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Abstract
Natural Language Processing (NLP) is a sub-field of Artificial

Intelligence and Linguistics, with the aim of studying problems in the
automatic generation and understanding of natural language. It involves
identifying and exploiting linguistic rules and variation with code to
translate unstructured language data into information with a schema.
Empirical methods in NLP employ machine learning techniques to
automatically extract linguistic knowledge from big textual data instead
of hard-coding the necessary knowledge. Such intelligent machines require
input data to be prepared in such a way that the computer can more easily
find patterns and inferences. This is feasible by adding relevant metadata
to a dataset. Any metadata tag used to mark up elements of the dataset
is called an annotation over the input.
In order for the algorithms to learn efficiently and effectively, the
annotation done on the data must be accurate, and relevant to the task
the machine is being asked to perform.
In other words, the supervised machine learning methods intrinsically can
not handle the inaccurate and noisy annotations and the performance of
the learners have a high correlation with the quality of the input data
labels. Hence, the annotations have to be prepared by experts.
However, collecting labels for large dataset is impractical to perform by a
small group of qualified experts or when the experts are unavailable. This
is special crucial for the recent deep learning methods which the algorithms
are starving for big supervised data.
Crowdsourcing has emerged as a new paradigm for obtaining labels for

training machine learning models inexpensively and for high level of data
volume. The rationale behind this concept is to harness the “wisdom of
the crowd” where groups of people pool their abilities to show collective
intelligence.
Although crowdsourcing is cheap and fast but collecting high quality data
from the non-expert crowd requires careful attention to the task quality
control management. The quality control process consists of selection of
appropriately qualified workers, providing a clear instruction or training
that are understandable to non-experts and performing sanitation on the



results to reduce the noise in annotations or eliminate low quality workers.
This thesis is dedicated to control the effect of crowd noisy annotations

use for training the machine learning models in variety of natural language
processing tasks namely: relation extraction, question answering and
recognizing textual entailment.
The first part of the thesis deals with design a benchmark for evaluation

Distant Supervision (DS) for relation extraction task. We propose a
baseline which involves training a simple yet accurate one-vs-all strategy
using SVM classifier. Moreover, we exploit automatic feature extraction
technique using convolutional tree kernels and study several example
filtering techniques for improving the quality of the DS output.
In the second part, we focused on the problem of the crowd noisy

annotations in training two important NLP tasks, i.e., question answering
and recognizing textual entailment. We propose two learning methods to
handle the noisy labels by (i) taking into account the disagreement between
crowd annotators as well as their skills for weighting instances in learning
algorithms; and (ii) learning an automatic label selection model based
on combining annotators characteristic and the task syntactic structure
representation as features in a joint manner.
Finally, we observe that in fine-grained tasks like relation extraction

where the annotators need to have some deeper expertise, training the
crowd workers has more impact on the results than simply filter-out the low
quality crowd workers. Training crowd workers often requires high-quality
labeled data (namely, gold standard) to provide the instruction and
feedback to the crowd workers.
We conversely, introduce a self-training strategy for crowd workers where

the training examples are automatically selected via a classifier. Our study
shows that even without using any gold standard, we still can train workers
which open doors toward inexpensive crowd training procedure for different
NLP tasks.
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Introduction

1.1 Motivations

Modern society push for processing large volume of information
everyday in order to stay up-to-date. There is a change continuously
not only in the amount of information, but also in its type over time.
As a consequence of the sheer volume and heterogeneous nature of the
information it is becoming impossible to analyze this data manually. So,
the automatic techniques are being used to facilitate this process.

Recently, the big revolution is how artificial intelligence and cognitive
systems are advancing and changing our world. Machine Learning (ML)
plays a key role in a wide range of critical applications, such as data mining,
natural language processing, visual recognition, and expert systems. ML
provides potential solutions to all these domains and more, and is set to
be a pillar of our future civilization.

One of the most outstanding results in developing modern Natural
Language Processing (NLP) systems was achieved using statistical
machine learning methods (Machine-driven) [85]. Prior attempts to deal
with language-processing tasks were extremely labour intensive typically
requiring to hand-engineer a large set of manual rules (Human-driven).
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SECTION 1.1 1. INTRODUCTION

However, the rule-based systems suffer from several drawbacks such as
difficulty to find experts in order to define the rules, challenge in developing,
testing and modifying the rules and finally the generalization problem [76].

The most successful ML algorithms used in NLP are supervised
methods, which learn to extract knowledge from labeled training data.
These methods are heavily used in NLP applications for voice recognition,
categorization, sentiment analysis and machine translation [38].

The supervised methods require metadata known as tag, labels or class.
Each instance in the training set is a pair consisting of an input object,
e.g., a document, a sentence, or a word, and a desired output label,
e.g., document category, sentence class or word type. In the training
process, machine learning algorithm is telling the computer what patterns
are important, and providing examples and counter-examples for each
distinction the model should make. The goal is to infer a decision function
by analysing the training data, which can be used for mapping unseen test
examples to their output labels.

One of the biggest challenges in NLP community is to provide the
tagged data for training the supervised methods. Labels for data are
often obtained by asking experts to make judgments about a given piece of
unlabeled data and creating these labels manually is often too slow, static
and expensive. In small datasets with few thousand of examples, a group of
experts can handle the annotation task. However, it is impractical for big
dataset with millions of the examples. So, manually labeling large training
sets is not a feasible option.

In the other side, with the growth of the Internet, Mobile in IOT era, the
amount of available data has greatly increased. The new machine learning
approaches (a.k.a. Deep Learning) showing promising results in various
NLP tasks are big data hungry as well [21, 62, 22, 33, 136, 135].

In addition, It has been shown that there is direct relation between
the performance of ML models and the amount of the data [99]. Figure
1.1 shows the relation between the mentioned factors (namely, data size

2



1. INTRODUCTION SECTION 1.1

Figure 1.1: The performance of ML methods vs the amount of data

and performance). Thus, achieving the state of the art in NLP tasks
without considering the new ML methods and the big data phenomena
is not possible.

Following the trend, there are many active areas of research in machine
learning that are aimed to assign the label to large unlabeled data to
build better and more accurate models for NLP tasks. For instance,
Weak-supervised learning attempts to leverage various heuristics and
existing knowledgebases (KB)/databases as weak supervision to label the
unlabeled data [50, 111, 140]. This gave rise to the terms “weak” or
“distant” to indicate that the labels on the training data are imprecise
or noisy. The method is attractive because it does not require human
supervision; it is efficient for even tera-scale extraction; and it is domain
and language independent. However, heuristically labeled training data in
DS approach suffers from two major drawbacks:

• KBs are usually incomplete because they are manually constructed,
and it is not possible to cover all human knowledge. It causes false
negative errors in training, meaning that the DS approach, assigns
labels to instances as negative classes due to lack of related knowledge
in KB.

3



SECTION 1.1 1. INTRODUCTION

• The matched entities from KB can not represent the sentence semantic
truly. It causes false positive errors and the semantic drift.

Although, some techniques have been used to decrease the effect of noisy
labels in classifier output, this does not necessarily impact the learning
aspect of the classifier. The classifier assumes that the labels are precise and
often fails to optimize solving two problems jointly (i.e., data trustability
and learning the model).

As an alternative solution, crowdsourcing has emerged as a new
paradigm to gather text annotations quickly at scale by considering the
“widsom of crowd” as the source of supervision. According to Wikipedians,
crowdsourcing is “the act of taking a task traditionally performed by an
employee or contractor, and outsourcing it to an undefined, generally large
group of people, in the form of an open call.” 1

Crowdsourcing is valuable to computational linguists as a source of
labeled training data to use in machine learning. Tagging and organizing
all different types of big data, be it unstructured, structured or semi
structured, require big effort and it can be achieved efficiently by leveraging
the power of crowd [134]. Specially, it is an effective approach in collection
annotations for NLP tasks because the annotation task requires some
degree of common linguistic knowledge which is beyond the power of DS
methods. While crowdsourcing offers solicitors of information or services
nearly unlimited cheap (or free), the challenge lies in aggregating the
multiple, noisy contributor inputs to create a consistent corpus. The
output of crowdsourcing, especially in the case of micro-tasks and when
monetary incentives are involved, often suffers from low quality. Moreover,
the crowd workers are usually not experts and they are of different age,
education and ethnics.

For exmaple, in a survey conducted by Ipeirotis [64], information about
the demographics of participants on a well-known online crowdsourcing
platform (a.k.a, Amazon Mechanical Turk), together with information

1https://en.wikipedia.org/wiki/Crowdsourcing

4
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Figure 1.2: Demographic information of Turkers in AMT: right) Gender and left)
Education level

about their level of activity and motivation for working on Amazon
Mechanical Turk has collected. He focused on the countries with the most
number of crowd workers participating in the posted tasks namely: US
and India. It shows a high level of diversity among the crowd workers in
terms of age, gender and education level which makes the annotations less
accurate. Figure 1.2 illustrates the gender and education level of the crowd
workers for the both countries .

Broadly speaking, there are two main approaches to improve the quality
of the annotations in crowdsourcing tasks. First, pre-processing methods
consist of crowd demographic filtering [71], inserting gold questions
[166, 14] and preparing a skill modeling to determine workers’ proficiency
[133]. Second, post-processing methods such as statistical processing to
identify outliers and exclude them, both at the level of contributors and
contributions. Majority vote is the simplest of such statistical measures
or weighting the votes of annotators based on their overall performance
[134, 165, 61]. However, the research has shown that it is not the best
solution to create high quality annotations [110]. Thus, the more advanced
techniques are required to filter out the human noise from crowdsourcing
NLP tasks by considering the latent additional information of crowd
workers (a.k.a metadata) that can reveal the performance of the workers
in desired task.

Then, several interesting questions immediately arise in how to
optimally utilize annotations by considering such metadata of crowd

5



SECTION 1.2 1. INTRODUCTION

workers. For example, how ML techniques handle differences between
workers in terms of the quality of annotations they provide. How we
can re-weight the noisy annotations for the end task of creating a model.
How it is possible to identify genuinely ambiguous examples via annotator
disagreements. How we estimate the trustability of crowd workers by
considering background and expertise as an additional data. And, what is
the contribution of the user data to reveal the pattern of annotation noise
in learning NLP tasks is.

The work presented in this thesis is a step towards finding the answers
of the above questions.

1.2 Thesis Contributions

The contributions of this thesis are at the intersection of the fields
of human-computer interactions, machine learning, and NLP. One
overarching goal of this work is to get the advantage of computational
approaches in order to control the effect of noisy annotation in NLP tasks
when the source of noise is human. The contributions are listed as follow:

1. We propose an approach based on convolution Tree Kernels (TK) and
Support Vector Machines (SVMs) to be used as a baseline for applying
Distant Supervision in Relation Extraction Task (Chapter 4).

2. We design several instance weighting strategies to help the learning
algorithm dealing with the noisy labels of training examples, thus
learning a better model in Question Answering (QA) task (Chapter
5).

3. We aim to learn a statistical model to predict the best label from
a set of aggregated annotations from a group of annotators and by
quantifying their skills. We exploit the contribution of these collected
metadata to be used as descriptor features to generate labels to train
QA and RTE tasks (Chapter 6).

6
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4. We propose a new framework to improve the accuracy of relation
extractor by involving human in the loop. So, we introduce
an iterative human-machine collaborative learning method for
crowdsourcing. As a first contribution, we introduce a self-training
strategy for crowdsourcing. Then, we introduce our iterative
human-machine co-training framework for the task of RE (Chapter
7).

1.3 Structure of the Thesis

The thesis outline is as follow:

Chapter 1 - Introduction - This chapter describes the research
plan of the thesis. It presents the research approach, theoretical and
practical motivations. It also highlights contributions of the thesis, and
provides an outline for the rest of the content to follow.

Chapter 2 - Background Work and Concepts - This chapter
provides a general overview on supervised learning approaches and
Support Vector Machines (SVMs) in particular. Specifically, we focused
on classification and re-ranking problems and provide a brief description
on how kernels method can solve the nonlinear problems at a reasonable
computational cost. In addition, we present the relevant background and
the tasks definition in the field of NLP (namely: Relation Extraction,
Question Answering and Recognizing Textual Entailment), targeted in
this thesis. In addition, a description of the used corpora for each task is
elaborated in details. Finally, we explain the standard evaluation metrics
that are widely used to evaluate our proposed methods.

Chapter 3 - Annotation Collection for Supervised Methods
- In this chapter, we introduce crowdsorucing concept as a cheap
solution for collecting the annotations for NLP tasks. We also provide a
literature review on various statistical approaches on quality control for
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crowdsourcing tasks. Then, a whole section is dedicated to present our
problem statements, our proposed methods and the contributions briefly.

Chapter 4 - Distant Supervision for Relation Extraction -
In this chapter we describe our methodology for creating a baseline for
relation extraction task applying distant supervision. The experimental
setup and the results are presented and discussed extensively.

Chapter 5 - Instance Weighting for Crowdsourcing QA Task -
This chapter provides the description of our solution for decreasing the
effect of the noisy labels in question answering task. We also present
the detail of our experiments and the result comparison with majority
voting-based as baseline.

Chapter 6 - Automatic Label Selector (ALS) - We detailed
our proposed classifier to predict the best label from a set of annotations
done by a group of annotators considering their profile as a feature
set. Moreover, our comprehensive analysis on the experiment results for
applying the prediction of ALS classifier to train QA and RTE tasks are
visualized and presented.

Chapter 7- Autonomous Crowd Training for Relation Extraction
- In this chapter we characterize our iterative human-machine co-training
framework used to train crowd workers for relation extraction task.
Then, our experimental results is presented and compared with the both
methods, using distant supervision or just crowdsourcing without worker
training.

Chapter 8 - Conclusion - Finally, the conclusion and future work
arising from these studies is discussed in this chapter.

8
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2

Background Work and Concepts

In this chapter we introduce some important concepts and definitions
which the reader of the thesis should be familiar with before proceeding to
the rest of the thesis.

First, we briefly introduce the concept of supervised learning and
formally define the classification problem with some examples of its
application in Natural Language Processing (NLP) tasks related to this
thesis.

