Testing the reliability of the standard and complementary DNA barcodes for the monocot subfamily Alooideae from South Africa

Barnabas H. Daru^{1,2,*}, Michelle van der Bank³, Abubakar Bello⁴, and Kowiyou Yessoufou⁵

1 Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA

2 Department of Plant Science, University of Pretoria, Private Bag X20, 0028 Hatfield, Pretoria, South Africa

3 African Centre for DNA Barcoding, University of Johannesburg, APK Campus, PO Box 524, Auckland Park 2006, Johannesburg, South Africa

4 Bolus Herbarium, Biological Sciences Department, University of Cape Town, Private Bag X3, Rondebosch 7700, South Africa

5 Department of Environmental Sciences, University of South Africa, Florida Campus, Florida 1710, South Africa *Corresponding author Corresponding author's e-mail address: barnabas_daru@fas.harvard.edu Corresponding author's mailing address: Department of Organismic and Evolutionary Biology and Harvard University Herbaria, Harvard University, Cambridge, MA 02138, USA

ABSTRACT

Although a standard DNA barcode has been identified for plants, it does not always provide species-level specimen identifications for investigating important ecological questions. In this study, we assessed the species-level discriminatory power of the standard (*rbcLa* + *matK*) and complementary barcodes ITS1 and *trnH-psbA* within the subfamily Alooideae (Asphodelaceae), a large, recent plant radiation whose species are important in horticulture yet are threatened. Alooideae has its centre of endemism in southern Africa with some outlier species occurring elsewhere in Africa and Madagascar. We sampled 360 specimens representing 235 species within all 11 genera of the subfamily. Applying three distance-based methods, all markers perform poorly for our combined dataset with the highest proportion of correct species-level specimen identifications of 30% found for ITS1. However, assessing the performance across genera, the discriminatory power varies from 0% for all single markers and combinations in Gasteria to 63% in Haworthiopsis, again for ITS1, suggesting that DNA barcoding success may be related to the evolutionary history of the lineage considered. Although ITS1 could be a good barcode for Haworthiopsis, the generally poor performance of all markers suggests that the Alooideae remains a challenge. As species boundaries within Alooideae remains controversial, we therefore call for continued search of suitable markers, or the usage of genomics approaches, that can enable species discrimination in the group.

KEYWORDS: Asphodelaceae, barcoding gap, barcode candidates, DNA barcoding, specimen identification.

INTRODUCTION

The alooids subfamily Alooideae (Asphodelaceae) is a group of rosulate succulents comprising 11 genera (Table 1). Early taxonomic studies of Alooideae are based on morphological characters (e.g. floral traits, size, shape, arrangement, and combination of leaves and markings; Smith and van Wyk 1991). Taxonomic classification and the study of species boundaries have a long and illustrious history, including taxon-based works by Linnaeus (1753), Duval (1809), Salm-Dyck (1836-1863), Uitewaal (1947), and karyotype-based studies by Taylor (1925), among others, as well as a number of more recent studies, such as those by Smith and van Wyk (1991) and Klopper et al. (2010). These studies have led to taxonomic changes on several occasions; even recent studies that combine morphology and DNA-based phylogeny to reassess taxa delimitation within the subfamily (Daru 2012; Daru et al. 2013; Manning et al. 2014a) still found some pitfalls that led to taxonomic change (Manning et al. 2014a). However, there is an increasing interest in the use of phylogenetic data to disentangle the evolutionary relationships within the subfamily in addition to, or in support of, the morphology-based observed patterns (Treutlein et al. 2003a, b; Ramdhani et al. 2011). Although these studies provide useful insights into our understanding of the taxonomy of the subfamily, they are often based on sparse taxonomic sampling, and the phylogeny reconstructed is still unresolved. This lack of resolution is problematic if we are to discriminate between the over 500 species described in the subfamily, but we note that a fully resolved phylogeny is not necessarily needed for accurate specimen identification to species level.

In an attempt to provide a better understanding with regard to evolutionary relationships within the group, a more recent study (Daru et al. 2013) combined molecular and morphological data to raise some important pitfalls in the current

Table 1. Summary of global richness of species within Alooideae genera versus total number of species sampled in this study (indicated in parenthesis).

Genus	Number of currently known species in the genus	Number of species and number of samples	Percentage of sampling completeness	References
Aloe L.	ca. 400	150 (214)	38%	Reynolds (1966), Viljoen (1999), Glen and Hardy (2000), Klopper and Smith (2007)
<i>Aloiampelos</i> Klopper & Gideon F.Sm.	7	5 (7)	71%	Grace et al. (2013)
Aloidendron (A.Berger) Klopper & Gideon F.Sm.	7	5 (12)	71%	Grace et al. (2013)
<i>Aristaloe</i> Boatwr. & J.C. Manning	1	1 (3)	100%	Manning et al. (2014a)
Astroloba Uitewaal	6	6 (9)	100%	Roberts Reinecke (1965), Groen (1987)
<i>Gasteria</i> Duval	23	18 (20)	78%	Duval (1809); Van Jaarsveld (2007)
<i>Gonialoe</i> (Baker) Boatwr. & J.C. Manning	3	1 (2)	33%	Manning et al. (2014a)
Haworthia Duval	42	32 (52)	76%	Bayer (1999)
<i>Haworthiopsis</i> G.D. Rowley	18	12 (30)	67%	Rowley (2013)
<i>Kumara</i> Medik.	2	1 (3)	50%	Glen and Hardy (2000)
<i>Tulista</i> Raf.	4	4 (8)	100%	Rowley (2013)

classification (e.g. homoplasious characters, morphological traits not consistent enough to distinguish species within the genera, etc.), prompting the need for a new treatment of the subfamily (e.g. re-circumscribing the Alooideae genera into monophyletic entities; see Grace et al. 2013; Manning et al. 2014a). Given these pitfalls and this new treatment, identifying species within Alooideae becomes even more problematic.

The subfamily Alooideae is widely distributed in Africa with its main centre of diversity found in southern Africa and outliers in the Arabian Peninsula, Madagascar, and other islands in the western Indian Ocean (Reynolds 1966; Viljoen 1999; Glen and Hardy 2000; Klopper and Smith 2007). However, the horticultural appeal of the members of the subfamily has motivated illegal collections in the wild, which has been a major threat to the plants (Smith et al. 2000; Raimondo et al. 2009). There is therefore a need for conservation actions which require an accurate assessment of species diversity in the group, taking into account genetic-based species delineation in addition to morphological data (Eaton et al. 2010; Lowe and Cross 2011).

There is an impressive body of literature devoted to morphology-based species delimitation within the Alooideae subfamily (Reynolds 1966; Smith and van Wyk 1991; Viljoen 1999; Glen and Hardy 2000; Klopper and Smith 2007) and a comparatively poorer attention to genetic diversity. While DNA barcoding was originally developed as an identification system for specimen identification based solely on DNA sequences (Hebert et al. 2003), it is increasingly acknowledged as a key tool to complement morphology-based specimen identification (Edwards et al. 2008; Sun et al. 2012; Gere et al. 2013). The performance of DNA barcoding has, however, been mixed for various plant taxa: while some limitations have been documented in some groups e.g. *Viburnum* (Adoxaceae; Clement and Donoghue

2012), *Agalinis* (Orobanchaceae; Pettengill and Neel 2010), *Tetrastigma* (Vitaceae; Fu et al. 2011), Lemnaceae (Wang et al. 2010), *Berberis* (Berberidaceae; Roy et al. 2010), and *Parnassia* (Parnassiaceae; Yang et al. 2012), strong and reliable performance of DNA barcodes has also been reported in many other studies of specimen identification (Burgess et al. 2011; Gere et al. 2013; Mankga et al. 2013). This mixed report discounts the generalization power of DNA barcoding across all taxonomic groups but reinforces the need for a case-by-case study (e.g. Clement and Donoghue 2012; Gere et al. 2013; Daru and Yessoufou 2016).

The use of a phylogenetic approach in ecology is now a common practice; this requires a fully resolved phylogeny (Davies et al. 2012) that barcode-based phylogenies do not always provide. Questions related to extinction risk, the origin of diversification of a taxonomic group, the role of historical climate in triggering and controlling the temporal dynamics of speciation, and phylogenetically informed conservation decisions, etc. are key ecological questions that can be better understood only with a species-level resolved phylogeny. Phylogenetic ethnobotany is also gaining momentum (e.g. Salis-Lagoudakis et al. 2012; Yessoufou et al. 2015) and requires fully resolved phylogenies to test whether closely related species share similar bioactive compounds or bioactivity against a specific ailment. As the phylogeny recovered for the subfamily Alooideae using the standard barcode does not provide well resolved phylogenetic relationships among species (see Daru 2012), there is a need for a continued commitment to searching for DNA markers that can provide such resolved phylogenies to allow future detailed studies of the phylogenetic ecology of Alooideae. In addition to exploring species-level identification, our study also partially addresses this important issue of phylogenetics by examining species-level resolution, i.e. the tips of the phylogeny.

The combination of *matK* and *rbcLa* has been proposed as the core barcodes for land plants (CBOL 2009) that can be supplemented by *trnH-psbA* and ITS (Hollingsworth et al. 2011; Liu et al. 2011; Gere et al. 2013). The performance of the core barcodes has been shown to yield high levels of specimen identification to species and sequence recoverability (Burgess et al. 2011; Mankga et al. 2013). However, the taxonomic sampling in some studies is sparse. If few species are included per genus, the performance of DNA barcoding in specimen identification can be inflated. We only consider ITS1 here because of its higher performance than ITS2 in disentangling phylogenetic relationships in Alooideae (Treutlein et al. 2003a, b; Ramdhani et al. 2011) or in Eukaryotes in general (Wang et al. 2015). Additionally, a preliminary PCR amplification of Alooideae using available ITS2 primers proved unsuccessful (Daru et al. 2013).

Most available molecular studies of Alooideae examined chloroplast markers (usually not more than six, including *rbcLa, matK, trnH-psbA, trnL-F, rps16*) and sometimes nuclear regions (ITS). Since Chase et al. (2000) provided one of the first molecular phylogenetic evaluations of the subfamily Alooideae based on *rbcL* and demonstrated that Alooideae is monophyletic, other molecular studies focused on different lineages within Alooideae using different markers. For instance, Treutlein et al. (2003b) used chloroplast sequencing and genomic fingerprinting of Alooideae to demonstrate that genera and species of Alooideae are polyphyletic. A noteworthy contribution was made by Ramdhani et al. (2011) who also confirmed the polyphyly of *Haworthia* using *trnL-trnF, trnH-psbA*, and ITS1. Recent phylogenetic studies of Alooideae used more comprehensive taxon sampling to reveal rather the paraphyly of *Aloe* and *Haworthia*, which have led to taxonomic revisions of the subfamily (Daru et al. 2013; Grace et al. 2013; Manning et al. 2014a). Although these later studies

form the baseline upon which our study rests, they do not explicitly assess the species-level discriminatory power of either the standard DNA barcode or that of the additional markers they used.

