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Abstract: Traces found on Android smartphones form a significant part of digital investigations. A
key component of these traces is the date and time, often formed as timestamps. These timestamps
allow the examiner to relate the traces found on Android smartphones to some real event that took
place. This paper performs exploratory experiments that involve the manipulation of timestamps found
in SQLite databases on Android smartphones. Based on observations, specific heuristics are identified
that may allow for the identification of manipulated timestamps. To overcome the limitations of these
heuristics, a new reference architecture for Android applications is also introduced. The reference
architecture provides examiners with a better understanding of Android applications as well as the
associated digital evidence. The results presented in the paper show that the suggested techniques to
establish the authenticity and accuracy of digital evidence are feasible.
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1. INTRODUCTION

The past decade saw the rapid improvement of smartphone
technology, allowing these devices to become very popular
across the globe. Their current prominence is directly
related to the provided capabilities and functionality,
which nowadays closely resemble a personal computer.
Bundled with a complete operating system, improved
connectivity and communication functions, and the option
of adding additional third-party applications, smartphones
have become powerful devices. The leading smartphone
operating system (OS) of 2014 was Android [1], which has
been evolving in a remarkable way and continues to gain
widespread popularity. The current prevalence of Android
led this paper to focus only on this particular smartphone
OS.

The extensive and wide use of Android smartphones allows
these devices to become a rich source of trace evidence
[2]. All events occurring on Android smartphones generate
traces that form an important component of digital
investigations, especially when the user of the smartphone
is involved in criminal activities. The valuable information
(such as contacts, text messages, call lists, website visited
or instant messages) contained in these traces can provide a
well-defined snapshot of a user’s actions at a specific time.
Besides providing a description of the event, traces found
on Android smartphones also often store the time and
date component in the form of a timestamp. Timestamps
are integral to digital investigations since it provides the
examiner the opportunity to relate the traces found on the
Android smartphones to some physical event that took
place.

To conceal fraudulent activities, smartphone users can use
certain techniques to manipulate the timestamps of the
traces and change the associated events. These techniques
are referred to as Anti-forensics and are primarily used “to
compromise the availability or usefulness of evidence” [3].
These techniques are applied by smartphone users in an
attempt to either hide or change event logs, which results
in the alteration of the timestamps associated with those
events.

It is thus important for examiners to be able to verify
the authenticity and accuracy of timestamps. Without
such verification, the collected timestamps might be
incorrect or inaccurate due to tampering and will lead
the examiner to make unreliable conclusions. Existing
research shows few papers that attempt to offer a solution
regarding the verification of the authenticity and accuracy
of timestamps. Verma et. al. [4] preserve date and time
stamps by capturing the system generated modification,
access, change and/or creation date and timestamps (MAC
DTS) values and storing it in a secure location such as
a cloud server outside of the smartphone. The cloud
snapshot of the original MAC DTS values can be used to
verify the authenticity of MAC DTS values of questionable
files on the smartphone [4]. Govindaraj et. al. [5] designed
a solution, called iSecureRing, which allows a jailbroken
iPhone to be secure and forensic ready by preserving
the timestamps. These timestamps are stored outside the
device on a secure server or the cloud and can be used
during security incidents [5]. Both solutions, however,
require the installation of additional functionality on the
smartphone prior to seizing the device for investigation.
There is, thus, no existing solution (to the best of the
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authors’ knowledge) that allows for the verification of
timestamps collected from seized Android smartphones.

This paper performs exploratory experiments that involve
the manipulation of timestamps found in SQLite databases
on Android smartphones. While conducting the
experiments, the changes occurring on the Android
smartphone are observed. Based on those observations,
specific heuristics are identified that may indicate the
manipulation of timestamps. The identified heuristics can
be categorised into two distinct groups. The first group of
heuristics are specific changes that occur on the Android
file system and the second group refer to inconsistencies
in individual SQLite databases. These heuristics are,
however, susceptible to external factors that can impact
their availability. To further establish the accuracy and
authenticity of the timestamps as well as other forms of
digital evidence, a new reference architecture for Android
applications is also introduced. The purpose of the
reference architecture is to provide the examiners with
a better understanding of Android applications and how
the associated digital evidence originated. The immediate
challenges to address are the following: (a) effective
manipulation of timestamps found in SQLite databases
on Android smartphones, (b) verifying the authenticity of
these timestamps by using the identified heuristics and
(c) introducing a newly designed reference architecture
for Android applications. The current paper provides
preliminary evidence that, in terms of the challenges
identified, the suggested approach shows potential.

