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1. Introduction

Recent years have seen a large resurgence in research investigating the chemical nature of many weak 
inter- and intramolecular interactions.  Some of these interactions have been known to chemists for 
decades, but new theoretical evidence suggests that their chemical nature and properties might not be 
as clear as classical chemistry thought.  Examples include the classically repulsive homopolar hydrogen-
hydrogen contacts,1–5 dihydrogen interactions,6–8 and the large number of different hydrogen bonds.9–13  
On the other hand, investigations into the nature of known interactions have also led to the discovery of 
new interactions which might be of interest to chemists, such as halogen bonding,14–16 anion-anion 
interactions17 and chalcogen bonds.18  While many debates related to weak interactions are ongoing in 
the theoretical community (eg., the debates regarding the nature of hydrogen-hydrogen contacts19–27), 
research into these areas of interest have while many debates related to weak interactions are ongoing 
in the theoretical community (eg., the debates regarding the nature of hydrogen-hydrogen contacts19–

27), research into these areas of interest have revealed how underdeveloped our theoretical 
understanding of all chemical bonds still is.  Specifically, despite many excellent treatises on the physical 
events on bond formation,28 there is still a scientific need to shed more light on the nature of many 
intramolecular interactions commonly found in experimental conditions, and how a network of 
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intramolecular interactions contributes to the chemical properties and reactivity of a molecular system.  
To this end, many tools, techniques and methodologies have been developed over the last few decades 
which are able to probe specific aspects of intramolecular interactions.  Many of these can be classified 
as decomposition and transformation of (i) the molecular energy, including FAMSEC,29 EDA,30 ETS,31 
IQA,32 and SAPT,33 or (ii) the molecular charge density distribution, including QTAIM,34 FMO,35 NBO,36 
NCI37 and NOCV.38  Some of these methods have been combined, such as ETS-NOCV,39 in order to give a 
holistic viewpoint towards the energy and electron density phenomena regarding inter- and 
intramolecular interactions.  While many of these techniques provide clear insights with regards to 
intermolecular bonding, discussions involving intramolecular interactions are generally much more 
muddled.  Hence, obtaining a better understanding of intramolecular bonding is a very desirable goal, 
due to the extreme prevalence of intramolecular interactions in many physical sciences. 

Bader’s Quantum Theory of Atoms in Molecules34 (QTAIM) and his concept of a bond path (BP) or 
atomic interaction line (AIL) have experienced significant success as a relatively inexpensive calculation 
to identify and classify inter- and intramolecular interactions.  Many of his claims regarding the chemical 
significance of BPs have been questioned,25-27 leading to unorthodox interpretations of an AIL,40 
improvements of QTAIM’s charge decomposition scheme, including the Non-Covalent Interaction37 (NCI) 
approach as well as a proposal to change the Bader’s nomenclature from a bond path to a line path. 41  
The interpretation of both QTAIM’s AILs and NCI’s ‘attractive regions of concentration’, as well as the 
interpretation of most charge decomposition analyses, is inherent in one of Feynman’s theorems, 42 that 
the most attractive forces on atoms are observed when an influx of charge is seen in the interatomic 
region. It is generally accepted that an accumulation of electron density within the interatomic region of 
two or more atoms is indicative of an interaction with a predominantly bonding character; although it 
was shown that accumulation of density with accompanying an AIL is also observed when atoms are 
involved in a repulsive interaction even when a molecular system is at a true equilibrium state. 27  
Moreover, the manner in which an accumulation of electron density is measured differs significantly 
between different methods, leading to inconsistent interpretations and conclusions.  For instance, we 
have previously shown that the measure of charge concentration (whether it be AILs or regions of 
concentration as used by QTAIM and NCI, respectively) cannot be used to consistently differentiate 
between IQA-defined attractive and repulsive intermolecular interactions in water dimers43 or 
intramolecular interactions in metal complexes.44   

The question then arises as to which specific measure of charge concentration gives the correct 
description of the nature of an interaction.  To this end, the simplest and clearest measure of an 
accumulation or depletion of electron density is the deformation density, also known as the difference 

density, )(r . It is defined at any given coordinate r (Eq. 1) as the change in electron density in real 

space between the final (fin) and initial (or reference, ref) state,  

)()()( 0
rrr    (1) 

where 
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describes the contribution at r to the fin state of density coming from an i number of non-interacting 

promelecules M0.  In such approach, for the resulting )(r  to be meaningful, it is necessary for the 

coordinate system to be identical in the fin as well as ref state of a molecular system.  In other words, all 
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nuclear positions in the fin system must be the same as in promolecular state, with the only difference 
that each promolecule contains a subset of the total number of nuclei.  The result is such that the 
distance between each nuclear coordinate Ri and each coordinate r, dRi,r remains constant, but different 
electron distributions in the different states lead to the change in density between promolecules and a 

final molecule, )(r . 

The deformation density is an extremely valuable and easily-interpretable tool.  Not only does )(r  

give the change (accumulation or depletion) of density within the bonding region of an interaction (in a 
manner directly in line with Feynman’s theorem), but also the change in density outside of the bonding 
region, revealing the various polarizations and charge transfers resulting from the formation of an 

interaction.  Moreover, )(r  is often used in conjunction with the so-called interaction energy (or 

bond formation energy, defined as the energy difference between promolecular and molecular states).  
This is the central approach of many EDA schemes, such as the Extend Transition State coupled with 
Natural Orbitals for Chemical Valence (ETS-NOCV) approach,39 because visualizing and investigating 
electron density changes is a powerful tool in explaining bond formation energies.   

Using )(r  works well when intermolecular interactions are investigated because each separate 

molecule of a molecular system constitutes a well-defined and physical reference state.  Unfortunately, 
suitable reference states are usually not available in the case of intramolecular interactions and it is 
necessary to fragment the molecule into one or more unphysical states (usually radicals).  This is a 
significant drawback as, on reconstructing a molecule, formation of a covalent bond must unavoidably 
distort a picture related to the formation of a much weaker intramolecular bond/interaction.  

Nonetheless, due to the extreme usefulness of )(r  and despite its limitations, ETS-NOCV and other 

theories based on )(r  have been used to study intramolecular interactions and, with careful 

attention to the choice of reference state and final interpretation, have yielded some interesting 
results.45,46  Besides the fact that the use of unphysical reference states has been the cause for a few 
strong and critical arguments,47 it is obvious that any approach eliminating their need would be 
advantageous. 

