
South African Journal of Geomatics, Vol. 5. No. 2, September 2016 

227 

Evaluating Spectral Indices for Winter Wheat Health Status 
Monitoring in Bloemfontein using Lsat 8 data 

 

Zinhle Mashaba1,3, George Chirima1, Joel Botai2,3, Ludwig Combrinck4,3,  

Cilence Munghemezulu3 
 

1GeoInformatics Division, Agricultural Research Council, Pretoria, South Africa 
2South African Weather Services, Pretoria, South Africa 

 
3Centre for Geoinformation Science, Department of Geography, Geoinformatics and 

Meteorology, University of Pretoria, Pretoria, South Africa 
 

4 Hartebeesthoek Radio Astronomy Observatory, Krugersdorp, South Africa 

 

Email: mashabaz@arc.agric.za, Tel: (+27) 012 310 2692 
 
http://dx.doi.org/10.4314/sajg.v5i2.10 

Abstract 

Monitoring wheat growth under different weather and ecological conditions is vital for a 

reliable supply of wheat yield estimations. Remote sensing techniques have been applied in the 

agricultural sector for monitoring crop biophysical properties and predicting crop yields. This 

study explored the application of Land Surface Temperature (LST)-vegetation index relationships 

for winter wheat in order to determine indices that are sensitive to changes in the wheat health 

status. The indices were derived from Landsat 8 scenes over the wheat growing area across 

Bloemfontein, South Africa. The vegetation abundance indices evaluated were the Normalised 

Difference Vegetation Index (NDVI) and the Green Normalised Difference Vegetation Index 

(GNDVI). The moisture indices evaluated were the Normalised Difference Water Index (NDWI) 

and the Normalised Difference Moisture Index (NDMI). The results demonstrated that LST 

exhibited an opposing trend with the vegetation abundance indices and an analogous trend with 

the moisture indices. Furthermore, NDVI proved to be a better index for winter wheat abundance 

as compared to the GNDVI. The NDWI proved to be a better index for determining water stress in 

winter wheat as compared to the NDMI. These results indicate that NDVI and NDWI are very 

sensitive to LST. These indices can be comprehensive indicators for winter wheat health status. 

These pilot results prove that LST-vegetation index relationships can be used for agricultural 

applications with a high level of accuracy. 
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1.  Introduction 

Wheat is a staple food for most South Africans after maize, and thus, contributes significantly 

to the agricultural economy of the country (Meyer & Kirsten, 2005). When the Wheat Board of 

South Africa was abolished in 1997, wheat markets were deregulated (Meyer & Kirsten, 2005). 

Consequently, farmers diverted to other economically sustainable crops due to the ensued low 

profitability of wheat (Breitenbach & Fényes, 2000). Furthermore, climate change and climate 

variability affected wheat production causing economic instabilities for farmers, especially those 

in rural communities who depend solely on rain-fed agriculture as their main source of sustenance 

(Tadross et al., 2005). Subsequently, wheat production declined in South Africa over the years 

(Breitenbach & Fényes, 2000). The downward trend in production has necessitated monitoring the 

wheat health status. 

 
 

Remote Sensing is an essential tool for estimating crop biophysical variables. Particularly, the Land 

Surface Temperature (LST)-vegetation index relationship, which is related to the canopy health (Huete 

et al., 1997). However, this relationship has been applied mainly for studying Urban Heat Islands, land 

use change, and urban expansion (Jiang & Tian, 2010; Guo et al., 2012). Parida et al., (2008) reported 

that the MODIS derived Soil Moisture Index (SMI) computed from LST-Normalised Difference 

Vegetation Index (NDVI) relationships is linked to rice yields; low SMI values were associated with a 

decline in rice productivity. Johnson et al., (2014) linked corn and soybean yields to LST and NDVI 

for the Corn Belt region in the United States. The study documented that corn and soybean yields were 

positively correlated with NDVI, and had a negative correlation with daytime LST in the middle of 

summer. With the application of the LST-vegetation index relationship, water stress and vegetation 

abundance can be studied earlier during the growing season. This can help farmers modify their 

irrigation programs or applications of fertilisers, pesticides or herbicides to improve wheat growth at 

stressed areas. This approach can prevent or minimise crop losses and enhances agricultural 

productivity. 