The remainder of the paper is structured as follows.
Section 2 briefly describes the architecture of Android
and the internal structure of SQLite databases. Section
3 presents the methodology followed to conduct the
exploratory experiments and offers a descriptive summary
of the findings. The reference architecture for Android
applications is introduced in Section 4. A short discussion
and future developments of the research is presented in
Section 5. The final conclusions are made in Section 6.

2. BACKGROUND

With the continuous growth in functionality of Android
smartphones, increasing number of people make use of
these devices during their daily activities. For the traces
collected by Android smartphones to be of use during
digital investigations, a comprehensive understanding of
the architecture of Android is required. An evaluation of
SQLite is also required, since most of the traces found
on Android smartphones are stored in SQLite databases.
This section, therefore, provides a short introduction of the
Android architecture and presents the internal structure of
SQLite databases.

2.1 Android’s Architecture

Android is a popular open source software architecture
provided by the Open Handset Alliance [8] that is currently
targeting mobile devices, such as smartphones and tablet
computers. The Android software architecture (see Figure

Figure 1: Architecture of the Android Operating Systems [6, 7]

1) is divided into five layers: Applications, Application
Framework, Libraries, Android Runtime and the Linux
Kernel [9]. The uppermost layer, Applications, provides
access to a set of core applications. The Application
Framework layer implements a software framework that
reassembles functions used by existing applications. All
available libraries are written in C/C++ and called through
a Java interface. The Android runtime consists of a
set of core libraries and a Dalvik virtual machine. The
bottommost layer is the Linux kernel, which allows for
interaction between the upper layers by means of device
drivers [9, 10].

Until Android version 2.2 (Froyo), most Android
smartphones used Yet Another Flash File System 2
(YAFFS2) [11]. YAFFS2 was developed in 2004
in response for larger sized NAND (Not-AND) flash
devices [12]. With the release of Android version
2.3 (Gingerbread), the file system for Android devices
switched from YAFFS2 to Fourth Extended (EXT4)
file system [11]. YAFFS2 was developed with a
single-threaded design, which may cause bottlenecks in
devices released with a multi-core chipset. The EXT4
file system, which is one of the most used file systems
in Linux, does not have this limitation and can run
smoothly on multi-core devices. The disk space of the
EXT4 file system is divided into logical blocks, which
reduce management overhead and improves throughput
[13]. The key features of the EXT4 file system promote the
development of advance applications and functionalities.

The architecture of Android regularly improves to support
more improved applications. It is therefore necessary to
continuously evaluate Android’s architecture and remain
up to date with the current changes.
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Table 1: User Data Stored in SQLite Databases

User Data SQLite Database Location Table
Call History /data/data/com.sec.android.provider.logsprovider/databases/log.db logs
Messages (SMS/MMS) /data/data/com.android.providers.telephony/databases/mmssms.db sms
E-mails (Gmail) /data/data/com.google.android.gm/databases/mailstore.<name@gmail.com>.db messages
Google Hangouts /data/data/com.google.android.talk/databases/babel1.db messages
WhatsApp Messenger /data/data/com.whatsapp/databases/msgstore.db messages

2.2 SQLite Databases

SQLite is an open source software library that implements
a lightweight Structured Query Language (SQL) database
engine for embedded use [14, 15]. The lightweight design
of SQLite does not require a separate server and thus
allows for the quick processing of stored data by reading
and writing directly to a disk file [16]. The main database
file, <database name>.db or <database name>.db3,
consists out of a complete SQL structure that includes
tables, indices, triggers, and views [16]. To support the
SQL structure, the main database file is divided into one or
more pages and each page share the same size [17]. The
first page of the main database file is called the header page
and is composed of the database header and the schema
table. The database header stores structural information
and the schema table contain the table information of
the database. The pages following the header page are
structured as B-trees and store the actual data [18].

During transactions, SQLite stores additional information
in a second file called either a rollback journal or
write-ahead log (WAL) file [17]. The rollback journal
is the default method of SQLite to implement an atomic
commit and rollback. Beginning with SQLite version
3.7.0, the new WAL approach was introduced and allowed
for improved speed and concurrent execution. The
WAL approach preserves the original content in the main
database file and appends changes to a separate WAL file
(<database name>.db-wal), which contains a header and
zero or more WAL frames. Transferring the transactions
from the WAL file to the main database file is called
a “checkpoint”. When a checkpoint occurs the updated
or new pages in the WAL file are written to the main
database file. The checkpoint operation leaves the WAL
file untouched, allowing the WAL file to be reused rather
than deleted [19]. SQLite does a checkpoint automatically
when a file reaches a size of 1000 pages [20].