This paper is primarily focused on addressing the above limitations inherent to many charge 
decomposition schemes. To this effect, a novel approach to approximate the deformation density 
resulting from a conformational change involving physically and chemically sound states, typically 
conformers, is presented.  We use a few concepts originating from the Domain Averaged Fermi Hole 
(DAFH)48,49 method to decompose the electron density into Fragment, Atomic, Localized, Delocalized 
and Interatomic contributions, hence arriving at the FALDI charge decomposition scheme.  These 
decomposition products are computed for each conformer. When individual changes are summed up, a 

FALDI-deformation density (DD) distribution in real space for a relevant ref  fin structural change is 
obtained. Moreover, all components of the FALDI-DD distribution can be examined individually to gain 
an additional insight and aid interpretation of more complex systems. Applicability and usefulness of the 
FALDI-DD approach is demonstrated using two conformers of protonated ethylenediamine (Hen +). The 
linear, higher energy conformer is used as a ref state. The formation of an intramolecular H-bond in 
spontaneously formed fin state of Hen+ is investigated by different modes of FALDI. Results obtained are 

compared with an orthodox )(r  approach involving a number of partitioning schemes of the fin 

state of Hen+.  We conclude this work by pointing at possible applications of the FALDI charge 
decomposition scheme as well as future extension(s) towards more accurate description of 
conformational deformation density distributions in real chemical systems. 
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2. Theoretical Development

2.1. Framework for conformational deformation densities. For the deformation density resulting from 

a conformational change of a molecule (reference to final state, ref  fin) to be calculated in real space, 
two significant and necessary modifications must be made to the basic approach described by Eq. 1: (i) 
molecular fragments in the ref state must be interacting to eliminate partitioning of a molecule to 
radical state fragments and (ii) the change in the coordinate system, caused by variation in nuclear 

distances and relative orientations on the ref  fin structural change, must be accounted for.  These 
modifications can both be addressed by using a suitable charge partitioning scheme in computing the 
density distributions of both ref and fin states into smaller components. Next, each component should 
be separately transformed to allow for a change in the coordinate system, while still be interacting in 
both ref and fin. 

Many different density partitioning schemes satisfy a general expression 
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i )()( rr   (3) 

where the molecular density is recovered by summing up contributions made by M fragments or atoms.  
For instance, exhaustive and non-overlapping schemes, such as the partitioning of the molecular density 

into atomic basins i separated by zero-flux surfaces (as used in QTAIM34), can be used to decompose 

the density completely in a set of M domains, i, Eq. 4: 

i

i

i













r

rr
r

0

)(
)(


  . (4) 

It is important to note, however, that the shape and volume of each domain i changes from the ref to 
fin state. This results in regions of space for which the change in density cannot be uniquely attributed 
to a specific fragment, rendering a non-overlapping scheme, such as QTAIM, unsuitable for 
conformational deformation densities.  From this follows that the desired density decomposition 

scheme in Eq. 3 needs to be based on molecular-wide distributions for each )(ri  and with )(ri   0 

for all r.  In other words, whereas QTAIM partitions the molecular electron density into exclusive and 
rigid domains, with the electron density associated with an atom or fragment given as an average count 
of all the electrons found from the nucleus up to the domain surface, we need a scheme which rather 
gives the electron density associated with an atom as a distribution across the entire space.  We have 
found that the Domain Averaged Fermi Hole (DAFH) analysis, first developed by Ponec, 48,49 provides a 
density decomposition satisfying this requirement.   

2.2. Domain Averaged Fermi Hole based density decomposition. DAFH analysis evolved around the 
concept of the exchange-correlation electron hole, which arises from the correlated movements of 
electrons  

)()(),(2),( 2121221 rrrrrr  C  (5) 
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where ),( 21 rrC is the correlation function,50 which relates the degree to which the pair density 

deviates from the completely uncorrelated product of first-order densities. The exchange-correlation 
electron hole function, located at r2 and evaluated at r1 is expressed in Eq. 6 

);()();( 21121 rrrrr
condHole    (6) 
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is the conditional probability of finding an electron at r1 if an electron is already present at r2. The 
electron hole function (Eq. 6) always integrates over the molecular system to –1 and is used to measure 
the degree to which the electron density is reduced (or rather, excluded) at r1 due to correlated 
movement with an electron at r2.  By substituting Eqs. 6 and 7 into Eq. 5 one obtains  

)();(),(),( 22121221 rrrrrrr  HoleC    (8) 

giving the correlation function in terms of the electron hole weighted with the charge density at r2.  
Since the hole calculates the origin (r2) of the excluded electron (at r1), plotting Eq. 8 by varying r1 but 
keeping r2 constant is effectively plotting the pseudo-dynamic probability density distribution of a single 
electron at r2.

51   

If we vary r1 over all space, it then gives the total, molecular-wide density distribution of the electrons 

which can be found in a volume element dr2.  Finally, r2 can be averaged across a domain i (through 

integrating the correlation function through dr2 over a domain i) in order to reduce the 2nd-order 
electron hole and correlation functions to pseudo-second order distributions, 


i

dCg i 2211 ),()( rrrr (9) 

which gives the DAFH quantity, )(rig  associated with domain i.  In principle, therefore, in the same 

way that the correlation function (Eq. 8), when plotted as a function of varying r1 gives a probability 

distribution of an electron currently in dr2 (due to exchange-correlation effects), so does )(rig , when 

plotted as a function of varying r, by giving a probability distribution of the electrons found on average 

in i across entire space. The )(rig  quantity, therefore, is of critical importance in this work, as it gives 

us the contribution made to any coordinate r by electrons found on average in a domain, or, 
alternatively, the portion of the electron density at any coordinate r associated with a specific domain 

i.  This concept is shown visually in Figure 1.  Figure 1a shows the QTAIM-defined electron population 
for a carbon atom in ethane, represented as an isosurface, and completely contained within the atomic 
domain defined by a set of zero-flux surfaces.  On average, 0.5809 electrons are found within the carbon 
atomic basin, which is calculated by integrating the electron density over only the basin.  It is important 
to note that the isosurface shown in Figure 1a contains the electrons localized to C1’s atomic basin as 
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Figure 1.  Average electron density associated with a carbon atom in ethane.  a) QTAIM-defined electron 
population, and b) DAFH-defined electron population.   

well as electrons delocalized to C1’s basin from other basins.  Correspondingly, the DAFH electron 
population (shown in Figure 1b) is identical to the QTAIM-defined population, but it is calculated by 

integrating )(rig over the entire molecule and shows how the 0.5809 electrons are delocalized 

throughout the molecule.  In other words, Figure 1b displays the probability distribution of finding an 
electron anywhere in the molecule which can also be found, on average, in C1’s atomic basin.  