Then, we formalize the Support Vector Machine (SVM) classifier and
the optimization problem, which are central to the work described in this
thesis. We show how Tree Kernels (TK) can be used to kernelize the SVM
classifier to allow the learning of non-linear decisions in our tasks.

Finally, we introduce the targeted NLP tasks (i.e., Relation Extraction,
Question Answering and Recognizing Textual Entailment) which are
crowdsourced.

Later on, we describe the used corpora, and the related works for the
above mentioned tasks separately. At the end of the chapter, a section is
dedicated to introduce the most used evaluation metrics in the thesis.
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2.1 Supervised Methods

In this section we provide an overview of some of the concepts and
definitions used in supervised learning methods. They consist of a) the
decision function and b) the inference problem to assign labels to output
variables.

The goal of supervised learning is to learn a decision function h ∈ H
from some hypothesis space H. This means that given a label training set
D = {(xi, yi)}ni=1, the decision function h assigns an input x ∈ X to an
output label y ∈ Y : h : X → Y .

Inference: The label assignment to the output variable can be formalized
as follows:

h(x) = argmax
y∈Y

fw(x, y), (2.1)

where f : X × Y → R is a discriminant function parametrized by a
vector of weights w that assigns a numerical score to the input-output
variables. It can also introduce as a compatibility function which measures
the degree of agreement between the input and the output variables. In
common practice, function f is a linear function in the vector of model
parameters w:

fw(x) = 〈x,Ψ(x, y)〉 (2.2)

Where Ψ : X × Y → Rd estimates a joint feature representation and
〈., .〉 computes the dot product. This estimation is feasible by mapping the
input example pairs (x, y) into some feature space Rd.
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2.1.1 Supervised Learning in NLP Tasks

In this section we provide a brief overview of the most common strategies
used to solve NLP problems - namely a) classification and b) re-ranking.
Then, we provide a definition of the specific tasks which are targeted
directly in this thesis in separate sections. Here, the main goal is not
to provide a final solution for the considered problems but to describe the
nature of the problems and trying to categorize them into corresponding
classes of machine learning problems. Our solutions to tackle the noisy
labels in the targeted tasks are elaborated in details in Chapters 4, 5, 6
and 7.

Classification

Treating NLP tasks as a classification problem is a very well known
practice performed by the community whether it is the case of a simple
document classification problem or a more complex task like learning
entailed texts in Recognizing Textual Entailment.

Problem Formulation The output domain of binary classification is Y =
{−1,+1} whereas in multi-class classification Y = {1, .., K}, the number
of classes are extended to k. The inference problem can be solved by using
an extensive list of output variables y and choosing the one that results in
the maximum score. The joint feature map for binary classification can be
defined as Ψ(x) = yΨ(x) where Ψ : X → Rd denotes an optional feature
set, representing the input variables to the classifier.

In Multi-class Ψ(x) = Λk ⊗ Φ(x), Λk refers to the binary encoding
of the k-th label y and ⊗ represents the matrix product which forms all
the products between the two argument vectors. However, it is possible
to simplify the formulae for the binary and multi-class classifications into
max(0, 1−yf(w, x)) and max(0, 1+max

y 6=y∗
f(wy, x)−f(wy∗, x)) respectively.

13



SECTION 2.1 2. BACKGROUND WORK AND CONCEPTS

Hence, in order to learn accurate models that produce decision functions
with high discriminative powers, the main effort should be dedicated to
how well to represent the structure of the input data (a.k.a., feature
engineering).

Re-Ranking

Here we describe the problem of reranking text pairs which is heavily
used in various NLP tasks like Questions Answering and micro blog
retrieval, among others. Several effective solutions exists to the reranking
problem, however, we focus on a very successful approach that represents
query-document pairs to the ranking algorithm to learn an accurate model.

Problem Formulation We are provided with a set of retrieved enumerations
of query-documents, where each query qi ∈ Q consists of a list of candidate
answers Di = {di1, di2, ..., din}. The candidates set is labeled with their
relevancy judgments {yi1, yi2, .., yin} in a way that the relevant answers
are labeled with yij = 1 while 0 otherwise. The aim is to build a
model that for each query qi and its associated candidate passages Di,
generates an optimal ranking R = (ri1, ri2, .., rin) for which the relevant
answers/documents appears on top of the list.

Formally, the task is to learn a ranking function in the general form:

h(w,Ψ(qi, Di))→ R, (2.3)

where Ψ(.) maps the input query-document pairs into appropriate feature
representations. Ultimately, the weight vector w is a model parameter
vector which is updated during the learning process.

Learning to Rank Approaches Basically, there are three major approaches
to learn the function h namely: pointwise, pairwise and listwise methods.

Pointwise approach. This is one of the simplest methods to solve
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the reranking problem. In this method the ranking problem can be
reformulated into a binary classification task where each triple (qi, dij, yij)
represents a training instance and the decision function can be presented
as: h(w,Ψ(qi, dij))→ yij.

The decision function h(.) simply computes a dot product between the
model weight w and the feature generated by Ψ(.) as described in section
2.1.1.

Pairwise approach. In this approach the model is trained to score the
correct pairs higher than the incorrect pairs within a certain margin:

〈w,Ψ(qi, dij)〉 ≥ 〈w,Ψ(qi, dik)〉+ ε, (2.4)

where the document dij is a relevant answer for query qi while dik is
not. This method requires more training data compared to the pointwise
approach which leads to lower training times.

Listwise approach. The third method treats a query as a list with its
associated document candidates to be represented to the ranking function
as a single training instance. This method is able to capture considerably
more information about the ground truth ordering of the input candidates.
However, the inference process is expensive in terms of time complexity.

2.1.2 Support Vector Machines

In this section we introduce the binary Support Vector Machine (SVM)
classifier that can handle the classification and the ranking problems. This
classifier is heavily employed in this thesis. We also describe syntactic
parsers that are used to construct syntactic structures for automatically
generating rich features. The generated feature sets can be used in the SVM
tree kernel framework for the both classification and ranking problems.

Support Vector Machines (SVM) is one of the most popular classification
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algorithms among supervised learning methods. It belongs to the family of
generalized linear classifiers that enable the use of high-dimension feature
spaces via the kernel trick. In the following, we formalize the SVM
optimization problem and describe how it can be kernelized to allow for
learning non-linear decision boundaries.

Theoretically, the binary SVM deals with the output space that is yi ∈
{+1,−1}. Consider a binary classification task with the training data
{xi, yi}Ni=1 , ~x ∈ Rd. SVMs find a hyperplane that correctly separate the
training data of two classes while maximizing the distance of the both
classes from the hyperplane (marginal distance). Formally, SVMs estimate
the following linear discriminant function:

fw(x) = 〈w, x〉 , (2.5)

where w ∈ R is a vector of model parameters. SVM estimates the weight
vector w by solving the following optimization problem:

minimize
w

1
2 ‖w‖

2 + C
∑
max(0, 1− yi 〈w, xi〉) (2.6)

where the first part of the the objective function is a regularizer encoding
the maximummargin principle and the second part represents the empirical
loss obtained on the training set. The margin trade-off parameter C
determines the trade-off between maximizing the margin and the number
of training data points within that margin. The Eq. (2.6) can reformulated
as the following constrained optimization problem:

minimize
w,ξ

1
2 ‖w‖

2 + C
∑
i

ξi

subject to yi =
ξi≥0
〈w, xi〉 ≥ 1− ξi

(2.7)

where the slack variable ξ allows some data points to lie within the
margin.
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The Kernel Trick One of the most important properties of SVMs is that it
can create a non-linear decision boundary by projecting the data through a
non-linear function φ to a space d′ with a higher dimension φ(x) : Rd → Rd′:

fα(x) =
∑
i

αiyi 〈φ(xi), φ(x)〉 (2.8)

Since the outcome of the decision function only relies on the dot-product
of the vectors in the feature space d, it is not essential to explicitly project
to that space. So, the symmetry function K(xi, xj) can be expressed as an
inner product:

K(xi, xj) = 〈φ(xi), φ(xj)〉 (2.9)

This means that all we need to know is how to compute the inner
product, since we do not need to know an explicit form of φ(). This
method is known as the “kernel trick”. The most popular kernel functions
are linear, polynomial and sigmoid. Mostly kernel functions are applied
to a fixed dimension of features with the real values. However, due to the
simple requirements (e.g. an inner product between objects), it is easy to
apply the kernel to other types of input objects such as strings, trees and
graphs which can be categorized as structural input.

Recently the structural kernels have been used widely in the design of
machine learning systems in several domains from data-mining [15, 35, 128,
142, 151, 34, 159] to natural language processing [30, 164, 44, 70, 79].

The biggest advantage of structural learning is to limit the effort of
manual feature engineering by automatically generating a huge feature
space for a given task. This is a crucial property when the targeted task
suffers from the lack of expert knowledge in providing the most appropriate
features for a given problem. In the following section we introduce the
structural kernel type “Convolutional Tree Kernel” used in this thesis.
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Figure 2.1: An example of Part of Speech (POS) tags and its syntactic tree

Convolutional Tree Kernels (TKs) Basically, Convolutional TKs count the
common number of substructures between two trees T1 and T2. For a
given set of substructure τ =

{
t1, t2, ..., t|τ |

}
, χi(n) denotes an indicator

function, which is equal to 1 if the target ti is rooted at a node n or 0
otherwise. A tree kernel function over T1 and T2 can be define as:

KTK(T1, T2) =
∑

n1∈NT1

∑
n2∈NT2

∆(n1, n2) (2.10)

where NT1 and NT2 are the sets of the T1’s and T2’s nodes, respectively
and

∆(n1, n2) =
|τ |∑
i=1

χi(n1)χi(n2) (2.11)

which computes the number of common fragments rooted in the n1 and
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n2 nodes. The most practiced technique to convert the textual data as
input for structural kernels like TKs is to hierarchically organize words in
a sentence into nested constituents. The constituency parse tree presents
several layers of information such as Part-of-Speech (POS), phrases and
the syntactic/semantic relations between constituents. Figure 2.1 shows
an example of a sentence and its parsed syntactic tree.

In the next sections of this chapter, we introduce the definition of our
targeted NLP tasks to valuate our hypothesis using various ML approaches.
Each section is dedicated to describe one task and its related dataset that
we use in our experimental setup.

2.2 Relation Extraction

2.2.1 Definition

Relation Extraction (RE) is a well-known task in the Natural Language
Processing subarea. It aims to extract relation types between two named
entities from text. In other words, as defined in ACE 20041, the task of RE
is, given a set of documents where entities have been previously detected
(manually or automatically), to identify the occurrences of relations
between such entities (i.e. locating pairs of related entities in text).

For instance, in the sentence:

“The University of Trento is an international university located in Italy.
It was founded in 1962 as a Higher University Institute for Social Sciences.”

the identified relation types between two entity mentions can be denoted
by the triples:

Founding − year (University of Trento, 1962)
1https://www.ldc.upenn.edu/collaborations/past-projects/ace
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Founding − location (University of Trento, Italy)

Recently, the Relation Extraction (RE) task has attracted the attention
of many researchers due to its wide range of applications such as: (i)
Creating new structured knowledge bases, useful for any application; (ii)
Enriching available knowledge bases; (iii) Adding new facts to Wikidata2
or DBPedia3 and (iv) Improving Question Answering task. For example in
the latter, the question “ The granddaughter of which actor starred in the
movie E.T.?” can be reformulated as a relation extraction problem like:
(acted-in ?x “E.T.”)(is-a ?y actor)(granddaughter-of ?x ?y).

2.2.2 Related Work on Relation Extraction

Extracting relations from text has become a popular task in the IE
community. Nowadays there are plenty of relation extraction systems
available for the both industry and the academic use. Also several
approches have been proposed for dealing with this problem. Banko et
al. [16] classifies all the methods used for relation extraction into three
classes:

• supervised methods;

• semi supervised methods;

• self-supervised methods.

In this section, we start with supervised methods which represent the
extraction of the relations in the form of a binary classification problem. In
addition, we elaborate feature-based [69, 171] and kernel-based approaches
[27, 26, 164] more in details in the current Section.

2//www.wikipedia.org
3http://wiki.dbpedia.org
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Supervised Methods

Basically supervised methods are built by using a small set of examples
that have been tagged manually [164, 42, 69]. Such systems learn to
extract the relations by using machine learning techniques. However, these
approaches suffer from some drawbacks :

• Tagging a suitable corpus can take a lot of time and human effort.

• The tagged corpora are usually small and cover few relations.
Therefore, the generated models are often domain-dependent.

Mainly two common approaches have been used extensively to train the
extractor in a supervised manner. They are:

Feature-based Approaches: In this approach, a set of semantic and
syntactic features are extracted and presented to the classifier in the form
of a feature vector. For instance, Kambhatla et al. [69] extracted a set
of features consisting of (i) the entities themselves, (ii) the types of the
two entities, (iii) word sequence between the entities, (iv) number of words
between the entities and (v) path in the parse tree containing the two
entities using a log-linear model to classify the entities. Zhao et al. [171]
trained SVMs by using polynomial kernel with the same feature set for
classifying different types of entity relations.

Kernel-based Approaches: The main advantage of kernel-based method
is to provide a opportunity for us to explore a large feature space in
polynomial computation time. It is feasible even without introducing
manually engineered features to the classifier. We will focus on several
well known kernels such as the tree kernel [164], the subsequence kernel
[25], and the dependency tree kernel [26].

The kernels used for relation-extraction (or relation-detection) are based
on string-kernels as proposed by Lodhi et al. [82]. Bunescu et al. [26],
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proposed three subkernels defined as: one each for matching the before,
middle and after portions of the entities context and the combined kernel
is simply the sum of all the sub-kernels. Using subsequence kernels in
conjunction with SVMs improves both the precision and recall. Compared
to the previous approach, Zelenko et al. [164] replace the strings in the
kernel with structured shallow parse trees built on the sentence. They use
tree kernels and plug them into the SVM. Among others, tree kernels (TKs)
have been widely used in supervised settings and have shown promising
results.[27, 102, 100, 164]

Semi Supervised Methods

In semi-supervised approach, initially a small number of seed instances
are manually annotated and used to extract the patterns from a big
corpus [8, 19]. In this method, the annotated instances help the system to
extract more instances and new patterns iteratively. However, this method
suffers from availability of a limited number of relation types.