In this study, we used the most comprehensive molecular data yet available for the subfamily Alooideae, with about 50% sampling completeness of species within the subfamily (Table 1), to test the DNA barcode potential of four DNA markers (*trnH-psbA, matK, rbcLa*, and ITS1) abundantly used in phylogenetic studies of the subfamily Alooideae (e.g. Daru et al. 2013).

MATERIAL AND METHODS

Data and taxonomic sampling

We used all available DNA sequences for Alooideae for four molecular markers: *trnH-psbA, matK, rbcLa*, and ITS1, sequences that our group previously generated comprehensively for the subfamily Alooideae (see Daru 2012; Daru et al. 2013; Manning et al. 2014a). Additional sequences for ITS1 for 85 taxa were obtained from Grace et al. (2015) (see Table S1). These previous studies (Daru 2012; Daru et al. 2013; Manning et al. 2014a; Grace et al. 2015) follow commonly used taxonomic concepts in Alooideae (Roberts Reinecke 1965; Reynolds 1966; Groen 1987; Bayer 1999; Glen and Hardy 2000; Van Jaarsveld 2007). All other sequences were derived from our group previously (Daru 2012; Daru et al. 2013; Manning et al. 2014a). DNA sequences were aligned using default settings in SEAVIEW v.4 (Gouy et al. 2010) setting the alignment options to 'clustalo' for the combined dataset, and also separately for each genus and gene region. For data analysis purpose, gaps were considered as missing data. The alignments were manually checked and adjusted in MESQUITE v.2.5 (Maddison and Maddison 2008) in cases of misalignment, and for

ITS1 in particular, alignments were done for each genus separately. The final sequences used for the analysis is a combination of data derived from our group previously (Daru 2012; Daru et al. 2013; Manning et al. 2014a) and Grace et al. (2015), and included 235 species (n = 360 samples) belonging to all 11 currently known Alooideae genera, with more than 50% sampling completeness for the subfamily (Table 1). The sampling covers the geographical ranges of the subfamily, mainly in southern Africa but also from Madagascar (e.g. *Aloe haworthioides*) and Somalia (e.g. *Aloidendron eminens*).

All GenBank/EBI accession numbers and aligned DNA matrices are provided in supplementary information as Table S2 and Data S1 respectively. Additionally, complete data including GPS coordinates, pictures, and DNA barcodes are available on the Barcode of Life Data Systems (BOLD; <u>http://www.boldsystems.org</u>; Ratnasingham and Hebert 2007) within the publicly available project 'Alooideae of Africa' (ALOAF).

DNA barcoding analysis

We evaluated four single DNA markers including three chloroplast regions (*rbcLa, matK*, and *trnH-psbA*) and one nuclear marker (ITS1). We also tested the four genes in different combinations: (1) *rbcLa* + *matK* (i.e. the core barcodes, CBOL Plant Working Group 2009); (2) *rbcLa* + *matK* + *trnH-psbA*; (3) *rbcLa* + *matK* + ITS1; and (4) *rbcLa* + *matK* + *trnH-psbA* + ITS1. First, we subdivided the combined aligned matrix into subsets of matrices of each gene as input files for further analysis. Secondly, we used two criteria commonly used in DNA barcoding analyses, i.e. barcode gap of Meyer and Paulay (2005) and discriminatory power, to assess the performance of each and combined markers. The presence of a barcode gap for each species was defined as the discontinuity between levels of minimum

interspecific pairwise Kimura's 2-parameters (K2P) distances calculated by setting the analysis parameters to remove missing data as implemented in the R package ape (Paradis et al. 2004) and maximum intraspecific divergence by plotting a lineplot for the four gene regions and combinations. We also calculated the distribution of range, mean, and standard deviation of both intra- and interspecific distances. The nearest neighbour distance method was used for the calculation of interspecific distances.

All DNA sequences were labelled with the names of the species from which the sequences were generated. Then each query is considered as an unknown, but all other sequences in the dataset (i.e. the 360 specimens in this study) are considered as the reference DNA barcode database. If the ID of the query corresponds to the sequence label in the reference, the identification test is scored as "correct", and the overall proportion of correct identification corresponds to the discriminatory power of the DNA marker tested. Three approaches were used for the test: the "best close match" (Meier et al. 2006), the "near neighbour", and the BOLD criteria using, respectively, the functions *bestCloseMatch, threshID*, and *nearNeighbour* implemented in the program Spider 1.1-1 (Brown et al. 2012). Prior to the tests, we determined, for each dataset (marker including combinations and all genera), the optimised genetic distance suitable as threshold for specimen identification. For this purpose, we used the function *localMinima* also implemented in Spider (Brown et al. 2012).

The function *bestCloseMatch* conducts the "best close match" analysis of Meier et al. (2006), searching for the closest individual in the reference dataset. If the closest specimen is within the threshold, the identification is "correct". If it is greater than the threshold, the outcome is scored as "no id" (no identification). However,

when more than one species are tied for closest match, the identification result is scored as "ambiguous". When all matches within the threshold are different species to the query, the result is scored as "incorrect".

The function *threshID* conducts a threshold-based analysis using the threshold distance of 1%. It is more inclusive than *bestCloseMatch* in that it considers all sequences within the threshold of 1%. Four outcomes are also possible: "correct", "incorrect", "ambiguous", and "no id".

The *nearNeighbour* function finds the closest specimens and returns the score "true", i.e. correct ID if their names are the same; however, when the names are different, the outcome is scored as "false", i.e. incorrect ID.

Two additional analyses were conducted. We assessed the PCR success rate and sequence quality. The success rate for each marker was evaluated qualitatively based on the proportion of PCR products with strong PCR bands as scored by BHD, scaled arbitrarily as: < 50% = poor PCR success; 50–70% = moderate; and 71– 100% = high PCR success. As PCR bands are not good indicators of successful sequencing, we then evaluated the quality of the final sequences of all extracted specimens quantitatively as the percentage quality of all sequence trace files for each marker that our group generated previously (Daru 2012; Daru et al. 2013; Manning et al. 2014a) using Sequencher v.3.1 (Gene Codes, Ann Arbor, Michigan, USA). The sequence trace file quality generates confidence scores as an integral part of the chromatogram file that is obtainable directly for each specimen upon sequencing as Phred files and can be viewed in Sequencher v.3.1 (Gene Codes, Ann Arbor, Michigan, USA) or similar programs such as Applied Biosystems's KB base caller. The program generates a quality score for each sequence, defined as the percentage of bases meeting or surpassing a Phred score of 20. We use the

quality percentages as our measure of sequence quality. For instance, a quality score of 60% indicates that 40% of its bases are low quality and vice versa (Gene Codes Corporation 2016). Percentage of sequence quality was calculated for each sequence trace files for each sample and for each marker.

Lastly, given the possibility that the performance of markers could vary among taxa (Gere et al. 2013), we further assessed the performance of the best barcode within five genera having the largest sample sizes: *Aloe, Astroloba, Gasteria, Haworthia*, and *Haworthiopsis*; the other Alooideae genera were not evaluated here due to lack of sufficient DNA sequences.

Altogether, we identified the best barcode for the subfamily as the region or the combined regions that exhibit simultaneously a barcode gap and the highest score of correct identification at the species level. These results were summarized for each genus separately.

RESULTS

Genetic variation within each DNA marker

We assessed and compared genetic variation between single loci using multiple approaches. We found that ITS1 has the highest interspecific variation between nearest neighbouring species (0.065±0.035, n = 248), with the remaining markers possessing variability in the following order: ITS1>*trnH-psbA*>*matK*>*rbcLa* (Table 2). The same holds for mean of the intraspecific distances for which we found similar order, i.e. ITS1>*trnH-psbA*>*matK*>*rbcLa*. For combinations of DNA markers, *rbcLa+matK*+ITS1 yielded the highest mean interspecific genetic distances for Alooideae identification (0.048±0.045, n = 248).

All DNA regions or combinations showed a low barcoding gap, i.e. the discontinuity between intra- and inter-specific genetic divergences (Fig. 1), with the

Fig. 1.Line plots of DNA barcode gap for four gene regions and combinations for Alooideae specimen identification. For each marker and combination, closed circles above the 1:1 line indicate the presence of a barcode gap, whereas open circles below the line indicate no barcode gap. Species included in the barcode gap analysis are represented by at least two sequences.

Table 2. Summary statistics indicating the range and means of intra- and interspecific distances for the gene regions and combinations tested for Alooideae species, based on Kimura's 2-parameters (K2P) model of DNA evolution. The genetic distances are means of average pairwise divergence distances. The interspecific distances are averages of the nearest neighbour distances. SD = standard deviation, seq = sequence, inter = interspecific, intra = intraspecific, threshold = the distance cutoff for specimen identifications by conducting a threshold-based analysis, similar to the "Identify Specimen" tool on the Barcode of Life Data Systems (www.boldsystems.org).

DNA barcoding regions	Average sequence length (range) bp	Alignme nt length	Range (inter)	Mean inter±SD	Range (intra)	Mean intra ±SD	Threshold (%)
matK	762 (251-786)	786	0-0.110	0.0170±0.0086	0-0.034	0.00290±0.0046	0.058
rbcLa	545 (272-552)	552	0-0.062	0.0055±0.0044	0-0.015	0.00091±0.0020	0.075
trnH-psbA	498 (356-504)	514	0-0.083	0.0270±0.0160	0-0.050	0.00710±0.0110	0.610
ITS1	314 (227-362)	393	0-0.310	0.0650±0.0350	0-0.055	0.00850±0.0100	9.860
rbcLa + matK	1306 (535-1338)	1341	0-1.380	0.0230±0.0480	0-0.310	0.00890±0.0370	0.360
rbcLa+matK+trnH- psbA	1817 (1037- 1837)	1857	0-0.240	0.0220±0.0230	0-0.020	0.00620±0.0050	1.710
rbcLa+matK+ITS1	1623 (738-1697)	1711	0-0.930	0.0480±0.0450	0-0.200	0.01000±0.0220	2.490
<i>rbcLa+matK+trnH- psbA+</i> ITS1	2132 (1670- 2195)	2210	0-0.150	0.0340±0.0180	0-0.035	0.00890±0.0080	1.520

percentages of species with gaps ranging from 5% in *rbcLa* to 40% in ITS1 (Table 3).