SQLite databases are a popular choice for data storage in
Android applications [14]. An Android application, which
uses SQLite, separately includes the SQLite databases
and this allows for reduced external dependencies and
minimized latency [21]. A lot of events taking place
on an Android smartphone generate valuable traces, for
example: call history, SMS/MMS messages, e-mails
(Gmail) and instant messages generated by Google
Hangouts (previously Google Talk) as well as WhatsApp
Messenger. A summary of the SQLite databases used to
store these traces, as well as the location of these databases

on an Android smartphone are provided in Table 1. The
examples used throughout the remainder of this paper
focus on the SQLite database of the Messaging application.

3. DETECTION OF MANIPULATED TIMESTAMPS

Timestamps of traces found on Android smartphones
are integral to digital investigations, especially if the
owner of the smartphone participates in criminal activities.
Collected timestamps allow the examiner to relate the
traces to some physical event and, more importantly,
establish a timeline depicting the chronological order
of events. Due to the importance of timestamps in
digital investigations, smartphone users, or even malicious
applications, can alter timestamps to compromise the
integrity of traces as evidence.

In order to detect manipulated timestamps, it is necessary
to understand the processes involved in the creation of
the timestamps. Understanding these processes provide
the required insight to manipulate timestamps found in
SQLite databases. The exploratory experiments conducted
throughout this paper can be categorised into two groups.
The first group of experiments observe normal operation
of SQLite databases while the second group focuses
on detecting changes occurring due to the manipulation
of timestamps found in the SQLite databases. All of
the experiments and observations were performed on a
Samsung Galaxy S2, running Android version 4.1.2 (Jelly
Bean). The experiments conducted are not limited to the
Samsung Galaxy S2 and can be performed on any other
Android smartphone.

3.1 Observing SQLite Databases

To understand the underlying structure of SQLite
databases and comprehend the operations involved in the
creation of timestamps, it is necessary to observe these
databases under normal conditions. Applications using
SQLite databases to store user-related data are located in
the /data/data/<application package name>/databases/
directories on an Android smartphone [22]. Observing
the SQLite databases located in the /data directory is not
permitted by default and is only accessible by rooting the
Android smartphone. The term rooting, which is similar
to the Jailbreaking of an iPhone, is often perceived as
a negative action [12]. Rooting an Android smartphone
merely means to escalate the current rights to root access
rights. Root access rights allow any user access to the
root directory (/) and provide the necessary permissions to
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take root actions [12]. The technical process of rooting
an Android smartphone is, however, beyond the scope
of this paper. The Samsung Galaxy S2, which is used
to observe the results of interacting with the SQLite
databases, is already rooted and therefore provides access
to the required databases.

The purpose of observing SQLite databases is to identify
how these databases react and function under normal
operations. The observations are made by monitoring
the directory containing the SQLite database while
simultaneously interacting with the database. Interactions
with the SQLite databases occur by sending messages,
such as text and instant messages, and making phone
calls. After conducting a set of 10 experiments using
the rooted Samsung Galaxy S2 smartphone, the final
conclusion of the observations led to the identification
of several changes occurring as a direct result of the
interaction with the SQLite databases. Firstly, from
the observations it is possible to infer that all of
the data received during the interactions are stored in
the <database name>.db-wal file. The data are only
transferred from the <database name>.db-wal file to the
<database name>.db file when reaching the limit of 1000
pages. Secondly, the timestamps associated with the data
are added as new entries, with a unique record identifier, at
the end of the database table.

A summary of the findings of observing the SQLite
databases is the identification of the files that are altered
during normal operations and the location where the
timestamps are stored in the tables. The insight gained
by observing the SQLite databases will assist with the
manipulation of timestamps.

3.2 Manipulation of Individual Timestamps in SQLite
Databases

Manipulation of timestamps found in SQLite databases
requires access to the correct files. Observations
from the previous exploratory experiments identified
the correct files to be the <database name>.db and
<database name>.db-wal files. Access to these files
requires the enabling of the Universal Serial Bus (USB)
debugging functionality [12]. Although the default setting
for USB debugging is “disabled”, going to Settings,
selecting Developer options and touching the checkbox
next to USB debugging will turn on this feature. Once
USB debugging is enabled, interaction with the root
directory can occur using the Android debug bridge (adb).
Android Debug Bridge is a versatile command-line tool
that communicates with a connected Android smartphone
[23]. To allow for complete access to the root directory,
adb is restarted with the command, adb root, to gain root
permission. Full access, with the necessary permissions,
has been established and it is now possible to manipulate
the timestamps in SQLite databases.