Self Supervised Methods

The aim of the self-supervised systems is to make the information
extraction process unsupervised. Etzioni et al. [16] proposed the Web IE
system called “KnowItAll” as a self-supervised system which learns to label
its own training instances. To do that, a small set of domain-independent
extraction pattern was used. Another sucessful project was the Intelligence
in Wikipedia (IWP) proposed by Weld et al. [158] which bootstraps from
Wikipedia corpus exploiting the fact that each article corresponds to a
primary object and that many articles contain infoboxes (brief tabular
information about the article). The drawaback of IWP method is that the
amount of relations described in Wikipedia infoboxes is limited. So not all
relations can be extracted using this method. In another research, Banko
et al. [16, 17] proposed The Open Relation Extraction system under name
of “TextRunner”. This method does not pre-suppose a predefined set of
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relations and is targeted at all relations that can be extracted.

2.2.3 Distant Supervision

Distance Supervision (DS) is an alternative approach to overcome the
problem of data annotation [40] as it can automatically generate training
data by combining a structured Knowledge Base (KB), e.g., Freebase4 with
a large-scale unlabeled corpus, C.

The basic idea is: given a tuple r<e1,e2 > contained in a referring KB,
if both e1 and e2 appear in a sentence of C, that sentence is assumed to
express the relation type r, i.e., it is considered a training sentence for r.

For example, given the KB relation, president(Obama,USA), the
following sentence:

Obama has been elected in the USA presidential campaign,

can be used as a positive training example for president(e1,e2).

However, DS method suffers from two major drawbacks: first, in early
studies, [90] assumed that two entity mentions cannot be in a relation with
different relation types r1 and r2. In contrast, Hoffmann et al. [57] showed
that 18.3% of the entities in Freebase that also occur in the New York
Times 2007 corpus (NYT) overlap with more than one relation type.

Second, although the DS method has shown some promising results, its
accuracy suffers from noisy training data caused by two types of problems
[57, 119]:

• Simple string matching of entity pairs does not take into account the
meaning and the context of the sentence.

• KBs are incomplete, e.g., a sentence can express relations that are not
4http://www.freebase.com/
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Figure 2.2: Error in automatic labeling generated through DS

in the KB. Thus DS leads to annotate relations as “No Relation” in
case of unseen entities (this generates false negatives).

For example, let us consider the Place-of-Birth relation between
<Renzi, Florence>: the upper sentence of Figure 2.2 supports the relation
label whereas the lower sentence does not.

This generates a training instance misleading the classifier.

Several approaches for selecting higher quality training sentences with
DS have been studied, but comparing such methods is difficult due to the
lack of well-defined benchmarks and models using DS.

Related Work on DS

Distant Supervision (DS) has emerged as a popular method for training
semantic relation extractors. It was used for the first time in the biomedical
domain [40] and the basic idea was to extract binary relations between
protein and cell/tissues by using the Yeast Protein Database (YPD) corpus.
This method is getting more and more popular and different types of RE
problems are being addressed [24, 90, 119, 101, 58, 120, 139, 57].

As one of the pioneers in using DS for RE task, Mintz et al. [90] used
a large semantic database Freebase containing 7,300 relations between 9
million named entities. They extracted a set of syntactic and semantic
features to train a relation extraction system. Although they achieved
67,6% of precision using this method, still there is a room for improvement.
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The preliminary models of relation extractors (include distant
supervision) assumed that a pair of entities can have only one relation.
However, as we mentioned before, the assumption was restrictive and
often violated by the real scenarios. For example in the following sentences :

Steve Jobs founded Apple
Steve Jobs is the CEO of Apple

the entity pair (Steve Jobs, Apple) can be bounded by two relations.

This problem has been identified any addressed in MultiR model
by Hoffmann et al. [57] using Multi-Instance Multi-label (MIML)
approach. They employ distant learning with Multi-Instance learning with
overlapping relations (where two of the same instances may be in two
different relations). In another research, Surdeanu et al. [139] addressed
the same issue. They discovered 31% of training examples obtained by DS
strategy are not valid. Therefore they try to improve distant learning by
taking into account Multi-instance Multi-label settings (a.k.a MIML-RE)
and using the Bayesian framework which can capture dependencies between
labels and learn in the presence of incorrect and incomplete labels.

In addition, Yao et al. [160] proposed a method to combine raw text
and a pre-existing structured databases to learn the relations. In the same
direction, Riedel et al. [120] tried to reformulate the problem using matrix
factorization and collaborative filtering where all the relations between
entities are presented as a matrix. They used three approaches namely: (i)
latent feature model; (ii) neighborhood model and (iii) entity model, which
learns a latent entity representation from data. Moreover a combination
of three models also presented in the method using various weights.

Datasets

We use two corpora for our experiments on relation extraction using
distant supervision task namely: TAC-KBP 2010 and the New York Times:
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TAC-KBP TAC Knowledge Base Population (KBP) consists of more than
1.3 million of newswire and web documents to expand and populate
Knowledge Base (KB) with this information. Attributes (a.k.a. “slots”)
derived from Wikipedia infoboxes are used to create the reference
knowledge base (KB). The reference knowledge base includes hundreds
of thousands of entities based on articles from an October 2008 dump of
English Wikipedia which includes 818,741 nodes.

A named entity tagger has been used on the entire source collection
to map the documents with KB [66]. The TAC-KBP dataset is used for
performing some experiments extensively presented in Chapter 7.

New York Times-Freebase The original New York Times corpus includes
1.8 million articles written and published by the NYT between January
1987 and June 2007 [124]. The data set consists of two parts for training
and the testing, where the first part refers to the years 2005-2006 of the
NYT whereas the second refer to the year 2007. In this dataset, Freebase5
has been used as an external KB.

We used the same corpus provided by Riedel et al. [119], however, in his
corpus instead of the entity mentions, their corresponding IDs in Freebase
have been tagged (because of previous copyright issues). The old version
of Freebase 2007 is not available anymore and in many cases the IDs or
entities have changed in Freebase 2014. So, it was not possible to combine
NYT with the newer Freebase to apply DS. To deal with this problem, we
mapped the old Freebase IDs with the IDs from the Freebase 2014 and, if
the entities were not the same, we asked an annotator to manually tag the
entity mentions in the sentence. As the result, we created a new dataset
that is mapped with Freebase 2014 and it is usable as a stand-alone DS
corpus.

Overall, 4,700 relations in the training set and 1,950 in the test set are
extracted. The NYT-Freebase corpus is used to perform some experiments

5https://developers.google.com/freebase/
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which is described in details in Chapter 4.

2.3 Question Answering

2.3.1 Definition

Given a question and a set of candidate passages, the Question
Answering (QA) task is to find the best answer among the candidates
which can support the answer choice.

Typically QA systems consist of three major modules in the following
order: (i) search and retrieve a set of candidate passages based on query
(question); (ii) re-rank the retrieved candidate passages; and (iii) extract
the best answer/s.

Automated Question Answering (QA) is a complex task requiring rules
and syntactic patterns which are manually designed. The goal of the rules is
to find the relations between the question and its set of candidate passages.
The rules are triggered when the pattern exists in both the question and
the passage. However, manually designing these rules is not an easy task
since natural language is too complex to be characterized by a finite set
of rules. Machine learning has been proposed as an alternative solution to
shift the problem of manual rule definition to feature engineering.

In this thesis we focused on factioid QA task which the main purpose
is to provide a consice fact for “WH” questions, often start with
“WHOM, WHERE, WHEN, HOW and WHY?” question words [94]. QA
systems merge information retrieval with information extraction methods
to identify a set of likely set of candidates and then to produce the final
answers using some ranking scheme [75].
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2.3.2 Related Works on QA

TREC had a major impact on interest in question answering task and
on the development of evaluation measures that compare the performance
of different QA systems [150].

The contemporary question answering from unstructured data sources
was instantiated by the TREC Evaluation campaign which is taking place
regularly every year since 1999 [148, 149, 29] . The challenge is to provide
a concise answer to a natural language question, given a large collection of
textual documents. The first TREC evaluation campaign provides a list of
200 questions and a document collection. In the next campaign, TREC-9
held in 2000, the number of questions and size of document collections
were increased. In TREC from 2002 to 2007, the list of questions, definition
questions, and factoid questions were included in the evaluation campaigns.
In TREC 2005, there was a set of 75 topics which contains various types
of questions (list, factoid or others).

In recent evaluations two well-known collections of documents were used:
AQUAINT with more than 1 million documents and AQUAINT2 with
about 907K documents. In TREC-10 in 2001, a new complexity with
respect to answers, i.e., answer validation task was included as there was
no assurance of all answers to be present in the document collections. The
lengths of answers were reduced to 50 words.

Throughout the evaluation campaigns we note a steady increase in
question complexity, and as a result more advanced techniques for
question answering were developed. Some of the key QA-techniques
include: the incorporation of expected answer type as in [53, 93, 167],
temporal question answering [91, 51, 9, 125, 112], geographical question
answering [49], logic-based representations [92], semantic-role labelling for
question answering [98, 105, 129], syntactic and semantic structures for
question answering [59, 11, 41, 56], and discourse relationships and textual
entailment for question answering [48, 52] .
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Regarding QA and in particular answer sentence/passage reranking
there has been a large body of work in the recent years, e.g., see
[115, 65, 130, 97, 138, 153, 55, 152, 161] which the further exploration
is beyond the scope of this thesis.

2.3.3 Dataset

We use the questions from TREC 2002 and 2003 from the large
newswire corpus, AQUAINT. We created the Q/AP pairs training BM25
on AQUAINT and retrieving candidate passages for each question.

2.4 Recognizing Textual Entailment

2.4.1 Definition

The Recognizing Textual Entailment task was introduced by Dagan et
al. [43] for the first time where textual entailment is defined as a directional
relationship between pairs of text.

Basically, the entailing “text” denoted by T , and the entailed
“Hypothesis” denoted by H . We say that T entails H if the meaning
of H can be inferred from the meaning of T . Usually Hypothesis (H) is a
short statement whereas Text (T ) is a longer span of text.

Figure 2.3 shows a sample of Text and Hypotheses being in entailment
relation.

2.4.2 Related works on RTE

In this section we briefly reveiw the background works on the RTE task
and its applications. Androutsopoulos et al. [13] provided a comprehensive
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Text: 
The Republic of Yemen is an Arab, Islamic and 
independent sovereign state whose integrity is inviolable, 
and no part of which may be ceded. 

Hypothesis: 
The national language of Yemen is Arabic. 

Figure 2.3: Example of a Text and Hypothesis in entailment relation

survey of paraphrasing and textual Entailment methods.

RTE challenges provide a great platform for Textual Entailment systems
and because of it, a wide variety of approaches emerge every year. Some
approaches are proposed based on machine learnign methods [6]. Ren et
al. [118] proposed a system of classification based on lexical, semantic
and syntactic features. In another approach, Harmeling [54] used a
probabilistic model which works based on calculus on dependency parse
trees. Kouylekov et al. [78] used tree edit distance algorithms which were
also used by other researchers [18, 28].

Heilman et al. (2010) proposed tree edit models for representing
sequences of transformation and employs tree kernel heuristic in a greedy
search routine [55]. Mehdad et al. [89] proposed an approach for
cross-lingual textual entailment where bilingual parallel corpora have been
used. In the same direction they obtained good results on monolingual
corpus as well [87, 88]. Zanzotto et al. [162] employed machine learning
models by using distance features models. The distance defined between
the text and the hypothesis such as number of words in common, length
of longest common subsequence and longest common syntactic sub-tree.

Machine Learning and Probability based approaches are not the only
approaches used for RTE rask. Another successful approach was proposed
by determining the deep semantic inferences from the text. Approaches
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based on logical inferences [20] and the application of natural logic [83]
yielded good accuracy.

2.4.3 Dataset

The RTE-2 dataset consists of 1,600 text-hypothesis pairs, divided into
a development set and a test set, each containing 800 pairs [18]. The pairs
were generated by considering different NLP applications, e.g., Information
Extraction, Information Retrieval, QA, etc. and the pairs are extracted
from different resources such as MUC-4, ACE 2004 and TREC QA. In
order to create gold labels, each pair was judged by at least two experts.
The RTE-2 dataset is used in running some experiments elaborated in
Chapter 6

In the last section of this chapter we introduce the metrics for evaluation
the proposed classification and re-reranking models in this thesis.

2.5 Evaluation Metrics

The goal of measuring the performance of an Information Retrieval (IR)
system is to evaluate how good the search results satisfied the received
query intent. Several metrics have been used widely to measure the
performance of IR approaches such as MRR, MAP and P@k.
Besides that Precision and Recall are two fundamental scores for
quantifying the quality of predicted labels in classification approaches:

2.5.1 Precision

Precision is a score of showing the proportion of all positive predictions
that are correct. Precision is a measure of how many positive predictions
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were actual positive observations:

Precison = TP

TP + FP
(2.12)

where TP and FP indicate true positive and false positive predictions
respectively.

2.5.2 Recall

The recall score reveals the proportion of all real positive observations
that are correct:

Recall = TP

TP + FN
(2.13)

which FN refers to false negative predictions.

2.5.3 F1 Measure

The weighted harmonic mean of precision and recall, the balanced
F-score is:

F1 = 2× Precison×Recall
Precison+Recall

(2.14)

2.5.4 Precision at Rank k (P@k)

P@k indicates the number of relevant results retrieved by a query (e.g.,
the correct retrieved documents) found in the first top k positions. it is
a common practice to define k with different values such as 1, 5 or 10.

32



2. BACKGROUND WORK AND CONCEPTS SECTION 2.5

However, in all evaluations related to reranking performance, we keep the
k value equal to 1.