We calculated the optimized genetic distance (threshold distance) with which to evaluate the discriminatory power of different gene regions and combinations. Apart from ITS1, for which we found a threshold of 9.86%, all other single regions have an optimized threshold of <1% (Table 2). The pattern increased slightly above 1% for all combinations except for the combination *rbcLa+matK*+ITS1, with a threshold of 2.49%. Using these cut-offs, we evaluated the discriminatory power of the different gene regions. For single regions based on the best close match method, again ITS1 provides the highest rate (20%, n = 248) of discrimination followed by *matK* and *trnH-psbA* (both 11%, n = 360 and 202 respectively), with *rbcLa* assigning only 5% (n = 360) of the individuals to the correct species (Table 3). The same order of performance was observed for the near neighbour method but with greater identification success for ITS1 (30%, n = 248), *matK* (28%, n = 360), *rbcLa* (20%, n = 360), and *trnH-psbA* (19%, n = 202).

For the combined regions under both best close match and near neighbour methods, inclusion of either ITS1 or *trnH-psbA* to the core barcodes (*rbcLa+matK*) did not improve identification success rate (best close match: ITS1+*matK*+*rbcLa* = 20% and *trnH-psbA*+*matK*+*rbcLa* = 17%; near neighbour: ITS1+*matK*+*rbcLa* = 25% and *trnH-psbA*+*matK*+*rbcLa* = 22%; Table 3).

Within single genera, we found that the combination of ITS1 with the core barcodes (*matK+rbcLa*) i.e. ITS1+*matK+rbcLa*, improved specimen identification in *Aloe* from 7% (ITS1 alone) to 14% (for ITS1+*matK+rbcLa*) and from 20% to 24% in *Haworthia* (ITS1 alone vs *matK+rbcLa*+ITS1, respectively; Table 4). For *Astroloba*, there was no improvement in species discrimination (both 25% for ITS1 alone and

Table 3. Efficacy of candidate DNA barcodes in identification of Alooideae based on discriminatory potential using distance methods: Near neighbour, BOLD ID, and Best Close Match. 'True' indicates instances when the near neighbour method finds the closest individual in the dataset and their names are the same or 'False' if different. 'Correct', 'Incorrect', 'Ambiguous', and 'No id' are used in the best close match method, when the name of the closest match is the same, different, more than one species is the closest match, or no species are within the threshold distance, respectively.

DNA Number of		Proportion Near neighbour		BOLD ID			Best Close Match					
regions (no. of samples)	with barcode gap (%)	TRUE (%)	FALS E (%)	Ambiguou s (%)	Correct (%)	Incorre ct (%)	No ID (%)	Ambigu ous (%)	Corre ct (%)	Incorr ect (%)	No ID (%)	
matK	189 (360)	9	28	72	72	1	27	0	46	11	42	1
rbcLa	189 (360)	5	20	80	79	0	21	0	66	5	29	0
trnH-psbA	130 (202)	25	19	81	42	3	50	5	26	11	58	5
ITS1	158 (248)	40	30	70	38	9	43	10	15	20	55	10
rbcLa + matK	189 (360)	16	29	71	71	0	27	2	31	18	49	2
rbcLa+mat K+trnH- psbA	130 (202)	50	22	78	46	3	47	4	11	17	67	5

<i>rbcLa+mat</i> <i>K</i> +ITS1	158 (248)	51	25	75	36	4	51	9	5	20	66	9
rbcLa+mat K+trnH- psbA+ITS1	122 (183)	62	26	74	29	7	50	14	0	23	63	14

Table 4. Comparisons of efficacy of core barcodes and best barcode within Alooideae genera using the best close match method. 'Correct', 'Incorrect', 'Ambiguous', and 'No id' means that the name of the closest match is the same, different, more than one species is the closest match, or no species are within the threshold distance, respectively. The mean interspecific distance refers to K2P divergences between congenerics.

Genus (n	DNA regions (n	(n Mean inter (±SD) Threshold (%) B		BEST CLOS	BEST CLOSE MATCH				
species)	samples)			Ambiguous (%)	Correct (%)	Incorrect (%)	No ID (%)		
Aloe (72)	ITS1 (98)	0.032±0.026	3.073	15	7	77	1		
	rbcLa+matK (98)	0.027±0.065	1.95	10	11	79	0		
	<i>rbcLa+matK</i> +ITS1 (98)	0.032±0.058	3.95	3	14	82	1		
Astroloba (6)	ITS1 (8)	0.038±0.021	2.92	0	25	63	12		
	rbcLa+matK (8)	0.044±0.079	10.31	0	25	63	12		
	<i>rbcLa+matK</i> +ITS1 (8)	0.038±0.06	8.16	0	25	63	12		
Gasteria (19)	ITS1 (22)	0.0035±0.0037	0.17	27	0	50	23		
	rbcLa+matK (22)	0.0035±0.0025	0.50	0	0	95	5		
	<i>rbcLa+matK</i> +ITS1 (22)	0.0029±0.0017	0.85	0	0	100	0		

Haworthia (37)	ITS1 (70)	0.046±0.032	1.89	24	20	51	5
	rbcLa+matK (70)	0.0068±0.0049	1.76	31	9	60	0
	<i>rbcLa+matK</i> +ITS1 (70)	0.009±0.0055	0.47	16	24	56	4
Haworthiopsis	ITS1 (32)	0.041±0.02	6.78	0	63	37	0
(12)	rbcLa+matK (32)	0.006±0.0025	0.34	22	34	38	6
	<i>rbcLa+matK</i> +ITS1 (32)	0.014±0.0057	1.15	0	50	44	6

Fig. 2.Percentages for PCR efficiency (based on the quality of PCR bands) and trace file sequence quality for the candidate DNA barc odes (*rbcLa*, *matK*, *trnH*-*psbA*, and ITS1) in identifying species of Alooideae.

matK+*rbcLa*+ITS1), whereas we found a reduction in species discrimination in *Haworthiopsis* from 63% to 50% when ITS1 is combined with the core barcodes (ITS1 alone vs *matK*+*rbcLa*+ITS1, respectively).

Amplification success and quality of sequence trace files

The amplification success varied from poor to high rates (Fig. 2). Poor PCR success rate was found with ITS1 (30.6%); the rate was moderate with *trnH-psbA* (52.8%) and *matK* (64.8%). The highest success rate was observed with *rbcLa* (83.1%). The proposed primers recommended by the CBOL Plant Working Group (2009) for *rbcLa* and *matK* (rbcL-barcode-F: rbcL-barcode-R and 3F_KIM: 1R_KIM, respectively) as well as the other two tested in this study (*trnH-psbA* and ITS1) were successful such that no internal priming was required for any of the DNA regions. The quality of sequence trace files followed similar trend (*rbcLa>matK>trnH-psbA*>ITS1); 90.25±13.21% of specimens yielded a readable trace file for *rbcLa*, 84.57±12.94% for *matK* followed by *trnH-psbA* (75.65±18.79%) for all species, with often little or no editing. ITS1 recorded the lowest percentage of sequence quality of 59.71±20.10% and often with considerable editing of the chromatograms.

DISCUSSION

Several criteria have been defined for the identification of the best DNA barcode candidate (Hebert et al. 2004; Kress and Erickson 2007; Lahaye et al. 2008; CBOL Plant Working Group 2009). Firstly, it must provide maximal discrimination among species. We measured the discriminatory power of four candidates using 'barcode-gap' (Meyer and Paulay 2005) and distance-based methods (Kress et al. 2005; Lahaye et al. 2008; Hollingsworth et al. 2009). Although the core barcodes (*matK* and *rbcLa*) may not exhibit a barcode gap for several genera (e.g. *Parnassia*,

Yang et al. 2012), we also found that all our markers (including the core barcodes) exhibit low prevalence of a gap for Alooideae. Misidentifications and phylogenetic reticulation are commonplace in rapidly evolving lineages such as the Alooideae (Viljoen 1999) e.g. *Haworthia* (Bayer 1999), *Astroloba* (Treutlein et al. 2003a), and Aloineae (Riley and Majumdar 1979), which may have led to the low discrimination rates of the DNA barcodes in this study. Such cases of reticulation have led to the adoption of other PCR-based methods such as ISSR fingerprinting for detecting hybrids (Wink et al. 2001; Treutlein et al. 2003b). Nonetheless, ITS1 shows relatively high interspecific variation, irrespective of the metric used. These findings indicate that ITS1, regardless of the generally low specimen identification rate of the markers tested in this study, could be a more favourable barcode for the subfamily.

Secondly, a good DNA barcode should be easily amplified with universal primers (CBOL Plant Working Group 2009). In our study the plastid genes *matK*, *rbcLa*, and *trnH-psbA* were easily amplified by universal primers. Although ITS1 was comparatively more difficult to amplify, leading to the poorest PCR success and sequence quality we found, it is consistently retrieved as the best-performing locus in the genetic variation analysis. The low sequence quality recorded in ITS1 could be an artefact of errors in homopolymeric regions where sequences of identical bases occur in tandem (Bizzaro and Marx 2003). This could be overcome through the use of anchored primers (Thomas et al. 1993) or primers that anneal at a different position. It could also be due to multiple variants within single individuals as is the case in Alooideae, with high rates of hybridization (Ramdhani et al. 2011). Previous molecular taxonomic studies in different Alooideae lineages (e.g. Treutlein et al. 2003a, b; Ramdhani et al. 2011; Daru et al. 2013; Manning et al. 2014a) have consistently favourably appraised the utility of ITS1 in species discrimination and

disentangling phylogenetic relationships, as in many angiosperm families (Baldwin et al. 1995). This relatively high resolution of ITS1, compared to other markers, is an indication of better species discrimination, confirming ITS1 as a better barcode for the subfamily. Given the high interspecific variation of ITS1, we argue that, if universal primers that could boost its amplification success could be designed, this marker could be a suitable barcode for Alooideae.

In general, the ITS region as potential barcode has been controversial (see Kress et al. 2005), but recent studies have raised some potential pitfalls against its suitability (e.g. incomplete lineage sorting, inhomogeneous concerted evolution, divergent paralogous copies within individuals, and pseudogenes; Alvarez and Wendel 2003; Chase et al. 2007; Starr et al. 2009; Hollingsworth et al. 2011). However, a more recent test of ITS on a large dataset revealed that these drawbacks are not sufficiently severe to preclude consideration of this marker (China Plant BOL Group 2011), giving further support to our advocacy of ITS1 for the monocot subfamily considered in this study (see also Liu et al. 2011 for the genus *Taxus* and Yang et al. 2012 for the genus *Parnassia*).