 

Classification methods and crop growth models are widely used for crop monitoring. These 
 
methods use remotely sensed satellite images to classify farmland into different classes (Ji-hua & 
 
Bing-fang, 2008). Principally, supervised and unsupervised classification methods have been 
 
reliable for this purpose (Abuzar et al., 2000; Kuenzer & Knauer, 2013). The approach can be used 
 
for the identification of farms, which have healthy or unhealthy crops. The main challenge of the 
 
above methods is discriminating pixels, which correspond to a certain crop type when there are 
 
mixed land uses (Löw & Duveiller, 2014). Crop growth models are used to simulate the 
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biophysical processes, which take place in the soil, crop and atmosphere to understand the growth 
 
and development of a crop (Doraiswamy et al., 2004). Crop growth models are commonly linked 
 
with remote sensed data for crop monitoring applications (Moulin et al., 1998). The limitations of 
 
crop  growth  models  are  that  they  are  less  accurate  when  applied  in  non-optimal  growing 
 
conditions. This limitation is breached by coupling crop growth models with remotely sensed data 
 
(i.e. Leaf Area Index (LAI)) to represent the actual growing conditions (Clevers & van Leeuven, 
 
1996). Crop models often require input data that might not be available for a particular site for 
 
example, solar radiation (Hoogenboom, 2000). 
 
 

The aim of this research was to explore indices suitable for monitoring winter wheat health status 

based on the LST-vegetation index relationship. This application is important because numerous 

studies have focused on using the LST-NDVI relationship for monitoring global vegetation health or 

responses of vegetation to drought. However, these studies have not evaluated the performances of 

other spectral indices for such purposes (Kawabata et al., 2001; Julien et al., 2006; Raynolds et al., 

2008; Julien et al., 2009; Karnieli et al., 2010; Swain et al., 2011; Son et al., 2012). Few studies have 

focused on using the LST-vegetation index relationship for a specific crop, for example Nemani et al., 

(1993). Thus, research questions addressed in this study are: can the LST-vegetation relationships be 

applied for wheat health status monitoring? Which spectral indices are best related to LST for wheat 

health status monitoring? Moisture indices and vegetation abundance indices derived for Landsat 8 

were evaluated against LST. The index sensitive to winter wheat can then be applied in predicting 

wheat yields in advance before harvesting or even modifying farm management practices during the 

season for better yields at harvest. 

 
 

The limitations of the study were that some of the Landsat 8 images were contaminated with cloud 

cover. Furthermore, because of crop rotations, some of the wheat farmers were not planting wheat at 

the same places consistently. This limited the samples and Landsat 8 images, which could be analysed. 

Although, this study could be extended with a longer time series, the Landsat 8 satellite was only 

launched recently, in 2013. Another challenge is that optical remote sensing is adversely affected by 

Precipitable Water Vapour (PWV) in the atmosphere, which can limit the amount of energy recorded 

by the optical sensor. Thus, reducing the contrast between the visible and near-infrared spectrum 

(Srivastava et al., 2014). This affects the potential of detecting optimal values for the derived 

parameters. Most studies do not correct for PWV (e.g., Julien & Sobrino, 2009; Jiang & Tian, 2010; 

Guo et al., 2012). This correction requires accurate determination of the PWV at the area of interest. 

Techniques such as Global Navigation Satellite Systems (GNSS) and Radiosondes can provide PWV 

parameters at millimeter accuracy (Combrink et al., 2007). However, the instrumentation involved 
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are costly to be directly applied to optical remote sensing unless a dedicated campaign is 

established. As the Trignet Network increases its density and the GNSS stations are collocated 

with meteorological stations, PWV values will be easily accessible to the general public (Hackl et 

al., 2011). 