Manipulation of timestamps proceeds through three
individual phases: retrieve, manipulate, and return.
The first phase retrieves the required SQLite database

files from the Android smartphone. Since the sqlite3
command utility, which is required to interact with
the SQLite databases, does not come pre-installed on
Android smartphones [24], the SQLite databases must be
transferred to the local computer. The command, adb
pull <remote><local>, copies the specified file from
the Android smartphone to the local computer [23]. It
is necessary to repeat this command for both the main
database file, as well as the associated WAL file, which
cannot be edited directly. Retrieving both the main
database file and the associated WAL file ensures that all
the latest records are present. The list of commands to
retrieve these files is shown below:

• adb pull /data/data/<application package name>
/databases/<database name>.db
C:\<local folder>

• adb pull /data/data/<application package name>
/databases<database name>.db-wal
C:\<local folder>

Manipulating the timestamps found in the copied SQLite
database files is performed during the second phase.
A script is created to act as a malicious application
and randomly manipulate timestamps within the SQLite
database. During the execution of the script the main
database file is opened, allowing for a checkpoint to occur.
Once the execution of the script is completed, only the
main database file (<database name>.db) remains and
must be returned to the Android smartphone.

The final phase returns the modified SQLite database
to the Android smartphone. The command, adb push
<local><remote>, copies the specified file to the
connected Android smartphone [23]. To prevent the
changes from being over-written by the existing data
in the <database name>.db-wal file, the file must be
removed. The first step is to start an interactive
shell using adb shell, followed by su, which provides
root permissions within the shell. The next command,
cd /data/data/<application package name>/databases/,
change the current working directory to the directory
containing the main database and associated WAL file.
Using the command rm <database name>.db-wal will
delete the WAL file from the directory. For the changes to
reflect on the Android smartphone, it is necessary to reboot
the device.

Using the Messaging application as an example, Figure
2 provides a snapshot of the messages before and after
the manipulation of the timestamps. The comparison
shows significant changes to the dates of specific messages
and an adjustment of the order of the messages. These
changes occur as a direct result of manipulating the
timestamps. Close observation during the manipulation
allow for the identification of the altered database files
(<database name>.db and <database name>.db-wal).
Examining the main database file shows that the individual
records are ordered incorrectly. These findings are further
discussed in the following section.
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(a) Original timestamps (b) Manipulated timestamps

Figure 2: Messaging application showing messages with the original (a) and manipulated (b) timestamps

3.3 Discussion of Findings and Identification of Heuris-
tics

The findings and observations of the exploratory exper-
iments, conducted to identify changes occurring due to
the manipulation of timestamps, can be categorised into
two groups. The first group contains a collection of
heuristics that identifies the presence of certain changes
in the Android file system, which are indicators of
the manipulation of the SQLite database. The second
group subsequently focuses on the individual SQLite
databases and the identification of inconsistencies in these
databases. The presence of specific file system changes as
well as inconsistencies in the associated SQLite database
indicates that the authenticity of the timestamps might be
compromised.

Android File System Changes: Android File System Flags
(AFS-Flags) are indicators of the potential tampering
of SQLite databases on Android smartphones. Each
AFS-Flag represents a change that occurs in the Android
file system due to the modification or removal of a SQLite
database or any other associated database files. The
presence of any of these AFS-Flags is not an indication
of the manipulation of timestamps but merely that the
SQLite databases have been tampered with. The following
four individual AFS-Flags offer guidance regarding the
tampering of SQLite databases:

• File permissions: associated with the SQLite
database files in the directory of a specific application
are set to give only read/write access to the file owner
and the group members. For each application, the
current file owner and group members are only the
individual application. Any modification or removal
of a file within this directory will change the existing
file permissions of the modified file from -rw-rw—-
to -rw-rw-rw-. The following changes to the file
permissions are therefore an indication of the possible

manipulation of timestamps in the SQLite databases:

– File permission of <database name>.db file
changed from -rw-rw—- to -rw-rw-rw-.

– File permission of <database name>.db-wal
file changed from -rw-rw—- to -rw-rw-rw-.

• Ownership: of the SQLite databases is given to
the specific application using the database. The file
owner and group members are thus set to the user
ID (UID) of the application, which is unique and
specific to the application. The UID remains constant
for the duration of the application on the particular
Android smartphone. Modifications to any SQLite
database files will result in a change of ownership
and subsequently change the UID of both the file
owner and group members. The following change to
the ownership of the main database file is a possible
indication of the manipulation the databases:

– The current ownership for the file owner and
group members of the <database name>.db
file changed from the current UID to root.

