International Conference on Software Engineering (ICSE’11), 2011.

[3] Bram Adams, Ryan Kavanagh, Ahmed E. Hassan, and Daniel M. German. An

empirical study of integration activities in distributions of open source software.

Empirical Software Engineering, 21(3):960–1001, 2016.

[4] Alan Agresti and Christine A. Franklin. Statistics: the art and science of learning

from data. Pearson, 2012.

[5] Norita Ahmad and Phillip A. Laplante. A systematic approach to evaluating open

source software. In Strategic Adoption of Technological Innovations, pages 50–69.

IGI Global, 2013.

[6] Omar Alhazmi, Yashwant Malaiya, and Indrajit Ray. Security vulnerabilities in

software systems: A quantitative perspective. In Proceedings of the 19th IFIP WG

11.3 Working Conference on Data and Applications Security (DBSEC’05), 2005.

[7] Luca Allodi, Vadim Kotov, and Fabio Massacci. Malwarelab: Experimentation with

cybercrime attack tools. In Proceedings of 6th USENIX Workshop on Cyber Security

Experimentation and Test (CSET’13), 2013.

[8] Luca Allodi and Fabio Massacci. Comparing vulnerability severity and exploits

using case-control studies. ACM Transactions on Information and System Security,

17(1):1–20, 2014.

[9] Stephanos Androutsellis-Theotokis, Diomidis Spinellis, Maria Kechagia, and Geor-

gios Gousios. Open source software: A survey from 10,000 feet. Foundations and

Trends in Technology, Information and Operations Management, 4(3-4):187–347,

2011.

111



BIBLIOGRAPHY

[10] Claudio Agostino Ardagna, Ernesto Damiani, and Fulvio Frati. FOCSE: an OWA-

based evaluation framework for OS adoption in critical environments. In Proceedings

of IFIP International Conference on Open Source Systems (OSS’07), 2007.

[11] Brad Arkin, Scott Stender, and Gary McGraw. Software penetration testing. IEEE

Security & Privacy, 3(1):84–87, 2005.

[12] Andre Arnes, Paul Haas, Giovanni Vigna, and Richard A. Kemmerer. Digital foren-

sic reconstruction and the virtual security testbed vise. In Proceedings of the 3rd

International Conference of Detection of Intrusions and Malware & Vulnerability

Assessment (DIMVA’06), 2006.

[13] Ashish Arora, Ramayya Krishnan, Rahul Telang, and Yubao Yang. An empirical

analysis of software vendors’ patch release behavior: impact of vulnerability disclo-

sure. Information Systems Research, 21(1):115–132, 2010.

[14] Lerina Aversano and Maria Tortorella. Evaluating the quality of free/open source

systems: A case study. In Proceedings of 12th International Conference on Enter-

prise Information Systems (ICEIS’10), 2010.

[15] Lerina Aversano and Maria Tortorella. Quality evaluation of FLOSS projects: Ap-

plication to ERP systems. Information and Software Technology, 55(7):1260–1276,

2013.

[16] Claudia Ayala, Øyvind Hauge, Reidar Conradi, Xavier Franch, Jingyue Li, and

Ketil Sandanger Velle. Challenges of the open source component marketplace in the

industry. In Proceedings of IFIP International Conference on Open Source Systems

(OSS’09), 2009.

[17] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John Penix, and YuQian

Zhou. Evaluating static analysis defect warnings on production software. In Pro-

ceedings of the 7th ACM Workshop on Program Analysis for Software Tools and

Engineering (PASTE’07), 2007.

[18] Dejan Baca, Kai Petersen, Bengt Carlsson, and Lars Lundberg. Static code analy-

sis to detect software security vulnerabilities-does experience matter? In Proceed-

ings of the 4th International Conference on Availability, Reliability and Security

(ARES’09), 2009.

[19] Ruediger Bachmann and Achim D. Brucker. Developing secure software: A holistic

approach to security testing. Datenschutz und Datensicherheit, 38(4):257–261, 2014.

[20] Rajiv D. Banker, Srikant M. Datar, and Chris F. Kemerer. A model to evaluate

variables impacting the productivity of software maintenance projects. Management

Science, 37(1):1–18, 1991.

112



BIBLIOGRAPHY

[21] Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig. Software

complexity and maintenance costs. Communications of the ACM, 36(11):81–95,

1993.

[22] Rajiv D. Banker and Sandra A. Slaughter. A field study of scale economies in

software maintenance. Management Science, 43(12):1709–1725, 1997.

[23] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and Se-

bastiano Panichella. How the Apache community upgrades dependencies: an evo-

lutionary study. Empirical Software Engineering, 20(5):1275–1317, 2015.

[24] Karl Beecher, Andrea Capiluppi, and Cornelia Boldyreff. Identifying exogenous

drivers and evolutionary stages in FLOSS projects. Journal of Systems and Software,

82(5):739–750, 2009.

[25] Robert M. Bell, Thomas J. Ostrand, and Elaine J. Weyuker. The limited impact of

individual developer data on software defect prediction. Empirical Software Engi-

neering, 18(3):478–505, 2013.

[26] Lotfi ben Othmane, Golriz Chehrazi, Eric Bodden, Petar Tsalovski, Achim D.

Brucker, and Philip Miseldine. Factors impacting the effort required to fix secu-

rity vulnerabilities. In Proceedings of 18th International Conference on Information

Security (ISC’15), 2015.

[27] Terry Benzel. The science of cyber security experimentation: The DETER project.

In Proceedings of the 27th Annual Computer Security Applications Conference (AC-

SAC’11), 2011.

[28] Christian Bird, Adrian Bachmann, Eirik Aune, John Duffy, Abraham Bernstein,

Vladimir Filkov, and Premkumar Devanbu. Fair and balanced?: Bias in bug-fix

datasets. In Proceedings of the 7th European Software Engineering Conference (ES-

EC/FSE’09), 2009.

[29] Achim D. Brucker and Uwe Sodan. Deploying static application security testing on

a large scale. Datenschutz und Datensicherheit, pages 91–101, 2014.
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