 

1.1 Spectral Indices 
 
 

Spectral indices (Table 1) make it possible to model relationships between vegetation variables 

and reflectance data (Cohen et al., 2003). The Normalised Difference Vegetation Index (NDVI) is 

a commonly used spectral vegetation index. Through the use of NDVI, crop properties such as leaf 

biomass, canopy cover, chlorophyll content, nitrogen content, and leaf area are understood 

(Chavez & Mackinnon, 1994, Gamon et al., 1995). The NDVI is best applied in sparse canopies 

as it loses its sensitivity in moderate to dense canopies (Gamon et al., 1995). 

 
 

The Green Normalised Difference Vegetation Index (GNDVI) is a modified version of NDVI, 

which substitutes the green band in place of the red band in the NDVI equation. The GNDVI is 

sensitive to the chlorophyll concentration in vegetation when the leaf area index is moderately 

high. Therefore, GNDVI overcomes the problems with saturation, which NDVI exhibits for some 

vegetation types at later growth stages because it is more sensitive to low chlorophyll 

concentrations (Gitelson et al., 1996). 

 
 

The Normalised Difference Water Index (NDWI) is a moisture index for determining 

vegetation water content (Jackson et al., 2004). The index is designed to enhance the reflectance 

of water by using the green wavelengths, decreasing the low reflectance of NIR by water features 

and taking into account that vegetation and soil features have a high reflectance of NIR (McFeeters, 

1996). 

 
 

The Normalised Difference Moisture Index (NDMI) is correlated to the canopy water content 

and is an indicator of water stress (Hardisky et al., 1983). The NDMI uses the near infrared band, 

which is for the detection of reflectance of leaf chlorophyll content, and the mid-infrared band for 

the detection of the absorbance of leaf moisture (Wilson & Sader, 2002). This index is not as 
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widely applied due to the complexity of interpreting indices that use the mid-infrared band as 
 
compared to other indices, which use the red and near-infrared bands (McDonald et al., 1998). 
 

 

Table 1. Landsat 8 derived spectral indices applied for wheat health status determination 

 

 

Index 
 
Normalised 
 

Difference 
 

Vegetation Index 
 
Green Normalised 
 

Difference 
 

Vegetation Index 
 
Normalised 
 

Difference Water 
 

Index 
 
Normalised 
 

Difference Moisture 
 

Index 

 

 

Equation 
 

NDVI  
 B 5 - B4 

 

B 5  B4 
 

 
 

GNDVI  
B 5 - B3 

 

B 5  B3 
 

   
 

NDWI  
  B 3 - B6 

 

     

 

B 3  B6 
 

  
 

NDMI  
 B 5  B6 

 

 

B 5  B6 
 

  
 

 

 

Reference 
 
Elmore et al., (2000) 
 
 
 

 

Moges et al., (2004) 
 
 
 

 

Xu (2006) 
 
 
 

 

Jin & Sader (2005) 

 
 
 

The LST-vegetation index space provides a comprehensive view of vegetation dynamics. There 

is a negative relationship between LST and vegetation indices (Nemani et al., 1993). This 

relationship can be applied to study the spatial variation of LST and vegetation indices for the 

determination of surface soil moisture or evapotranspiration (Julien & Sobrino, 2009). This is done 

by deriving drought indices such as the Temperature Dryness Vegetation Index (TDVI) from the 

LST and NDVI feature space for drought monitoring applications (Sandholdt et al., 2002). The 

slope of the LST-NDVI is closely related to the evapotranspiration of a surface. Thus, an increase 

in evapotranspiration causes the soil moisture and NDVI to decline whereas, dense vegetation has 

more evapotranspiration and a lower LST (Prihodko & Godward, 1997; Boegh et al., 1998). 

Additionally, the LST-vegetation relationship can be applied for vegetation monitoring (Julien and 

Sobrino, 2009). This is done by mapping the land cover and land use change patterns (Jiang & 

Tian, 2010). 
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1.2 Study Area 
 
 

Bloemfontein covers an area of about 6300km2 in the Free State province of South Africa (see 

Figure 1). The region is semi-arid and experiences summer rainfall from January to March with a 

mean annual precipitation of approximately 421 mm per annum. Temperatures are low in winter 

(minimum of -5°C) and high (maximum of 35°C) in summer. The average altitude is less than 

