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ABSTRACT Software defined networking (SDN) brings about innovation, simplicity in network manage-
ment, and configuration in network computing. Traditional networks often lack the flexibility to bring into
effect instant changes because of the rigidity of the network and also the over dependence on proprietary
services. SDN decouples the control plane from the data plane, thus moving the control logic from the
node to a central controller. A wireless sensor network (WSN) is a great platform for low-rate wireless
personal area networks with little resources and short communication ranges. However, as the scale of
WSN expands, it faces several challenges, such as network management and heterogeneous-node networks.
The SDN approach to WSNs seeks to alleviate most of the challenges and ultimately foster efficiency and
sustainability in WSNs. The fusion of these two models gives rise to a new paradigm: Software defined
wireless sensor networks (SDWSN). The SDWSN model is also envisioned to play a critical role in the
looming Internet of Things paradigm. This paper presents a comprehensive review of the SDWSN literature.
Moreover, it delves into some of the challenges facing this paradigm, as well as the major SDWSN design
requirements that need to be considered to address these challenges.

INDEX TERMS Software defined wireless sensor networks, software defined networking, wireless sensor
networks.

I. INTRODUCTION
The development of smart sensors in recent years has given
traction to the advancements of wireless sensor networks.
Wireless sensor networks (WSN) consist of micro-sensors
capable of monitoring physical and environmental factors
such as temperature, humidity, vibrations, motions, seismic
events, etc. The sensor nodes are small, inexpensive, and
intelligent [1] owing to the drastic improvement in Micro
Electrical Mechanical Systems (MEMS) development. The
emergence of the Internet of Things (IoT) paradigm has
augmented the scope of WSNs demand, further cultivating
the ongoing research in this field. IoT is a network of smart
objects interconnected through a communicationmedium [2].

WSNs are expected to play a significant role in IoT, since
the sensor nodes are the main building blocks of this con-
cept [3]. An estimated 50 billion devices are envisioned to be
connected to the network by 2020 [4], and most of them will
be equipped with sensors and actuators. Thus WSNs will be
pivotal to the efficacy of IoT.

WSN consists of sensor nodes deployed in a structured or
unstructured manner over a chosen area of interest. A typical

sensor node consists of a power unit, radio, sensing unit,
and a processing unit [5]. Networking these nodes presents
several challenges due to device constraints, e.g. limited com-
putational capability, energy, data storage and communica-
tion bandwidth. Thus WSNs in their current state would not
be able to meet the demands of the IoT unless appropriate
solutions to these challenges are found. Many studies have
identified SDN as a potential solution to theWSN challenges,
as well as a model for heterogeneous integration.

Software defined networking (SDN) is an emerging net-
work paradigm that separates the control logic from the
network device (switch or sensor node), leaving the device
with only data forwarding functionality. The SDN model
addresses most of the challenges besetting WSNs, especially
the energy constraint, which is a determinant of the network
lifespan. In SDN, most of the energy intensive functions are
removed from the physical node to a logically centralised
controller. The nodes become devices with no intelligence as
functions such as routing, major processing and management
are handled at the controller or application level. SDN also
enables flexible network management, which is also a key
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element in IoT. SDN is also regarded as a way of introducing
formal methods into networking [6]. Formal methods are
mathematical techniques used to manage complex computer
systems through abstraction and modularity. The application
of SDN in WSN gives rise to Software Defined Wireless
Sensor Network (SDWSN).

A Software Defined Wireless Sensor Network (SDWSN)
is a new emerging paradigm for Low-Rate Wireless Personal
Area Networks (LR-WPAN). It is realised by infusing the
SDN model into a WSN. The SDN model has been applied
in a variety of enterprise solutions i.e. data centres, network
function virtualization (NFV) and enterprise networks. NFV
is another concept closely related to SDN which virtualises
network functionalities for flexible provisioning, deployment
and management.

The application of SDN principles in WSN is envisaged
to cultivate a latent efficiency of WSN, which despite the
hype that came with it about a decade ago is yet to be
realised. Most of the challenges are attributed to the limited
resources that WSNs possess. Also, WSNs have always been
considered to be application specific [7]. This results inWSN
being prone to resource underutilization. For example, two
or more WSNs are deployed for specific applications in an
overlapping physical space, while a single WSN could have
achieved the same objectives. SDWSN is a good approach to
improve efficiency and sustainability of WSNs and to foster
interoperability with other networks; it is also envisaged to
play a critical role in the looming internet of things.

The application of SDN has intensified over the years
as different network and computing platforms seek to seize
its benefits. SDN has received significant attention in net-
works such as mobile networks, enterprise networks, wireless
networks, optic networks; and computing models such as
cloud computing, fog computing, mobile cloud computing,
mobile edge computing in an effort to enable the Inter-
net of Things. There are several survey papers for both
the WSN and SDN respectively, but not the combination.
WSN surveys dates a while back and have been improved
with time and can be found in [1] and [8]–[10]; more
recently Khan et al. [11] reviewed the prospect of WSN vir-
tualization. Surveys in [12]–[18] provides a comprehensive
review of SDN in enterprise and wireless networks, whereas
Li and Chen [19] research pertains to SDN and NFV. Surveys
in [20]–[26] review the application of SDN in cloud, fog,
mobile cloud, and mobile edge computing. The surveys
in [22] and [27] review SDN application in IoT, further-
more Bizanis and Kuipers [28] review the conjunction of
SDN and NFV for IoT. These surveys highlight the state
of the art work pertaining to SDN in a holistic view of
the IoT narrative; however, a review of the current state
of SDN in WSN (SDWSN) does not exist yet. To the
best of our knowledge, currently there is no survey which
deals comprehensively with the concept of SDWSN. How-
ever, there are few papers, such as [3], [7], and [29]–[31],
which specifically deal with some individual components
of SDN that could be applied to an SDWSN composition.

Haque and Abu-Ghazaleh [32] conduct general review of
SDN based wireless networks including Cellular Network,
WSN, Wireless Mesh Network and Home Networks. In con-
trast, this paper discusses the imperative role of SDN in
WSN; other related concepts are also analysed conjunctively
with SDWSN in respect of IoT for future inter-networking.
A comprehensive analysis of different aspects of SDWSN is
undertaken where design requirements are extracted. These
design requirements are amended with some of the research
challenges identified and presented for future consideration;
to our knowledge, this is the first review paper to do so.

In this paper, we present a comprehensive survey on
the emerging Software Defined Wireless Sensor Networks.
We start by providing an overview of the SDN model
in section II. This is followed by current challenges in WSNs
in section III, and the potential importance of SDN in address-
ing WSN’s inherent challenges in section IV. In section V,
we discuss other related networking concepts. Section VI
presents a review of the five major aspects of SDWSN: archi-
tecture, routing, network management, security and stan-
dardisation. Different kinds of controller implementations
are reviewed in section VII. Future research challenges and
major design requirements for SDWSN are highlighted in
section VIII and section IX respectively. Section X concludes
the paper.

II. OVERVIEW OF SOFTWARE DEFINED NETWORKS
Software defined networking (SDN) is a new networking
paradigm that aims to simplify network management and
configuration. SDN offers a complete paradigm shift from
traditional networking. It seeks to greatly improve network
efficiency through high level novel abstractions. SDN decou-
ples the network intelligence, the control plane, from the
packet forwarding engine, the data plane. The separation
enables a provision of centralized network intelligence at
the controller, which has a global view of the network [33].
SDN introduces benefits such as vendor independence, het-
erogeneous network management, reliability and security not
possible in traditional networks [12], [13], [16], [34], [35].
While SDN was initially earmarked for large-scale enterprise
networks, it has the potential to impact on any networked
system. The rest of this section briefly discusses some of the
major aspects of SDN, namely the architecture, protocols,
standards, applications and security.

A. ARCHITECTURE
Traditional networks, which typically consist of routers and
switches as network devices; become difficult to monitor and
upgrade as the network grows, thus stifling growth. Large
networks also become heterogeneous due to the use of differ-
ent proprietary protocols, which fundamentally means they
consist of different network islands that only cooperate at
lower levels of communication [13], [33], [36]. This makes
it difficult to implement any policy changes, upgrades, and
patches. Traditional networks are also mostly hierarchical,
tree based and static, which leads to what most have termed
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TABLE 1. Common SDN protocols.