Looking at other potential barcodes, we found that *rbcLa* has shown the lowest intra- and interspecific distances (see also Lahaye et al. 2008; Clerc-Blain et al. 2010; Zuo et al. 2011). Although it has not only high universality and sequence quality (see also CBOL Plant Working Group 2009), *rbcLa* is also well known for its high discrimination power at higher taxonomic levels, i.e. generic and familial levels (Kress and Erickson 2007). However, in this study like in previous (e.g. Lahaye et al. 2008), it has relatively low discriminating power between species and could not therefore be suggested as potential barcode for the subfamily at the species level.

The discriminatory power of the DNA regions for species-level resolution yielded mixed results among genera, with fair performance in *Haworthiopsis* and poor performance in *Aloe* and *Haworthia*. The poor performance is not surprising due to the generally low genetic variation often found in Alooideae lineages (Ramdhani et al. 2011; Daru et al. 2013; Grace et al. 2015). In addition, our study indicates that species discrimination within a large taxonomic group with closely related taxa should be tested within genera, with dense sampling of species (see also Gere et al. 2013). With the growing availability of next-generation sequencing, a more extensive approach, e.g. multi-marker analysis methods, chloroplast sequencing or using more parts of the nuclear genome, could be required to yield additional discriminating regions.

Going forward, we suggest a three-prong approach to reduce the high rate of incorrect specimen identifications in Alooideae. First, including more replicates per species would allow comparison of intra- and interspecific genetic divergence. However, this option would not likely change our findings significantly as our sampling included some replication within species (see Table 1), yet we found poor discriminatory power as in previous studies (e.g. Clement and Donoghue 2012; Yang et al. 2012). Second, more multi-gene methods in search of variable markers should be developed. However, this option may be counter-intuitive given the purpose of DNA barcoding is to ease specimen identification and to achieve universality in specimen discrimination. Third, DNA barcoding could also be tested using a tree-based method in a phylogenetic context (see Mankga et al. 2013). This is being tested in some plant groups with good results e.g. Combretaceae (Gere et al. 2013) and medicinal plants (Mankga et al. 2013).

Overall we suggest that the use of ITS1 alone or in combination with the core barcodes (*rbcLa+matK*) has fair barcode potential for the subfamily Alooideae. However, the barcode potential of these regions might vary across the different Alooideae genera. The taxonomy of the alooids is still rife with uncertainty and controversy, such that new classification systems are rapidly emerging (Grace et al. 2013; Rowley 2013; Manning et al. 2014a, b). We hope that our study will quickly be followed by others where new and more universal ITS1 primers could be investigated to boost amplification success.

Implications for conservation

Various Alooideae species have restricted populations and are also of high horticultural appeal and therefore threatened by illegal and excessive collection in the wild. For instance, *Kumara disticha* is listed in CITES Appendix II, implying that the species is of conservation concern, and international trade should be limited. Since DNA barcoding has been used to track down illegal trade in endangered species, e.g. fin whale trade (Baker et al. 2010) and illegal logging of protected tree species (Degen and Fladung 2007), it follows that DNA barcoding could also assist conservationists in managing and tracking down Alooideae species that are highly threatened, for example *Aloidendron pillansii* (critically endangered), *Astroloba rubriflora* (vulnerable), *Haworthia pubescens* (critically endangered), *Haworthiopsis longiana* (endangered), and *Tulista kingiana* (endangered) (www.redlist.sanbi.org). Thus, an identification tool such as DNA barcoding that can reliably identify Alooideae species will go a long way to help preserve these species along with their horticultural appeal.

ACKNOWLEDGEMENTS

We would like to thank the following organisations for funding and logistic support: the University of Johannesburg, the Royal Society of London, and the National Research Foundation (NRF) of South Africa. Part of this project was also funded by the Government of Canada through Genome Canada and the Ontario Genomics Institute (2008-OGI-ICI-03). We thank the Associate Editor Sarah Adamowicz and two anonymous referees for comments on an earlier draft of the manuscript.

REFERENCES

- Alvarez, I. and Wendel, J.F. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogenet. Evol. **29**(3): 417–434.
- Baker, C.S., Steel, D., Choi, Y., Lee, H., Kim, K.S., Choi, S.K., Ma, Y.-U.,
 Hambleton, C., Psihoyos, L. and Brownell, R. 2010. Genetic evidence of illegal trade in protected whales links Japan with the US and South Korea.
 Biol. Lett. 6: 647–650.
- Baldwin, B.G., Sanderson, M.J., Porter, J.M., Wojciechowski, M.F., Campbell, S.G. and Donoghue, M.J. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Ann. Mo. Bot. Gard.
 82: 247–277.
- Bayer, M.B. 1999. *Haworthia* Revisited. A revision of the genus. Umdaus Press, Hatfield, South Africa.
- Bizzaro, J.W. and Marx, K.A. 2003. Poly: a quantitative analysis tool for simple sequence repeat (SSR) tracts in DNA. BMC Bioinformatics. **4**: 22-27.
- Brown, S.D., Collins, R.A., Boyer, S., Lefort, M.C., Malumbres-Olarte, J., Vink, C.J. and Cruickshank, R.H. 2012. Spider: An R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Resour. **12**(3): 562–565.
- Burgess, K.S., Fazekas, A.J., Kesanakurti, P.R., Graham, S.W., Husband, B.C.,
 Newmaster, S.G., Percy, D.M., Hajibabaei, M. and Barrett, S.C.H. 2011.
 Discriminating plant species in a local temperate flora using the *rbcL* plus *matK* DNA barcode. Methods Ecol. Evol. 2(4): 333–340.
- CBOL Plant Working Group 2009. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA **106**(31): 12794–12797.

Chase M.W., Cowan R.S., Hollingsworth P.M., van den Berg C., Madrinan S.,
Petersen G., Seberg O., Jorgsensen T., Cameron K.M., Carine M.,
Pedersen N., Hedderson T.A.J., Conrad F., Salazar G.A., Richardson J.E.,
Hollingsworth M.L., Barraclough T.G., Kelly L. and Wilkinson M. 2007. A
proposal for a standardised protocol to barcode all land plants. Taxon 56(2):
295–299.

- Chase, M.W., De Bruijn, A.Y., Cox, A.V., Reeves, G., Rudall, P.J., Johnson, M.A.T. and Eguiarte, L.E. 2000. Phylogenetics of Asphodelaceae (Asparagales): An analysis of plastid *rbcL* and *trnL-F* DNA sequences. Ann. Bot. **86**(5): 935– 951.
- China Plant BOL Group 2011. Comparative analysis of a large dataset indicates that ITS should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA **108**(49): 19641–19646.
- Clement, W.L. and Donoghue, M.J. 2012. Barcoding success as a function of phylogenetic relatedness in *Viburnum*, a clade of woody angiosperms. BMC Evol. Biol. **12:** 73.
- Clerc-Blain, J.L.E., Starr, J.R., Bull, R.D. and Saarela, J.M. 2010. A regional approach to plant DNA barcoding provides high species resolution of sedges (*Carex* and *Kobresia*, Cyperaceae) in the Canadian Arctic Archipelago. Mol. Ecol. Resour. **10**(1): 69–91.
- Daru, B.H. 2012. Molecular phylogenetics of Alooideae (Asphodelaceae). MSc thesis, University of Johannesburg, South Africa.
- Daru, B.H. and Yessoufou, K. 2016. A search for a single DNA barcode for seagrasses of the world. *In*: DNA Barcoding in Marine Perspectives (eds. S. Trivedi, A.A. Ansari & S.K. Ghosh), pp. 313–330. Springer International

Publishing Switzerland. doi: 10.1007/978-3-319-41840-7_19

- Daru, B.H., Manning, J.C., Boatwright, J.S., Maurin, O., Maclean, N., Schaefer, H., Kuzmina, M. and Van der Bank, M. 2013. Molecular and morphological analysis of subfamily Alooideae (Asphodelaceae) and the inclusion of *Chortolirion* in *Aloe*. Taxon **62**(1): 62–76.
- Davies, T.J., Kraft, N.J.B., Salamin, N. and Wolkovich, E.M. 2012. Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism. Ecology 93(2): 242–247.
- Degen, B. and Fladung, M. 2007. Use of DNA-markers for tracing illegal logging, Proceedings of the International Workshop "Fingerprinting Methods for the Identification of Timber Origins," Bonn Press, pp. 6–14.
- Duval, H.A. 1809. Plantae succulentae, in Horto Alenconio. Parisiis apud Gabon et Socios, Paris.
- Eaton, M.J., Meyers, G.L., Kolokotronis, S.O., Leslie, M.S., Martin, A.P. and Amato
 G. 2010. Barcoding bushmeat: molecular identification of Central and South
 American harvested vertebrates. Conserv. Genet. **11**(4): 1389–1404.
- Edwards, D., Horn, A., Taylor, D., Savolainen, V. and Hawkins, J.A. 2008. DNA barcoding of a large genus, *Aspalathus* L. (Fabaceae). Taxon **57**(4): 1317–1327.
- Fu, Y.M., Jiang, W.M. and Fu, C.X. 2011. Identification of species within *Tetrastigma* (Miq.) Planch. (Vitaceae) based on DNA barcoding techniques. J. Syst. Evol. 49(3): 237–245.
- Gene Codes Corporation 2016. Quality Scores. Gene Codes Corporation, Ann Arbor, MI 48108 USA.

Gere, J., Yessoufou, K., Daru, B.H., Maurin, O., Mankga, L.T. and Van der Bank, M.

2013. Incorporating *trnH-psbA* to core DNA barcodes improves discrimination of species within southern African Combretaceae. ZooKeys **365**: 127–147.