2.5.5 Mean Average Precision (MAP)

Average Precision (AP), is a widely used evaluation metric in
information retrieval tasks which combines recall and precision for ranked
retrieval results. Mean Average Precision (MAP), measures AP across
multiple queries/answer passage rankings.
The mean average precision for K queries at position n is the average of
the average precision of each query, i.e.,

MAP@n =
K∑
i=1

AP@ni
K

(2.15)

Note that, while generally in AP order matters - but not always. Order
matters only if there is at least one incorrect prediction. In other words, if
all predictions are correct, it doesn’t matter in which order they are given.

2.5.6 Mean Reciprocal Rank (MRR)

The Mean Reciprocal Rank is the average of the reciprocal ranks of
results for a sample of queries Q:

MRR = 1
|Q|

|Q|∑
q=1

1
rank(q) (2.16)

where rank(q) is the position of the first correct answer in the retrieved
list. For a group of queries Q.
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Annotation Collection for
Supervised Methods

Supervised methods in NLP require high quality annotated data
to train accurate models. Traditional data annotation methods are
expert-intensive. Manually providing large-scale expert-labeled training
data is costly in terms of resources and time. So, the corpora created by
experts are often small. The expert-driven method has disadvantages such
as, (i) a small-size corpus can only contains few classes/label types and (ii)
the resulting trained model is usually domain-dependent.

On the other side, ML algorithms face critical challenges such as
scalability due to the fact that finding qualified experts in many domains
is not easy. For instance, in NLP, it is often hard to find annotators
with proficiency in certain languages. This is particularly critical when
dealing with widely-spoken languages that are nevertheless considered rare
languages in terms of currently available resources. Therefore, it is not easy
to improve the ML models by scaling up the datasets.
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3.1 Annotation Collection for Big Data

It’s a known fact that the recent powerful ML methods are strongly
data and supervision demanding like deep learning. Big data enables ML
algorithms to uncover more fine-grained patterns and make more accurate
predictions than ever before. However, it is expensive and impractical to
use only experts to provide such supervised data on a large scale.

Several alternative methods have been suggested to address the
challenge of annotating big data. For instance, automatically labeling the
big data using Distant Supervison (DS) approach (See Section 2.2.3) or
online crowd-generated repositories that serve as a source for big annotated
training data, which can capture a large variety in terms of both class
number and intra-class diversity [103].

3.1.1 Crowdsourcing

The term “Crowdsourcing” was originally introduced by Howe in 2006
in Wired Magazine [60]. He described it as a web-based movement of ideas
and opinions of the crowd for problem-solving and innovation mechanism
[154]. However, this idea of using the Internet to facilitate reaching large
groups of people to outsource work to them had existed long before Howe
coined the term. Recently, crowdsourcing has become a very popular
topics in both academia and industry. By hiring workers online, the task
assigners can take advantage of the wisdom of the crowd and solve problems
that used to be solvable only by experts when the problems are too hard
for automated computer algorithms. With the power of crowdsourcing,
companies and individuals are no longer limited by their internal resources
and can take advantage of the knowledge, energy, and creativity of a global
online and offline community. Crowdsourcing provides us an opportunity to
harness the power of crowd to create brilliant platforms and applications
via voluntary crowd works, such as Wikis [23], Games With A Purpose
(GWAP) [146], Captchas [10], and Citizen Science [39, 114, 126].
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These platforms include general purpose marketplaces (e.g., Mechanical
Turk, oDesk, Freelancer, Crowdflower, MobileWorks, ManPower) as well
as markets for specific expertise (e.g., TopCoder, uTest, 99Designs).

Micro-task Crowdsourcing Micro-tasking is a branch of crowdsourcing,
where task designers break up a large task into small components in
the form of identical microtasks, each requiring online contributors. To
crowdsource a task, the task designer, also called the requester, submits
the task to a crowdsourcing platform. People who can accomplish the task,
called workers, can choose to work on it and devise solutions.
Workers then submit these contributions to the requester via the
crowdsourcing platform [45]. Common Microtasking platforms have led
to the development of online marketplaces such as Mechanical Turk and
Crowdflower.

Amazon Mechanical Turk (MTurk) is the world’s leading crowdsourcing
venue, however, it is not accessible in Europe. The main motivator of
MTurk is profit. Providers create and list batches of small jobs termed
Human Intelligence Tasks (HITs) on Amazon’s Mechanical Turk website,
which may be done by the general public. Workers who fulfill these tasks
get credited in micro-payments. While certainly not the only paid labor
sourcing environment, Mechanical Turk’s current ubiquity make “MTurk”
a useful label to refer to this and other forms of computer mediated labor.
Figure 3.1 shows the user interface of MTurk platform.

Many factors affect the quality of the collected annotations which change
the final decision of the annotators. For example, poor instructions can
introduce more confusion than clarit. Low level task design, unfair reward
amounts, anonymity of the workers performing tasks, not paying much
attention to get rewards faster and programmed bots which submitting
random results automatically all affect the quality of results dramatically.
Hence, basic and advance quality control mechanisms are using extensively
to tackle the noise problem in annotated data.
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Figure 3.1: Amazon Mechanical Turk (AMT) user interface

3.2 Quality Control in Crowdsourcing

In a microtasking crowdsourcing environment, quality control is one
of the biggest issues addressed by people both from academia and
industry. Ipeirotis et al. [64] raised the problem of quality control within
crowdsourcing platforms like the Amazon Mechanical Turk. Specifically, it
is difficult to ensure the quality output when the small tasks are performing
by many anonymous crowd workers.

Quality is a subjective issue in general. Some efforts have proposed
models and metrics to quantitatively and objectively assess quality along
different dimensions of a task, such as reliability, accuracy, relevancy,
completeness, and consistency [7].

The overall outcome quality depends on the definition of the task that’s
being crowdsourced and the contributing workers’ attributes [74, 72]. We
characterize quality in crowdsourcing systems along two main dimensions:
worker profiles and task design. We used the same taxonomy proposed by
[107], as Figure 3.2 illustrates in our work.
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Figure 3.2: Quality control factors in crowdsourcing

We considered several factors in our proposed quality control methods
which are highlighted in gray color. These metadata are collected from
crowdsourcing platforms or estimated via monitoring the crowdsourced
tasks’ output.

3.2.1 Related Works on Quality Control in Crowdsourcing

There is already an established literature on this topic, the review
of which is beyond the scope of the thesis. Therefore, we briefly
review the most important statistical approaches related to quality control
mechanisms in crowdsourcing tasks.

Majority voting is the simplest form of quality control on MTurk.
Most annotation campaigns involve a small group of untrained annotators
who may not always agree on their judgements [163, 127, 144]. The
reliability of the annotation is typically assessed by quantifying the level
of inter-annotator agreement, while the final annotation to be released is
consensuated amongst the annotators. However, the majority voting is still
prone to noise.
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Kilgarriff [73] proposed a model for generating gold standard datasets
for word-sense disambiguation. There are several works [147, 145, 12] which
consider relevance judgments for building IR systems. Unlike outsourcing
a task (when the targeted crowd is a community of experts), the quality
of the collected annotations from ordinary crowd workers is difficult to
control and several approaches have been proposed to decrease the level of
the noise in the collected annotations.

One of the pioneer in crowdsourcing for NLP tasks is Snow et al.
[134] who applied a simple Naive Bayes approach to weigh the labels
by considering the accuracy of annotators. In the proposed method, the
number of the judgments was fixed. In other work done by Ipeirotis et al.
[64], the unrecoverable error rate from bias was separated and the authors
used confusion matrix for each annotator to measure the uncertainty and
cost associated with each label. Jung [68] applied unsupervised and
supervised features to filter out noisy annotators via z-score. He also
improved the quality of noisy labels via probabilistic matrix factorization
[67].

Nowak et al. [106] filtered out noisy annotations by considering the
degree of agreement between crowd workers. In another work done by
Sheng et al. [131], they targeted the number of required annotations
and asked for a new label when it was beneficial for some of the training
examples.

Some other approaches have also been proposed to model the
annotators’ behavior and increase the accuracy when the labels are noisy
[80, 141, 156]. Donmez et al. [47] proposed the use of active learning to deal
with noisy annotations and elaborated how to jointly learn the accuracy
of labeling sources and obtain the most informative labels for the active
learning tasks.

Crowdsourcing has been used for optimizing machine learning
performance as well. Quinn et al. [113] presented the CrowdFlow toolkit
with which a human and machine can work together to achieve an optimal
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performance and control the trade-off between speed, cost and quality.
Plank et al. [109] proposed a method for taking noise into account when
training a classifier. While their approach can help a classifier deal with
noisy annotations, it cannot improve the quality of the original data-set.

Raykar et al. [117, 116], proposed a probabilistic approach (EM) which
can be used to carry out supervised learning when multiple annotators
provide noisy labels, but there is no absolute gold standard. The authors
showed that the proposed classifier is superior to the commonly used
majority voting baseline. However, their method suffers from major
drawbacks as the authors made two unrealistic assumptions: (i) they
assumed the crowd workers are equally good and their performance is fixed
across different expert sub-groups, and (ii) the annotators’ performance
have no correlation with the difficulty of the instances which have been
annotated.

The most comprehensive survey is the one provided by Sheshadri
et al. [132] that compared different approaches to identify relative
labels in a collection of labels with a lot of noise. They presented
SQUARE, an open source shared task framework for statistical consensus
methods including benchmark datasets, defined tasks, standard metrics,
and reference implementations with empirical results for several popular
frameworks such as ZenCrowd [46], GLAD [157] and CUBAM [155] .

3.3 Our methods for Exploiting Labeled Data

In this section, we provide an overview of the problem statements and
the challenges addressed in this thesis. Then, we introduce our proposed
methods and the contributions in an itemized fashion to familiarize the
readers with an overview of the thesis.
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3.3.1 Create Benchmark for Distant Supervision for RE

In this section we introduce our works published in two conferences
[2, 3]. In this research, we aim to build a baseline to compare with the
other models using Distant Supervision (DS) for relation extraction task.
So, we considered the most used corpus in DS, i.e., the combination of
NYT and Freebase (NYT-FB). The description of the dataset is provided
in Chapter 2.2.3.

Previously, all the RE models which experimented with NYT-FB are
based on complex graphical models. This is necessary to encode the
dependencies between the overlapping relations.

Additionally, such models use very particular and sparse features, which
makes the replicability of the models and results complex, thus limiting
the progress of research in DS. For comparing a new DS approach with
the previous work using NYT-FB, a researcher is forced to re-implement a
very complicated model and its sparse features.

Therefore, we believe that simpler models can be very useful as (i) a
much simpler re-implementation would enable model comparisons and (ii)
it would be easier to verify whether a DS method is better than another.

Contributions

The contributions of this work can be summarized as below:

• Our proposed approach is based on convolution tree kernels, which
can easily exploit syntactic/semantic structures. This is an important
aspect in favor of the replicability of our results.

• Our method differs from previous state of the art on overlapping
relations [119] as we apply a modification of the simple one-vs-all
strategy, instead of the complex graphical models. To make our
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approach competitive, we studied several parameters for optimizing
SVMs and filtering out noisy negative training examples.

• We mapped the Freebase entity IDs used in NYT-FB from the old
version of 2007 to the newer Freebase 2014. Since the entities had
changed over time, we asked an annotator to manually tag the entity
mentions in the sentence. As the result, we created a new dataset
usable as a stand-alone DS corpus to be made available for research
purposes.

We described our method, the experimental setup and the results related
to this work in Chapter 4.

3.3.2 Instance Weighting

In this section we targeted the problem of noisy human annotation tags
in training Question Answering (QA) system. As discussed in Chapter 2.3,
one of the most important steps for building accurate QA systems is the
selection/reranking of answer passage (AP) candidates typically provided
by a search engine. This task requires the automatic learning of a ranking
function, which pushes the correct answer passages (i.e., containing the
answer to the question) higher in the list. The accuracy of such a function,
among others, also depends on the quality of the supervision provided in
the training data.

Traditionally, the latter is annotated by experts through a rather
costly procedure. Thus, sometimes, only noisy annotations obtained via
automatic labeling mechanisms are available.

For example, the Text REtrieval Conference (TREC 1) provides
open-domain QA datasets, e.g., for factoid QA. This data contains a set of
questions, the answer keywords and a set of unannotated candidate APs.
The labeling of the latter can be automatically carried out by checking

1http://trec.nist.gov
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if a given passage contains the correct answer keyword or not. However,
this method is prone to generate passage labels, i.e., containing the answer
keyword but not supporting it. For instance, given the following question,
Q, from TREC 2002-03 QA, associated with the answer key Denmark:

Q: Where was Hans Christian Anderson born?

the candidate passage:

AP: Fairy Tales written by Hans Christian Andersen was published in
1835-1873 in Denmark.

would be wrongly labeled as a correct passage since it contains Denmark.
Such passages can be both misleading for training and unreliable for
evaluating the reranking model, thus requiring manual annotation.

Since the expert work is costly, we can rely on crowdsourcing platforms
such as CrowdFlower 2 for labeling data, faster and at lower costs [134].

This method has shown promising results but still produces noisy labels.
Thus, a solution consists of (i) using redundant annotations from multiple
annotators and (ii) resolving their disagreements with a majority voting
approach [131, 168].

However, the consensus mechanism can still produce annotation noise,
which (i) depends on the skill of the crowd workers and the difficulty of
the given task; and (ii) can degrade the classifier accuracy.

In this work, we study methods to take into account the disagreement
among the crowd annotators as well as their skills in the learning
algorithms. For this purpose, we design several instance weighting
strategies, which help the learning algorithm to deal with the noise of
the training examples, thus producing higher accuracy.

2http://www.crowdflower.com
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Contributions

• We define some weight factors that characterize crowd annotators’
skill, namely:

Prior Confidence, which indicates the previous performance of the
crowd worker reported by the crowdsourcing platform;

Task Confidence, which is determined by the total number of
annotations performed by the crowd worker in the target task;

Consistency Confidence, which quantify the agreements between the
annotator and the majority voting labels.

We used these parameters for building our weighting functions, which
aim at reducing the impact of the noisy annotations in learning
algorithms.