• File Size: of the main database file is expected to be
smaller than the size of the associated WAL file, since
all new transactions are appended to the WAL file.
The size of the main database file is only expected
to grow after a checkpoint, when all the transactions
from the WAL file is transferred to the main database
file. A checkpoint, however, occurs only after the
WAL file accumulated 1000 entries (leading to a
file size of approximately 4MB), and thus the size
of the main database remains relatively small. An
automatic checkpoint occurs when the main database
file is opened to allow for the manipulation of the
timestamps. The WAL file must be deleted to prevent
the changes made in the main database file from being
overwritten by the existing content located in the
WAL file. Once the Android smartphone is rebooted
to reflect the changes, a new WAL file is automatically
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(a) Before manipulation of the mmssms.db (b) After manipulation of the mmssms.db

Figure 3: Comparison of changes in the directory containing the SQLite database for the Messaging application

generated. This new WAL file contains limited data
and thus has a file size that is smaller than the size
of the main database file. A WAL file with a file size
smaller than the size main database file is therefore
an indication of the possible manipulation of that
database.

• System Reboot: is required for the changes
made to the SQLite databases to reflect on the
Android smartphone. The system reboot must occur
after making the changes to the SQLite database.
Therefore the timestamps of the files associated with
a system reboot will follow after the timestamp that
shows when the main database file was last modified.
Multiple experiments revealed that the following files
are indicators of a system reboot:

– rtc.log file located in the /data/log/ directory.

– powerreset info.txt file located in the /data/log/
directory.

– SYSTEM BOOT@[timestamp].txt file generated
in the /data/system/dropbox/ directory.

– event log@[timestamp].txt file generated in the
/data/system/dropbox/ directory.

Android log data are written to certain files in
the /data/log/ directory [25]. Two files, rtc.log
and powerreset info.txt, are existing files in this
directory. These files are updated with a new
entry after every system reboot and every entry
shows the boot time of the Android smart-
phone. The files, SYSTEM BOOT@[timestamp].txt
and event log@[timestamp].txt, are located in the
directory /data/system/dropbox/ [26, 27]. This folder
is used by a service known as DropBoxManager
(unrelated to the DropBox cloud storage service)
and persistently stores chunks of data from various
sources such as application crashes and kernel log
records [26]. The SYSTEM BOOT@[timestamp].txt
file is generated consistently at boot time, with the
timestamp forming part of the file name showing
when the Android smartphone was booted. The other
file, event log@[timestamp].txt, is generated at 30
minute intervals and also indicates the time when
the Android smartphone was rebooted. A system
reboot occurring closely after the modification date
of a SQLite database provides a possible indication of
the modification of timestamps. A system reboot can,
however, occur at any time after pushing the modified

Figure 4: The /data/log/ directory containing the rtc.log and
powerreset info.txt

main database file onto the Android smartphone and
is thus necessary to establish a time frame in which
this particular AFS-Flag will be deemed reliable.

Figure 3 provides a comparison of the changes that
occurred in the directory containing the SQLite database
that stores the SMS/MMS messages. Figure 3 (b)
indicates the existence of three AFS-Flags. The first
AFS-Flag is the file permissions of both the mmssms.db
and the mmssms.db-wal, which changed from -rw-rw—-
to -rw-rw-rw-. The second AFS-Flag is the ownership
for both the file owner and group members of the main
database file that changed from radio to root. The final
AFS-Flag is the file size of the mmssms.db-wal, which is
smaller than the size of the main database file, indicating
that the mmssms.db-wal file was possibly deleted.

Figure 4 shows that the rtc.log and powerreset info.txt files
were last modified at 15:28 on May 6 and Figure 5 presents
the contents of a SYSTEM BOOT@1430918940293.txt,
which indicates that a reboot occurred at 15:29 on 6
May. All three files illustrate that a reboot occurred
approximately at 15:28 on May 6, which follows after the
last modified date of the main database file (15:27 on May
6). The existence of these files verifies that a system reboot
occurred after pushing the modified main database file onto
the Android smartphone.

The presence of all four AFS-Flags indicates the possible
manipulation of timestamps within the SQLite database
storing the SMS/MMS messages. Identification of these
manipulated timestamps requires the analysis of the
SQLite database for potential inconsistencies.

SQLite Database Inconsistencies: SQLite databases
are the prominent choice for data storage in the
Android OS. The association of one or more AFS-Flags
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Figure 5: The SYSTEM BOOT@[timestamp].txt file is generated
after a reboot

with a specific SQLite database indicates the potential
manipulation of the stored timestamps. Detection of the
manipulated timestamps requires the further analysis of
the SQLite database for any potential inconsistencies. An
inconsistency in a SQLite database is described as a record
that is listed incorrectly when ordered according to the
following fields: primary key and a field containing dates
or timestamps. The identification of inconsistencies in the
tables of SQLite databases requires the evaluation of the
above mentioned fields.