‘‘ossification’’ [13]. Ossification refers to a phenomenon of
conforming to the conventional way of networking where
everything is coupled on the network device.

A SDN network typically consists of a centralised control
plane and highly dispersed data plane (depending on the
deployment). The control plane houses the decision making
intelligence of the network, responsible for control and man-
agement [33]. After the process of decoupling the routers
become more like data forwarding switches, with routing
decisions made by the controller within the control plane. The
controller enables ad hoc management, easier implementa-
tion of new policies, seamless protocol upgrades or changes,
global visualization and the avoidance of middle-boxes such
as firewalls, load balancers, intrusion detection systems, etc.
Recent research shows that the deployment of middle-boxes
is growing on par with network routers [37]. The control
plane also offers a high level of abstraction and provides an
interface to the application plane.

The data plane on the other hand is responsible for packet
forwarding. The data plane devices store the rules that guide
them on how to handle the packets when they receive them.
The rules are implemented and enforced at the control plane.

FIGURE 1. The basic SDN framework with the three planes and a central
controller.

The SDN architectural framework consists of three layered
components, as shown in Fig. 1. These components are inter-
connected by various APIs. The first component is the appli-
cation plane. The application plane interfaces with the various
network applications. The second component is the control
plane, which houses the control software. The last component
is the data plane (infrastructure plane). This consists of the
network devices. The communication between the control

and the application planes is defined by APIs referred herein
as the northbound (NB) interface, while the southbound (SB)
interface refers to the communication between the control and
the data plane.

B. PROTOCOLS AND STANDARDS
To achieve a high integration of heterogeneous networks,
the protocols in between the architectural planes need to be
standardised. Recent research has focused on the develop-
ment of both the southbound and northbound API standard-
isation, with more focus on the southbound API [13]. The
standard development organisations are detailed in [12].
The two most popular southbound interface specifica-
tions are Forwarding and Control element separation
(ForCes) [38], [39] and OpenFlow [40]–[42]. They both con-
form to the principle of decoupling the control and the data
plane, but are fundamentally different [13]. Table 1 below
compares the two protocols. ForCes, which is developed by
the Internet Engineering Task Force (IETF) working group,
consists of two components the Forwarding Element (FE) and
the Control Element (CE). The FE handles the packets while
the CE executes control and signal functions and also sends
instructions to the FE on how to handle the packet. ForCes
use the concept of a Logical Function Block (LFB), which
resides inside the FEs. The LFB has a specific function (such
as routing) to process the packets [43], and enables the CE to
control the FE [13].

OpenFlow, which is developed by the Open Network
Foundation (ONF), is by far the most common southbound
interface. Although ForCes is deemed more powerful and
dynamic than OpenFlow, the latter’s penetration and adoption
in the industry has upstaged ForCes on many fronts [44].
Some literature even deem OpenFlow the principal [14]
and de facto [13] protocol for SDN networks. This paper
focus more on OpenFlow due to its prevalence and influ-
ence on SDN based developments. Before the standardisation
of ForCes, OpenFlow was the only standardized protocol
that allowed direct manipulation of the data plane by the
controller [43].

The OpenFlow protocol is flow based, thus each switch
maintains a flow table (which can be altered dynamically
by the controller), which consists of flow rules (entries) that
determine the handling of packets [30], [38], [41]. Flow
entries mainly consist of match fields, counters and instruc-
tions/actions. The match field entry is used to match the
incoming packets. The match determinants are the packet
header, ingress port and metadata [40]. Counters collect flow
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statistics such as the number of received packets, number
(size) of bytes and the duration of the flow. The instruction
field determines what action should be taken upon a packet
match [13]. When a packet is received, the header is extracted
upon which the relevant fields are matched against the flow
table entries. If they match, appropriate actions are applied
and if more than one entry match is found, prioritization,
based on the highest degree of match, applies [13], [40].

FIGURE 2. Basic packet forwarding flow in OpenFlow [40].

If no match is found, then appropriate rules are actioned,
i.e. drop the packet, pass it to the next flow table or send
it to the controller for new rules to be made [13]. Fig. 2
depicts the basic flow of a packet in OpenFlow highlighted
by [45] and [46]. OpenFlow consists of three classes of
communication: controller-to-switch, asynchronous and
symmetric [13]. Controller-to-switch is used for configura-
tion, programming and information retrieval and is from the
controller to the switches. Asynchronous communication is
initiated by the switch to the controller and is about packet
arrivals, changes, errors, etc. Symmetric communication is
send without the initiation (solicitation) from either the con-
troller or the switch, examples of which are echo packets.

C. APPLICATIONS
SDN has been applied in varied environments such as enter-
prise campus networks, data centres and cloud computing
services.

Enterprise networks are traditionally large and ever
expanding at a rapid pace. As the networks grow, the demand
for security and better performance becomes a necessity.
Campus networks in particular are very dynamic and fre-
quently require a change in policies. SDN simplifies this
complex task of making changes by enabling network wide
defined policies to be mapped and programmed onto under-
lying network devices. Another advantage in SDN networks
is the elimination of middle-boxes, which can now be imple-
mented inside the controller [13] or in the application plane,

thus cutting costs of deployment and maintenance [47].
In data centres, many big companies have already imple-
mented SDN architecture to simplify their service provi-
sion. SDN has also been used to build private wide-area
networks (WAN) connecting data centres successfully, e.g.
B4 by Google [48]. The issue of virtualisation and cloud
computing services has also necessitated a shift from con-
ventional data storage towards SDN-oriented data storage and
management [14].

Other applications of SDN are in software defined
radios, cellular networks, and wireless networks. In SDN
radios, OpenRadio [49] has been proposed, which aims to
enable programmability on the PHY and MAC layer [34].
Odin [50] tackles the issue of Authentication, Authorisation
and Accounting in the enterprise Wireless Local Area Net-
work (WLAN) services. SDN is also applied in cognitive
radios for dynamic spectrum access [51], [52]. In cellular net-
works, OpenRoads [53] presents an approach of introducing
SDN based heterogeneity in wireless networks for operators.
In wireless networks, SDN has been proposed in wireless
mesh networks [54], [55]. On campus networks SDN oriented
OpenFlow networks have been implemented [54], [56], [57].
Another area which is the crux of this paper, is wireless sensor
networks [14], [32], [56], [58].

D. SECURITY
The SDN paradigm presents new security challenges.
By virtue of a centralised control, security concerns are intro-
duced [59]. Two areas are potential targets [60], the centrali-
sation of the network intelligence and the risk of controlling
the network through a software amid their susceptibility to
bugs and other vulnerabilities. The authors in [60] further
identify seven potential security attacks on SDNs:

1) Forged or faked traffic flows.
2) Vulnerabilities in switches.
3) Control plane communication.
4) Vulnerabilities on the controller.
5) Lack of mechanisms ensuring trust between controller

and the switch.
6) Vulnerabilities on the administration station.
7) Lack of trusted resources for forensic and remediation.
Ali et al. [36] propose a multi-pronged security response

in SDN networks of threat detection, remediation and cor-
rectness to enhance security in SDNs, as well as security as a
service by which anonymity methods are implemented.

Most SDN security measures consist of various verifica-
tion and validation models. Fresco [61] defines an application
layer and a security kernel on top of the network operating
systemNOX [62] controller, which interface with the security
applications and ensures that their policies are implemented.
NOX is the OpenFlow controller that allows management
and network control applications to be written as central-
ized programs through a high level programmatic interface.
As multiple applications get implemented, FortNox [63] was
developed to alleviate potential conflicts posed by varying
applications. It achieves this by setting priorities according
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to different roles of authorization. Human administrators are
assigned highest priority, followed by security applications,
and then followed by non-security applications [63]. Accord-
ingly, a non-security application would not be able to alter a
policy or rule implemented by a human administrator.

PermOF [64] is a permission control system used to grant
different permission privileges to SDN applications. The
changing of network conditions affects the network verifi-
cation measures. Beckett et al. [65] propose an assertion
language based on the VeriFlow [66] algorithm to enable
verification and debugging of the SDN applications with
dynamic verification conditions. VeriFlow debugs faulty
rules inserted by SDN applications before they harm the net-
work. Flover [67] is another verification system that ensures
that new security policies do not violate the existing security
policies within the OpenFlow network. FlowChecker [68] is
a configuration verification model which ensures that Open-
Flow rules are consistent within flow tables as well as with
other flow rules residing in other switches in a federated net-
work. The SDN security verification solutions are explained
in detail in [36] and [59].