1200 m above sea level (Moeletsi, 2011). During the study period there were 50 farms, which had 

planted wheat. Of the 50 farms, 24 had planted wheat in the same area consistently for both years 

(2013 and 2014). A buffer of 2km was applied to these 24 sample points to eliminate samples, 

which are close to each other, to obtain the final samples depicted in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Location map of Bloemfontein within Free State Province. The sample points are 

illustrated by the red-dots and the wheat farms are represented by the green polygons 
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2.  Data and Methods 
 

 

2.1. Data Acquisition and Data Pre-processing 
 
 

Landsat 8 scenes, depicted in Table 2 for Bloemfontein were acquired from the United States 

Geological Survey (USGS) site. Landsat 8 images for day of year 180 and 183 for both 2013 and 

2014 were selected as wheat is at its greenest during this period. 

 

Table 2. Landsat 8 scene for Bloemfontein selected for the study (http://earthexplorer.usgs.gov/) 
 

 

Path/row DOY Latitude Longitude Sun elevation Scene cloud 

    (°) cover (%) 
      

171/80 180 -28.8691 26.22283 29.71951 0.03 

171/80 183 -28.8691 26.22283 29.53000 2.63 
 
 
 
 

 

Landsat 8 images were preprocessed by doing radiometric calibration, for the conversion of 

digital numbers (0 – 255) to radiances. The thermal bands, band 10 (thermal infrared 2) and band 

11 (thermal infrared 2) of Landsat 8 were converted to Top of Atmosphere (TOA) spectral radiance 

for each of the bands using the Interactive Digital Language (IDL) according to: 

 

  L   MLQcal  AL ,  [1] 
 

where, L is the TOA spectral radiance (Watts / (m2*srad*μm)), ML is the multiplicative 
 

    
  

rescaling factor for band 10 and 11, Qcal is the quantised and calibrated standard product pixel values 

for band 10 and 11 and AL is the additive rescaling factor for band 10 and 11. The band multiplicative 

rescaling factor had a constant value of 0.0003342 and a constant additive rescaling factor of 0.1 

according to the metadata file for both thermal bands. Atmospheric corrections were done using the 

Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) in the ENVI software, 

this tool converts the radiance collected at the detector to radiance at the surface (Cooley et al., 2002). 

These images were used for the computation of Land Surface Temperature. 
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Reflectances were computed from the Landsat 8 digital number images to radiometrically 

calibrate them for the derivation of spectral indices using IDL. The TOA planetary reflectance’s 

were computed individually for bands 3 (green), 4 (red), 5 (near infrared) and 6 (short wave 

infrared 1) using: 

 

 
 

'  M Q  
 

 p cal  
 

 
 
Ap 

 

. 

 

[2] 

 
 
 

In Equation [2], ’ is the TOA planetary reflectance, M 
p is the multiplicative rescaling factor 

 

   
for band 4, 5 and 11, Qcal  quantised and calibrated standard product pixel values for band 4, 5 and 

 

11, 
A 

is the additive rescaling factor for band 4, 5 and 11. Additionally, corrections for the Sun  p 
  

angle had to be made, according to: 
 
 
 

  
 

 
 

  '  
 

       

   
(sin  

 

) 
 

      

     SE  

         

where,  is the TOA planetary reflectance with correction for Sun angle, 
 

planetary reflectance and SE is the Sun elevation angle. 
 

 
 
 
 
 
 
 
 

 

’ 

 
 
 
 
 
 
 
 

 

is the TOA 

 
 

 

[3] 

 

2.2. Computing the Land Surface Temperature and Vegetation Indices 
 
 

The TOA radiance images (Lλ) were used to calculate the brightness temperature. However, 

both images had different values for the thermal conversion constants according to the metadata 

file, these were taken into account during the computation. The brightness temperature was 

calculated individually for both band 10 and band 11 according to: 

 

T   K 
2  

   

   
 

B   K     
 

   1 1    L  

        
 

 
 