The tool selected to perform the evaluation is SQL.
SQL is a powerful query language, allowing for the
formulation of queries that can be of forensics use [28].
The evaluation of the tables available in the SQLite
databases proceeds through three steps and use the
following SQL statements: CREATE TABLE, INSERT
INTO, and SELECT. To preserve the integrity of the data
stored in the original table, a new temporary table is
created using the CREATE TABLE statement. The purpose
of the CREATE TABLE statement is to define the physical
structure of the new temporary table [29]. The temporary
table contains a primary key, which is an integer value
that auto-increments, and all the fields that are necessary
to identify the inconsistencies. The query to create the
temporary table is as follows:

CREATE TABLE temp (new id INTEGER PRIMARY KEY
AUTOINCREMENT, original id INTEGER, timestamps
INTEGER);

Following the creation of the new temporary table is the
population of this table with all the records currently
located in the original table, which is being investigated.
To perform this action, a combination of the INSERT
INTO and SELECT statements is used. The SELECT
statement selects all the records from the table currently
under investigation while the INSERT INTO statement
inserts these selected records into the temporary table.
Continuing with the SMS/MMS SQLite database of the
Messaging application as an example, the SQL query
required to copy the records from the sms table into the
temporary table is as follows:

INSERT INTO temp (original id, timstamps) SELECT id,
date FROM sms;

To locate any inconsistencies in the records collected in
the temporary table, it is necessary to compare the values
in the timestamps field of subsequent records. Since all
the values in the timestamps field are expected to follow
one another (each new record is appended at the end of

the table), the difference between two subsequent values
in the timestamps field must be smaller than or equal to
zero. A positive difference is an indication of a timestamp
that is out of order and the cause of this inconsistency is
the manipulation of the timestamp. The SQL query used
to detect the records that are inconsistent is as follows:

SELECT T1.original id, T1.timestamps, (T1.timestamps
- T2.timestamps) AS difference FROM temp T1, temp T2
WHERE T2.new id = T1.new id + 1 AND difference>0;

Applying this SQL query to the records in the temporary
table leads to the identification of multiple inconsistencies
in the SMS/MMS SQLite database. The existence
of these inconsistent records in the SMS/MMS SQLite
database invalidates the authenticity of the database.
The examiner must thus decide whether to exclude the
manipulated records from the investigation or only focus
the investigation around the manipulated records.

4. REFERENCE ARCHITECTURE FOR ANDROID
APPLICATIONS

The exploratory experiments conducted during this
research identified two categories of heuristics that
can be used to establish the authenticity and accuracy
of timestamps in SQLite databases. The successful
application of these heuristics depends, however, on the
following two external factors. Firstly, the skills of the
smartphone user or the sophistication of the malicious
application performing the manipulation can influence
the availability of the heuristics. Smartphone users or
the malicious application may be aware of the changes
that occur due to the manipulation of timestamps in
SQLite databases. To prevent detection, these changes
can be removed or altered in an attempt to thwart the
examiner performing the investigation. Secondly, the
timeframe between the manipulation of the timestamps
and the seizing of the smartphone can also influence the
availability of certain AFS-Flags. An extended timeframe
can cause specific AFS-Flags (such as File size and System
reboot) to be deleted or be overwritten by the Android
OS. The aim of these heuristics is to assist with the
identification of manipulated timestamps and not other
forms of digital evidence.

Due to the limitations of the identified heuristics, it
becomes necessary to explore other techniques that can
also be used to establish the authenticity and accuracy
of digital evidence. Identifying such techniques requires
a deeper understanding of Android applications, which
is responsible for creating the evidence. It is possible
to obtain such an understanding by designing reference
architecture for Android applications. A reference
architecture captures the common architectural elements
as well as the relationships between these elements for
a specific domain [30]. Using a reference architecture
to model Android applications allow the examiner to
comprehend how the digital evidence originated and
whether the evidence is authentic and accurate. While
reference architectures exist for many domains such as
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Figure 6: Structured Analysis and Design Technique notation

web browsers [31] and web servers [32], this is the
first reference architecture, to the best of the authors’
knowledge, which allows for the modelling of Android
applications.

The design of the reference architecture is accomplished
by using the Structured Analysis and Design Technique
(SADT). SADT is a graphical language for describing
systems by using a set of diagrams consisting primarily
of boxes, which are interconnected by arrows. The boxes
represent a specific function or system activity and the
interconnected arrows provide external interfaces to the
defined function or system activity. The external interfaces
are the following [33, 34]:

• Input represents data or other consumables required
for functioning.

• Output is the results produced by the function or
system activity.

• Control influences or regulates the execution but are
not consumed.

• Mechanism is a component used to accomplish the
function or system activity.

The notation of SADT, as defined above is used in this
paper to illustrate the reference architecture for Android
applications (see Figure 6).