III. WSN CHALLENGES
It is worth noting that WSNs, albeit their great potential, are
yet to reach their optimal effectiveness. This is largely due to
the inherent challenges that they exhibit and the ever growing
scope of demand from applications. These challenges have
ignited much research interest in the past decade. Some of
the main challenges are listed below.

A. ENERGY
Energy conservation is central to the development of WSNs.
Since sensor nodes run on a limited battery [1]; it is vitally
important to use energy wisely and efficiently to significantly
prolong the lifespan of the network. In other instances, the
energy source could be replenished through solar and other
means. However as WSNs grow, it could get difficult to
replenish the power source which could lead to the complete
disposition of the sensor nodes as envisioned in [10]. This
would however depend on the terrain of deployment and this
remains an open research and design consideration.

The main cause of power consumption in sensor nodes is
largely attributed to sensing, communication and data pro-
cessing. There have been several attempts in dealing with
the energy question in WSNs and this section provides an
overview of some of the main research directions thus far.

There are many type of applications in WSNs and each
application has its own power needs [5]. The most common
approach in reducing high sensing energy consumption is
through sporadic sensing [5]. The sensing unit is used only
on demand and is put in idle mode when not in use (inactive
mode). Radio communication also consumes a huge chunk
of power [8], it involves data transmission and reception.
Putting the radio communication in a sleep mode when there
is no data exchange efficiently saves considerable amount
of energy. This is called ‘‘duty-cycling’’ [5]. The internal

computation of data is another area where energy saving
measures has been applied. Anastasi et al. [5] propose that
communication should be traded off with computation, i.e.
reducing the communication overhead by performing more
computation. Different solutions have thus been suggested
to intelligently deal with local data processing to minimise
energy usage. The most common is data aggregation [1], [4]
where data is internally compressed before it is sent to
the controller. Another approach is to disregard redundant
data from neighbouring sensor nodes [4]. Mobility-driven
approaches have also been suggested where a specific mobile
sensor node collects the data from static sensor nodes and
sends it to the controller, thereby saving energy on the static
nodes. The topology of the network also plays a crucial role
in energy. Sparse placement of nodes uses a lot of energy
because the communication range between nodes is long [1].

B. COMMUNICATION
Communication in WSN is through a wireless medium
guided by different IEEE specifications operating under the
unlicensed industrial, scientific and medical (ISM) frequency
bands. IEEE defines the PHY and MAC layer for Low-
Rate Wireless Personal Area Networks (LR-WPAN). IEEE
802.15.1 (Bluetooth) and 802.15.4 are the two most viable
protocols for WSNs. These protocols have to coexist mutu-
ally with other wireless protocols operating on the same ISM
band such as IEEE 802.11a/b/g (WLAN) and IEEE 802.15.3
(ultra-wideband: UWB). WLAN and UWB are not ideally
suited for resource constraint wireless sensors. WLAN and
UWB are high bandwidth wireless communication technolo-
gies for devices with high processing power and consistent or
easily rechargeable power sources.

Bluetooth is a short-range wireless communication tech-
nology based on the IEEE 802.15.1 specification [69]. The
earlier version of Bluetooth (Classic) had high power con-
sumption and wasn’t entirely suited for LR-WPAN devices.
Bluetooth Low Energy (Bluetooth Smart) is an ultra-low
power consumption protocol enhancement of the Blue-
tooth technology, which also increases the communication
range [70]. Bluetooth uses two topologies: Piconet and Scat-
ternet. Piconet is formed by one or more Bluetooth devices,
referred as slaves connected to another Bluetooth device serv-
ing as a master. A Scatternet is a cluster of several Piconets.
The only drawback with Bluetooth is with regards to its
scalability.

IEEE 802.15.4 [71] was developed to address the require-
ments of the LR-WPAN , particularly ad-hoc wireless sensor
networks. This standard was proposed specifically for net-
works with low power consumption, low deployment cost,
less complexity and short range communication, while main-
taining a simple protocol stack [1], [10]. The physical layer
supports three frequencies, i.e. 2450 MHz, 915 MHz and
868 MHz [10]. The MAC layer defines two types of nodes
that participate in WSN: Reduced Functional Nodes, which
only act as a sensor end device, and Full Functional Nodes,
which can act as both the network coordinator and network
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end device. Network coordinators provide synchronisation,
communication and network joining services, while end user
devices are the actual sensor nodes. Table 2 below enlists the
IEEE 802.15.1 and 802.15.4 specifications, which forms the
basis of many other protocol standards.

TABLE 2. IEEE 802.15.4 specification [71].

 IEEE 802.15.4 IEEE 802.15.1 (BLE) 

  Layers Physical Physical 

MAC MAC 

Frequency 868/915 MHz
2.4GHz 

2.4GHz

Range 10 to 20m 10m to 100m 

Data rate 0.25Mbps 1Mbps 

Addressing  8bit or 16bit 16bit 

Devices 100+ 7+ 

The communication range between the WSN nodes is very
short, up to 10 to 20meters [72]. The data rate is also very low,
at around 250kbps. The low data rate could cause congestion
problems especially in large and highly active deployments,
which could affect the overall throughput and latency of
the network. AlthoughWSNs are traditionally delay-tolerant,
this is likely to change with the introduction of IoT.

The ZigBee standard is built on top of IEEE 802.15.4
and defines the communication of the higher layer protocols:
Network, Transport and Application. There has been a lot of
work on communication with some researchers even propos-
ing cross layer communication to save energy [1]. Despite
all the great efforts, most communication protocols are yet to
propel WSNs to optimal efficacy levels. The TCP/IP protocol
in particular was considered too heavy for sensor nodes to
handle [1], [7], which resulted in addressing challenges. The
lack of addressing led to an identity problem particularly
on large scale deployment until the introduction of the new
IPv6 addressing for Low-Rate Wireless Personal Networks
(6LoWPAN). Although that could potentially resolve the
intra WSNs communication, inter communication remains a
challenge in view of the heterogeneity in IoT framework.

WirelessHart is another WSN standard based on IEEE
802.15.4 for process automation and control [1], [73], [74].
ISA 100.11a is also an IEEE 802.15.4 based standard
designed for low data rate wireless monitoring and process
automation networks [1], [73]. 6LoWPAN standard enables
the IEEE 802.15.4 based devices to communicate using
IPv6 [1], [75]. Table 3 highlights some of the current IEEE
802.15.4 based standards.

C. ROUTING
WSN topologies are unstructured and therefore many
traditional routing protocols are not suitable. Also, the fact
that they are not IP-based makes routing a very challenging
yet interesting aspect. The routing is based on the network
layer as defined by IEEE 802.15.4. WSN routing protocols
should be lightweight owing to the limited resources that
these networks exhibit. WSN routing protocols are clas-
sified in greedy forwarding, data centric, energy oriented,

TABLE 3. WSN standards based on IEEE 802.15.4

localisation and flood based. Greedy forwarding forward
packets to neighbours close to the destination [1]. These
kind of protocols are more effective in dense deployments
as opposed to sporadic/intermittent deployments [1]. Data
centric protocols are attribute based, i.e. they are based on
a particular attribute such as temperature, and these help in
removing redundant data [76]. They normally use compres-
sion and aggregation to route packets. Flooding is a com-
mon technique in wireless networks where a node reactively
broadcasts hello/control packets to its neighbours for possible
route determination. It is argued that this method suffers
‘implosion’’, ‘‘overlap’’ and ‘‘blindness’’ [76]. Implosion is
when redundant messages are received from different nodes.
Overlap is when neighbouring sensor nodes, which observe
the same attributes, send similar information. Lastly, they
are resource blind because their routing is incognisant of
the resource constraints. Energy efficient algorithm protocols
will choose neighbours with high energy levels to route the
packets [76]. Localization based algorithms use GPS or any
other localization models [77] to localize neighbours in the
network and base their routing on that.

The transport layer protocol handles issues such as con-
gestion, packet loss and memory capacity. All these factors,
if uncontrolled, waste energy to the detriment of the network.
The main goal of the transport layer is thus to minimize
congestion and achieve high reliability [1].