- Glen, H.F. and Hardy, D.S. 2000. Aloaceae. *Aloe. In*: Flora of Southern Africa.
 Fascicle 1: *Aloaceae* (First part): Aloe, vol. 5 (*ed.* G. Germishuizen), pp. 1–
 167. National Botanical Institute, Pretoria, South Africa.
- Gouy, M., Guindon, S. and Gascuel, O. 2010. SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27(2): 221–224.
- Grace, O.M, Klopper, R.R., Smith, G.F., Crouch, N.R., Figueiredo, E., Rønsted, N.
 and Van Wyk, A.E. 2013. A revised generic classification for *Aloe*(Xanthorrhoeaceae subfam. Asphodelaceae). Phytotaxa **76**(1): 7–14.
- Grace, O.M., Buerki, S., Symonds, M.R., Forest, F., Van Wyk, A.E., Smith, G.F.,
 Klopper, R.R., Bjorå, C.S., Neale, S., Demissew, S., Simmonds, M.S.J. and
 Rønsted, N. 2015. Evolutionary history and leaf succulence as explanations
 for medicinal use in aloes and the global popularity of *Aloe vera*. BMC Evol.
 Biol. **15**: 29.
- Groen, L.E. 1987. Astroloba Uitew. (III). Succulenta 66: 82-87.
- Hebert, P.D.N., Cywinska, A., Ball, S.L., and de Waard, J.R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270(1512): 313–321.
- Hebert, P.D.N., Penton, E.H., Burns, J.M., Janzen, D.H. and Hallwachs, W. 2004.
 Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly *Astraptes fulgerator*. Proc. Natl. Acad. Sci. USA **101**(41): 14812–14817.

Hollingsworth, M.L., Clark, A.A., Forrest, L.L., Richardson, J., Pennington, R.T.,
Long, D.G., Cowan, R., Chase, M.W., Gaudeul, M. and Hollingsworth, P.M.
2009. Selecting barcoding loci for plants: evaluation of seven candidate loci
with species level sampling in three divergent groups of land plants. Mol.
Ecol. Resour. 9(2): 439–457.

- Hollingsworth, P.M., Graham, S.W. and Little, D.P. 2011. Choosing and using a plant DNA barcode. PLoS ONE **6**(5): e19254.
- Klopper, R.R. and Smith, G.F. 2007. The genus *Aloe* L. (Apshodelaceae: Alooideae) in Namqualand, South Africa. Haseltonia **13**: 1–13.
- Kress, W.J. and Erickson, D.L. 2007. A two-locus global DNA barcode for land plants: The coding *rbcL* gene complements the non-coding *trnH-psbA* spacer region. PLoS ONE **2**(6): e508.
- Kress, W.J., Wurdack, K.J., Zimmer, E.A., Weigt, L.E. and Janzen, D.H. 2005. Use of DNA barcodes to identify flowering plants. Proc. Natl. Acad. Sci. USA 102(23): 8369–8374.
- Lahaye, R., van der Bank, M., Bogarin, D., Warner, J., Pupulin, F., Gigot, G., Maurin,
 O., Duthoit, S., Barraclough, T.G. and Savolainen, V. 2008. DNA barcoding
 the floras of biodiversity hotspots. Proc. Natl. Acad. Sci. USA **105**(8): 2923–2928.
- Liu, J., Moller, M., Gao, L.M., Zhang, D.Q. and Li, D.Z. 2011. DNA barcoding for the discrimination of Eurasian yews (*Taxus* L., Taxaceae) and the discovery of cryptic species. Mol. Ecol. Resour. **11**(1): 89–100.
- Lowe, A.J. and Cross, H.B. 2011. The application of DNA to timber tracking and origin verification. IAWA J. **32**(2): 251–262.

Maddison, W.P. and Maddison, D.R. 2008. Mesquite: a modular system for evolutionary analysis. Version 2.5. Available from: http://mesquiteproject.org

- Mankga, L.T., Yessoufou, K., Moteetee, A.M., Daru, B.H. and Van der Bank, M. 2013. Efficacy of the core DNA barcodes in identifying processed and poorly conserved plant materials commonly used in South African traditional medicine. ZooKeys **365**: 215-233.
- Manning, J.C., Boatwright, J.S. and Daru, B.H. 2014b. *Aloe* and goodbye: a new evolutionary classification of the Alooids. Alsterworthia International **14**: 7–15.
- Manning, J.C., Boatwright, J.S., Daru, B.H., Maurin, O. and Van der Bank, M. 2014a.
 A molecular phylogeny and generic classification of Asphodelaceae
 subfamily Alooideae: A final resolution of the prickly issue of polyphyly in the
 Alooids? Syst. Bot. **39**(1): 55–74.
- Meier, R.S., Kwong, S., Vaidya, G. and Ng, P.K.L. 2006. DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success. Syst. Biol. 55(5): 715–728.
- Meyer, C.P. and Paulay, G. 2005. DNA Barcoding: error rates based on comprehensive sampling. PLoS Biol. **3**(12): 2229–2238.
- Paradis E., Claude J. and Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics **20**(2): 289–290.

Pettengill, J.B. and Neel, M.C. 2010. An evaluation of candidate plant DNA barcodes and assignment methods in diagnosing 29 species in the genus *Agalinis* (Orobanchaceae). Am. J. Bot. **97**(8): 1381–1406. Raimondo, D., Von Staden, L., Foden, W., Victor, J.E., Helme, N.A., Turner, R.C.,
 Kamundi, D.A. and Manyama, P.A. 2009. Red List of South African Plants.
 Strelitzia 25. South African National Biodiversity Institute, Pretoria.

- Ramdhani, S., Barker, N.P. and Cowling, R.M. 2011. Revisiting monophyly in *Haworthia* Duval (Asphodelaceae): incongruence, hybridization and contemporary speciation. Taxon **60**(4): 1001–1014.
- Ratnasingham, S. and Hebert, P.D.N. 2007. bold: The Barcode of Life Data System (http://www.barcodinglife.org). Mol. Ecol. Notes **7**(3): 355–364.
- Reynolds, G.W. 1966. The aloes of tropical Africa and Madagascar. The Trustees: The Aloes Book Fund, Mbabane, Swaziland.
- Riley, H.P. and Majumdar, S.K. 1979. The Aloineae: A biosystematic survey. Kentucky: The University Press of Kentucky.
- Roberts Reinecke, P. 1965. A revision of the genus *Astroloba*. MSc thesis, University of Cape Town, South Africa.
- Rowley, G.D. 2013. Generic concepts in the Alooideae 3: The phylogenetic story. Alsterworthia Internation Special Issue **10**: 1–7.
- Roy, S., Tyagi, A., Shulka, V., Kumar, A., Singh, U.M., Chaudhary, L.B., Datt, B., Bag, S.K., Singh, P.K., Nair, N.K., Husain, T. and Tuli, R. 2010. Universal plant DNA barcode loci may not work in complex groups: a case study with Indian *Berberis* species. PLoS ONE **5**(10): e13674.

Saslis-Lagoudakis, C.H., Savolainen, V., Williamson, E.M., Forest, F., Wagstaff, S.J.,
Baral, S.R., Watson, M.F., Pendry, C.A. and Hawkins, J.A. 2012.
Phylogenies reveal predictive power of traditional medicine in
bioprospecting. Proc. Natl. Acad. Sci. USA **109**(39): 15835–15840.

- Smith, G.F. and van Wyk, B.E. 1991. Generic relationships in the Alooideae (Asphodelaceae). Taxon **40**(4): 557–581.
- Smith, G.F., Steyn, E.M.A., Victor, J.E., Crouch, N.R., Golding, J. and Hilton-Taylor,
 C. 2000. The conservation status of *Aloe* in South Africa: an updated synopsis. Bothalia **30**: 206-211.
- Starr, J.R., Naczi, R.F.C. and Chouinard, B.N. 2009. Plant DNA barcodes and species resolution in sedges (*Carex*, Cyperaceae). Mol. Ecol. Resour. 9(s1): 151–163.
- Sun, X.Q., Zhu, Y.J., Guo, J.L., Peng, B., Bai, M.M. and Hang, Y.Y. 2012. DNA barcoding the *Dioscorea* in China, a vital group in the evolution of monocotyledon: Use of *matK* gene for species discrimination. PLoS ONE 7(2): e32057.
- Thomas, M.G., Hesse, S.A., McKie, A.T. and Farzaneh, F. 1993. Sequencing of cDNA using anchored oligo dT primers. Nucleic Acids Res. 21(16): 3915– 3916.
- Treutlein, J., Smith, G.F., van Wyk, B.E. and Wink, M. 2003a. Evidence for the polyphyly of *Haworthia* (Asphodelaceae subfamily Alooideae; Asparagales) inferred from nucleotide sequences of *rbcL*, *matK*, ITS1 and genome fingerprinting with ISSR-PCR. Plant Biol. **5**(5): 513–521.
- Treutlein, J., Smith, G.F., van Wyk, B.E. and Wink, M. 2003b. Phylogenetic relationships in Asphodelaceae (subfamily Alooideae) inferred from chloroplast DNA sequences (*rbcL*, *matK*) and from genomic finger-printing (ISSR). Taxon **52**(2): 193–207.
- Van Jaarsveld, E.J. 2007. The genus *Gasteria*: A synoptic review (new taxa and combinations). Aloe **44**: 84–104.

- Viljoen. A.M. 1999. A chemotaxonomic study of phenolic leaf compounds in the genus Aloe. Ph.D. thesis, Rand Afrikaans University, Johannesburg, South Africa.
- Wang, W., Wu, Y., Yan, Y., Ermakova, M., Kerstetter, R. and Messing, J. 2010. DNA barcoding of the Lemnaceae, a family of aquatic monocots. BMC Plant Biol. 10: 205.
- Wang, X.-C., Liu, C., Huang, L., Bengtsson-Palme, J., Chen, H., Zhang, J.-H., Cai,
 D. and Li, J.-Q. 2015. ITS1: A DNA barcode better than ITS2 in eukaryotes?.
 Mol. Ecol. Resour. **15**(3): 573–586.
- Wink, M., Guicking, D. and Fritz, U. 2001. Molecular evidence for hybrid origin of *Mauremys iversoni* Pritchard et McCord, 1991, and *Mauremys pritchardi* McCord, 1997 (Reptilia: Testudines: Bataguridae). Zool. Abh. Staatl. Mus. Tierkunde Dresden **51**: 41–50.
- Yang, J.B., Wang, Y.P., Moller, M., Gao, L.M. and Wu, D. 2012. Applying plant DNA barcodes to identify species of *Parnassia* (Parnassiaceae). Mol. Ecol. Resour. **12**(2): 267–275.
- Yessoufou, K., Daru, B.H. and Muasya, A.M. 2015. Phylogenetic exploration of commonly used medicinal plants in South Africa. Mol. Ecol. Resour. **15**(2): 405–413.
- Zuo, Y.J., Chen, Z.J., Kondo, K., Funamoto, T., Wen, J. and Zhou, S.L. 2011. DNA barcoding of *Panax* species. Planta Med. **77**(2): 182–187.

Supplementary Figure S1

ITS1 from Grace et al. (2015)

Table S1. GenBank/EBI accession numbers for ITS1 sequences of Alooideae from Grace et al.(2015).