Designing a reference architecture for Android appli-
cations requires the examination of a wide variety of
existing Android applications. This paper closely focused
on the Messaging application, which allowed for the
identification of certain architectural elements as well
as the relationship between these elements. In order
to confirm whether the identified architectural elements
and the relationship between these elements are prevalent
among other applications, additional Android applications
were also thoroughly examined. The examination of these
Android applications led to the discovery two common
architectural elements: application activity and SQLite
databases.

The application activity is responsible for launching the
graphical user interface and initialising the logic of
the Android application. The graphical user interface,
structured according to a specified layout and styled
following a certain theme, accepts as input an action, along
with optional data, from the end user. The graphical user
interface is therefore the space where interactions between
end users and the Android application occur and accepts
specific sets of input, which leads to expected results.
The application logic contains the work-flow logic of the
Android application and executes the received input to
produce results accordingly.

The data involved in the requested action is transferred and
retained in a SQLite database. This includes the original
data supplied by the end user during the admission of the
action and a timestamp, indicating when the action was
performed. The retention of the data proceeds according
to the policies or set guidelines of the SQLite library [35],
which describes what data will be stored, how such data
is stored and for how long it will be kept. The SQLite
library receives the incoming data and transforms the data
according to the rules and requirements of both the SQLite
library and SQLite database. Once transformed, the data
is retained in the <database name>.db-wal file until the
WAL file reaches the limit of 1000 pages. Once the limit
is reached, the SQLite library transfers the data to the
<database name>.db file.

The reference architecture for Android applications
consists of two core components: application activity
and SQLite database. The final reference architecture
for Android application is shown in Figure 7. The
purpose and ultimate goal of the reference architecture is
to organise conventional Android applications according
to a standardised model. From this standardisation,
an examiner conducting a digital forensics investigation
can establish certain particulars regarding the Android
applications currently under investigation. Using the
newly designed reference architecture, a collection of
general characteristics regarding Android applications can
be identified:

• The Android application must first receive an action
from the end-user

• Only after receiving the action can changes be made
to data retained in the SQLite database.

• Each individual application accepts a limited selec-
tion of inputs.

• Each input contains an action and possibly optional
data.

• Every input, along with the action and optional data,
leads to expected results.

• The action to be executed by the Android application
is provided by the end user, who is either a human
operator or another application.
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Figure 7: Reference Architecture for Android Applications

Figure 8: Modelling of the Messaging application according to the Reference Architecture

• Data is expected to flow from the application activity
to the SQLite database.

• The data is transformed according to the SQLite or

database rules and inserted into the WAL file.

Any findings by the examiner that contradicts the above
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general characteristics are possible indications of the
inaccuracy and unreliability of digital evidence produced
by the Android application.

Continuing with the Messaging application as an example,
the newly designed reference architecture can now be used
to model the application (see Figure 8). The mapping of
the Messaging application onto the reference architecture
allows for the identification of the core components of
the application as well as the flow of data between these
components. The modelled architecture of the application
can now be used to evaluate the authenticity of the stored
data by determining if any of the general characteristics
are violated. Firstly, the data is only available in the
main database file (mmssms.db) and not, as expected, in
the WAL file (mmssms.db-wal). The omission of the
data in the WAL file shows that the data flow between
the application activity and the SQLite database has
been violated. Secondly, reviewing the usage log of
the Messaging application shows that the input was not
provided by the end-user. These findings thus confirm
the inaccuracy of the digital evidence associated with
the Messaging application. It is therefore possible to
conclude that the data stored by the Messaging application
is possibly changed or altered.

The modelling of Android applications according to the
reference architecture thus provides support to examiners
involved in ongoing investigations. Using the reference
architecture the examiner is capable of establishing the
authenticity and accuracy of any digital evidence related to
the modelled Android application. The insight offered by
the reference architecture will lead the examiner to come
to the correct conclusions regarding the investigation, since
potentially incorrect digital evidence, such as manipulated
timestamps, can be eliminated before concluding the final
report. The reference architecture is, however, limited to
Android applications only and can’t be used to model other
software applications.

5. DISCUSSION AND FUTURE WORK

The exploratory experiments performed while composing
this paper showed that the timestamps found in SQLite
databases can be manipulated by following the technique
described in Section 3.2. This technique is currently
the most plausible technique to manipulate timestamps
in SQLite databases. Although other techniques can be
designed, the inability to directly alter the data in the WAL
file and the unavailability of the sqlite3 command utility
on an Android smartphone will limit the capabilities and
impact the efficiency of other techniques.