D. SECURITY
WSNs, like other wireless networks, are susceptible to
security threats. Some of the security measures and
suitable cryptographic algorithms are discussed in [1].
Furthermore [72], [78], and [79] have identified the funda-
mental security requirements that must be reached in WSNs:
Data Authentication, Data Confidentiality, Data Integrity,
Availability and Redundancy.

To attain the above security goals, WSNs have to deal
with different threats that they are susceptible to [80]. WSN
attacks can be classified into three categories: goal-oriented,
performer-oriented and layer-oriented [81], [82].
Goal-oriented attacks comprise of passive and active

attacks. A passive attacker monitors and listens to the
communication channel and gather sensitive information,
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but does not interfere nor interrupt the network operation.
An active attacker, in contrary, monitors, listens and modi-
fies the data, thus interrupts the functioning of the network.
Some of the active attacks are DoS, Blackhole/Sinkhole,
Wormhole, Hello Flood, Sybil, Modification of data, Node
Subversion, Node Malfunction, Message Corruption, False
Node, Node Replication, Selective Forwarding, Spoofing and
Fabrication [79], [81]–[83].
Performer-oriented attacks comprise of outside and inside

attacks. Outside attacks occur when the adversary exhaust the
resources of the node by injecting bogus/unnecessary packets
causing a DoS. Inside attacks occur when a malicious node
acts legitimate and slowly wreak havoc of the network.
Layer-oriented attacks target the different layers of the

network stack [79], [82]. Physical layer attacks target the
radio operation of the node either through jamming or tamper-
ing. On the Data Link layer (MAC), the attacker deliberately
violates the predefined communication protocol. Network
layer attacks target the operation of the routing protocol, i.e.
attacks such as Sinkhole diverts all traffic towards an already
compromised node. On the Transport layer, the adversary
floods connection requests to a particular node to consume
its resources. Attacks on the application layer include data
corruption and malicious code.

Resource constraints are a major obstacle in implementing
optimal security measures in WSNs [1], [82], [84], [85].
There has been a lot of research activity on security counter
measures in recent times, with ‘low-resource’ cryptographic
measures at the forefront. Symmetric key cryptography solu-
tions are currently the most preferred, due to their lower
implementation cost and time efficiency. However, there are
major drawbacks in that keys are difficult to manage in
large networks, with each device requiring a shared key with
every other device it wishes to communicate with. Thus, if
a single key is used and one node gets compromised, the
entire network would be at risk. Although there have been
several attempts at improving symmetric key cryptography
for WSNs, as highlighted in [59], all the attempts come
at the cost of processing resources. Other challenges are
their resistance to scalability and difficulty to implement in
software [79], [82].

Asymmetric cryptography addresses some of the symmet-
ric cryptography drawbacks, e.g. key management would
be simplified, however they are considered too heavy and
computationally too expensive for the resource constrained
sensor nodes [79], [82], [85]. Recently more research has
focused on toning down these algorithms for WSN nodes as
in [82]. The symmetric methods requires less computation
but are not robust enough and on the other hand, asymmetric
methods offers a potential robustness but at a cost of com-
putation. These are subject to active research in search for
optimal solutions and thus remain an open challenge.With the
future direction of the WSNs seemingly converging to IoT,
Alcaraz et al. [86] note that it is important to have a global
perspective of security which do not only focus on WSN but
the entire IoT framework.

E. CONFIGURATION
Manual configuration of any network device is challeng-
ing and tedious especially when the network grows. Sensor
nodes need to respond swiftly to any change in the net-
work and thus need a dynamic configuration management.
Christin et al. [78] state that the role of sensor nodes could
extend to offer autonomous functions such as self-healing,
self-discovery, thus a more subtle and energy cognisant
approach is needed.

IV. IMPORTANCE OF SDN IN WSN
The advancement of WSNs is thwarted by the inherent prob-
lems that they exhibit. Although much work has been done
in an attempt to minimize these problems, there is not yet a
holistic solution, as each focuses on a particular problem in
isolation. It is thus very unlikely that these challenges could
be eradicated through the same approach of algorithms and
optimisations coupled with the ever changing specifications
and demands of interest. The SDN approach to WSNs is
envisaged to potentially solvemost of the inherentWSN chal-
lenges [7], [33], [87]. The most prevalent and critical WSN
problems can potentially be addressed by SDN as follows.

A. ENERGY
Energy constraint is a challenge in the development of
WSNs and it is by far the most important factor for con-
sideration in this area. Almost all research work in WSNs,
one way or the other, attempts to address the issue of
energy. Costanzo et al. [29] state that SDN in WSN should
support common energy conscious measures as currently
being explored in traditional WSNs such as duty cycling,
in-network data aggregation and cross layer optimization.
The SDN paradigm is handy because by virtue of decoupling,
the forwarding (switch) nodes are relieved from much of
the energy-intensive computational functionalities [33], [88].
An energy efficient sleep scheduling algorithm based on
SDN is proposed in [89]. Most of these energy consuming
functions will now reside in the controller, which has enough
power resources. This saves a considerable amount of energy
and could potentially prolong the network life. Heuristically
this is so but the degree of this assertion (prolonging) is yet
to be quantified and remains open for future research.

B. NETWORK MANAGEMENT AND CONFIGURATION
Network Management in wireless sensor networks is very
complicated and tedious. The network management chal-
lenges in WSNs are mostly inherent from traditional infras-
tructure networks, which include among others provisioning,
configuration and maintenance [33]. The SDN approach sim-
plifies network management considerably with its simplicity
and ability to evolve [29], [33]. In WSN, the reconfiguration
and maintenance of the sensor nodes tends to be a compli-
cated and tedious process if management is not flexible; this
is also exacerbated by the environments in which WSNs are
deployed. These challenges are alleviated by removing the
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control logic from the sensor nodes leaving them as mere
forwarding elements. These forwarding elements would now
be controlled and manipulated from the centralised controller
thereby enabling programmability on the physical infrastruc-
ture nodes [33]. SDN also enables a dynamicmapping config-
uration between the sensor nodes and the controllers (if more
than one controller is used) as illustrated with TinySDN [90].

C. SCALABILITY
The scalability of the WSNs is very important, especially
in the advent of the IoT, where SDWSNs are sought to
play a critical role. The WSNs become cumbersome as the
network grows to the detriment of efficiency. An abstrac-
tion based model of SDN would aid in keeping the topo-
logical organisation and efficacy of the network intact, thus
consigns the scalability oversight of the WSN to the SDN
controller. Although the SDN model traditionally relies on a
central controller, many efforts and strides have been made
over the years to distribute the control plane; ONOS [91],
Hyperflow [92], Difane [93], DevoFlow [94], Kandoo [95],
Disco [96], Pratyaatsha [97] and Elasticon [98] are some of
the distributed controllers.

D. ROUTING, MOBILITY AND LOCALISATION
Mobility and localisation are critical for better routing in
wireless sensor networks. Depending on the nature of deploy-
ment, there could be device mobility, which the network
should be able to deal with. Normally traditional routing
protocols will periodically update the routing table (proac-
tive) or otherwise source a route on request (reactive) in an
event of change. This process is energy intensive and is not
suitable forWSN networks. SDN simplifies this bymanaging
the mobility from the central controller i.e. routing decisions
and policies are managed at the controller [33]. Localisa-
tion algorithms, for example [99] can also be implemented
at the controller or at the application plane instead of the
resource constrained sensor nodes. This will aid with the
network topology discovery and subsequently better decision
making [33].

E. INTEROPERABILITY
WSNs have long been said to be application specific, which
leads to resource underutilisation [7]. This shortfall can be
resolved by using the SDN approach. SDN alleviates the
dependency from vendors by allowing infrastructure ele-
ments to be controlled from one central point, thus running
one protocol on the elements albeit from different
manufacturers.

F. COMMUNICATION
Physical communication is largely managed by the device,
but aspects such as media access and duty/sleep scheduling
could still be system wide decisions by the controller. The
duty cycling functionality could efficiently be managed by
the controller. SDN also enhances better control of hetero-
geneous network infrastructures. Thus the communication

between the SDWSN and other networks could adequately
be managed centrally.