• We build a passage reranking dataset based on TREC 2002/2003 QA.
We used Crowdflower for carrying out an initial noisy annotation and
then had an expert manually verify and correct the incorrect labels.
This is an important QA resource that we will release to the research
community.

Additionally, the accuracy of our models, e.g., classifiers and search
engines, tested on such gold standard data can establish new baselines,
useful for future research in the field.

Finally, we conducted comparative experiments on our QA dataset using
our weighting strategies. The results show that (i) our rerankers improve
on the IR baseline, i.e., BM25, by 17.47% and 19.22% in MRR and P@1,
respectively; and (ii) our weighting strategy improves the best reranker
(using no-weighting model) up to 1.47% and 1.85% on MRR and P@1,
respectively. Our methodology [4], experimental setup and the results are
described in Chapter 5 extensively.
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3.3.3 Optimized Automatic Label Selector (ALS)

This work can be considered as an extension of the previous research
we have performed. As we mentioned before, a major problem is
that consensus mechanism in crowdsourcing tasks is inaccurate and still
produces many incorrect annotations depending on the skill levels of the
crowd workers and the difficulty of the given task. These factors are totally
ignored in the majority voting mechanism.

Unlike the instance weighting method where the weights are constant
for each instance, here we aim at learning a statistical model to predict
the best label from a set of annotations done by a group of annotators
and by quantifying their skills. More in detail: firstly, we define some
annotator descriptors using various parameters characterizing each
annotator behavior, namely:

Prior Confidence, which indicates the previous performance of the crowd
worker reported by the crowdsourcing platform;

Cardinality Confidence factor, which is determined by the total number
of annotations performed by the crowd worker;

Majority Consistency Confidence, which is extracted from the number
of agreements between the annotator and the majority voting labels;

Precision and Recall in the current annotation task.

First, We used these parameters in the aggregated voting functions
which considered as descriptor features for each example to be labeled
positive or negative. In addition, we exploit the syntactic information of
the examples to represent the structure of the given tasks. It has performed
automatically using Tree Kernel (TK) without considering any feature
engineering process. We use such feature representation in Support Vector
Machines for learning an Automatic Label Selector (ALS) for assigning the
most correct labels out of the annotator labels.
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Second, learning and testing our ALS models requires ground truth
(gold standard). For this purpose, we used 5 crowd annotators and we had
an expert analyze and judge all the cases where disagreement existed. In
particular, we built a passage reranking dataset based on TREC 2002/2003
QA. Moreover, we created a dataset based on the RTE task consisting of
the judgments of 5 crowd annotators and a set of annotators for future
investigation and research.

Third, we conducted comparative experiments on our datasets using
different settings of features and parameters. The results show that (i)
ALS greatly improves upon the majoring voting by reducing the annotation
error by 7% on the passage reranking task and by 20% on the RTE 2.

Our analysis shows that the classifier’s optimal performance is learned
with a relatively small number of training instances. It means obtaining a
limited amount of gold data from experts as seed can enable us to have more
accurate annotations using the classifiers instead of the majority voting
scheme.

Finally, we experimented on the passage reranking task with the
majority voting and the classifier annotated data.

The results show that using the improved data enhances the
performance of the reranker by 1.47% and 1.85% on MRR and P@1,
respectively. Our results on the RTE task showed that we could improve
the accuracy of the task up to 3.75% when the RTE classifier associated
with the classifier meta data compared to majority voting. Chapter 6
discusses about the crowdsourcing configuration, ALS proposed framework,
the experimental setup and the results in details [1], .

3.3.4 Autonomous Crowd Learning

In this work, we study the effect of workers training on the quality of the
collected annotations. So, we targeted Relation Extraction (RE) task as a
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complex task to be crowdsourced. The primary works on RE was mainly
strongly supervised, where a manually annotated data is required to train
(See Chapter 2.2 for more details). Fully supervised relation extractors
are limited to relatively small training sets. However, distant supervision
methods provide us an opportunity to use much more data., despite its
noisy characteristic. We hope to combine the benefits of supervised and
distantly supervised methods by annotating a small subset of the available
data using crowdsourcing.

It has been shown that by simply adding a small set of high quality
labeled instances (i.e., human-annotated training data) to a larger set of
instances annotated by DS, the overall precision of the system increases
significantly [57]. Such level of quality of the labels usually can be obtained
via a large-scale labor-on-demand crowdsourcing platform at low cost.
Specifically, Snow et al. [134] demonstrated that the crowd workers are
able to generate high quality labels for various NLP tasks.

However, this does not hold for fine-grained tasks, where the annotators3
need to have some expertise on it. For instance in RE, several papers
have shown that only a marginal improvement can be achieved via
crowdsourcing the data [14, 166, 108]. In all the mentioned papers, the
well-known gold standard quality control mechanism was used without
annotators being trained.

Very recently, despite the previous results, Liu et. al [81] showed that
there can be a larger improvement for RE task, by training crowd workers
using an interactive tutorial procedure called “Gated Instruction”. This
approach, however, requires a set of high-quality labeled data (namely, gold
standard) for providing the instruction and feedback to the crowd workers.
Thus, a considerable amount of human effort is required for annotating the
gold standard.

In this work, we tried to improve the accuracy of the relation
extractor by involving human in the loop. So, we introduce an iterative

3From now, both the entities :annotators and crowd workers refer to the same concept.
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human-machine collaborative learning method for crowdsourcing. In the
proposed method, the classifier (i.e., machine) selects the highest quality
examples to train the crowdsource workers (i.e., human). Then, the
annotation for lower quality examples are collected to improve the original
classifier. And this process can be repeated iteratively. Our experimental
results show a significant improvement for the relation extraction task,
compared to the method based on distant supervision alone as well as the
ones based on the crowdsourcing without user training.

Contributions

Our study shows that even without using any gold standard, we can still
train workers and their annotations can achieve comparable results with
more costly state-of-the-art methods. In summary our contributions are
the following:

• We introduce a self-training strategy for crowdsourcing.

• We propose an iterative human-machine co-training framework for the
task of RE.

• We test our approach on a standard benchmark, obtaining a
slightly lower performance compared to the gold-based state-of-the-art
method.

Our proposed framework [5] and the comparison with state-of-the-art
are structured and presented in Chapter7.
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Distant Supervision for Relation
Extraction

4.1 Overview

In this chapter, we aim to build a standard to compare models based on
DS: firstly, we considered the most used corpus in DS, i.e., the combination
of NYT and Freebase (NYT-FB).

Secondly, we mapped the Freebase entity IDs used in NYT-FB from the
old version of 2007 to the newer version of Freebase 2014. Since entities
changed, we asked an annotator to manually tag the entity mentions in
the sentence. This resulted in a creation of a new dataset usable as a
stand-alone DS corpus, which we make available for research purposes.

Finally, all the few RE models experimented with NYT-FB in the past
are based on a complex conditional random fields. This is necessary to
encode the dependencies between the overlapping relations.

Additionally, such models use very particular and sparse features, which
make the replicability of the models and results complex, thus limiting the
research progress in DS. Indeed, for comparing a new DS approach with the
previous work using NYT-FB, the researcher is forced to re-implement a
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very complicated model and its sparse features. Therefore, we believe that
simpler models can be very useful as (i) a much simpler re-implementation
would enable model comparisons and (ii) it would be easier to verify if
one DS method is better than another. In this perspective, our proposed
approach is based on convolution Tree Kernels (TKs), which can easily
exploit syntactic/semantic structures. This is an important aspect to favor
replicability of our results.

Moreover, our method differs from previous state of the art on
overlapping relations [119] as we apply a modification of the simple
one-vs-all strategy, instead of the complex graphical models. To make
our approach competitive, we studied several parameters for optimizing
SVMs and filtering out noisy negative training examples. Our extensive
experiments show that our models achieve satisfactory results.

4.2 DS Baseline using SVMs and TKs

As we described extensilvely in Section 2.1.2, SVMs are linear supervised
binary classifiers that separate the class boundaries by constructing
hyperplanes in a multidimensional space. They can also be used in
non-separable linear space by applying kernel functions. Also, It can be
used for multi-class classification by means of one-vs-all strategy [121]. One
of the valuable feature of SVM is taking advantage of the kernel function
when the classes are not separable linearly in the current feature space by
mapping the objects into higher feature space.

Tree kernels (TKs) [37] have been proved to achieve state-of-the-art
in relation extraction [170]. Different TKs have been proposed in the
past [95]. We model our RE system by using feature vectors along
with syntactic/semantic trees (See [169, 102]). The latter information
are extracted by applying tree kernel function and syntactic parsing
information.
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4.2.1 Feature Vectors

In our experiment, we used the features proposed by [90]. It consists of
two standard lexical and syntactic feature levels. Lexical/syntactic features
extracted from a candidate sentence are decorated with different syntactic
features such as: (i) Part of Speech (POS); (ii) the window of k words of
the left and right of matched entities; (iii) the sequences of words between
them; and (iv) finally, syntactic features extracted in terms of dependency
patterns between entity pairs. The proposed features yield low-recall as
they appear in conjunctive forms but at the same time they produce a
high precision.

4.2.2 Tree Kernels

We use the same convolution tree kernels as described in [169] for
syntactic parsing. Generally, given two relation examples R1 and R2, a
composite kernel K(R1,R2) is computed as:

K(R1, R2) = α~x1 · ~x2 + (1− α)KT (T1, T2), (4.1)

KT (T1, T2) =
∑

n1∈N1

∑
n2∈N2

∆(n1, n2), (4.2)

where α is a coefficient multiplying the target kernel and ~x1 · ~x2 is a dot
product between two feature vectors of R1 and R2. The function KT (T1,T2)
is a kernel function applied to syntactic trees, where N1 and N2 are the
set of nodes in the trees T1 and T2, respectively and ∆ is the number of
common sub-trees rooted at n1 and n2. Figure 4.1 shows a sentence tree
(part a) and its associated tree (part b).
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Figure 4.1: a) The constituent parse tree of the example sentence where “E1-Loc” denotes
the source entity mentions and “E2-Loc” denotes the target entity. b) PT relation instance
space of the sentence.

4.3 Experiments

4.3.1 Corpus

We trained our system on the NYT news wire corpus [124]. The original
corpus includes 1.8 million articles written and published by the NYT
between January 1987 and June 2007 (See 2.2.3). We used the same subset
of data as Riedel et al. [119]. The data set consists of two parts for training
and the test, where the first part refers to the years 2005-2006 of the NYT
whereas the second refer to the year 2007.

In the corpus provided by [119], instead of the entity mentions, their
corresponding IDs in Freebase have been tagged (this because of previous
copyright issues). The old version of Freebase 2007 is not available anymore
and in many cases the IDs or entities have changed in Freebase 2014. So,
it was not possible to combine NYT with the newer Freebase to apply DS.
To deal with this problem, we mapped the old Freebase IDs with Freebase
2014 and, when the entities were not the same, we asked an annotator
to manually tag the entity mentions in the sentence. As the result, we
created a new dataset that is mapped with Freebase 2014 and it is usable
as a stand-alone DS corpus.
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Figure 4.2: Recall of positive examples with respect to word distance between entity
mentions.

In overall, we found 4,700 relations in the training set and 1,950 in
the test set. The number of positive and negative examples is heavily
imbalanced (1:134). So, a simple filtering is applied to discard noisy
negative examples from the training set.

4.3.2 Pre-processing

In Section 2.2.3, we pointed out that (i) some sentences containing the
target entities may not semantically realize the target relation and (ii) other
sentences express a correct relation not in the KB. We tackle such problems
by applying sentence filtering and enriching the relations of previous KB.

4.3.3 Sentence Filtering

We used four levels of noise cleaning to remove potential incorrect
sentences from the corpus. More specifically, we remove a sentence if:
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- The distance between the two target entity mentions is more than k
words (e.g., 26). We set the k threshold value equal to 10% of the
total number of positive examples as shown in Figure 4.2.

- The number of tagged entities between the entity mentions are greater
than a constant h (e.g.,10).

- None of the entity mentions in the sentence appeared in positive
examples before, i.e., at least one of the entity in the negative example
has to be in a relation with another entity (i.e., it has to be part of
previously generated positive examples).

- The same entity pairs were in a relation in positive examples but
with different relation type (Overlap Relation). For instance, in the
mention Edmonton, Alberta, one of six Canadian N.H.L. markets,
is the smallest in the league., the entity mentions <Edmonton,
Alberta> are in relations with two relation types: Province/Capital
and Location/Contains. Thus, to train Rel. 1, all the instances of
Rel. 2 are removed and viceversa.

4.3.4 Knowledge Base Augmentation

We analyzed the entity pairs in the sentences of our corpus with respect
to the relations in Freebase 2007. We discovered that many pairs receive
no-relation because they did not exist in Freebase 2007. This creates many
false negative (FN) errors in the generation of training data. In the new
release of Freebase many new relations are added, thus we could recover
many of such FNs. However, to keep the compatibility with the previous
NYT-FB corpus, we simply discard such examples from the training set
(instead of including them as new positive examples). We could match
1,131 new pairs, which are around 1.4% of the total number of the matched
pairs in the training set. In overall, 3,373 mentions from the positive
examples and 11,818 mentions from negative examples are discarded from
the training set.
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Relation Type P% R% F1%
company/founders 66.7 11.4 19.5
location/contains 13.5 40.4 20.3
person/company 11.6 60.7 19.5
company/place_founded 20.0 6.7 10.0
person/place_lived 10 20.2 13.46

Table 4.1: Precision and recall of different relation types.

4.3.5 Pipeline Configuration

We use standard NLP tools in our pipeline: we parsed all the sentences
using the Charniak parser [32] and tagged the named entities with
the Stanford NER toolkit [86] into 4 classes (e.g. Person, Location,
Organization and Other). We used SVM-Light-TK1 for training our
classifiers, and employed the one-vs-all strategy for multi-class classification
but with some modifications to handle the overlap relations: instead of
selecting the class with the highest score assigned by the classifier to
sentences, we selected all the labels if the assigned scores are larger than a
certain threshold (e.g., 0). Hence, the classifier can select more than one
class for each example. We normalize both the tree kernel and the feature
vectors.