Although various domains i can be chosen, we have decided to use QTAIM atomic basins for the 

reasons stated by Bultinck et al.52  We also use the absolute values of )(rig , for practical reasons when 

dealing with the deformation density.  In addition, we restrict ourselves to spin-independent functions, 
although it is not difficult to define spin-dependent variants of Eq. 9.51  Finally, to avoid the expensive 

integration of the correlation function over irregular QTAIM basins, we calculate )(rig through 

comparison of the elements of various atomic overlap matrices (AOM) 
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and iS


  stands for elements of the AOM associated with a specific domain i.  In single determinant 

wavefunctions, using the elements of all AOM’s related to each domain, )(rig  is calculated exactly and 

corresponds to the actual correlation function.  However, for more correlated wavefunctions, this does 
not hold true anymore and it is either necessary to calculate and integrate the exact correlation function 
in Eq. 5 or approach Coulomb correlation in an approximate manner.  We have opted for the latter 
option through the use of the Müller approximation by linearly expanding the first-order density matrix 
with partial occupation numbers.53  However, we note that multiple methods have been suggested for 
more accurate and efficient treating of Coulomb correlation in DAFH analyses, and it is something we 
will incorporate in our own scheme in the future. 

6



In traditional DAFH analyses, )(rig  is expressed as a matrix equation that is diagonalized in order to 

decompose )(rig  into N one-electron functions.  Such an approach is counter-productive when the 

conformational deformation density is concerned, as the relative order of the one-electron DAFH 

functions might change within a matrix when the ref  fin structural change takes place, creating 

additional difficulties.  Furthermore, in this work we are more interested in the concept of )(rig , which 

we take from DAFH, rather than the full natural orbital approach.   

2.3. General properties of the DAFH. It is important to point at a number of properties of )(rig  that 

are relevant to constructing conformational deformation density distributions: 

1. )(rig is a complete decomposition of the molecular electron density, at any point r, into 

contributions from all M domains, as shown in Eq. 12, 


M

i

ig )()( rr  . (12) 

)(rig  therefore satisfies Eq. 3, but is not limited by the restriction in Eq. 4; hence, it is well-suited for 

studying the change of density associated with a specific domain. 

2. Integration of )(rig  over the entire molecular space yields the associated average density within a 

specific domain i: 
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where N(i) is the QTAIM-defined electron population of the domain.  Integrating the electron 

density over the volume of i, or integrating )(rig  over the entire molecular system gives the same 

result.  In this regard, the change in the atomic electron population from a ref to a fin conformer, 

N(i), is recovered whether (r) or )(rig  is used. Importantly, however, using )(rig  to calculate 

deformation density does not depend on changing domain shapes and volumes. 

3. Integration of )(rig  over only a single domain i leads to the often used localization index, (LI), Eq. 

14 
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giving the number of electrons localized to a single atomic basin, whereas integration over any other 

domain j leads to the halved delocalization index (DI), Eq. 15, 
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giving the number of electrons delocalized between two atomic basins.  The LI and DI are related to 

the electron population of domain i through 


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Note that the contribution which )(rig  makes at r (regardless if it is towards the localized or 

delocalized density of i) depends only on whether r  i.  Hence, Eq. 16 can be rewritten in terms 

of )(rig  as: 

 
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4. The distribution of )(rig  can be interpreted as the probability of finding any one of N(i) electrons 

(contained on average in i), at any r. Also, )(rig  can be visualized as the distribution of the 

electrons of i over the molecular system through electron delocalization (exchange-correlation)

effects.  If )(rig  = 0, then none of the electrons in i can be found at r and if all r  i, then the 

electrons of i are fully localized and (r) = )(rig  for r  i).  

2.4 Introducing the FALDI density decomposition scheme. The properties of )(rig  make it ideal for the 

calculation of conformational deformation densities. This is because density at any coordinate r in a final 

molecular state can be decomposed into atomic contributions and compared to relevant )(rig at 

transformed r = Air in a reference state, 
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where we have introduced )(rc  to signify the conformational deformation density, M is the total 

number of atoms and Ai is the relevant transformation matrix relating the translation and rotation of the 

ith atom’s coordinates in the fin state to the ref state.  The difference between each )(ri

fin g  and 

)( rAii

ref g  pair results in the deformation density associated with a specific atom (or domain) i, and 

hence we introduce here the first two terms in our FALDI decomposition scheme, an Atomic Electron 

Density (AED) distribution, defined as the static )(rig  for the ith atom in a conformer, and when used 

in the deformation density context, an Atomic Deformation Density (ADD) distribution, defined for the 

ith atom as )()( rAr ii

ref

i

fin gg   from two states.  

The sum of various AED and ADD distributions gives rise to the next two terms in our FALDI 

decomposition scheme, a Fragment Electron Density (FED) distribution, defined as the sum of )(rig  for 

any number of atoms forming a molecular fragment, and a Fragment Deformation Density (FDD) 

distribution, defined as the sum of { )()( rAr ii

ref

i

fin gg  } changes resulting from two states.  The sum of 

FDD distributions computed for all fragments a molecule is made of (or the sum of all ADD distributions) 

gives the total (molecular) deformation density (TDD) distribution )(rc  defined in Eq. 18.  We want 
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to stress again that ADD and FDD distributions require separate transformation matrix (Air) for each 

atomic basin i as this is critical for the calculation of )(rc . Finally, they are very useful separate 

analysis tools in exploring the origin of the total change in density between two states at either atomic 
or fragment level.   

2.5.  Decomposing AED distributions into localized, delocalized and interatomic contributions.  The 
conformational deformation density calculated by Eq. 18 can be difficult to interpret for certain systems 
and molecular transformations.  The reason for this is the manner through which density shared 
between two atomic basins is transformed from the ref to the fin conformer: density delocalized 

between two atomic basins (i and j) with different transformation matrices (Ai and Aj) should be 
uniquely and separately transformed in order to take into account its dependence on two 
transformation matrices, as opposed to density localized to one atom (which only depends on Ai).  As it 

stands though, )(rc  calculated through Eq. 18 presents the interatomic delocalized density 

simultaneously as half transformed via the transformation matrix of one atom (Ai) and half through the 
transformation matrix of the other atom (Aj).  As an example of this problem, consider a system with 
two atoms, A and B, where A is transformed from ref to fin via AA and B remains untransformed (AB = 1).  
The density localized only to the basin of A in ref is correctly transformed through AA and compared with 
the density localized to the basin of A in fin.  However, half of the density delocalized between A and B 
in ref is transformed relative to A through AA and compared to the interatomic delocalized density in fin, 
resulting in an apparent density change as if B was also transformed through AA.  Correspondingly, half 
of the density delocalized between A and B in ref remains untransformed, and results in an apparent 
density change as if A remained untransformed.  If another atom C is transformed in the same manner 
as A (with AA = AC, if A and C are parts of the same fragment) then the density shared by A and C is 
correctly transformed from ref to fin, but not so the density shared between C and B.  This problem of 
density delocalized across atoms with different transformation matrices appears as apparent artefacts 

on the TDD distribution, and although )(rc  can still be interpreted correctly with some care, it 

becomes very difficult with anything but the simplest molecules.  Note that the apparent artefacts in 

)(rc  are self-eliminating in that )(rc  integrated over all space is 0 because regions where the 

delocalized density apparently increases due to the problem described above is cancelled out by regions 
where the delocalized density apparently decreases. 