G. SECURITY
The WSN security solutions discussed in section III.D above
are based on the coupled architecture of the sensor nodes. The
SDN’s decoupling renders them undesirable for the same pur-
pose, however these security measures could still play a vital
role being implemented on the control or application plane.
The centralisation of the security management simplifies the
implementation and configuration of security mechanisms.
This global perspective also enables proactivemonitoring and
evaluation, which leads to quick counter response in a event
of attack, i.e a malicious node. The traditional SDN security
challenges and counter measures are discussed in section
II.D. These measures apply to WSN to a certain extend
because WSNs have unique traits compared to traditional
networks.

A fundamental importance of SDN in WSN is that the
sensor node become dump element which only understands
controller messages or commands. This makes it difficult
and improbable to be used as conduit of malice. Another
advantage is on the basis that sensor nodes are the periph-
eral devices on the network; unlike traditional networks
where the host computers, which are peripheral could also
be security targets. The SDN model also enables flexible
configuration moving away from the cumbersome and error
prone manual process currently in place. As noted in [35],
[100], and [101], configuration errors could lead to security
vulnerability.

H. SUMMARY OF DISCUSSION
SDN possesses an immense potential to improve network
computing and WSNs, without an exception, also stands to
benefit. This section discussed the importance of SDN in
WSN with a focal point on pertinent issues, such as energy,
network management, security, configuration, mobility, rout-
ing, interoperability and scalability. SDN thus indeed alle-
viate most of the inherent WSN challenges and could bring
WSN to efficacy. However, there are issues of security due
to the centralisation of the control logic which could lead to
a single point of failure, as well as congestion and overheads
concerns, as all decision making are centralised. These con-
cerns are however mitigated by the provision of distributed
control platforms.

V. RELATED CONCEPTS
The future of Internet computing is currently a subject of
many concerted research in both the academia and industry.
At the centre of this subject is the concept of cloud computing
(CC), which has been largely accepted as the next generation
of computing infrastructure [25]. Cloud computing in a nut-
shell provides data, computational, and application services
to end users in the form of Data Centres, Infrastructure as a
Service (IaaS), Platform as a Service (PaaS), Software as a
Service (SaaS) and Hardware as a Service (HaaS).
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A. THE APPLICATION OF SDN IN THE RELATED CONCEPTS
The emergence of the IoT paradigm as a vital role player in
the advent of the ubiquitous connectivity of various devices
onto the cloud and the Internet added more complexities
which necessitates structural reconsideration. A plethora of
IoT devices are envisaged to dominate the Internet space in
the years to come. Thus the research community and the
industry are vigorously leading the course of finding archi-
tectures and models which would support the IoT upsurge,
one such an enabling model being SDN.

There has been a plethora of studies (with industrial
intervention) synergising SDN with CC and IoT such as
in [21], [102], [103], and [104]–[107] respectively. The major
characteristics of IoT are low latency, long lived connec-
tion, location-awareness, geographical distribution, wireless
access, mobility and heterogeneity [108]. In contrast, cloud
computing services inherently have challenges of fluctuating
latency, lack of mobility and location-awareness [24], [108].
This ushered in the need to move some of the processing
closer to the devices to improve network response efficiency.
Fog Computing, conceptualised by Cisco in 2012 [4], extends
the cloud computing service provisioning to the edge of the
network. It is regarded as a ‘‘highly virtualised platform that
provides computation, storage and network services between
end devices and traditional cloud servers’’ [23], [24], [108].
Although Fog computing refers to ‘‘edge’’ in its defini-

tion; it should not, as is often the case, be confused with
Edge Computing which in essence extends Fog computing
further to the end devices. Thus, it devolves some process-
ing, analytics and decision making to end devices and also
allows them to communicate and share information. Fog
computing could also be applied in conjunction with SDN;
Truong et al. [109] applied SDN with Fog computing for
a Vehicular Ad Hoc Network (VANET). Fog computing
gives rise to other similar concepts in Mobile Cloud Com-
puting (MCC) and Mobile Edge Computing (MEC). MCC
‘‘refers to an infrastructure in which both the data storage
and the data processing happen outside of the mobile devices.
Mobile cloud applications move the computing power and
data storage away from the mobile phones and into the
cloud’’ [24], [25]. Thus MCC combines the concept of cloud
computing and SDN on mobile phones. MEC on the other
hand refers to the concept bringing cloud computing capa-
bilities to the edge of a mobile network closer to the mobile
devices for better performance [110], [111]. There are glaring
similarities between Fog computing and MEC as well as
MCC and SDN. An architecture infusing SDN and MCC is
discussed in [112].

MCC is also envisaged to play a key role in the next
generation of mobile networks. Aissioui et al. [64] propose
a SDN controller for 5G mobile cloud management systems.
The 5G next generation mobile network is envisaged to be
very dense (very close to the end devices) in order to meet
the demand which has been exponentially growing of recent.
Bhushan et al. [113] discuss two methods of densification
expected to be dominant in the composition of 5G networks:

Densification of space and frequency. The former refers to a
process of densely deploying cells to a spatial locale, called
an Ultra-Dense Network [114]. More ultra-dense networks
are studied in [115], while Soret et al. [116] expound the
interference coordination of these networks. The later refers
to the use of large portions of the radio spectrum. This
method uses the millimetre wave frequency spectrum [117].
Ali-Ahmad et al. [118] and Trivisonno et al. [119] describe
different SDN based network architectures for a 5G mobile
network, while Rost et al. [120] discuss cloud technologies
expected to bring flexibility to the 5G network, including
Network Function virtualization (NFV).

It is clear from the above evolution of wireless networks
that heterogeneity will play a huge role in the future of
computing and the Internet. Also, the different concepts of
computing are not mutually exclusive. Therefore there is a
need for an inclusively harmonic coordination and corpora-
tion to efficiently deal with the data from various sources.
SDN and NFV have the potential to ease this integration and
thereby bring efficiency in the Internet of Everything [121].

An SDN based Vehicular Ad Hoc Network (VANET) with
Fog computing is explored and implemented in [109]. The
architecture used a SDN controller, sitting above the Fog but
connected to the cloud. The Fog is composed of a SDNRoad-
site-unit controller (RSUC), SDN RSU, SDN wireless nodes
(vehicles) and a cellular Base Station (BS). The communica-
tion between the controller and the RSUC and between the
RSUC and RSU is through a broadband link. The vehicle
nodes use long range cellular network such as 3G, WiMAX,
and 4G LTE to communicate with the BS whilst they use a
wireless connection or Wave to communicate amongst them-
selves. Anadiotis et al. [122] define a SDN operating system
for IoT that integrates SDN based WSN (SDN-WISE) and a
SDN-based Ethernet network using anONOS controller. This
experiment shows how heterogeneity between different kinds
of SDN networks can be achieved.

The studies above demonstrate that different kinds of
networks and systems can co-exist. Systems such as smart
grid [123], smart water system [124], smart cities [125],
health care [126], Vanets [109], [127] etc. are expected to
grow explosively with Cisco estimating a total of 50 bil-
lion devices by 2020 [4]. Most of these systems will be
equipped with sensors (mostly wireless) which collects data
from the ground, as Anadiotis et al. [122] note that they are
‘‘fundamental ingredients to the IoT ecosystem’’. It is for
this reason that this study focus on the application of SDN
directly from the bottom devices. This will ensure a bottom
up approach and consistent architectural application of the
SDN principles.

Fig. 3 depicts the technologies envisaged to feature pre-
dominantly in the future computing of IoT in an inverted pyra-
mid form. The technologies above the ‘‘Internet of Things’’
perimeter are considered carriers of the IoT, whilst those
below are the building blocks of the IoT network. The SDN
model should ideally be applied throughout, i.e. from the
bottom devices to the top technologies. Recent studies show
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FIGURE 3. Current and future network computing technologies with SDN.

that the application of SDN has gained a lot of traction from
the top pyramid technologies. In contrast, the application of
SDN on IoT devices is still lacking behind. However, though
progressive strides have been made; they are still very much
in a development stage.