4.3.6 Parameter Optimization

The SVM accuracy is highly influenced by selecting the suitable values
for the cost-factor (option j) and trade-off (option c) parameters. As we
mentioned, the dataset is very imbalance thus we tuned the j parameter to
outweigh the positive example errors with respect to the negative examples
during training. We used 30% of our training set as a development set to
optimize the parameters. Then, the best combination of c and j values
with the highest F-measure in the development set are used to train the
classifier.

1http://disi.unitn.it/moschitti/Tree-Kernel.htm
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P% R% F1%
Mintz++ 31.28 15.43 20.67
Intxaurrondo et al. 29.79 17.48 22.03
Basic SVM 12.4 7.6 9.5
Our Model 11.3 23.0 15.1
Our Model + filtering 13.2 22.5 16.6

Table 4.2: Comparison of the results for different DS methods

4.3.7 Evaluation

We compared our model with the two recent state-of-the-art algorithms
such as: (1) Mintz++ [139], which is an improved version of the original
work by [90] and (2) Intxaurrondo et al. [63]. The results for different
classes and the overall Micro-average F1 are shown in tables 4.1 and
4.2, respectively. The results show that (i) our model improves the
micro-average F1 of the basic RE implementation (basic SVM), i.e., by
[170], by more than 7 absolute percent points, i.e., 74% relative; and
(ii) applying our simple filtering approach improves our model by 1.5%
absolute points. However, our models still outperformed by the state of
the art: this is not critical considering that our aim is to build simpler
baseline systems.

4.4 Conclusion

In this chapter, we have proposed a standard framework, simple RE
models and an upgraded version of NYT-FB for more easily measuring the
research progress in DS research.
Our RE model is based on SVMs, can manage overlapping relations and
exploit syntactic information and lexical features thanks to tree kernels.
We have also shown that filtering techniques applied to DS data can discard
noisy examples and significantly improve the RE accuracy.
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5

Instance Weighting for
Crowdsourcing QA Task

5.1 Overview

In this chapter, we take into account the disagreement between the
crowd annotators as well as their skills in the learning algorithms. For this
purpose, we design several instance weighting strategies, which help the
learning algorithm to deal with the noise of the training examples, thus
producing higher accuracy.

The goal of the first approach is to employ these parameters for building
our weighting functions, which aim to reduce the impact of the noisy
annotations in learning algorithms. So, we build a passage reranking
dataset based on TREC 2002/2003 QA. We use Crowdflowers for carrying
out an initial noisy annotation and we have an expert to manually verify
and correct incorrect labels. This is an important QA resource that we
will release to the research community.

Additionally, the accuracy of our models, e.g., classifiers and search
engines, test on such gold standard data establish new baselines, useful for
future research in the field. Finally, we conduct comparative experiments
on our QA dataset using our weighting strategies. The results show that
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(i) our rerankers improve on the IR baseline, i.e., BM25, by 17.47% and
19.22% in MRR and P@1, respectively; and (ii) our weighting strategy
improves the best reranker (using no-weighting model) up to 1.47% and
1.85% on MRR and P@1, respectively.

5.2 Crowdsourced Dataset

Initially, we ran a crowdsourcing task on CrowdFlower micro-tasking
platform and asked the crowd workers to assign a relevant/not relevant
annotation label to the given Q/AP pairs. The crowd workers had to
decide whether the given AP supports the raised question or not.

We consider the TREC corpora described in Section 2.3.3 and in
particular the first 20 APs retrieved by BM25 search engine for every
question. We collect 5 judgments for each AP.

In overall, we crowdsourced 527 questions of the TREC 2002/2003 QA
task and collected 52,700 judgments. The number of the participant
workers was 108 and the minimum and maximum number of answer
passages annotated by a single crowd annotator were 21 and 1,050,
respectively.

To obtain an accurate gold standard, we asked an expert to revise the
passages labeled by crowd annotators when at least one disagreement was
present among the annotations. This super gold standard is always and
only used for testing our models (not for training). The user interface of
the QA crowdsourcing task is illustrated in Figure 5.1.

5.3 Instance Weighting Strategy

In this approach, we define weighing schema for each passage of the
training questions. More in detail, each question q is associated with a
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Figure 5.1: Crowdsourcing user interface for QA task.

sorted list of answer passages. In turn, each passage p is associated with a
set of annotators {a1

p, a
2
p, ..., a

k
p}, where ahp is the annotator h, jhp ∈ {+1,−1}

is her/his judgment, and k is the number of annotators per passage. We
defined a weighting function, f(·), for scoring the passage p as:

f(p) = |
k∑
h=1

jhpW (ah)|. (5.1)

The weighting function consists of a summation of two factors: (i) jhp ,
which indicates the judgment value the annotators, h, have provided for
the passage p; and (ii) W (u), which aims at capturing the reliability of the
crowd worker u, using the product of three factors:

W (u) = P (u)T (u)C(u) (5.2)
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where Prior Confidence, P (u), indicates the prior trust confidence score
of the crowd worker, u, provided by the crowdsourcing platform based on
the quality of the annotations (s)he has done in the previous tasks. Task
Confidence, T (u), indicates the total number of annotations performed by
the crowd worker u in this task. The score is re-scaled and normalized
between (0,1) by considering the maximum and minimum number of
annotations the workers have done in this task. Consistency Confidence,
C(u), indicates the total number of annotation agreements between the
annotator u and the majority voting in this task. The score is normalized
and re-scaled between (0,1) as well. We use Eq. 5.1 in the optimization
function of SVMs:

min ||~w||2

2 + c
∑
i

ξ2
i f(pi) (5.3)

where ~w is the model, c is the trade-off parameters, ξi is the slack
variable associated with each training example ~xi, pi is the passage related
to the example xi (i.e., associated with a constraint), and f(pi) (Eq. 5.1)
assigns a weight to such constraint.

5.4 Experimental Setup

5.4.1 Classifier Feature

We used the rich set of features described in the state-of-the-art QA
system [143]. Such features are based on the similarity between question
and the passage text: N-gram overlap (e.g., word lemmas, bi-gram,
part-of-speech tags and etc.), tree kernel similarity, relatedness between
question category and the related named entity types extracted from
the candidate answer, LDA similarity between the topic distributions of
question and answer passage.
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Figure 5.2: Pipeline of QA system. The feature extractor components surrounded by the
blue dashed box.

5.4.2 Reranking Model

We used (i) a modified algorithm of SVM-rank 1 using the Eq. 5.3 to
train our reranker; (ii) the default cost-factor parameter; and (iii) some
other specific values to verify if our results would be affected by different
C values. Figure 5.2 illustrates the pipeline of the QA system used in our
work.

5.4.3 Baselines

We compared our results with three different baselines, namely:
-BM25: we used Terrier search engine2, which provides BM25 scoring
model to index the answer passages [122]. The APs are extracted from

1http://svmlight.joachims.org
2http://terrier.org
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Model MRR MAP P@1
Baselines

BM25 41.75 ± 6.56 37.25 ± 4.52 25.57 ± 6.17
RE 57.41 ± 7.31 51.75 ± 6.27 41.38 ± 11.12
CA 57.75 ± 6.77 52.09 ± 5.68 42.94 ± 8.55

Our Weighting Results
L 58.73 ± 6.88 52.48 ± 6.00 44.12 ± 9.75
P 58.51 ± 5.63 52.07 ± 4.63 43.15 ± 7.32
LP 58.76 ± 6.52 52.60 ± 6.03 44.22 ± 8.72
TC 58.31 ± 5.44 52.09 ± 4.96 42.83 ± 7.69
LTC 58.85 ± 5.85 52.58 ±5.52 43.74 ± 8.50
LPTC 59.22 ± 6.30 52.63 ± 5.96 44.79 ± 8.82

Table 5.1: Results over 5 fold cross validations. Our weighting scheme results are better
than the baselines with p < 0.05

AQUAINT text corpus and treated as documents. BM25 is used to retrieve
20 candidate answers for each question and rank them by their relevance
scores.
-RE (regular expression): we trained a classifier with the noisy annotations
produced by labels automatically derived with RE applied to answer keys
(no weighting strategy).
-CA (crowd annotations): we train a classier with the same configuration
as RE but using majority voting as a source of supervision.

5.5 Weighting Experiments

In these experiments, we used the labels provided by crowd annotators
using majority voting for training and testing our models. Most
interestingly, we also assign weights to the examples in SVMs with the
weighting schemes below:

- Labels Only (L), i.e., we set P (u) = T (u) = C(u) = 1 in Eq. 5.2.
This means that the instance weight (Eq. 1) is just the sum of the labels jhp .

- Prior Only (P): to study the impact of prior annotation skills,
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we set C(u) = T (u) = 1 in Eq. 5.2, and we only use P (u) (crowdflower
trust), i.e., we do not account for the sign of annotations, jhp .

- Labels & Prior (LP): the previous model but we also used the
sign of the label, jhp .

- Task & Consistency (TC): we set P (u) = 1 such that Eq. 5.2
takes into account both annotator skill parameters for the specific task,
i.e., task and consistency confidence, but only in the current task and no
sign of jhp .

- L & TC (LTC): same as before but we also take into account
the sign of the annotator decision.

- LPTC: all parameters are used.

All our results are computed with 5-folds cross validations.
Table 5.1 shows the evaluation of the different baselines and weighting
schemes proposed in our work (using the default c parameter of SVMs).
We note that: firstly, the accuracy of BM25 is lower than the one expressed
by rerankers trained on noisy labels (-15.66% in MRR, -14.5% in MAP,
-15.81 in P@1%).

Secondly, although there is some improvement using crowd annotations
for training3 compared to the noisy training labels (RE), the improvement
is not significant (+0.34% in MRR, +0.34% in MAP, +1.56% in P@1).
This is due to three reasons:

(i) the crowdsourcing annotation suffers from a certain level of noise
as well (only 27,350 of the answer passages, i.e., 51.80%, are labeled with
“crowd fully in agreement”);

(ii) although the RE labels may generate several false positives, these
are always a small percentage of the total instances as the dataset is highly

3The test labels are always obtained with majority voting and we removed questions that have no
answer in the first 20 passages retrieved by BM25.
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Figure 5.3: The impact of the C values on different models with (LPTC, L) and without
(CA, RE)

unbalanced (9,535 negative vs. 1,005 positive examples);

(iii) RE does not generate many false negatives as they are precise.

Thirdly, the table clearly shows the intuitive fact that it is always better
to take into account the sign of the label given by the annotator, i.e., LP
vs. L and LTC vs. TC.

Next, when we apply our different weighting schema, we observe that
the noise introduced by the crowd annotation can be significantly reduced
as the classifier improves by +1.47% in MRR, +0.54% in MAP and +1.85%
in P@1, e.g., when using LTC & LPTC compared to CA, which does not
provide any weight to the reranker.

Finally, as the trade-off parameter, c, may alone mitigate the noise
problem, we compared our models with the baselines according to several
value of the parameter. Fig. 5.3 plots the rank measures averaged
over 5-folds: our weighting methods, especially LPTC (black curve), is
constantly better than the baseline, CA, (blue curve) in MRR and P@1.

5.6 Conclusion

Our study shows that we can effectively exploit the implicit information
of crowd workers and apply it to improve the QA task.
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We demonstrated that (i) the best ranking performance is obtained when
the combination of different weighting parameters is used; and (ii) the
noise of annotations, present in crowdsourcing data, can be reduced by
considering weighting scores extracted from crowd worker performance.
In the future, we will explore better weighting criteria to model the noise
that is induced by annotations of crowd workers.
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6

Automatic Label Selector (ALS)

6.1 Overview

In this chapter, we aim at learning an statistical model to predict the
best label from a set of annotations done by a group of annotators and by
quantifying their skills.

We used several parameters in aggregated voting functions which
considered as descriptor features for each example to be labeled positive
or negative. In addition, we exploit the syntactic information of the
examples to represent the structure of the given tasks. It has been
done in an automatic fashion without considering any feature engineering
process thanks to Tree Kernel (TK). We use such feature representation in
Support Vector Machines for learning an Automatic Label Selector (ALS)
for assigning the most correct labels out of the annotator labels.

We conducted comparative experiments on our datasets in different
setting of features and parameters. The results show that ALS greatly
improves on the majoring voting by reducing the annotation error by 7%
on the passage reranking task and 20% on the RTE 2.
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6.2 Pilot Experiments

Before running the main crowdsourcing task, we evaluated the effect of
the initial configurations of the platform on the quality of the collected
annotations. We conducted two pilot crowdsourcing experiments with
different scenarios:

In the first experiment, we crowdsourced 15 Q/APs and for each Q/AP
pairs, judgments were requested. We also set the maximum number of
annotations a unique crowd worker can perform to 70 judgments. In
overall, 83 crowd workers participated in the task and the maximum
number of annotation per individual annotator was 45.

In the second scenario, we removed the constrain of the quota limitation
and repeated the data collection procedure. However, the task was finalized
by only 37 crowd workers and the maximum number of annotations
provided by a annotator was 300.

The intuition behind the idea is:

a crowd worker is more reliable for a given task if (s)he annotates
more examples since s(he) has seen more number of gold questions. The
statistical test has shown that in the both conditions, the collected sets
of annotations have a high level of agreement (0.769) calculated with the
Kappa test [31].

6.3 Crowdsourced Datasets

We ran two different crowdsourcing tasks on CrowdFlower micro-tasking
platform for QA and the RTE datasets:
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Figure 6.1: Crowdsourcing user interface for RTE task.

6.3.1 QA Task

Like the previous experiment, a set of Q/APs pairs are provided and the
annotators were asked to assign a relevant/not relevant annotation label
to the given pairs. We used exactly the same dataset and the annotations
described in Section 5.2. In overall, 527 questions and its associated passage
candidates are crowdsouced. As a result, 52,700 judgments from 108 crowd
workers are collected and analyzed.