We present next an approximation to the way in which )(rc  is calculated, which greatly aids the 

interpretation of )(rc  whilst keeping )(rc  integrated over all space to 0.  Since it is only the 

density shared between atomic basins which is affected by incorrect transformation, we first develop 
expressions for decomposing the static density into localized and delocalized contributions in real space.  
These expressions form the final terms of our FALDI density decomposition.  We then develop an 
approximate method for transforming delocalized density distributions from ref to fin through multiple 
transformation matrices.   

The total static electron density can be expanded algebraically and in terms of )(rig it can be 

expressed as  
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and, accordingly, the )(rig  distribution of each atom can be decomposed by 
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This approximation calculates the fraction of the electron density which any atom contributes at r, 
weighted with either the same atom’s contribution (as in the first term in Eq. 20) or another atom’s 
contribution (the second term in Eq. 20).  The result is a full decomposition of the electron density (Eq. 
19) or the atomic density contribution (Eq. 20) at a specific coordinate r in terms of density localized to

an atom ( )()()( 1
rrr

ii gg ) and density delocalized between an atom and all other atoms 

(



M

iX

Xi gg )()()( 1
rrr  ).  We have used the same symbols commonly employed in QTAIM methodology 

for localization indices ((i)) or delocalization indices ((i,X)) in order to imply the same meaning, 

although mathematically )(ri  and )(, rXi are not directly equivalent to (i) and (i,X). These two 

terms, )(ri  and )(, rXi , are known in our FALDI decomposition scheme as Localized and Delocalized 

Electron Density (LED and DED) distributions, respectively. The )(, rXi  term is defined for a domain i 

together with all other domains X; for the special case of only two atoms, we specify )(, rji  and 

introduce our final FALDI term, Interatomic Electron Density (IED) distributions. 

LED distributions give the probability of finding an electron at r which is strongly localized, in an 

exchange-correlation sense, to a domain i..  While the probability of finding such electrons are non-

zero even when r is outside a domain i (r  i), LED distributions tend to be much more concentrated 

in the domain they are associated with.  The change in )(ri  for two different states, 

)()()( rArr ii

ref

i

fin

i   , gives the deformation of the density localized to an atom, which we call a 

Localized Deformation Density (LDD) distribution. 

In case of IED distributions, they give the probability for an electron at r to be delocalized between two 

domains i and j, or in the case of DED distributions, for all pairs of i with all other domains X.  In 
other words, the IED gives the real space distribution of electrons shared by two basins, and shows very 
interesting and different patterns depending on the nature of the interaction.  As an example, the IED 
distribution of a covalent C–C bond in ethane is compared to the IED distribution of a van der Waals 

(vdW) interaction between OH in a water dimer in Figure 2, where the vdW interaction displays a 
totally different topology than the covalent bond; this clearly illustrates how electrons are shared 
between two atoms in real space. 
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Figure 2.  Interatomic-ED and delocalized-ED distributions for a C—C bond in ethane, isovalue = 0.01 au, and an 
O⋅⋅⋅H interaction in a water dimer, isovalue = 0.001 au. 

As mentioned at the beginning of this section, the localized density of an atom (a LED distribution) in 
the ref state is easily transformed via Air and compared to the fin state to generate a LDD distribution.  
On the other hand, interatomic delocalized density (an IED or DED distribution) needs to be transformed 
using two transformation matrices simultaneously in order to calculate Interatomic and Delocalized 
Deformation Density (IDD and DDD, respectively) distributions.  While there are a number of different 
ways to approach this problem, we have opted to use a relatively simple scaling scheme based on 

projections of the internuclear vector to generate r from the transformed coordinates of domains i 

and j, ri and rj.  The derivation of this approach is discussed below. 

Given the transformations for r to the relevant ri and rj of two atomic basins i and j, 

rAr

rAr

jj

ii




(21) 

we can calculate the value of )(, rji  in the ref state at r as a weighted combination of ji,  at ri and 

rj, as shown in Eq. 22, 

)()()()()( ,,, jji

ref

jiji

ref

iji

ref ww rrrrr   )()](1[)()( ,, jji

ref

ijiji

ref

ij ww rrrr   (22) 

The weighting factors wij can be generated, Eq. 23, by projecting the vector from the nuclear coordinate 
of the ith atom Ri to r, r – Ri, onto the internuclear vector, Rij, and calculating the fraction along Rij where 
r is projected,   

2

)(
1)(

ij

iji

ijw
R

RRr
r


 (23) 
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For coordinates r between Ri and Rj, )(, rji

ref  can be calculated as a weighted combination of 

)(, rji

ref  in terms of ri and rj, whereas outside of Ri and Rj )(, rji

ref   depends only on ri or rj: 

(24) 

This approximation lets us calculate )(, rji

ref  (where the prime indicates the use of the 

approximation) at r, and compare directly to )(, rji

fin , which gives the change in interatomic or 

interfragment density contributions resulting from two states. This protocol generates an approximated 
IDD distribution and the sum of all IDD distributions associated with a specific atom gives its DDD 
distribution.  In the following final section, we will put all of the FALDI terms together to form 
expressions for calculating conformational deformation densities.   

2.6  Conformational Deformation Densities using the FALDI-DD decomposition.  The total 

conformational deformation density, using the approximation for )(, rji

ref  , is then 

)()()( rrr  ccc  (25) 

where 

  
M

i

ii

ref

i

fin

c )()()( rArr  (26) 

gives the total localized density change for each atomic basin i (a LDD distribution), and 

 





1

1

,, )()(2)(
M

i

M

ij

ji

ref

ji

fin

c rrr  (27) 

gives the total delocalized density change for each unique atomic pair i and j (an IDD distribution).  

Note that the sum of all IDD distributions associated with atom i gives the DDD distribution of atom i 





M

ij

jicXic )()( ,, rr  (28) 

and the sum of the DDD and LDD distributions of atom i gives its ADD distribution 

)()()( , rrr Xicicic g   . (29) 

The sum of all ADD distributions for atoms within a fragment {F} gives its FDD distribution 
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
}{

)()(}{
FM

i

ic

F

c gg rr . (30) 

where M{F} is the total number of fragments. 

Each FDD distribution can also be decomposed into the density localized to a fragment, as well as the 
density delocalized between different fragments 

)()()( }{}{}{
rrr

F

c

F

c

F

c g   (31) 

where 

 






1

1

,

}{
}{ }{}{

)(2)()(
F FF M

i

M

ij

jic

M

i

ic

F

c rrr  (32) 

and 


}{

)()( ,

}{
FM

i

M

k

kic

F

c rr  (33) 

where }{Fk . 

Finally, the sum of all M FDD distributions gives again the conformational deformation density, as 
defined in Eq. 25 


}{

}{ )()(
M

i

i

cc g rr (34) 

where {M} is the total number of fragments. 