The survey study below provides a state of measure
regarding the extent of SDN applications: SDN in tra-
ditional networks [12]–[16], [128], SDN in wireless
networks [15], [18], [34], SDN in cloud computing [20]–[22],
SDN in Fog computing [23], [24], SDN in mobile cloud
computing [25], [26], SDN in IoT [22], [27]. At this stage
there is no survey focusing on the bottom devices such
as sensors. This paper fills this gap by surveying recent
work in the application of SDN in WSN, and the set of
design requirements which should be considered for the
development of the SDWSN paradigm. Although some of the
sensors from the IoT perspective will be wired, considerable
literature show that WSNs have an extensive role to play.
Vaquero and Rodero-Merino [129] concur, and further iden-
tify mobile devices and sensor/actuators as the major driving
force behind the growth of IoT with the sensing devices
estimated to surpass all. Also, WSNs exhibit a particular set
of challenges that warrants urgent attention, particularly on
the premise that SDN could potentially alleviate.

B. SUMMARY OF DISCUSSION
IoT is at the centre of future Internet computing as the con-
nectivity of various distinct elements is intensified. As WSN
are envisaged to play a pivotal role in this IoT upsurge,
there are many other related concepts which are intrinsically
imperative. These concepts can be summarised categorically
as carriers of the IoT traffic: the wireless and wireless mobile
networks (Wi-Fi, LTE, 5G, etc.); computing frameworks:

cloud computing, fog computing, mobile edge computing,
mobile cloud computing, as well as the building blocks:
sensors and actuators. This section discussed the application
of the SDN model on all these concepts, including the IoT.
The relationship amongst them was also highlighted and
elucidated through a diagram. Also highlighted is the need for
a SDWSN review to provide an indication of the state of the
art research in this field, which is lacking behind as compared
to the other concepts. Thus a bottom-up approach application
of SDN to the realisation of heterogeneous IoT is suggested.

VI. SOFTWARE DEFINED WIRELESS SENSOR NETWORKS
A. SDWSN ARCHITECTURES
The SDN approach to wireless sensor networks entails
abstracting different functionalities and reorganising them
along the three logical planes of the SDN model: application,
control and data. The development of the SDWSN architec-
ture is still in its infancy stage but valuable inroads has been
made in the research fraternity. Although there are different
implementations of the architectures, they all conform to the
fundamentals of SDN: decoupling. Fig. 4 depicts the basic
functionalities of SDWSN as applied by various researchers.

1) FORWARDING DEVICES
The sensor nodes are the basis of the infrastructure layer or
the data plane. The sensor nodes comprise of hardware and
software components. The hardware consists of a power unit,
sensing unit and radio. The hardware components are on the
Physical layer (PHY), which together with the MAC layer
performs the IEEE 802.15.4 functionalities as specified for
LR-WPAN [71].

a: MAC and PHY
The IEEE 802.15.4 functionalities are pertinent in the com-
munication of the SDWSN wireless networking. The pro-
posed architecture by Costanzo et al. [29], SDWN, consists
of a generic node and a sink node. The generic node con-
sists of three layers: PHY, MAC and Network Operating
System (NOS). The sink node on the other hand has two
parts, the generic node and the controller, which are serially
connected. Jacobsson and Orfanidis [3] propose a reconfig-
urable PHY layer to enable flexible configuration and altering
of parameters. The MAC layer handles node identification,
which is inherently a major challenge in WSNs. Luo et al. [7]
propose sensor OpenFlow, which aims to address the identi-
fication (addressing) problem which emanates from the fact
that WSNs are data-centric and attribute based as opposed
to the Ethernet based networks (address-centric) [1], [7].
To alleviate the identification challenge, the authors aim to
redefine the addressing model by using a ZigBee 16-bit
network address and using concatenated value pairs, which
entail using the attribute descriptions e.g. all packets with a
temperature of a certain threshold.

Another method proposed is to augment the WSN with
IP addresses, which many deem inviable for sensor nodes.
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FIGURE 4. Basic SDWSN architecture as currently applied by various studies. Different functionalities are distributed along the three
planes.

However several studies recently, for example [77], [130],
have considered the deployment of an IP-based WSN using
different technologies such as 6LoWPAN [131] (IPv6 over
Low Power Wireless Area Network) protocol. Despite IPv4
being ruled of on WSNs, IPv6 based 6LoWPAN uses com-
pression for the much constrained IEEE 802.15.4 devices.
6LoWPAN is earmarked as a pragmatic enabler of the Inter-
net of Things [75], [130], [132]. An IP-based WSN can be
considered as an alternative solution. Mahmud et al. propose
Flow-Sensor [58] which aims to achieve reliability by sepa-
rating the propagation of the control and data packets. The
control packets use OpenFlow, while the data packets use the
normal TCP/IP.

b: Data Processing
The software part of the sensor node typically consists of a
flow table, sensing element, in-network processing and an
abstraction layer. The sensing module generates traffic which
is then passed to the processor. The in-network processing
could either be data aggregation or data fusion. Ideally, aggre-
gation would be at the sensor node while fusion takes place
at the sink node. The flow tables store rules as prescribed
by the controller, while the abstraction layer provides an
interface for communicating with the controller. The software
component of the sensor node plays a critical role in the

processing of the sensed data and routing functionalities. The
processing of the sensed data is carried out differently by vari-
ous research works. Data aggregation is recommended for the
in-network processing in [7], [29], and [133]. In the cognitive
SDWSN architecture proposed by Huang et al. [134], infor-
mation fusion is employed. They further use Over-The-Air-
Programming (OTAP) [135] to distribute routing information.

2) CONTROLLER
The controller in SDWSN plays a very critical role as it
holds the intelligence of the whole network. Its fundamental
functionalities are flow rule generation, mapping functions
and programming interfaces. The SDN model allows more
functionality to be added. There are different implemen-
tations of the control plane: it could be centralised [62],
[136]–[138] or distributed [91], [92], [96]. The use of cen-
tralised controllers in addition to local controllers is consid-
ered in [93]–[95]. Additionally, elastic solutions [64], [97],
[139], [140] dynamically add or reduce controllers according
to network load.

The SDWN architecture in [29] uses an embedded con-
troller in a Linux system which is attached to a sink node
through a serial connection. The sink node communicates
with other sensor nodes on a wireless interface. The embed-
ded system consists of an adaptation module, a virtualizer
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and a controller. The adaptation module is used for message
formatting. The virtualizer ensures that all information col-
lected is collated to form a virtualisation of the network state
to the controller [29], [141]. A major drawback with this
approach is that the serial communication between the sink
and the controller limits the controller and the sink to a one-
to-one relationship. This also poses a problem of scalability.
Such architectures will only be viable in a small controllable
network.

In other instances, the sink is a base station (BS),
which also houses the controller, as in [31] and [33].
Gante et al. [33] propose a base-station based SDWSNwhich
consists of five layers: Physical, Medium Access, NOS,
Middleware and Application. The middleware layer consists
of a controller, mapping function, mapping information and a
flow table’s definition. The controller controls and manages
the network and keeps the state and topology of the network
up to date. It uses monitoring messages to acquire network
information, such as sensor node energy levels, distance from
the BS, node’s neighbour list and link status parameters, such
as link quality, response time, etc. TheMapping Function pro-
cesses the monitored data from the sensor nodes and creates
a network map (topology view). The acquired information is
stored in the Mapping Information module. The purpose of
the application layer is to locate the sensed area, thus consists
of Location and Tracking algorithms to maintain accurate
information about the node’s position.

Olivier et al. [31] propose a cluster-based SDWSN archi-
tecture, which also has a base station. They apply the SDN
model in a clusteredWSN for the formation of what they refer
to as a software defined cluster sensor network (SDCSN). The
sensor network is organized in clusters (SDN domains) com-
prising of sensor nodes and a gateway or cluster head. The
cluster head referred herein as SDN cluster head (SDNCH),
controls and coordinate all sensor nodes in its domain. The
SDNCH can implement its own security policies and thus
securing the domain from outside attacks. The SDNCH has
a partial view of the network and communicates with other
SDNCHs through the gateway. It uses WE-Bridge [142] to
exchange local data with other SDNCHs.

Huang et al. [134] propose a cognitive SDWSN framework
to improve energy efficiency and adaptability of WSNs for
environmental monitoring. The architecture employs a Rein-
forcement Learning method to perform value redundancy
filtering and load balancing routing in order to realise energy
efficiency and adaptability of WSN to a changing environ-
ment [134].