Taxon	ITS1
Aloe aculeata	KJ557846
Aloe affinis	KJ557847
Aloe ammophila	KJ557928
Aloe ankoberensis	KJ557848
Aloe arenicola	KJ557849
Aloe benishangulana	KJ557850
Aloe branddraaiensis	KJ557851
Aloe brandhamii	KJ557852
Aloe brevifolia	KJ557853
Aloe bulbillifera	KJ557854
Aloe burgersfortensis	KJ557855
Aloe bussei	KJ557856
Aloe camperi	KJ557857
Aloe castanea	KJ557858
Aloe claviflora	KJ557859
Aloe comosa	KJ557860
Aloe comptonii	KJ557861
Aloe conifera	KJ557862
Aloe dewetii	KJ557864
Aloe dominella	KJ557866
Aloe dorotheae	KJ557867
Aloe ecklonis	KJ557868
Aloe ellenbeckii	KJ557869
Aloe falcata	KJ557870
Aloe fibrosa	KJ557871
Aloe fleurentinorum	KJ557872
Aloe fosteri	KJ557873
Aloe framesii	KJ557874
Aloe gariepensis	KJ557875
Aloe globuligemma	KJ557876
Aloe graciliflora	KJ557877
Aloe grandidentata	KJ557878
Aloe greatheadii	KJ557863
Aloe greatheadii	KJ557879
Aloe greenii	KJ557880
Aloe hereroensis	KJ557881
Aloe khamiesensis	KJ557884
Aloe knersvlakensis	KJ557885
Aloe krapohliana	KJ557887
Aloe lateritia	KJ557888
Aloe leachii	KJ557889
Aloe leptosiphon	KJ557890
Aloe littoralis	KJ557892

Aloe longibracteata	KJ557893
Aloe macrocarpa	KJ557894
Aloe maculata	KJ557895
Aloe marlothii	KJ557896
Aloe melanacantha	KJ557897
Aloe microstigma	KJ557898
Aloe minima	KJ557469
Aloe mitriformis	KJ557865
Aloe monotropa	KJ557899
Aloe monticola	KJ557900
Aloe mudenensis	KJ557901
Aloe mzimbana	KJ557902
Aloe parvula	KJ557903
Aloe pearsonii	KJ557904
Aloe peglerae	KJ557905
Aloe petricola	KJ557906
Aloe praetermissa	KJ557907
Aloe prinslooi	KJ557908
Aloe pruinosa	KJ557909
Aloe reitzii	KJ557910
Aloe retrospiciens	KJ557911
Aloe schelpei	KJ557912
Aloe secundiflora	KJ557913
Aloe sinana	KJ557914
Aloe speciosa	KJ557915
Aloe spicata	KJ557916
Aloe splendens	KJ557917
Aloe striata	KJ557883
Aloe striata	KJ557886
Aloe succotrina	KJ557918
Aloe suffulta	KJ557919
Aloe suprafoliata	KC893742
Aloe swynnertonii	KJ557920
Aloe thraskii	KJ557921
Aloe trichosantha	KJ557922
Aloe umfoloziensis	KJ557923
Aloe vanbalenii	KJ557924
Aloe vanrooyenii	KJ557925
Aloe viguieri	KJ557926
Aloe vogtsii	KJ557927
Aloe weloensis	KJ557470
Astroloba rubriflora	KJ557471

Reference for Table S1

Grace, O.M., Buerki, S., Symonds, M.R., Forest, F., Van Wyk, A.E., Smith, G.F., Klopper, R.R., Bjorå, C.S., Neale, S., Demissew, S., Simmonds, M.S.J. and Rønsted, N. 2015. Evolutionary history and leaf succulence as explanations for medicinal use in aloes and the global popularity of *Aloe vera*. BMC Evol. Biol. **15**: 29.

Genus	Taxon	trnH-psbA	ITS1	rbcLa	matK
Aloe	Aloe aculeata	_	KJ557846	KJ557717	_
	Aloe acutissima	_	AF234348	—	_
	Aloe affinis	_	KJ557847	KJ557718	_
	Aloe africana	HQ646904	HQ646951	JX518056	JX572268
	Aloe albida	JQ039242	JQ025366	_	_
	Aloe albiflora	—	KC893726	KC893697	—
	Aloe alooides	JQ039243	JQ025325	_	
	Aloe ammophila	—	KJ557928	—	—
	Aloe ammophila	—	AF234347	KJ557827	—
	Aloe angelica	JQ039244	JQ025310	_	JQ024109
	Aloe anivoranoensis	JQ039245	JQ025371		
	Aloe ankoberensis	—	KJ557848	KJ557719	—
	Aloe arborescens	—	KC893727	KC893698	JX572272
	Aloe arborescens	JQ039246	JQ025326	JQ024486	JQ024110
	Aloe arborescens	JQ279781	AY323681	JX518144	JQ412310
	Aloe arborescens	JQ039246	AY323680	AY323723	AY323646
	Aloe arborescens	GQ434898	AF234333	AY323722	AY323645
	Aloe arenicola	JQ024863	KJ557849	JQ024111	JQ024487
	Aloe arenicola	JQ024863	JQ025268	JQ024487	JQ024111
	Aloe bainesii	—	U24002	—	—
	Aloe bakeri	—	AF234346	—	Z73680
	Aloe benishangulana	—	KJ557850	KJ557725	—
	Aloe bowiea	HQ646901	HQ646948	JQ024116	JQ024492
	Aloe branddraaiensis	—	KJ557851	KJ557726	—
	Aloe brandhamii	—	KJ557852	KJ557727	—
	Aloe brevifolia	JQ039248	KJ557853	JX517854	JX572275
	Aloe brevifolia	JQ039248	JQ025314		
	Aloe broomii	_	KC893728	KC893699	<u> </u>
	Aloe buhrii	JQ024865	JQ025263	JQ024494	JQ024118
	Aloe bulbillifera	_	KJ557854	KJ557729	<u> </u>
	Aloe bulbillifera	_	AF234335	AJ511385	AJ512305
	Aloe burgersfortensis	_	KJ557855	KJ557730	
	Aloe bussei	—	KJ557856	KJ557731	—
	Aloe cameronii	—	AF234343	KJ557732	—
	Aloe camperi	—	KJ557857	KJ557733	—
	Aloe capitata		AY323677	AY323720	AY323643
	Aloe castanea	—	KJ557858	KC893700	—
	Aloe castanea	—	KC893729	JQ024120	—

Table S2. GenBank/EBI accession numbers for Alooideae used in this study.

Aloe chabaudii	JQ039249	JQ025299		<u> </u>
Aloe challisii	JQ039250	JQ025355		_
Aloe chortolirioides	JQ039251	JQ025374	_	_
Aloe claviflora	—	KJ557859	KJ557738	—
Aloe comosa	JQ039253	KJ557860	JQ024123	JQ024498
Aloe comosa	JQ039253	JQ025328	JQ024499	JQ024124
Aloe compressa	—	AY323678	AY323721	AY323644
Aloe comptonii	—	KJ557861	KJ557740	—
Aloe conifera	—	KJ557862	KJ557742	—
Aloe conifera	—	AY323679	AJ511383	AJ512303
Aloe cremnophila	—	AF234336	—	—
Aloe dawei	—	KC893730	KC893701	—
Aloe deltoideodonta	—	KC893731	AJ511384	AJ512304
Aloe dewetii	—	KJ557864	KJ557746	—
Aloe dewinteri	JQ039254	JQ025303	JQ024500	JQ024125
Aloe doei	—	AY323682	AY323724	AY323647
Aloe dominella	—	KJ557866	JX518154	JX572279
Aloe dorotheae	—	KJ557867	KJ557750	—
Aloe ecklonis	JQ039257	KJ557868	KJ557751	JX572280
Aloe ecklonis	JQ039257	JQ025307	_	_
Aloe ellenbeckii	—	KJ557869	KJ557752	—
Aloe excelsa	JQ039259	KC893732	JF270640	JF265284
Aloe excelsa	JQ039259	JQ025301	_	_
Aloe falcata	—	KJ557870	KJ557754	—
Aloe ferox	JQ279782	KC893733	KC893704	JX572282
Aloe ferox	JQ039260	JQ025327	_	—
Aloe ferox	JQ039260	AF234338	JX518209	JQ025022
Aloe fibrosa	—	KJ557871	KJ557755	—
Aloe fleurentinorum	—	KJ557872	KJ557756	—
Aloe forbesii	—	AY323688	KJ557758	—
Aloe forbesii	—	AF234342	AJ511389	AJ512308
Aloe fosteri	—	KJ557873	KJ557759	JQ024506
Aloe fouriei	JQ039261	JQ025358	_	_
Aloe framesii	—	KJ557874	KJ557760	—
Aloe gariepensis	—	KJ557875	KJ557761	—
Aloe glauca	JQ039262	JQ025313	JQ024508	JQ024134
Aloe glauca	—	AY323670	KJ557762	JQ024507
Aloe glauca	JQ039262	AF234344	JQ024134	AJ512313
Aloe globuligemma	—	KJ557876	KJ557763	JQ024509
 Aloe graciliflora		KJ557877	KJ557764	

Aloe grandidentata		KJ557878	KJ557765	
Aloe greatheadii	—	KJ557879	KJ557766	_
Aloe greatheadii	—	KJ557863	KJ557743	KF733457
Aloe greatheadii	JQ039264	JQ025304	JQ024512	JQ024138
Aloe greatheadii	JQ039264	AF234332	JQ024138	JQ024512
Aloe greenii	—	KJ557880	KJ557767	_
Aloe haemanthifolia	KC960554	KC880129	—	KC960551
Aloe haworthioides	JQ039265	JQ025357	JQ024513	JQ024139
Aloe hereroensis	JQ039266	KJ557881	JQ024140	JQ024514
Aloe hereroensis	JQ039266	JQ025305	JQ024514	JQ024140
Aloe hexapetala	—	JQ025318	JQ024141	JQ024515
Aloe humilis	—	KJ557882	KJ557770	JQ024516
Aloe humilis	—	AY323675	AY323719	AY323642
Aloe inermis	—	AY323686	KC893705	
Aloe inermis	—	AF234328	AJ511387	AJ512288
Aloe jucunda	—	KC893734	—	
Aloe jucunda	—	AY323674	KC893706	
Aloe jucunda	—	AF234337	AY323718	AY323641
Aloe juvenna	—	KC893735	—	
Aloe juvenna	—	AY323673	KC893707	
Aloe juvenna	—	AF234349	AY323717	AY323640
Aloe karasbergensis	—	AY323669	AJ511391	AJ512283
Aloe khamiesensis	—	KJ557884	KJ557774	_
Aloe knersvlakensis	—	KJ557885	KJ557775	_
Aloe kniphofioides	KC960553	KC880128	JX517649	JX572285
Aloe	10004007	10005004	10004540	
KOUEDOKKEVEIdensis	JQ024867	JQ025264	JQ024518	JQ024144
Aloe kiapuliialia		KJ557887	KJ557777	
	—	KJ557000	KJ557779	
Albe leating		KJ557869	KJ557760	
Albe leptosiprion		KJ557690	KJ557761	
Albe lineata	JQ039269	JQ025322	JQ024521	JQ024148
Aloe lineata	10039200	JQ025321	JQ024146	JQ024521
Aloe lineata	JQ039267	JQ025320	JQ024520	JQ024147
Aloe lineata	JQ039267	HQ646952	JQU24145	JQ024520
Aloe lineata	HQ646905	AY3236/1	AJ511397	JQ024519
Aloe littoralis		KJ557892	KJ557783	KF733456
Aloe longibracteata		KJ557893	KJ557784	—
Aloe lutescens	JQ039270	JQ025348	—	—
Aloe macrocarpa	—	KJ557894		
Aloe maculata	—	KJ557895	JX517325	JX572286