Scheme 1 shows the full decomposition scheme.  With regards to our proposed nomenclature, we will 
use (1) FALDI-ED, where ED can stand for either FED, AED, LED, DED or IED to describe the FALDI 
decomposition when it is applied to the static electron density distribution of a single molecule, and (2) 
FALDI-DD, where DD can stand for either FDD, ADD, LDD, DDD and IDD to describe the FALDI 
decomposition when it is applied to the change in density arising from a conformational change.   

Lastly, we wish to note that the same decomposition is applicable to an orthodox fragmentation of the 

molecular system that involves promolecular deformation densities by setting )(, rji

ref = 0, 

)(, rji = )(, rji

fin  and Ai = 1 for all i.  The FALDI-DD scheme can therefore be used to interpret and 

analyse orthodox deformation densities, as well as compare various FALDI-DD terms of both orthodox 
and conformational deformation densities.  Hence, our decomposition scheme can be used in 

conjunction with the very useful natural orbital expansion of the various components of )(r  (as is 

implemented in ETS-NOCV), in order to provide additional insight to the changes occurring during bond 
formation.  
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Scheme 1.  Proposed FALDI-DD decomposition of the deformation density. 

3. Computational details

All systems were optimized in Gaussian 09, rev.D,54 using RB3LYP-D3/6-311++G(d,p) in gas-phase.  
AIMAll version 16.05.1855 was used to calculate atomic overlap matrices for all systems, using suitable 
wavefunction files generated by Gaussian and at the same level of theory and basis set.  Atomic overlap 
matrices were used to perform the FALDI decomposition and conformational deformation densities 
using in-house software.  All FALDI isosurfaces were visualized using VMD.56  Orthodox deformation 
density calculations were performed and visualized with ADF 2014,57 using RB3LYP-D3/ATZP; however, 
similar calculations were also performed in Gaussian and visualized with VMD for comparison. Gaussian 
coordinates for all optimized molecules as well as promolecules are included in Section S1 of the 
Supplementary Information. 

4. Results and Discussion

Our focus is on gaining an insight on the density changes associated with the formation of an 
intramolecular interaction from the FALDI perspective and, as a case study, we will analyse a classical 
intramolecular H-bond in the lowest energy conformer of protonated ethylenediamine (Hen+) used here 

as a fin state of Hen+. The N8–H11N7 bond (Figure 3) with d(N7,H11) = 2.110 Å, is formed 
spontaneously and, relative to a linear conformer, used here as a ref state, the molecular energy 

decreases, e.g., by –4.1 kcalmol–1 at the MP2/6311++G(d,p) in aqueous solution.  In sections that follow 
we will perform a brief comparative analysis between an orthodox approach, using various 
fragmentation schemes, and the FALDI method reported in this work. Furthermore, we will demonstrate 
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some unique features of FALDI by exploring deformation densities resulting from a ref  fin structural 

change with a main focus on the H2N8–H11N7H2–C1 region.  

4.1. Total deformation density from orthodox (r) and FALDI c(r). An orthodox decomposition 
approach requires partitioning of a molecule to promolecules (or fragments). Four partitioning schemes 
were tested here where (i) Hen+ was cut in the middle, which resulted in two, –CH2NH2 and –CH2NH3

+ 
fragments (2F1 scheme), (ii) NH2 group was cut off, hence –NH2 and –CH2CH2NH3

+ fragments were 
formed (2F2 scheme), (iii) NH3

+ group was cut off resulting in two, –NH3
+ and –CH2CH2NH2 fragments (2F3 

scheme) and (iv) both terminal groups were cut off generating three, –NH2, –CH2CH2– and –NH3
+ 

fragments (3F scheme) (this is pictorially presented in Scheme S1 in the Supplementary Information).  

Each scheme was chosen in such a way as to describe the formation of the N8–H11N7 intramolecular 
interaction. 

Figure 3. Molecular graphs of linear Hen
+
 (ref) and equilibrium Hen

+
 (fin) conformers for the calculation of 

conformational deformation densities using FALDI. The ref conformer is rotated around the N7,C1,C4,N8 dihedral 
angle. Atoms’ numbering is also shown.  

As expected, these four partitioning schemes generated quite different pictures of the total 
deformation density (examples obtained from 2F1 and 3F partitioning schemes are shown in Figure 4) 
because each fragmentation had to break different covalent bonds.  This had a significant impact not 

only on density changes associated with the formation of the same N8–H11N7 intramolecular 
interaction, but also throughout a molecule – a full set of total deformation densities computed from 
four partitioning schemes is shown in Figure S1 in the Supplementary Information.  Clearly, selecting a 
specific fragmentation scheme is not always a trivial exercise as it might be very impactful with regards 
to a final interpretation of energetic components, such as binding energy or Pauli, orbital and 
electrostatic terms of an interaction, computed from EDA. Most likely, from a visual inspection and 
analysis of energy terms computed, one would select the total deformation density generated from the 
2F1 scheme. This is because it resulted in the picture visualizing deformation densities within a region of 
the intramolecular interaction best when related to chemist’s general knowledge – Figure 4(a).  Such a 
heuristic approach is an easy choice for well-understood interactions, such as classical H-bonds, but is 

much more difficult to determine for unknown or controversial interactions, such as CHHC. 
Unavoidably, an additional and dominating contribution to the deformation density is observed which 
resulted from reconstruction of the covalent C–C bond when two promolecules, –CH2NH2 and –CH2NH3

+, 
were brought together from an infinite separation.  
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It is clear from Figure 4 that the use of unphysical, promolecular reference states has an undesirable 
yet unavoidable effect on the intramolecular interaction of interest.  The extent of this effect has been 
impossible to determine, casting doubt on any result obtained by EDA approaches for intramolecular 
interactions (including results based on the interaction energies).  Clearly, it is desirable to obtain 
deformation densities for intramolecular interactions without using unphysical reference states, which is 

Figure 4. Total deformation densities: (a) and (b) computed in ADF using indicated partitioning scheme, (c) from 
FALDI, using the conformational approach.  Red and blue regions indicate a decrease and increase in density, 

respectively, relative to the radical fragments in (a) and (b) and on the ref  fin structural change of Hen
+
 in (c). All 

isosurfaces are at 0.0025 au. 
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the primary justification for this work.  To achieve such deformation densities, FALDI makes use of real, 
chemically viable reference states, here from a linear to equilibrium conformer of Hen+ – Figure 3.  A 3D 
isosurface for the total deformation density (TDD) resulting from the conformational FALDI approach is 
shown in Figure 4c.  Comparing the two pictures in Figure 4a (EDA) and 4c (FALDI) reveals that there are 

similar features in the H2NHNH2
+ region, namely (i) an accumulation of density is observed for N7 and 

N8 whereas H11 is losing density and (ii) polarization of terminal groups is observed which appears to be 
more significant for –N7H2 from ETS-NOCV whereas FALDI points at –N8H3

+.  However, the FALDI-

generated picture reveals additional regions that experienced a change in the density on a linear  
equilibrium structural change. Importantly, these regions correspond to the atomic population changes 

well as, e.g., we obtained from QTAIM N = +15, –8, –59, and –21 me for C1, C4, H2, and H3, 
respectively (both H-atoms of the C1H2 group).  Such a picture cannot be recovered from an orthodox 
approach because it is largely distorted by the deformation density of a covalent bond formation. 