In TinySDN multiple controllers are utilised. The proto-
type consists of a sensor node and a sink node attached
serially to a controller. The SDN sensor node first must find
a controller to join using a Collection Tree Protocol (CTP).
The CTP protocol is also used to send information, such as
link quality to the controller. The link quality in TinySDN
uses link estimator instead of RSSI (Received Signal Strength
Indicator), even though they acknowledge that RSSI is more
accurate, the link estimator is chosen as it is hardware

independent. The framework was implemented and tested
using a Cooja simulator [143].

A hybrid control model is employed in [3] where there is a
main controller at the control plane and also a local controller
on each sensor node. The purpose of the local controller is
to setup, reconfigure, monitor and also execute instructions
from the controller. The sensor nodes are also equipped
with Virtual Machines (VM) which helps in installing new
protocols or code patches when needed. Changes can be
installed using native code and dynamic linking for homoge-
nous networks and/or byte code with VMs for heterogeneous
networks.

3) TOOLS
TinySDN is proposed in [90] and implemented as like
SDWN [29]. TinySDN is based on TinyOS [144], [145],
a sensor network based OS. TinySDN aims to reduce the con-
trol traffic. The TinySDN architecture consists of two nodes,
an SDN sensor node and SDN controller. Sensor OpenFlow is
proposed in [7], which is a communication protocol between
the control plane and the data plane [6]. Sensor OpenFlow is
based on OpenFlow [20], which until recently was earmarked
for enterprise and carrier networks [64]. Sensor OpenFlow
also aims to achieve compatibility with other OpenFlow-
based sensors.

TinySDN was evaluated using a Cooja simulator.
Cooja [143] is a simulator tool used to simulate sensor motes
running Contiki OS. Mininet [146] is the most prevalent
simulation tool used for SDN OpenFlow networks. How-
ever, Estinet [147] is purported to be better than Mininet
in terms of performance and scalability though it remains
proprietary [148]. Fs-SDN [149] is another SDN simulator
which was developed to facilitate SDN controller application
prototyping; POX [150] controller was used in development.
Son et al. [151] developed CloudSimSDN [151] to simu-
late and test SDN cloud services, since Mininet and other
simulators cannot simulate cloud specific features. Other
simulators that support OpenFlow protocol are NS-3 [152]
and Trema [153] which are implemented in C++ and C (and
Ruby) respectively [154].

4) INTERNET OF THINGS ENABLING ARCHITECTURES
The SDWSN architecture proposed by Jacobsson et al. extend
this novelty to the new Internet of Things (IoT) paradigm in
which WSNs are envisaged to play a critical role [3], [105].
There has been more work in trying to integrate SDWSN
aspects into the IoT framework. Mahmud and Rahmani [58]
also extend their work to consider the use in IoT [155].
Perhaps a more complete IoT architecture is given in [106],
where the authors apply SDN principles in IoT heterogeneous
networks. Hakiri et al. [156] outline an IoT architecture
that synergises SDN with Data Distribution Services (DDS)
and also highlights some of the challenges pertaining to
standardization, mobility, network gateway access and QoS
support. Hu [107] introduces a new architectural paradigm in
Industrial Internet of Things (IoT), which focus on industrial
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TABLE 4. Current SDWSN architectures.

production systems. It hereby calls for a detailed feasibility
study on the synergy of SDWSNwith other wireless networks
in the context of IoT.

Zeng et al. [30] propose an architecture model that com-
bines SDWSN and cloud computing. In a cloud computing
service provision, e.g. IaaS, sensing is offered as a service
to different applications. A sensing request is sent to the
controller, which will subsequently send the request to a
suitable WSN(s) which offers that sensing service. Many
WSNs exist in a physical space and SDN is used to normalise
them into one integrated common network of SDWSN. The
SDN model is used to enable flexible alterations to meet
the dynamic sensing requests (by different applications). The
sensed data can also be combined with other cloud service
data for mashup services.

Comparison Table 4 highlights a compact comparison
of the different architectural frameworks stated above. The
implementation attribute (column) checks whether the pro-
posed architecture was implemented (simulation or testbed)
or not. The controller attribute checks whether the controller
is distributed or centralised.

The in-network processing checks whether there is any
form of processing on the nodes. Finally the main purpose
of the architecture is listed in the focus attribute.

B. ROUTING
It is worth noting that in SDN’s paradigm, the routing
functionalities are logically centralised at the controller.
Traditional WSN routing protocols runs on the nodes and
consumes lot of energy. Such approaches in their current
state are not viable for SDWSN; however their algorithmic
concepts could be implemented at the controller level, thus
requiring a transformation from an infrastructure-based to a
software-based approach. The traditionalWSN routing meth-
ods, as discussed and classified in [87] remain to be tailored
for SDWSN based on SDN guidelines. The most related

FIGURE 5. The context-aware and policy based routing model.

current work thus far is found in the routing model archi-
tecture proposed by Shanmugapriya and Shivakumar [157].
The authors combine context-aware and policy based routing
modules in line with the SDN principles. Fig. 5 depicts the
proposed architecture.

The model has six phases:
Initiation phase: sensor nodes connect to the controller

using the Sensor OpenFlow protocol. The nodes also supply
the controller with all relevant information such as node
status, CPU load, etc.
Topology discovery phase: The node supplies the controller

not only with its own information but its neighbours’ as well.
The controller forms a routing map table. The table has all
the nodes and their next best hops. The route link has context
information such as CPU load, service information and power
levels of the next hop. Services are any policies defined for
that route such as security, privacy, etc. [157].
Decision phase: The controller uses a recursive destination

based lookup algorithm to look for a route in the mapping
table.
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Policy based route phase: The routes are chosen using
defined policies. The algorithm lookup will determine all
available routes towards the destination and a particular route
will be chosen if it matches the policy criteria, i.e. ignore any
route with a CPU usage of at least 90%. Should all routes not
match the policy, packets could be dropped.
Enforcement phase: The controller enforces the routing

onto the switch devices.
Han and Ren [87] propose a cluster-based routing protocol

based on SDN. They set an OpenFlow oriented SDN network
based on three types of nodes: master node, centre node,
and a normal node, where the master node is a controller,
the centre node is equivalent to a switch/sensor node (packet
forwarding device) and the normal node is only for receiving
data. The SDN network uses a NOX controller. They further
highlight the use of FlowVisor [158], [159] for controller
scalability purposes. FlowVisor is a SDN based virtualization
application model, which enables multiple controllers to use
or manage one switch concurrently. Each controller accesses
the switch through a dedicated virtual portion called slice.
Like all the OpenFlow based routing, the master node deter-
mines the route upon receiving a new request. The routing
or the forwarding policy is based on the QoS information.
The centre nodes maintain the flow tables. The network is
arranged in clusters, with the centre nodes as cluster heads,
which then communicates with the master node via a secure
channel, as shown in Fig. 6. The location of the centre node
is critical and thus uses a distance aware routing algorithm
based on Content Addressable Network (CAN). The authors
highlight limited energy on the nodes as a challenge.

FIGURE 6. SDN cluster based routing [61].

Yuan et al. [160], propose a hybrid routing model which
combines the ideals of an Ad Hoc On-Demand Distance

Vector (AODV) [161] protocol with OpenFlow. AODV is a
wireless and mobile ad hoc network routing protocol. They
use an AODV daemon to implement the AODV algorithm
as well as OpenvSwitch [162] as an OpenFlow agent which
enables the communication between the devices and the con-
troller [160]. Fig. 7 depicts the system architecture, which
was implemented on a physical device (Raspberry Pi).

FIGURE 7. The hybrid routing model architecture [88].

TABLE 5. Current SDWSN routing protocols.

Most of the current efforts lack qualitative and quantitative
evidence of their efficiency in a real network environment.
Their performance ought to be tested against common net-
work factors such as latency, QoS, packet delivery, conges-
tion etc. The current SDWSN routing protocols are listed
in Table 5.