Aloe marlothii	—	KJ557896	JF270641	JF265285
Aloe melanacantha	JQ039271	KJ557897	JX517575	JX572287
Aloe melanacantha	JQ039271	JQ025267		—
Aloe microstigma	JQ039272	KJ557898	KJ557789	JQ024525
Aloe microstigma	JQ039272	JQ025323	JQ024525	JQ024152
Aloe minima	—	KJ557469	KJ557790	_
Aloe mitriformis	—	KJ557865	—	_
Aloe mitriformis	—	AF234327	KJ557748	_
Aloe monotropa	—	KJ557899	KJ557791	_
Aloe monticola	—	KJ557900	KJ557792	_
Aloe morijensis	—	AF234325	—	_
Aloe mudenensis	_	KJ557901	KJ557793	_
Aloe munchii	JQ039273	JQ025302	_	_
Aloe mzimbana	_	KJ557902	KJ557794	_
Aloe ngobitensis	_	AF234322	KJ557795	_
Aloe niebuhriana	_	AY323683	AY323725	_
Aloe nubigena	JQ039274	JQ025356	_	_
Aloe nyeriensis	—	AF234339	JQ435526	
Aloe parvula	—	KJ557903	KJ557796	
Aloe pearsonii	—	KJ557904	KJ557797	
Aloe pearsonii	JQ024868	KC893736	KC893709	JQ024526
Aloe pearsonii	JQ024868	JQ025269	JQ024526	JQ024154
Aloe peckii	—	AF234323	—	_
Aloe peglerae	—	KJ557905	JX517749	JX572291
Aloe pendens	—	AF234340	—	_
Aloe penduliflora	—	AF234330	_	_
Aloe perfoliata	—	JQ025315	JQ024527	JQ024155
Aloe perryi	—	AF234341	—	
Aloe petricola	JQ039276	KJ557906	JQ024157	JQ024529
Aloe petricola	JQ039276	JQ025300	JQ024529	JQ024157
Aloe pictifolia	JQ039277	KC893737	KC893710	JQ024530
Aloe pictifolia	JQ039277	JQ025324	JQ024530	JQ024158
Aloe praetermissa	—	KJ557907	—	_
Aloe prinslooi	—	KJ557908	KJ557802	
Aloe propagulifera	JQ039279	JQ025359		_
Aloe pruinosa	—	KJ557909	KJ557803	_
Aloe reitzii	—	KJ557910	KJ557804	
Aloe retrospiciens	—	KJ557911	KJ557805	
Aloe reynoldsii	JQ024869	JQ025265	JQ024532	JQ024160
 Aloe rupestris	JQ039280	JQ025317		_

	Aloe saundersiae	JQ039281	JQ025345	_	_
	Aloe schelpei	—	KJ557912	KJ557807	
	Aloe scobinifolia	—	AY323687	—	
	Aloe scobinifolia	—	AF234331	AJ511388	AJ512307
	Aloe secundiflora	—	KJ557913	KJ557808	
	Aloe sinana	—	KJ557914	KJ557809	_
	Aloe sinkatana	—	KC893738	KC893711	_
	Aloe sinkatana	_	AY323689	AJ511386	AJ512306
	Aloe somaliensis	—	AY323672	KJ557810	_
	Aloe somaliensis	—	AF234334	AY323716	AY323639
	Aloe speciosa	—	KJ557915	—	_
	Aloe speciosa	HQ646903	HQ646950	KJ557811	_
	Aloe spicata	—	KJ557916	KC893712	_
	Aloe spicata	JQ039282	KC893739	JF270642	JF265286
	Aloe spicata	JQ039282	JQ025290		
	Aloe splendens	_	KJ557917	KJ557812	_
	Aloe striata	—	KJ557886	KJ557776	JQ024535
	Aloe striata	JQ039283	KJ557883	KJ557772	JQ024534
	Aloe striata	JQ024871	KC893740	KC893713	JQ024533
	Aloe striata	JQ039283	JQ025306	JQ024536	JQ024164
	Aloe striata	JQ024871	JQ025261	JQ024537	JQ024165
	Aloe striata	JQ024870	JQ025260	JQ024534	JQ024162
	Aloe striata	JQ024870	AY323668	AJ511392	AJ512310
	Aloe subspicata	JQ039295	JQ025344	_	_
	Aloe succotrina	—	KJ557918	KJ557813	
	Aloe succotrina	JQ024873	KC893741	KC893714	JQ024539
	Aloe succotrina	JQ024873	JQ025266	JQ024539	JQ024167
	Aloe suffulta	—	KJ557919	KJ557814	_
	Aloe suprafoliata	—	KC893742	KC893715	_
	Aloe suprafoliata	—	AY323676	AY323715	AY323638
	Aloe swynnertonii	—	KJ557920	KJ557815	_
	Aloe thraskii	JQ039285	KJ557921	KJ557816	JQ024542
	Aloe thraskii	JQ039285	JQ025319	JQ024542	JQ024170
	Aloe tomentosa	—	KC893743	KC893716	_
	Aloe trichosantha	—	KJ557922	KJ557817	_
	Aloe umfoloziensis	_	KJ557923	KJ557819	_
	Aloe vanbalenii	—	KJ557924	KJ557820	_
	Aloe vanrooyenii	—	KJ557925	KJ557821	
	Aloe vaombe	—	KC893744	KC893717	
	Aloe vera		AB090291	KC893719	_

	Aloe vera		AB090290	10276402	
	Aloe vera		AB090289	JN228939	
	Aloe vera		AB090288	GQ434051	
	Aloe vera	10899438	AB090287	GO434050	
	Aloe vera	000334800	AD090207	CQ434040	
	Albe vera	GQ434699	AD090200	GQ434049	
	Aloe vera	GQ434897	AB090285	GQ434048	L05029
	Aloe vera	GQ434896	AB090284	GQ434047	JQ273907
	Aloe vera	GQ434895	AB090283	AY323726	AY323649
	Aloe vera	GQ434894	AB090282	AJ511390	AJ512309
	Aloe verecunda	JQ039286	JQ025346	—	—
	Aloe viguieri	—	KJ557926	AJ511382	AJ512302
	Aloe vogtsii	—	KJ557927	KJ557823	—
	Aloe vossii	JQ039287	JQ025347	_	_
	Aloe vryheidensis	JQ039288	JQ025308	_	_
	Aloe weloensis	_	KJ557470	KJ557825	—
	Aloe zebrina	_	KC893747	KC893720	—
Aloiampelos	Aloiampelos ciliaris	JQ024866	JQ025292	JQ024496	JQ024121
	Aloiampelos ciliaris	<u> </u>	AY323663	JQ024496	AJ511379
	Aloiampelos commixta	JQ039252	JQ025329	JQ024497	JQ024122
	Aloiampelos gracilis	JQ039263	JQ025330	JQ024510	JQ024136
	Aloiampelos striatula	JQ024872	JQ025291	JQ024538	JQ024166
	Aloiampelos tenuior	JQ039284	JQ025331	JQ024541	JQ024169
	Aloiampelos tenuior	_	HO646949	_	_
Aloidendron	Aloidendron				
	barberae	JQ024864	JQ025262	JQ024489	JQ024113
	Aloidendron		41/202004	18670074	17540007
	Aloidendron		A1323001	JA572274	JX516237
	dichotomum	JQ039255	KC893748	_	_
	Aloidendron				
	dichotomum	JQ039256	JQ025368	JQ024501	JQ024126
	dichotomum	HQ646906	HQ646953	_	KC893721
	Aloidendron eminens	10039258	10025369		
	Aloidendron nillansii		KC893749	Δ 1512292	Δ 1511369
	Aloidendron pillansii	10039255	10025372	10024502	10024127
	Aloidendron pillansii		AV323659		KC803722
	Aloidendron		A1323039		10093722
	ramosissimum	KC893723	KC893750	<u> </u>	<u> </u>
	Aloidendron	10000050	10005007	10004500	10004400
	ramosissimum Aloidendron	JQ039256	JQ025367	JQ024503	JQ024128
	ramosissimum	AJ511370	AY323660	AJ512293	_
Aristaloe	Aristaloe aristata	_	JQ025312	JQ024488	JQ024112