6.3.2 RTE Task

In the second annotation task, we crowsdourced development set from
the second challenge on Recognizing Textual Entailment (RTE2) defined
by Dagan et al. [43]. The characteristics of this dataset described in the
Section 2.4.3. We asked for 5 judgments for each sentence pair. Unlike the
TREC corpus, the ground truth labels are provided by the community in
advance.

In overall, 4,000 annotations are collected. The number of participants
was 82 and the maximum number of sentences annotated by a unique
annotator was 99 while there was a annotator with only 8 annotations.
Figure 6.1 shows a unit of crowdsourced T/H pair designed in CF platform.

Additionally, we removed the maximum quota of annotations an
annotator can perform in the both tasks. We demonstrated that this (i)
does not affected the quality of the annotations in Section 6.2; and (ii)
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Figure 6.2: Workers accuracy vs. number of annotations: a) QA and b) RTE tasks. Each
colored circle is a representative of an annotator.

allows us to collect reliable statistics about the annotators since they can
participate extensively to our annotation projects. Eventually, we used
this factor as a feature in our artificial labeler classifier.

Figure 6.2 shows the accuracy of annotators versus the number of
annotations each worker contributed to the main annotation tasks. The
results confirmed that our assumption was correct and removing the quota
limitation has not affected the quality of the collected annotations.

6.4 The Automatic Label Selector Framework(ALS)

The model for learning to select the most probable annotator annotation
is simple from the learning algorithm perspective: given an example to be
labeled, the set of annotators constitute the learning objects whereas the
correct labels for the example is the output.

Therefore, the complexity of the approach rely on representing
accurately a set of annotator trustability criteria and the task information
in a from of features. For this purpose, we first define parameters for
characterizing the individual annotator and aggregate them to create
features that represent the annotations over the examples. Then, applying
Tree Kernels(TK), a set of syntactic features from the examples are
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extracted to train ALS. The latter represents the hidden syntactic structure
of the examples without explicit feature design.

Interestingly, selecting the most relevant substructures useful for the
task is assigned to kernel machines themselves. The details of the used TK
described in Section 2.1.2.

6.4.1 Annotator Parameters

We define feature function, f(a), for each annotator a, which aims at
capturing his/her, using the product of three factors:

f(a) = N(a)M(a)C(a) (6.1)

where N(a) is the Cardinality Confidence, which indicates the total
number of annotations performed by annotator a in this task. This
is re-scaled and normalized between (0,1) by considering the maximum
and minimum number of annotations the annotator have done in this
task. M(a) is the Majority Consistency Confidence, which indicates the
total number of annotations agreement between the annotator a and the
majority voting in this task. This is normalized and re-scaled between
(0,1) as well. C(a) is the Prior Confidence, which indicates the prior trust
confidence score of the crowd worker, a, provided by the crowdsourcing
platform based on the quality of the annotations (s)he has done in the
previous tasks.

6.4.2 Aggregated Features for ALS

Each example x is associated with a set of annotators {ax1 , ax2 , ..., axk},
lxh ∈ {+1,−1} is her/his label assigned to x, and k is the number of
annotators per example.
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We defined an aggregated feature, F (·), for the example x as:

F (x) =
k∑
h=1

lxhf(ah). (6.2)

This consists of a summation of two factors: (i) lxh, which indicates the
judgment value the annotators, h, have provided for the passage x; and (ii)
the annotator feature f(ah) defined by Eq. 6.1. F (x) suggests that each
ASL aggregated feature is basically a majority voting score in which each
annotator vote is weighted according to one specific feature.

By changing the value of f(ah), we can generate several features as for
example outlined below:

- Labels Only (L), assign N(a) = M(a) = C(a) = 1, i.e., the majority
voting.

- Prior Only (P): to specifically account for the crowd workers
annotation skills, we set N(a) = M(a) = 1 in Eq. 6.1, i.e., we only use
C(a) (crowdflower trust) for weighing our instances.

- Cardinality & Majority (CM): we weight the agreement across
crowd workers, thus we utilized the majority consistency confidence M(a)
along with N(a) for normalization purpose C(a) = 1.

- Pr: we set f(a) as the Precision of a in her/his annotation task
of the current dataset.

- Rc: we set f(a) as the Recall of a in her/his annotation task of
the current dataset.

- Ti: this is the only non-aggregated feature: we use the set of annotator
IDs annotating the example.
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6.4.3 Task Parameters

We exploit the syntactic information of the examples using Tree Kernel
(TK) in order to get the advantage of high number of syntactic features in
ALS learner [36].

More in details: we applied Subset Trees (SSTs) proposed by [96] and
count the number of common tree fragments between two trees T1 and T2.
The kernel function K(T1, T2) defined as :

K(T1, T2) =
∑

n1∈NT 1

∑
n2∈NT 2

∆(n1, n2) (6.3)

where NT1 and NT2 are a set of T1’s and T2’s nodes, respectively and
∆(n1, n2) are number of common fragments rooted in the n1 and n2 nodes.
In QA task, T1 and T2 are associated with question/passage parse
trees respectively. Also, in RTE task, the syntactic properties of
Text/Hypothesis pairs are exploit. In the both tasks, we parsed the
examples using Stanford parser [86].

6.5 Experimental Setup

6.5.1 ALS Experiments

To generate the feature vectors of Q/AP pairs annotated by a set of
annotators, as it is mentioned in Section 4.1, the aggregation of some
parameter weights of the annotators has used as a feature. Basically these
features can reveal the performance of the annotators over the time by
considering the accuracy of annotators in the previous tasks and their
precision level in the current task. As a result, the ALS learns to model
the annotation decision of annotators for a specific instance and predict
the label of unseen instances based on training data.
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We evaluated the accuracy of ALS on two different NLP tasks, namely,
QA and RTE tasks. for the both tasks, we used 5 fold cross validations
strategy to evaluate the accuracy of the classifier.

Table 6.1 shows the contribution of the different features and weighting
schema proposed in this paper (ablation test). The final results presented
in the last column of the table shows that ALS classier performs better
that majority voting (baseline) and decreases the accuracy errors by 0.71%
and 3.5% in QA and RTE tasks respectively. In addition, by combining
the annotators characteristics features and the syntactic features derived
from the tasks, the accuracy of automatic labeler selector increases up to
0.12% and 1.13% in the QA and RTE tasks.

6.5.2 Trade-off Parameter

The number of features are small and the feature space is sparse.
Although the instances distribution for the both positive and negative
classes are balance (vs) in RTE dataset; however, the QA dataset is highly
skewed to negative examples population (1005 vs 9535).

We studied the impact of the trade-off value C, in the both tasks by
evaluation the accuracy with several C values. Fig. 6.3 shows the accuracy
of ALS classifier in the both tasks when the C value is increased.

6.5.3 Learning Curves

Fig. 6.4 plots the learning curves in the both QA and RTE tasks which
indicates that by small increments in supervision of the both tasks (e.g.,
84 training examples in QA and 128 training examples in RTE task),
the ALS classifier outperforms the unsupervised baseline(majority voting)
significantly.
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Figure 6.3: ALS classifier accuracy in QA and RTE tasks setting several C values.

Figure 6.4: Learning curves under different number of training examples.

6.5.4 Quality of Annotations

We investigated the relationship between the number of labels and the
overall quality of the labeling using multiple annotators. Eventually, we
compared the quality of the majority voting with ALS when the number
of annotators increases.

Fig. 6.5 demonstrates the analytic relationship between the number of
annotators and the quality of the collected labels. As expected, increasing
the number of annotators leads to produce labels with the higher quality.
Moreover, the plots shows that in any number of annotators aggregation,
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ALS performs better that majority voting. Note that, for the sake of
simplicity and avoid of biased evaluation, we keep the accuracy fixed when
the number of annotators was even in majority voting.

Figure 6.5: Improvement in tasks accuracy by increasing the number of annotators.

6.6 The Impact of ASL on Target Tasks

In the second set of experiments, we studied the effect of labels quality
on target task performance. Hence, we used the ALS predicted labels to
train the classifier for passage re-ranking in QA and recognizing textual
entailment, two important NLP tasks. Then, the results compared with
unsupervised and fully supervised models, when classifiers were trained
with majority voting and gold standard labels respectively.

6.6.1 Classifier Features

We used the rich set of features described in the state-of-the-art QA
system [143]. Such features are based on the similarity between question
and the passage text: N-gram overlap (e.g., word lemmas, bi-gram,
part-of-speech tags and etc.), tree kernel similarity, relatedness between
question category and the related named entity types extracted from
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the candidate answer, LDA similarity between the topic distributions of
question and answer passage.

For RTE task, we used a set of annotation components to generate
the syntactic and lexical features [77], namely; Tokenizer, POS tagger,
dependency parser. Moreover, several external knowledge resources such
as Wikipedia and Wordnet are used to recognize cases where T and H use
different textual expressions.

6.6.2 Classifier Models

For passage reranking (QA task), we used (i) SVM-rank1 to train our
rerankers; (ii) the default cost-factor parameter; and (iii) some other
specific values to verify if our results would be affected by different C
values.

For the second task (e.g. RTE), we used fixed weight token edit
distance [84], which is a token-based distance algorithm, with edit
operations defined over sequences of tokens of T and H. We ran Excitement
Open Platform (EOP) pipeline version 1.2.3 2 where Entailment Decision
Algorithm(EDA) optimized on RTE2 development set and evaluated on
RTE2 test set.

6.6.3 Baselines

We evaluated the accuracy of our approach, by training a QA classifier
supervised by ALS predicted labels with three different baselines namely:

• BM25: we used Terrier search engine3, which provides BM25 scoring
model to index the answer passages [122]. The APs are extracted

1http://svmlight.joachims.org
2http://hltfbk.github.io/Excitement-Open-Platform/
3http://terrier.org
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from AQUAINT text corpus and treated as documents. BM25 is used
to retrieve 20 candidate answers for each question and rank them by
their relevance scores.

• RE (Regular Expression): we trained the QA classifier with the noisy
annotations produced by labels automatically derived with RE applied
to answer keys.

• MV (Majority Voting): we trained the QA classier with the same
configuration as above but using majority voting of crowdsourced
annotations as a source of supervision.

• GS (Gold Standard) and finally, as a upper bound of the task, we
compared the QA classifier results when it was trained with gold
standard labels.

In the RTE task, the last two baselines mentioned above are considered as
lower and upper bounds of the task respectively.

6.6.4 Evaluation Metrics

Like the previous experiment, we used the same set of metrics mentioned
in Section 2.5, to evaluate the performance of the classifier for QA tasks:
the Mean Reciprocal Rank (MRR), which computes the reciprocal of the
rank at which the first relevant passage is retrieved, Precision at rank 1
(P@1), which reports the percentage of question with the correct answer at
rank 1, and Mean Average Precision (MAP), which measures the average
of precision of the correct passages appearing in the ranked AP list.

All our results are computed with 5-folds cross validations, thus the
above metrics are averaged over 5 folds. In the RTE task, the standard
evaluation metrics, e.g., Precision (Pr), Recall (Rec), F1 score and the
accuracy is considered.
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QA Task
Model MRR MAP P@1
BM25 41.75 ± 6.56 37.25 ± 4.52 25.57 ± 6.17
RE 57.41 ± 7.31 51.75 ± 6.27 41.38 ± 9.12
MV 57.75 ± 6.77 52.09 ± 5.68 42.94 ± 8.55
ALS 58.93 ± 4.17 52.54 ± 4.07 43.83 ± 5.06
GS 60.25 ± 4.38 52.92 ± 4.41 45.69 ± 5.57

Table 6.2: The results over 5 fold cross validation

RTE Task
ENTAILMENT NONENTAILMENT

Model Precision Recall F1 Precision Recall F1 Accuracy
MV 51.94 96.75 67.59 76.36 10.50 18.46 53.62
ALS 55.51 74.25 63.52 61.13 40.50 48.72 57.37
GS 54.79 85.75 66.86 67.24 29.25 40.76 57.50

Table 6.3: The results of RTE Task evaluated per class (entailment and non-entailment).
The last column is the macro average accuracy of the both classes.

6.6.5 Experimental Results

Table 6.2 shows the evaluation of the different baselines and We note
that: firstly, the accuracy of BM25 is lower than the one expressed by
rerankers trained on noisy labels (-15.66% in MRR, -14.5% in MAP,
-15.81% in P@1).

Secondly, although there is some improvement using crowd annotations
for training4 compared to the noisy training labels (RE), the improvement
is not significant (+0.34% in MRR, +0.34% in MAP, +1.56% in P@1).

Finally, training the passage reranker with ALS predicted labels,
improves the MMR and P@1 up to 1.18% and 0.89% respectively compared
to majority voting (MV).

The results of RTE classifier described in Table 6.3. The accuracy of
the task increases significantly by 3.75% when ALS labeler output used as

4The test labels are always obtained with majority voting and we removed questions that have no
answer in the first 20 passages retrieved by BM25.
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a source of supervision in RTE task.

Although, the trained system with consensus labels has a higher recall
in entailment class, it suffers from low recall in non-entailment class
extensively (entail. 22.5% vs. non-entail. -30% ). We observed that the
annotators have tended to assign more positive labels (entailment) to the
examples incorrectly (false positive: 69 vs. false negative: 13). It would
due to caused by difficulty of the task, e.g., high similarities between T
and H in various pairs or low skill level of annotators in the given task.

However, the ALS classifier avoids of majority bias interpretation
and behaving more like the experts(lower variance in precision and
recall compared to GS). It was feasible by considering the annotators
characteristics aggregation and the examples difficulties together to predict
the most probable correct labels.

6.7 Conclusion

In this work, we proposed a learning framework (namely, ALS) to select
the best labels out of a set of annotations provided by crowd workers for QA
and RTE tasks. This is made possible by taking into account to model the
both users and the task jointly. From the crowd workers side, we extracted
the metadata of the crowd workers implicitly provided in the users profile
and also their performance in the assigned task.
From the task side, the syntactic structural of the tasks presented in a form
of feature descriptor using Tree Kernels to train the ASL classifier as well.
We show that ASL classifier can improve the both tasks by providing more
precise training labels compared to automatic generated noisy labels or the
majority voting.
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7

Autonomous Crowd Training for RE

7.1 Overview

In this chapter, instead of using gold standard, we propose to
alternatively use silver standard, i.e., a high-quality automatic annotated
data, to train the crowd workers. Specifically, we introduce a self-training
strategy for crowd-sourcing, where the workers are trained with simpler
examples (which we assume to be less noisy) first and gradually are
presented with more difficult ones. This is biologically inspired by the
common human process of gradual learning, starting with the simplest
concepts.