To conclude our analysis of the intramolecular interaction region from the total deformation density 
perspective, it is clear that the FALDI-based approach displays similar features as those obtained from an 
orthodox approach, but without the problems caused by the use of unphysical reference states.  
Furthermore, FALDI density decomposition can also be applied on any number of fragments generated 
in an orthodox fashion, by cutting a molecule to radical-state promolecules (at this stage, this is limited 
to wavefunctions generated by Gaussian). Although we are not going to extensively use the FALDI-on-
promolecules approach in this work, it is important to stress that we were able to recover ADF-
generated images of the TDD using four partitioning schemes mentioned above; this is illustrated in 
Figures S2 in the Supplementary Information. This gives us an assurance that our approach is working 
well and no major bugs are present in the in-house developed software package.  Finally, a full set of 
fragment deformation densities (FDD), calculated by the FALDI-on-promolecules approach, was 

obtained for the –CH2CH2– and H2NHNH2
+ fragments.  It is presented in Figure S3 and S4 in the 

Supplementary Information, showing how pictures recovered depend on a particular partition scheme 
used; for illustration purposes, FDDs obtained from 2F1 and 3F are shown in Figure 5.  Summing up FDDs 
from, e.g., the 2F1 partitioning scheme, one obtains the TDD shown in Figure 4(a). This demonstrates 
that the FALDI decomposition can provide additional insight to orthodox deformation density studies by 
uncovering the origin of computed TDD. 
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Figure 5. FALDI-on-promolecules generated FDD from the 2F1 and 3F partitioning schemes for –C4H2-C1H2–and 
combined terminal groups using orthodox promolecules as a reference state. All isosurfaces are at 0.0025 au. 

4.2. Atomic FALDI deformation densities. It is important to realize that the total deformation density 
computed from the FALDI scheme, Figure 4(c), does not depict details related to individual atoms or 
functional groups. This is because the TDD is the sum of either atomic and/or fragments deformation 
densities.  
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Figure 6. ADD distributions and changes in QTAIM atomic net charges and atomic populations (both in e) obtained 

for indicated atoms on the ref  fin structural change. Isosurfaces for C4, H10 and H13 are presented are at 0.001 
au; all other isosurfaces are at 0.0025 au. 

Hence, to uncover the origin of the conformational, from ref to fin state, deformation density in Hen+, in 
terms of individual atoms’ contributions, we computed atomic deformation densities (ADDs) for each 
atom - a full set of FALDI-generated ADDs is shown in Figure S5 in the Supplementary Information, and 
for selected atoms in Figure 6.  

According to the IUPAC recommendation,13 a wide range of H-bonds should be represented as X–HY–
Z, where X–H represents the hydrogen bond donor and, in the case of an intramolecular H-bond, Y–Z 
represents a molecular fragment acting as the acceptor, where Y is bonded to Z. Moreover, a classical 

intramolecular H-bond is commonly interpreted using the X–HY notation when H is bonded to 
electronegative atom, O, N or F.58 Following this recommendations, we have analyzed X = N8, H = H11, Y 
= N7, and Z = C1 as this selection affords us both notations and it was of great interest to find out if 
there are specific features of these atoms’ ADDs (Figure 6) which could be linked with 4- and/or 3-atom 
representation. Comparing data shown in Figure S5 in the Supplementary Information reveals that by 
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far, in terms of 3D spaces occupied, the most significant changes in density were indeed obtained for 
ADDs of C1, N7, H11 and N8. As a matter of fact, these atoms are the only ones in Hen+ for which the 
ADD is delocalized towards more than one neighboring atom.  This is indicative of their most important 
contributions made to the conformational TDD change and can be used as a textbook example in 
support of the IUPAC recommendation that also illustrates, in 3D space, atomic contributions on the 
formation of a classical intramolecular bond.  

The nature and mechanism of a classical intermolecular H-bonding, as X–HY, was studied extensively 
for years. It has been established from, e.g., EDA,30 DFT59 and IQA studies60 that on formation of a X–

HY bond some charge transfer (CT) from Y (here N7) to X–H (here N8–H11) always takes place. FALDI 

recovers this notion fully as atomic density of N7 is delocalized to the N8–H11 as well as N7H11 
bonding region. In the latter case, density is placed close to H11 along the AIL which must facilitate 
formation of the AIL. However, we also see in Figure 6 that N7 is also delocalizing some density in the 
N7–C1 region and this is counteracted by C1 which is removing its density from this bonding region and 
placing it mainly in the C1–H2 interatomic region. A significant interplay in density redistribution 
between N7 and C1 in combination with large space occupied by C1’s ADD further supports the 4-atom 
IUPAC notation.  

An interesting picture is observed for N8 of the hydrogen bond donor. This atom is placing its density 
in the H11–N8 bonding region as well as on N7 (a proton acceptor) by removing it from H11 which is 
accompanied by charge redistribution, hence polarization of its own atomic basin. Furthermore, changes 
in density attributed to N8 near N7 and H11 are well separated and localized along the AIL.  

It is known that H (H11) is losing charge and the FALDI-generated picture suggests that this atom’s 
density is being delocalized by removing it not only from its own basin but also from the entire bonding 
region of the hydrogen bond donor H11–N8, as well as from the non-bonding region of N8.  Noticeably, 
the removed density is placed entirely on the proton acceptor N7 and, importantly, it is located mainly 

along an AIL, facilitating N7H11 bonding even further.  

All these atomic density rearrangements provide the origin of polarization effects observed in Figure 

4(c) in the entire N8–H11N7–C1 region. However, it appears that pictures obtained for N7, H11 and N8 

in Figure 6 also provide some support for the X–HY representation of a classical H-bonding. To this 

effect, we note that ADDs of these atoms are mainly delocalized in the N8–H11N7 region and, 
importantly, the two N atoms are the only ones which, not being neighbors, donated density through 
space to each other. 