[4]
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where, K2 is the thermal conversion constant (band 10: 1321.08 and band 11: 1201.14), KI is the 
 

thermal conversion constant (band 10: 774.89 and band 11: 480.89) and L is the TOA spectral 

radiance (Watts / (m2*srad*μm)) (Artis & Carnahan, 1982). Thereafter, the land surface 

temperature was computed for band 10 and band 11 separately using the brightness temperature 

images (Equation 5) according to Artis & Carnahan (1982): 

 

   T  
 

T     B 
 

     

s 1  ( T  / ) ln   

  
 

  B  
 

 

 

[5] 

where,  is the wavelength of emitted radiance (11.5×10-6 m),   hc /  , h is Planck constant 

(6.626×10-34  Js),  c  is the velocity of light (2.998×108 m/s),   is the Boltzmann constant 

(1.38×10-23 J/K) and  is the surface emissivity. The emissivity had to be taken into account, this 
 
was assumed to be 0.99 because NDVI falls between the range of (0.2< NDVI > 0.5) (Sobrino et 

al., 2004), hence, the fractional vegetation proportion (Pv) was not necessary to calculate. 

 

0.990 (NDVI  0.2, NDVI  0.5) 
 

 
0.004Pv  0.986 (0.2  NDVI  0.5) 

 

 
 

 
 
 
[6] 

 

 

The NDVI, GNDVI, NDWI and NDMI spectral indices were computed from the reflectance 
 
images 

 
' 

 
using IDL according to Table 1. 

 
 
2.3. Statistical Analysis 
 
 

Least squares linear regression models were developed in R-Studio for the LST-vegetation 

index relationships. The LST was considered to be a dependent variable and the vegetation indices 

were considered to be independent variables. The coefficient of determination (R2) was calculated 

to determine the fit of the linear models. The p-value was calculated to determine the significance 

of the relationships. The Root Mean Square Error (RMSE) evaluate the validity of the models. 

Thereafter, the scatterplots were made to understand the LST-vegetation index slope and the 

distribution of the sample points. 
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3. Results and Discussion 
 

 

3.1 Spatial Variation of the LST-vegetation Index Relationships at a Farm Level 
 
 

The spatial distribution of LST and the vegetation indices for selected winter wheat farms are 

illustrated in Figure 2. The LST is low at vegetated wheat farms, whereas, the NDVI and GNDVI 

are high at these wheat farms, the opposite trend is observed for fallow or harvested farms. This 

observation is expected for wheat; healthy vegetation reflects more radiation in the near infrared 

section of the solar spectrum as compared to the visible section because this portion absorbs 

chlorophyll. Additionally, healthy vegetation emits less thermal radiation in the infrared section 

because of cooler transpiration from the canopy (Kogan et al., 2005). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. The performance of each vegetation index for winter wheat at a farm level against LST 
 

(units are in Kelvin). The farms were selected as examples from the wheat farms in Figure 1. 
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The moisture indices are positively related to LST and indicate that wheat farms, which are 
 
flourishing have a high moisture content. Since Bloemfontein is characterised by summer rainfall, 
 
this could be indicative that these areas have a higher residual soil moisture during the winter 
 
season because of a high water table. These qualitative relationships were verified statistically. 
 

 

3.2 Statistical Analysis of the LST-vegetation Index Relationships 
 
 

The results of regression analysis between LST and vegetation indices are depicted in Table 3. 

Through the use of R2, moderate correlations were observed between LST and NDVI for the selected 

vegetation indices. The LST and NDWI exhibited a strong correlation for the selected moisture indices. 

The LST-GNDVI and LST-NDMI both had a moderate correlation. This indicated that the LST-NDVI 

relationship and the LST-NDWI relationship were better estimates of the wheat health status. The 

correlations were not the same over the years, this could be a result of changes in the soil conditions 

due to agricultural management practices and fluctuations in the weather patterns. Significance levels 

were calculated in order to determine the relationship between LST and the vegetation indices. Most 

of the derived linear relationships indicated a good level of significance with p-values less than 0.05 

for all the years (Table 3). The RMSE values were lower in 2014 compared to 2013, this indicated 

improvements in the accuracy of the models. 