Moreover, we propose an iterative human-machine co-training
framework for the task of RE. The main idea is that a subset of
“less-noisy” examples is automatically selected by an automatic system
in each iteration, and for training the annotators only using this subset.
The educated crowd workers can then provide higher quality annotations,
which the system can use in the next iteration to improve the quality of
its classification (See Fig. 7.1).

In other words, this cycle gradually improves both system and human
annotators. This is in line with the studies in human-based computational
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Figure 7.1: Human-machine co-training framework

approaches which showed that the crowd intelligence can effectively
alleviate the drifting problem in auto-annotation systems [137, 123].

7.2 Self-Crowdsourcing Training

In this section we first explain, our proposed method for automatically
identifying high-quality examples (i.e., Silver Standard) to train the crowd
workers and collect annotations for the lower-quality examples. Then, we
explain the scheme designed for crowd worker training and annotation
collection.

7.2.1 Silver Standard Mining

The main idea of our approach to self-crowdsourcing training is to use
classifier’s score for gradually training the crowd workers, such that the
examples and labels associated with the highest prediction values (i.e., the
most reliable) will be used as silver standard.
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More in detail, our approach is based on a noisy-label dataset, DS,
whose labels are extracted in a distant supervision fashion and CS a dataset
to be labeled by the crowd. The first step it to divide CS into three parts
CSI , which is used to create the instruction for the crowd workers, CSQ,
which used for asking questions about sentence annotations, and CSA,
which is used to collect the labels from annotators, after they have been
trained.

To select CSI , we train a classifier C on DS, and then used it to label
CS examples. In particular, we used MultiR framework [57] to train C, as
it is a widely used framework for RE. Then, we sort CS in a descending
order according to the classifier prediction scores and select the first Ni

elements, obtaining CSI .

Next, we select the Nq examples of CS \ CSI with highest score to
create the set CSQ. Note that the latter contains highly-reliable classifier
annotations but since the scores are lower than for CSI examples, we
conjecture that they may be more difficult to be annotated by the crowd
workers.

Finally, CSA is assigned with the remaining examples, i.e., CS \ CSI \
CSQ. These have the lowest confidence and should therefore be annotated
by crowd workers. Ni and Nq can be tuned on the task, we set both to
10% of the data( See algorithm 1).

7.2.2 Training Schema

We conducted crowd worker training and annotation collection using
the well-known Crowdflower platform1. Given CSI and CSQ (See Section
7.2.1), we train the annotators in two steps:

(i)User Instruction: first, a definition of each relation type (borrowed
from TAC-KBP official guideline) is shown to the annotators. This initial

1www.crowdflower.com
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Algorithm 1 Collaborative Crowdsourcing Traning
Input: DS, CS, Ni, Nq, MaxIter
Output: Trained classifier Ct

C0 ← Train MultiR on DS
For t := 1 to MaxIter:

P ← ∅
For each E ∈ CS:

Compute (Erelation, Escore) using Ct−1
P ← P ∪ {(Erelation, Escore)}

CSsorted ← Sort CS using the scores Escore in P
CSI ← Ni topmost elements in CSsorted

CSQ ← Nq topmost elements in {CSsorted \ CSI}
CSA ← remaining elements in {CSsorted \ CSI \ CSQ}
User Instruction using CSI

Interactive QA using CSQ

TCS ← Crowdsourcing CSA

Ct ← Train MultiR on {DS ∪ TCS}

training step provides the crowd workers with a big picture of the task.
We then train the annotators showing them a set of examples from CSI
(see Fig. 7.3). The latter are presented in order of difficulty level. The
ranked list of examples provided by self-training strategy facilitates the
gradual educating of the annotators [104]. This give us a benefit of
training the annotators with any level of expertise. It is a crucial property
of crowdsourcing, where we have absolutely no clue about the workers’
expertise in advance.

(ii) Interactive QA: after the initial step, we challenge the workers
in an interactive QA task with multiple-choice questions over the sentence
annotation (see Fig. 7.2). To accomplish that, we adapted an interactive
java-based agent 2 that can provide feedback for crowd workers: it
corrects their mistakes by knowing their given answer and also the correct
answer provided by the classifier. Then, the feedback is enriched with a
shallow level of rule-based reasoning to help the crowd workers revise their
mistakes. Note that: (a) To have a better control of the worker training,
we performed a selection of the sentences in CSQ to be used for questioning

2https://www.smore.com/clippy-js
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Figure 7.2: User Interface of crowd worker training: interactive QA phase

Figure 7.3: User Interface of crowd worker training: instruction phase

in a category-wise fashion. Meaning that, we select the subsets of examples
for each class of relation separately. We observed in practice that initially
a lot of examples are classified as “No Relation”. This is due to a difficulty
of the task for the DS-based model. Thus, we used them in CSA.

7.3 Experimental Setup

In this section, we first introduce the details of the used corpora, then we
explain the feature extraction and RE pipeline and finally the experiments
in details and discuss the results is presented.

7.3.1 Corpora

We used TAC-KBP newswires, one of the most well-known corpus
for RE task (See Section 2.2.3). As DS, we selected 700K sentences
automatically annotated using Freebase as an external KB. We used
the active learning framework proposed by Angeli [14] to select CS.
This allowed us to select the best sentences to be annotated by humans
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(sampleJS). As a result, we obtained 4,388 sentences. We divided the
CS sentences in CSI , CSQ and CSA, with 10%, 10% and 80% split,
respectively. We requested at least 5 annotations for each sentences.
Similarly to [81], we restricted our attention to 5 relations between person
and location3.

For both DS and CS, we used the publicly available data provided by
[81]. Ultimately, 221 crowd workers participated to the task with minimum
2 and maximum 400 annotations per crowd worker.

To evaluate our model, we randomly selected 200 sentences as test set
and had domain expert manually tagging them using TAC-KBP annotation
guidelines.

7.3.2 Relation Extraction Pipeline

We used the relation extractor, MultiR [57] along with lexical and
syntactic features proposed by Mintz et al. [90] such as: (i) Part of
Speech (POS); (ii) windows of k words around the matched entities; (iii) the
sequences of words between them; and (iv) finally, dependency structure
patterns between entity pairs. These yield low-recall as they appear in
conjunctive forms but at the same time they produce a high precision.

7.3.3 Experimental Results

In the first set of experiments, we verified the quality of our silver
standard set used in our self-training methods. For this purpose, we
trained MultiR on CSI , CSQ and CSA and evaluate them on our test
set. Figure 7.4 illustrates the results in terms of precision, recall and F1
for each partition separately. They suggest that, the extractor trained on
CSI and CSQ is significantly better than the one trained on the lower part
of the CS, i.e., data CSA, even if the latter is much larger than the other

3Nationality, Place-of-birth, Place-of-resident, Place-of-death, Traveled-to
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Figure 7.4: Accuracy of different CS partitions

two (80% vs. 10%).

In the next set of experiments, we evaluated the impact of adding a
small set of crowdsourced data to a large set of instances annotated by
Distant Supervision. We conducted the RE experiments in this setting, as
this allowed us to directly compare with Liu et al. [81]. Thus, we used
CSA annotated by our proposed method along with the noisy annotated
DS to train the extractor. We compared our method with (i) the DS-only
baseline (ii) the popular active learning based method (a.k.a., SampleJS
[14]) and also (iii) the state of the art, Gated Instruction (GI) strategy [81].

We emphasize that the same set of examples (both DS and CS) are
used in this experiment and just replaced the previous annotations with
the annotations collected using our proposed framework.

Note that in the sampleJS baseline, the annotations have been collected
through crowdsourcing, but without any explicit user training stage. The
results are shown in Table 1. Our method improves both the DS-only
and the SampleJS baselines, in F1 by 5% and 4% respectively. These
improvements clearly confirm the benefits of both the crowdsourcing and
the crowd worker training in the RE task respectively.

Additionally, our model shows just 3% lower in F1 than the GI method.
In both our method and GI, the crowd workers are trained before enrolling
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Model Pr. Rec. F1
DS-only 0.43 0.52 0.47
SampleJS [1] 0.46 0.51 0.48
Gated Instruction [6] 0.53 0.57 0.55
Our Method 0.50 0.54 0.52

Table 7.1: Evaluation of the impact of the CSA label quality in the RE task.
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Figure 7.5: Crowd workers annotation accuracy

in the main task. However, GI trains annotators using a Gold Standard,
which involves a higher level of supervision with respect to our method.
This suggests that our Self-training method is potentially effective and an
inexpensive alternative to GI.

We also analyzed the accuracy of the crowd workers in terms of the
quality of their annotations. For this purpose, we randomly selected 100
sentences from CSA and then had them manually annotated by an expert.
We compared the accuracy of the annotations collected with our proposed
approach with those provided by DS-only baseline and the GI method.

Figure 7.5 shows the results. The annotations performed by annotators
trained with our method are just slightly less accurate than the annotations
produced by annotators trained with GI. These results are inline with
our previous results showing the effect of quality of annotations on the
performance of the final RE task.
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7.4 Conclusion

In this chapter, we have proposed a self-training strategy for
crowdsourcing, as an effective alternative to train annotators with Gold
Standard.
Our experimental results show that the annotation carried out with our
method is accurate for the high-level semantic task of RE. Such property
suggests that training annotators can be a replacement for popular
consensus-based filtering scheme.
Our method achieves this goal through an inexpensive training procedure.
Analyzing the capability of our method for other fine-grained tasks is surely
an interesting direction of future work.
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Conclusion

Research to date has shown that crowdsourcing is slowly revolutionising
NLP research by significantly reducing the cost of acquiring linguistic
resources, as well as by directly supporting algorithms and their
evaluation. This has come at the expense of new, more complex resource
creation methodologies, in particular for contributor management, result
aggregation and quality control.
As it is described in Chapter 4, we made contributions to create a
benchmark for Relation Extraction Task using Distant Supervison [2, 3]
and also introducing two approaches in the Chapters 5 and 6 for improving
the accuracy of classifiers in various NLP tasks namely: Question
Answering and RTE [4, 1] when the training labels are collected through
crowdsourcing.
Also we have proposed a self-training strategy for training the crowd
workers before enrolling into the main task without using any gold standard
questions. Such property suggests that training annotators can be a
replacement for popular consensus-based filtering scheme [5]. We believe
that our contributions leave a significant footprint in the domain of quality
control in micro-task crowdsourcing for NLP tasks.

We itemize our contributions in this thesis briefly:

• we proposed a standard framework, simple RE models and an
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upgraded version of NYT-FB for more easily measuring the research
progress in DS research.

• we proposed a framework to exploit the implicit information of the
crowd workers and apply it to improve the QA task considering
weighting scores inferred from crowd worker performance.

• we proposed a statistical learner namely, ALS to select the best labels
among the annotations generated by a group of annotators and by
considering the implicit information of crowd workers and the given
task jointly as a features set.

• we proposed a self-training strategy for crowdsourcing, as an effective
alternative to train annotators without gold standard examples.

8.1 Limitations and Future Work

Our work has a set of limitations, which we consider as areas for future
improvement. These limitations are discussed below.

Platforms: We conducted our experiments on CrowdFlower. However, still
there is a variety of other platfroms such as Amazon Mechanical Turk
1 and CickWorker 2. Different platforms provide different metadata of
the crowd workers we used partially in our experiments. Moreover, the
different platforms, attract different demographics of the crowd resulting
in different workers behavior. Each platform provides a certain level of
freedom for requesters (Task Designer) to design the task, define quality
control mechanism and select the workers.
Therefore the reported results and conclusions we identified in our
experiments might be not completely valid for other crowdsourcing
platforms.

1https://www.mturk.com/mturk/welcome
2https://www.clickworker.com
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Task types: We conducted our experiments based on several NLP tasks
(e.g. relation extraction, question answering and recognizing textual
entanglements). Crowds workers acting differently annotating different
tasks. Thus, the results of the proposed methods in this thesis could be
different in new tasks. The effectiveness of our methods for other NLP
tasks have not investigated yet and left as a future work.

Dataset size: We performed our experiments with small datasets in QA
and RTE tasks. Moreover we collected the minimum number of judgments
per example to estimate the majority voting (e.g. between 3 and 5). This
is not due to limitation of our methods but rather financial constrains. We
believe that having thousands of data units, could show the robustness of
our methods, However, the results might be vary with a small variance
with what we have reported in this thesis. Generally speaking, scaling up
is still a major challenges, as are the following challenges and future trends,
which are valid for crowdsourcing in science as a whole.

8.2 Final Remarks

Linguistic resources such as tagged corpora or lexicons are core to
the development of the NLP field. Indeed, over the past ten years,
NLP research has been driven forward by a growing volume of annotated
corpora. These corpora have been used widely to train NLP algorithms
and also for domain adaptation. In addition, they make the algorithms
comparable as well as let the experimental setups replicable among the
scientific researches.

Traditional expert-driven corpus creation methodologies tend to be
very expensive to implement in terms of annotation time and price per
annotation. Crowdsourcing also changed significantly some scientific
practices in NLP. This phenomena helps the community to ask for bigger
and more complex high-quality data but still harnesses the linguistic
knowledge of the crowd as a source of supervision. However, involving

97



SECTION 8.2 8. CONCLUSION

human has its own consequences and expenses as well. This has come
at the expense of new, more complex resource creation methodologies,
in particular for contributor management, result aggregation and quality
control. This is what we presented as a big picture in this thesis.

From a different perspective, the crowd has an ability to learn the
task and improve themselves if they have trained in advance. Training
mechanisms ensure that the selected contributors understand the task
at hand and acquire a basic skill for performing it. We believe that it
is a alternative solution for complex pre/post processing quality control
mechanism.
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