To complete the analysis of deformation densities computed for individual atoms, we would like to 

note that, excluding atoms of the N8–H11N7–C1 bond, all other atoms show highly confined ADDs 
which are placed almost entirely along a single covalent bond. To illustrate this, examples for C4 (to 
compare it with C1), H10 and H12 of the –NH2 and –NH3

+ terminal groups, respectively, are shown in 
Figure 6. Finally, a 3D-ADD computed for C1 from the 2F1 partitioning scheme, marked as FALDI on 2F1, 
is also shown in Figure 6. It is immediately noticeable that FALDI-generated conformational ADD for C1, 

when the ref  fin structural change took place, is extremely different from that obtained using a 
FALDI-on-promolecules approach employing the 2F1 partitioning scheme. Whereas FALDI shows that the 
ADD is delocalized in the immediate vicinity of C1 and neighboring atoms, totally unexpected, much 
larger and almost throughout a molecule ADD was obtained from the FALDI-on-promolecules approach. 
Such ADD must be seen as unphysical and nicely illustrates how reconstructing of a C–C covalent bond 
has a detrimental impact on the picture recovered, especially in terms of its impact on the 

intramolecualr NHN interaction of interest.  Furthermore, relative to the linear conformer of Hen+, 
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deformation density of C1 from 2F1, when the FALDI-on-promolecules approach was used, has resulted 

in the change of the net atomic charge, q(C1) = +0.099e which is totally different in value and trend 
when compared with –0.015e computed from QTAIM. 

4.3. Fragment FALDI deformation densities. Atomic resolution implemented in the FALDI scheme 
provides an invaluable insight on atoms’ involvement in bonding.  However, formation of an 
intramolecular interaction can also be explored from the perspective of functional groups.  As showed in 
Figure 4(c), formation of the intramolecular bond is a holistic, molecular wide event in terms of a charge 
redistribution and resultant polarisation effects. Hence, one would expect that the picture recovered 
using functional groups (FGs) should provide an additional and, to some extent, more general 
description. Atoms involved in H-bonding are members of three FGs and they all were used as fragments 
in FALDI’s scheme; 3D representation of FDDs attributed to the –C1H2–, –N7H2 and –N8H3

+ FGs is shown 
in Figure 7.  

A comparative analysis of FDDs computed for the –N7H2 and –N8H3
+ functional groups (Figure 7) with 

ADDs of N7, H11 and N8 atoms in Figure 6 leads to the conclusions that there are similar, in principle 
identical in nature, features for both atomic and fragment resolution. This means that our interpretation 
of atomic deformation densities can be entirely extended to FDDs. This finding is of fundamental 
significance as it provides additional information on the origin of the TDD  shown in Figure 4(c) by 
providing an evidence of a negligible contribution made by H-atoms not directly involved in the bond 
formation (H9 and H10 of –N7H2, H12 and H13 of –N8H3

+). The only difference is observed in the region 
of H-atoms of the –C1H2– fragment and the computed depletion of density

Figure 7. FDD distributions obtained for indicated fragments on the ref  fin structural change. All isosurfaces are 
at 0.0025 au.     
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correlates well with the largest decrease in the atomic population among all atoms of Hen+ found for H2 
whereas H11 experienced second largest outflow of density.  

The combined deformation densities for two terminal groups, as NH2NH3
+, produced a picture which is 

also consistent with a general description of a classical intermolecular X–HY bond. We observe a 
combined charge redistribution which resulted in larger(smaller) charge accumulation on a proton 
accepter N7(donor N8) and density depletion on H11, a common feature also found from the IQA 
studies of a number of dimers using the full-valence CAS/ 6-311+G(d,p) wavefunction.60  Moreover, a 
general trend in the atomic population change, when the structure of Hen+ changed from the linear to 

equilibrium conformer, N(X) > │N(H)│ > N(Y) obtained here at B3LYP/6-311++G(d,p) is the same 
when compared with that computed as a difference in atomic populations between monomers and 
dimers.60  This shows that general features of the charge redistribution, here nicely illustrated by the 
FDDs, and trends in computed atomic population changes are comparable and representative, 
regardless of level of theory used and the kind of classical H-bonding, either inter- or intramolecular.  

In conclusion, the atomic- and fragment-based analyses of deformation densities provided an invaluable 
fundamental insight on the mechanism of an interaction formation. Furthermore, ADDs and FDDs, by 
providing the origin, are extremely helpful in understanding and interpreting the overall picture 

obtained from the total deformation density. Regarding the two different representations (X–HY–Z 

and X–HY) of the hydrogen bond, it appears that the four atom N8–H11N7–C1 description 
represents the intramolecular bonding better, because the ADD distribution for C1 (Figure 6) revealed 

that C1 also and significantly contributes to the density within the NHN bonding region.  Such a result 
cannot be obtained from a charge decomposition scheme, such as QTAIM, and is only revealed through 
FALDI’s distributions in real space. 

4.4. Diatomic and intrafragment interactions from the FALDI perspective.  In the FALDI scheme, the 
decomposition of each delocalized deformation density (DDD) distribution into individual distributions 
of the changes in shared electrons across two or multiatomic basins results in the interaction 
deformation density (IDD) distributions. This is of special interest to us as it should provide a unique 

insight on a number of aspects of an interaction formation. Our main focus is on the N8–H11N7–C1 
hydrogen bond (observed in the equilibrium structure of Hen+) which is characterized by the presence of 
Bader’s AIL.  Figure 8 displays IDD isosurfaces computed for four most relevant diatomic interactions, 
showing the real-space distribution of changes in QTAIM defined delocalization indices.  

It is important to stress that in the IQA world all diatomic fragments are treated on equal footing and we 
wondered whether our analysis, based on interaction deformation densities, can show us unique 
features one could link with the formation, or an absence, of a BP. From a general inspection of 
isosurfaces in Figure 8 it is immediately seen that red(blue) isosurfaces representing a 
decrease(increase) in density in the interatomic region correlate perfectly well with the sign, 
negative(positive), of the delocalization indexes.  

Because we analyze the outflow (red) and inflow (blue isosurface) of density from an interatomic 
region, it immediately appeals to the exchange-correlation (XC) term of the IQA-defined interatomic (or 
intrafragment) interaction energy. Looking at pictures recovered for the diatomic interaction in Figure 8 
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Figure 8. IDD distributions obtained for the indicated diatomic and intrafragment interactions. Red and blue 
regions indicate a decrease and increase in density, respectively, relative to the reference conformer. All 
isosurfaces are at 0.0025 au. Changes in QTAIM-defined delocalization indices are indicated. 

recovered for the diatomic interaction in Figure 8 we note that the DI decreased for {C1,N7} and 
{N8,H11} fragments with the latter correlating perfectly well with our general knowledge, and (ii) 
increased for the {N7,H11} as well as {N7,N8} fragments, where the result obtained for the former 
corresponds to the formation of an intramolecular interaction in the form of Bader’s BP. The above 

trends are fully supported by the computed BA

XC

,V terms for relevant diatomic interactions, as we 

obtained  BA

XC

,V  +6.57 and +18.80 kcalmol–1 for {C1,N7} and {N8,H11} interactions, and –16.59 and –

8.02 kcalmol–1 for {N7,H11} and {N7,N8} fragments, respectively.  IDDs, however, allow for investigation 
of shared electrons throughout all space.  Comparing IDDs for the {N7,H11} and {N7,N8} fragments 

provides an important hint. The N7N8 IDD distribution extends through the N8–H11 bond and 