To establish the authenticity of timestamps found in
SQLite databases and detect the potentially manipulated
timestamps, this paper introduced two categories of
heuristics. The first group of heuristics determine the
authenticity of timestamps by evaluating the file system
for specific changes and the second group identifies
inconsistencies in the SQLite databases. These heuristics
are independent of an Android smartphone and does not

require any prerequisites to be installed on the Android
smartphones prior the investigation. The purpose of the
heuristics is to give examiners an indication of whether
the timestamps collected in SQLite databases were
tampered with. The results presented by the heuristics
allow the examiner to establish the authenticity of the
timestamps. Based on the authenticity of the timestamps,
the examiner can decide to either include or disregard
the evidence, associated with the evaluated timestamps,
in the investigation. The heuristics are therefore capable
to save crucial time during the investigation and allow the
examiner to arrive at correct and accurate conclusions. The
experiments provided throughout this paper showed that
all of the identified heuristics are capable of providing
the examiner with the necessary support to establish the
authenticity of timestamps in SQLite databases.

The current collection of heuristics only focuses on
detecting the manipulation of timestamps found in SQLite
databases. Manipulation of timestamps can, however,
occur at multiple locations. The time zone settings of
an Android smartphone, which can be set incorrectly
or be changed (intentionally or unintentionally), can
influence the accuracy of the timestamps found in SQLite
databases. Besides the time zone settings, the actual
time of the Android smartphone can also be manually
adjusted by disabling the automatic time synchronisation
feature. Manual adjustments of the time will impact
the timestamps that are generated for the traces stored
in the SQLite databases when certain events occur on
the Android smartphone. It is therefore necessary to
incorporate the evaluation of the time zone and time
settings of an Android smartphone.

The availability of the identified heuristics can, however,
be influenced by external factors and therefore this paper
also introduced a reference architecture for Android
applications. The newly introduced reference architecture
serves as a template to model a diverse collection of
Android applications. To allow for such diversity,
the reference architecture captures only the essential
components found in modern implementations of Android
applications and identifies the relationships between these
components. The simplistic design of the reference
architecture clearly and concisely describes the role of
each component, allowing for easy comprehension of
the modelled Android application. The design of the
reference architecture is flexible, providing the ability
to model Android applications at different levels of
complexity. Depending on the architecture of Android
applications, the components of the reference architecture
can be combined or expanded to more closely represent
the modelling of a specific Android application. The
reference architecture therefore serves as a valuable
template for examiners to gain a better understanding of
Android applications. Modelling any Android application
according to this reference architecture allows examiners
to easily comprehend the related digital evidence and
provide the necessary insight to determine the evidence’s
authenticity and accuracy.
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Future work will therefore continue to expand this
research, exploring different avenues to further establish
the authenticity and accuracy of digital evidence. Firstly,
the existing collection of heuristics will be extended by
identifying additional heuristics that can establish the
authenticity and accuracy of timestamps. Such heuristics
will include the evaluation of the time zone and time
settings of a seized Android smartphone. Secondly, the
current focus is only on determining the authenticity and
accuracy of timestamps. It is thus necessary to broaden
the focus and also include other forms of digital evidence.
Lastly, the existing reference architecture will be extended
to include the modelling of other forms of applications
software. The reference architecture will also be validated
using mathematical notation to ensure the architecture
applies to more complex scenarios.

6. CONCLUSION

Evidence found, in the form of traces, on smartphones
form an important asset of digital investigations. The
timestamps associated with the traces allow the examiner
to construct a timeline of events. Such a timeline often
forms the basis for further investigation and has the
ability to provide answers to certain questions. Due
to the importance of timestamps, it is necessary for
examiners to be able to verify their authenticity. Collected
timestamps might be incorrect due to tampering and
without additional verification; the timestamps will lead
the examiner to make unreliable conclusions. To verify
the authenticity of timestamps found in SQLite databases,
this paper introduced a collection of heuristics that can
be categorised into two distinct groups. The first group
of heuristics identifies the presence of certain changes
in the Android file system, which is indicator of the
manipulation of the SQLite databases. The second
group of heuristics subsequently focuses on the individual
SQLite databases and the identification of inconsistencies
in these databases. The availability of these heuristics
are, however, susceptible to external factors and therefore
a reference architecture for Android applications was
also introduced to further establish the authenticity and
accuracy of digital evidence. The challenges addressed
in the paper were to show that (a) timestamps can be
manipulated in SQLite databases, (b) identifying that the
authenticity of these timestamps has been compromised
and (c) overcoming the limitations of techniques used
to identify the compromised timestamps. Challenge
(a) was addressed by showing the process that must
be followed to successfully manipulate timestamps in
SQLite databases, challenge (b) was addressed by using
the identified heuristics and challenge (c) was addressed
by introducing a newly designed reference architecture
for Android applications. The current paper provides
preliminary evidence that the suggested approach shows
potential and future work will focus on expanding this
research.
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