	Aristaloe aristata	—	AY323652	AY323634	AJ511407
	Aristaloe aristata	JQ039247	AY323651	AJ512319	AY323713
Astroloba	Astroloba bullulata	HQ646898	HQ646945	JQ024544	JQ024172
	Astroloba bullulata	HQ646897	HQ646944	_	_
	Astroloba corrugata	JQ039290	JQ025350	JQ024545	JQ024173
	Astroloba foliolosa	JQ039291	JQ025351	JQ024547	JQ024175
	Astroloba herrei	JQ039292	JQ025349	JQ024548	JQ024176
	Astroloba rubriflora	_	KJ557471	AJ512322	KJ557835
	Astroloba rubriflora	JQ039293	JQ025297	JQ024549	JQ024177
	Astroloba rubriflora	HQ646899	HQ646946	JX903197	JX903606
	Astroloba spiralis	_	AY323658	Z73691	—
Gasteria	Gasteria acinacifolia	JQ024875	JQ025271	JQ024554	JQ024181
	Gasteria batesiana	JQ024876	JQ025273	JQ024555	JQ024182
	Gasteria carinata	JQ024877	JQ025276	JQ024556	JQ024183
	Gasteria carinata	JQ039297	JQ025275	_	_
	Gasteria croucheri	JQ024878	JQ025277	JQ024559	JQ024186
	Gasteria disticha	JQ024879	JQ025278	JQ024560	JQ024187
	Gasteria doreeniae	JQ024880	JQ025279	JQ024561	JQ024188
	Gasteria ellaphieae	JQ024881	JQ025280	JQ024562	JQ024189
	Gasteria excelsa	JQ024882	JQ025281	JQ024564	JQ024191
	Gasteria glauca	JQ024883	JQ025282	JQ024565	JQ024192
	Gasteria glomerata	JQ024884	JQ025283	JQ024566	JQ024193
	Gasteria nitida	JQ024885	JQ025272	JQ024567	JQ024194
	Gasteria obliqua	JQ024886	JQ025274	JQ024569	JQ024196
	Gasteria pillansii	_	JQ025285	JQ024570	JQ024197
	Gasteria pillansii	JQ024874	JQ025284	JQ024553	JQ024180
	Gasteria polita	JQ024887	JQ025286	JQ024571	JQ024198
	Gasteria pulchra	JQ024888	JQ025287	JQ024572	JQ024199
	Gasteria rawlinsonii	JQ024889	JQ025288	JQ024573	JQ024200
	Gasteria tukhelensis	JQ024890	JQ025289	JQ024574	JQ024201
	Gasteria vlokii	JQ039298	JQ025298	JQ024575	JQ024202
Gonialoe	Gonialoe variegata	KC960552	KC880127	JQ024543	JQ024171
	Gonialoe variegata		KC893745	KC960549	KC893718
Haworthia	Haworthia				
	angustifolia Haworthia	JQ039299	—	JQ024593	JQ024219
	arachnoidea	JQ024891	_	JQ024601	JQ024226
	Haworthia bayeri	JQ039301	JQ025360	JQ024615	JQ024239
	Haworthia				
	blackburniae Haworthio	JQ039303	JQ025362	JQ024618	JQ024242
	blackburniae	JQ039302	JQ025361	JQ024617	JQ024241

Haworthia				
blackburniae	JQ024893	JQ025226	JQ024616	JQ024240
Haworthia				
chloracantha	JQ039305	JQ025363	JQ024625	JQ024249
Haworthia cooperi	JQ024896	JQ025228	JQ024634	JQ024258
Haworthia cooperi	JQ024895	JQ025227	JQ024631	JQ024255
Haworthia cymbiformis	JQ024897	JQ025231	JQ024644	JQ024268
Haworthia cymbiformis	JQ024899	JQ025230	JQ024648	JQ024272
Haworthia cymbiformis	JQ024898	JQ025229	JQ024645	JQ024269
Haworthia decipiens	JQ024902	JQ025250	JQ024654	JQ024278
Haworthia decipiens	JQ024903	JQ025234	JQ024656	JQ024280
Haworthia decipiens	JQ024901	JQ025233	JQ024652	JQ024276
Haworthia emelyae	JQ039307	JQ025364	JQ024663	JQ024287
Haworthia emelyae	JQ024904	JQ025236	JQ024661	JQ024285
Haworthia floribunda	JQ024906	JQ025251	JQ024666	JQ024290
Haworthia herbacea	JQ024908	JQ025254	JQ024687	JQ024309
Haworthia herbacea	JQ024907	JQ025252	JQ024686	JQ024308
Haworthia herbacea	_	_	JQ024685	JQ024307
Haworthia lockwoodii		JQ025378	JQ024711	JQ024336
Haworthia maculata	JQ024911	JQ025237	JQ024715	JQ024340
Haworthia magnifica	JQ024912	JQ025238	JQ024716	JQ024341
Haworthia marumiana	JQ024913	JQ025248	JQ024727	JQ024352
Haworthia marxii	JQ024914	JQ025249	JQ024728	JQ024353
Haworthia mirabilis	JQ039317	JQ025365	JQ024650	JQ024274
Haworthia mirabilis	JQ024915	JQ025254	JQ024749	JQ024373
Haworthia mirabilis	JQ024916	JQ025246	JQ024771	JQ024397
Haworthia mirabilis	JQ024917	_	JQ024773	JQ024399
Haworthia monticola	JQ024918	JQ025255	JQ024780	JQ024405
Haworthia mucronata	_	JQ025379	JQ024784	JQ024409
Haworthia mucronata	JQ024921	JQ025241	JQ024787	JQ024412
Haworthia mucronata	JQ024920	JQ025240	JQ024785	JQ024410
Haworthia mucronata	JQ024919	JQ025239	JQ024782	JQ024407
Haworthia mutica	JQ024923	JQ025243	JQ024798	JQ024422
Haworthia mutica	JQ024922	JQ025242	JQ024797	JQ024421
Haworthia outeniquensis	JQ024924	JQ025256	JQ024807	JQ024431
Haworthia pulchella	JQ024925	JQ025257	JQ024813	JQ024437
Haworthia pulchella	_	HQ646927	_	

	Haworthia pulchella		HQ646926	<u> </u>	
	Haworthia pygmaea	JQ039320	JQ025333	JQ024816	JQ024440
	Haworthia reticulata	JQ024927	JQ025244	JQ024819	JQ024443
	Haworthia retusa	JQ024928	JQ025245	JQ024832	JQ024456
	Haworthia semiviva	JQ024929	JQ025247	JQ024844	JQ024467
	Haworthia semiviva	_	HQ646931	_	_
	Haworthia				
	springbokvlakensis	_	—	JQ024847	JQ024470
	Haworthia truncata	JQ039323	JQ025375	JQ024848	JQ024471
	Haworthia variegata	JQ039324	JQ025376	JQ024850	JQ024473
	Haworthia vlokii	JQ024930	JQ025258	JQ024858	JQ024481
	Haworthia				
	wittebergensis	JQ024931	JQ025259	JQ024859	JQ024482
	Haworthia				
	zantneriana	JQ039326	JQ025370	JQ024860	JQ024483
Haworthiopsis	Haworthiopsis				
	attenuata	JQ039300	JQ025311	JQ024610	JQ024234
	Haworthiopsis			10004600	10004000
	attenuata			JQ024609	JQ024233
	attenuata			10024608	10024232
	Haworthionsis			30024000	JQ024232
	bruvnsii	JQ039304	JQ025334	JQ024622	JQ024246
	Haworthiopsis				
	coarctata	JQ039306	JQ025335	JQ024630	JQ024254
	Haworthiopsis				
	coarctata	JQ024894	JQ025296	JQ024629	JQ024253
	Haworthiopsis	10004007	100000000	10001001	10.00 (000
	fasciata	JQ024905	JQ025270	JQ024664	JQ024288
	Haworthiopsis	LIO646992	LO646025	10024665	10024280
	Haworthionsis	TQ040003	TQ040935	JQ024005	JQ024209
	dauca	JQ039308	JQ025336	JQ024673	JQ024295
	Haworthiopsis				
	glauca	HQ646886	HQ646938	JQ024676	JQ024298
	Haworthiopsis				
	glauca	HQ646885	HQ646937	JQ024674	JQ024296
	Haworthiopsis				
	koelmaniorum	JQ024910	JQ025294	JQ024689	JQ024311
	hawortniopsis	10024000	10025202	10024600	10024242
	Haworthionsis	10024909	10020280	10024090	JQU24312
	limifolia	JQ039313	JQ025343	JQ024694	JQ024317
	Haworthiopsis		3020070	3002-100-1	3002-1017
	limifolia	JQ039312	JQ025342	JQ024697	JQ024321
	Haworthiopsis				
	limifolia	JQ039311	JQ025341	JQ024702	JQ024326
	Haworthiopsis				
	limifolia	JQ039316	AY323727	JQ024710	JQ024335
	Haworthiopsis	10000017		10004707	
	limitolia	JQ039315	—	JQ024707	JQ024331

	Haworthiopsis				
	limifolia	JQ039314	_	JQ024693	JQ024316
	Haworthiopsis				
	longiana	JQ039314	JQ025316	JQ024714	JQ024339
	Haworthiopsis longiana	_	_	JQ024712	JQ024337
	Haworthiopsis nigra	JQ039318	JQ025352	JQ024799	JQ024423
	Haworthiopsis reinwardtii	JQ039321	JQ025332	JQ024817	JQ024441
	Haworthiopsis reinwardtii	JQ024926	JQ025295	JQ024818	JQ024442
	Haworthiopsis reinwardtii	HQ646888	AY323657	AY323631	AY323710
	Haworthiopsis sordida	JQ039322	JQ025354	JQ024845	JQ024468
	Haworthiopsis venosa	HQ646890	JQ025377	JQ024853	JQ024475
	Haworthiopsis venosa	JQ039325	JQ025309	JQ024852	JQ024474
	Haworthiopsis venosa	HQ646892	HQ646941	JQ024855	JQ024477
	Haworthiopsis venosa	HQ646891	HQ646940	JQ024854	JQ024476
Kumara	Kumara disticha	_	KC893752	AY323614	AY323695
	Kumara disticha	JQ039278	JQ025373	JQ024531	JQ024159
	Kumara disticha	—	AY323662	AY323613	AY323693
Tulista	Tulista kingiana	JQ039310	JQ025340		—
	Tulista kingiana	JQ039309	JQ025339	JQ024688	JQ024310
	Tulista marginata	JQ039315	JQ025338	—	—
	Tulista marginata	JQ039316	JQ025337	JQ024719	JQ024344
	Tulista minima	—	HQ646942	—	—
	Tulista minor	—	—	JQ024733	JQ024358
	Tulista pumila	HQ646896	JQ025353	JQ024814	JQ024438
	Tulista pumila	JQ039319	HQ646943	JQ024815	JQ024439

References for Table S2

- Daru, B.H. 2012. Molecular phylogenetics of Alooideae (Asphodelaceae). MSc thesis, University of Johannesburg, South Africa.
- Daru, B.H., Manning, J.C., Boatwright, J.S., Maurin, O., Maclean, N., Schaefer, H., Kuzmina, M. and Van der Bank, M. 2013. Molecular and morphological analysis of subfamily Alooideae (Asphodelaceae) and the inclusion of *Chortolirion* in *Aloe*. Taxon 62(1): 62–76.
- Manning, J.C., Boatwright, J.S., Daru, B.H., Maurin, O. and Van der Bank, M. 2014. A molecular phylogeny and generic classification of Asphodelaceae subfamily Alooideae: A final resolution of the prickly issue of polyphyly in the Alooids? Syst. Bot. **39**(1): 55–74.