N7H11 interaction. However, there is a fundamental difference between IDD distributions of {N7,H11} 
and {N7,N8}: whereas the former has a BP the latter does not have a channel-like feature of the 

N7H11 IDD distribution even though the density shared between N7 and N8 shows a large maximum 
exactly at the geometric middle point between the two atoms. In general, this correlates very well with 
density topology recovered from QTAIM and the concept of QTAIM-defined bond paths as privileged 
exchange channels proposed by Pendás et al.40   Importantly, it appears that defined here IDD 
distributions might provide a powerful tool to investigate the underlying delocalization patterns 
corresponding to a presence/absence of a BP in real-space. One must recall that an attempt of using the 
value of the delocalization indices came short in some instances in supporting (or explaining) a 
presence/absence of BP.61  It is our intention to explore this area in future studies. 
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5. Conclusions

The simplicity and extreme usefulness of the general deformation density in revealing how charge is 
accumulated or depleted upon the formation of an intermolecular interaction is unfortunately marred 
by the inability of orthodox deformation densities to describe intramolecular interactions.  The main 
limitation of any EDA scheme for the study of intramolecular interactions, namely a necessity of 
breaking existing bonds to generate arbitrarily selected fragments, has been addressed in this work by 
implementing Fragment, Atomic, Localized, Delocalized and Interatomic contributions that are 
computed within the novel FALDI charge decomposition scheme.  The FALDI scheme is a result of a 
paradigm shift from analyzing molecular deformation density obtained from reconstructing a molecule 
from unphysical radical state fragments to computing decomposed density distributions in two 
conformational states (final and reference) of a molecule which are then used to generate atomic, 

fragment as well as total deformation densities resulting from the structural reffin transformation.  To 
achieve that we have made use of few concepts originating from the Domain Averaged Fermi Hole 
(DAFH)48,49 method and to account for different space occupied by the same atoms in the fin and ref 
states, a dedicated transformation scheme of atomic coordinates was implemented.  

As such, the derived expressions for the atomic, fragment and total deformation densities can be used 
for any state of a molecule (giving static density distributions) without a need of its ‘artificial’ 
partitioning as well as they can be used on EDA-generated fragments.  Importantly, in the latter case, 
which we call FALDI-on-promolecules approach, EDA-generated deformation densities are fully 
recovered providing validation of the protocol developed in this work.  In principle, applying our 
approach on the same intramolecular interaction revealed a picture with similar features as found from 
the orthodox EDA approach.  However, because FALDI eliminates the interference of the reconstructing 
of a nearby covalent bond, the conformational deformation density isosurfaces displayed a number of 
details involving the H-bond which were either missing or masked when promolecular approaches are 
used. 

As a case study, we used linear (as a ref state) and the lowest energy conformer (as a fin state) of 
protonated ethylenediamine, Hen+.  The mechanism and origin of spontaneously formed intramolecular 

interaction in fin, N–HN, was uncovered using deformation densities on atomic and molecular 
fragment levels.  We have shown, for the first time in real space, how four atoms contribute to the 
resultant molecular deformation density on the interaction formation. Interestingly, these atoms’ 
contributions can be used as a textbook example in support of the IUPAC recommendation, namely X–

HY–Z (N–HN–C in the case studied here), in representing intramolecular H-bonding.  We also 
uncovered the influence of the Z atom (here C1) on the density distribution in the bonding region of 

HN, a result which can only be obtained by visualizing delocalized density in real space.  Furthermore, 

we also found unique features which explain the commonly used N–HN notation; the atomic 

deformation densities of these atoms are mainly delocalized in the entire N8–H11N7 region and, 
importantly, the two N atoms are the only ones which, not being neighbors, donated density through 

space to each other.  A 3D picture of the deformation density computed for the N8–H11N7 fragment 
nicely explains why a BP is only observed between the H-atom and the proton acceptor N-atom even 
though both N-atoms delocalize their densities to each other.  Whereas there is a continued increase in 

density in the bonding region of H11N7, which is recovered by the presence of a BP between them, 
the interatomic region between N-atoms not only does not show such a channel of increased density 
but also a resultant (final) depletion in density is observed close to N8-atom along the trajectory 
between N8 and N7.  
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The added advantage of the FALDI scheme is in its ability of obtaining the total deformation from 
either atomic or/and fragment contributions.  Such approach provides an invaluable insight on the origin 
and mechanism leading to or associated with the deformation density computed for an intramolecular 
interaction.  This is of a fundamental significance as it should allow gaining an insight on the role played 
by a molecular environment (presence/absence of specific functionalities) in terms of density 
deformation leading to an intramolecular interaction.  It is our conviction that FALDI might explain, on a 
fundamental level, the nature and origin of so many kinds of interactions.  As a matter of fact, this is not 
limited to intramolecular ones as expressions derived can be equally used to understand all kinds of 
chemical bonds either in a final product or upon the formation of these bonds, hence providing an 
insight on a mechanism leading to density sharing.  Furthermore, interatomic deformation densities 
(specifically defined within the FALDI scheme) should shed some light on the presence/absence of 
Bader’s atomic interaction lines (or bond paths) that, in some instances, became a subject of heated 
debates when interpreted in terms of bonding or nonbonding character from a classical  chemist’s 
perspective.  To this effect, the real-space nature of FALDI’s delocalized density isosurfaces computed 

for the N–HN region corroborated fully with the interpretation of AILs as privileged exchange 
channels40 and can provide significant support to this unorthodox interpretation; we are convinced that 
FALDI provides a promising method with which one should be able to elucidate the fundamentals 
behind the presence/absence of AILs and their interpretations in terms of chemical bonding.  Plotting 
interatomic delocalized density in real space also opens up additional avenues for studying concepts 
such as aromaticity, resonance and long-range atomic communication.  Finally, we must stress that the 
FALDI decomposition also provides a strong density-based investigative tool for both deformation as 
well as static electron densities, which we hope will find use with both experimentalists as well as 
theoreticians. 
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GRAPHICAL ABSTRACT 

JURGENS DE LANGE, IGNACY CUKROWSKI 

TOWARDS DEFORMATION DENSITIES FOR INTRAMOLECULAR INTERACTIONS WITHOUT UNPHYSICAL 
REFERENCE STATES USING FALDI-DD 

A novel methodology for calculating deformation densities for intramolecular interactions without the 
need for unphysical (radical) fragments.  A density decomposition scheme is introduced (FALDI) which is 
used to calculate and transform the density contributions of atoms, fragments and interatomic 
interactions of a molecule undergoing conformational change.  The FALDI scheme also provides 
visualization of atomic and interatomic density in real-space, and is a useful analysis tool applicable on 
static electron densities, conformational and fragment-based deformation densities. 
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