 

The scatterplots in Figure 3 are for the winter wheat sample points displayed in Figure 1. The 
 
scatterplots indicate a decrease in the wheat health status from 2013 to 2014 because the values 
 
for LST and the spectral indices for the sample points decreased over these years. Steeper slopes 
 
on the LST-vegetation index plots are observed on periods of reduced soil moisture and vegetation 
 
amount (Goetz, 1997). The slope of the LST/vegetation index scatterplots were negative consistent 
 
with previous research. Nemani et al. (1993) observed a negative relationship between NDVI and 
 
LST for grasses, crops, and forests, and established that fractional canopy cover was an important 
 
variable in controlling surface temperatures. Hope (1988) observed a negative relationship when 
 
determining the actual canopy resistance for wheat by combining the remotely sensed spectral 
 
reflectance and land surface temperature. Weng et al. (2004) observed a negative relationship 
 
between cropland and land surface temperature. These relationships arise due to the cooling effects 
 
of canopy transpiration (Kogan et al., 2005). The use of the LST-vegetation relationships for crop 
 
health status monitoring described in this research can be used to replace the Crop Water Stress 
 
Index (CWSI), which is more computationally intensive as it requires the computation of the 
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vegetation  index-temperature  trapezoid  (Moran  et  al.,  1994;  Clarke,  1997).  However,  the 
 
disadvantage of using remotely sensed imagery is that they give an indication of the crops water 
 
status only during the time the image was taken, therefore, it is important to select an image at the 
 
critical  growth  stages.  Overall,  this  research  has  proven  that  the  LST-vegetation  index 
 
relationships can be used for wheat health status monitoring and has determined the best indices 
 
which comprehensively describe wheat health. 
 

 
Table 3. The LST-vegetation index regression models, coefficient of determination (R2) and 
significance level for winter wheat 
 
 

 Relationship Year Regression Model R2 Significance RMSE 
     (p-value) (°C) 

 LST-NDVI 2013 LST=-8.890*NDVI+ 0.3552 0.03160 1.4548 
   289    

  2014 LST=-9.841*NDVI+ 0.6200 0.00140 0.8617 

   292    

 LST-GNDVI 2013 LST=-15.462*GNDVI+ 0.2810 0.06238 1.5361 
   293    

  2014 LST=-12.485*GNDVI+ 0.4124 0.017195 1.0714 

   294    

 LST-NDWI 2013 LST=-25.734*NDWI+ 0.6502 0.00087 1.0715 
   275    

  2014 LST=-19.110*NDWI+ 0.8949 0.000001 0.4532 

   281    

 LST-NDMI 2013 LST=-9.855*NDMI+ 0.5269 0.00497 1.2461 
   286    

  2014 LST=-8.256*NDMI+ 0.7916 0.00004 0.6381 

   289    
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Figure 3. The LST-vegetation index scatter plots for 2013-2014 at the selected sample points 
 

(LST unit is Kelvin). The LST-vegetation index plots have negative relationships 
 

 

4.  Conclusion 
 

This research was important because wheat is one of the staple crop for South Africa. With 

Landsat 8 derived remotely sensed data, the indices sensitive to changes in wheat health were 

identified. The LST has an inverse relationship with the vegetation abundance indices, this 

indicates that healthy wheat releases more transpiration as compared unhealthy wheat. Nemani et 

al., 1993 observed this negative trend for grasses, crops, and forests. Steeper slopes on the LST-

vegetation index plots were observed on periods of reduced soil moisture and vegetation amounts 

consistent with the slope Goetz (1997) observed in mixed grassland sites. The NDVI and NDWI 

proved were suitable indices for monitoring the wheat health status as compared to the GNDVI 

and NDMI. A better fit was observed for the moisture indices as compared to the vegetation 

abundance indices. To improve these findings, more sample points can be added depending on 

how consistently farmer’s plant wheat at the same areas. The performance of other vegetation 

indices can be compared with the ones used in this research. These pilot results indicate that the 

LST/vegetation index relationships can be applied to monitor wheat health status in the 

Bloemfontein area at the critical stages of growth. Through the use of the LST-vegetation index 

relationship, farmers can mitigate conditions hampering wheat growth such as a lack of moisture, 

fertiliser, pesticides or herbicides at stressed areas. 
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