C. NETWORK MANAGEMENT
Network management creates a platform for service man-
agement applications to run and configure various services
with ease, i.e. new policies, patches and new code. It also
defines the interface between the controller and the applica-
tions, thus northbound in accordance with the SDN model.
As Akyildiz et al. [8] and Qin et al. [106] allude, there has
been less focus on the NB interface, whereas much attention
has been dedicated to SB interfaces. The northbound inter-
faces are mostly built on top of the network SDN controllers.
There are several SDN controllers which support OpenFlow
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as highlighted in section VII. These controllers were built
for traditional SDN networks. Though some of these con-
trollers have been successfully used in wireless networks,
they remain to be implemented and tested for SDWSN.While
the controllers provide low-level control over the underlying
network devices, they are supported by network program-
ming languages which translate high level network policies
into forwarding rules. Procera [163], [164] is a declarative
language which also couples as a network control framework.
More SDN based network declarative languages can be found
in [165]–[168].

OpenRoads [53], [57] is the most common northbound
API that allow network applications to define and implement
any policy framework on the switch through the controller.
OpenRoads, also called wireless OpenFlow, is a network
management interface that allows management of various
wireless networks using virtualization [169]. OpenRoads
uses FlowVisor to slice the OpenFlow network and provides
a proper isolation amongst the slices, thus enabling multiple
controllers as envisaged in [158]. Each controller is respon-
sible for its slice. This also enables multiple experiments
to run concurrently on the network [57], [169]. OpenRoads
uses OpenFlow to control and manipulate the OpenFlow
based switches and also uses SNMPVisor (based on SNMP
protocol) to configure the devices [169]. However the newer
releases of OpenFlow comes with OF-CONFIG, which does
the configuration andmanagement of the switches [40]. Fig. 8
shows the architectural stack of the OpenRoads deployment.

FIGURE 8. OpenRoads architecture [101].

The OpenRoads [57] platformwas used in a heterogeneous
wireless network consisting of Wi-Fi APs, Wi-Max base
station and Ethernet switches, all of which run the OpenFlow
protocol. The network was used to test various mobility man-
agement applications. The OpenRoads architecture is built
on top of the NOX OpenFlow controller [57], [169] which
controls the Wi-Fi APS, Wi-Max base station and Ethernet
switches as well as the SNMP protocol to have control over

the power, frequency, data rate, SSID, etc. of the device
elements [169].

Huang et al. [170] propose an SDN based management
framework for the IoT devices. As the 6LoWPAN pro-
tocol gains momentum, particularly in view of the IoT,
new network management solutions are developed to cater
for these devices. Feng et al. [171], LNMP [172] and
6LoWPAN-SNMP [173] are Simple Network Management
Protocol (SNMP) based network management solutions for
6LoWPANs. SNMP is a well-known and commonly used
network management protocol in enterprise networks and
its ripple influence on the development of new management
architectures is no surprise.

Although this model was used in different wireless
networks, it provides the SDWSN with a proper model of
network management, especially considering the potential of
heterogeneity in SDWSN, and thus remains open in respect
of SDWSN. The challenge with northbound interfaces is that
they are not standardized and as such a plethora of different
incompatible designs are probable [40].

D. SUMMARY OF DISCUSSION
The SDN model in WSN has been embraced with vigour and
enthusiasm. This section discussed the current state-of-the art
research in SDWSN with a particular focus on architecture
design, network management and routing. There has been
huge progress made to advance the SDWSN model albeit in
its infancy. The architectures studied above vary slightly in
implementation, affirming that a consensus on the design has
yet to be reached. On the forwarding nodes, the functions of
theMAC and PHY layers remain inWSNs, however there are
disparities with how processing of data is implemented across
various research studies. The implementation of the control
logic also varies; some having it at the sink while some
having it at a level higher. Ideally the end-to-end network
management would include the two interfaces, southbound
and northbound; but seemingly the NB is lacking behind as
far as SDWSN is concerned. The OpenFlow protocol is most
prevalent between the sensor nodes and the controller. On the
other hand there is no commonality with the NB interface as
different control platforms uses their own interfaces for this
purpose. However, RESTAPIs are envisaged to play a pivotal
role, although not thoroughly tried or SDWSN.

VII. CONTROLLER IMPLEMENTATIONS
There are different implementations of the controllers, such
as centralised, distributed, logically centralized but physically
distributed and data plane extensions. This section reviews
the current control systems in SDN from the perspective of
SDWSN for viability purposes.

A. A SINGLE CENTRALIZED CONTROLLER
A centralized controller is an epitome of the basic SDN
implementation where a single controller controls the
entire network. An example of a centralized controller
is depicted in Fig. 9. SDN central controllers include
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FIGURE 9. Central controller.

Floodlight [138], [174], Ryu [175],Maestro [136], NOX [62],
Beacon [137]. A major concern with a single central con-
troller is scalability, reliability and congestion.

B. DISTRIBUTED CONTROLLERS
In order to overcome the drawbacks of the single centralized
controller mentioned above, several researchers used mul-
tiple distributed controllers. A distributed control system is
depicted in Fig. 10. In TinySDN [90] multiple controllers
are utilised. The prototype consists of a sensor node and a
sink node attached serially to a controller. Olivier et al. [31]
propose a cluster based SDWSN architecture which also has
a base station. They apply the SDNmodel in a clusteredWSN
for the formation of what they refer to as a software defined
cluster sensor network. The sensor network is organized in
clusters (SDN domains) comprising of a simple node (sen-
sor), gateway or cluster head. The SDN cluster head controls
and coordinate all sensor nodes in its domain.

FIGURE 10. Distributed control system.

SDNi protocol [176] is an East/Westbound interface
between controllers in a distributed control environment
referred to as controller domains. A domain is a network
cluster with a controller. SDNi’s main purpose is to coordi-
nate controller behaviours and to facilitate the exchange of
control and application information across multiple domains.
The protocol has three types ofmessages: reachability update,
which exchange reachability information to facilitate inter-
SDN domain routing; flow setup/tear-down/update request to
coordinate the flow setup as well as capability update.

C. LOGICALLY CENTRALIZED BUT
PHYSICALLY DISTRIBUTED
Logically centralised but physically distributed controllers
operate as a central controller though physically apart,
as shown in Fig. 11. Hyperflow [92] is an event based

FIGURE 11. Logically centralized controller.

logically centralized but physically distributed controller for
OpenFlow. It is based on NOX [62], a network operating
system controller; built as an application. The Hyperflow
application resides in each NOX controller on the network.
The application propagates network events across the con-
trollers thereby synchronizing their network views. Hyper-
flow uses publish/subscribe messaging to facilitate the lateral
controller communication. The published events are stored
using WheelFS [177], a distributed file system. Switches are
connected to a controller close to them and upon controller
failure, they must be reconfigured

ONOS [91] is a distributed control architecture based on
Floodlight [138] which aims to ensure scalability, perfor-
mance and availability. It is also installed into the physically
distributed controllers which operate as a unit. Each node has
a global view of the network. The ONOS instances control
a subset of switches. The ONOS instances propagate state
changes of the switches to the global network view. A switch
connects to multiple ONOS instances but only one can be
the master. Upon failure, the switches elect a new master.
ONOS uses a distributed data store for the multiple clusters.
OpenDaylight (ODL) [178], [179] is another SDN controller
based on Beacon which, like ONOS employs a multiple
cluster of controllers maintained through a distributed data
store. ODL uses model driven software engineering (MDSE)
for inter-model relationship and model driven network man-
agement for inter-protocol configuration management such
as NETCONFIG and RESTCONFIG [179]. Both ODL and
ONOS supports OSGI framework.

Disco [96] is a distributed control system for WAN and
overlay networks. The authors aim to cater for heterogeneous
and constrained networks as they maintain that current solu-
tions are not adaptable. Disco is based on a Floodlight [138]
controller, built as an application. It defines two types of
communications: Inter-domain and Intra-domain. The intra-
domain communication monitor network events within the
domain cluster and use network state to do flow prioritization.
The inter-domain communication allows SDN controllers
to exchange aggregated network wide information amongst
each other. The inter-domain communication employs two
methods; Messenger, which ensures connectivity using the
Advanced Message Queuing Protocol (AMQP) and Agents,
which exchanges the real information. The communication
supports diffusion, flooding, publish/subscribe messages.
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FIGURE 12. Data plane extension controller.

D. A DATA PLANE EXTENSION CONTROL
Other solutions, referred to as data plane extension control
systems, enhance the data plane with more control function-
ality to reduce the overhead towards the controller; Fig. 12
depicts the architecture. Difane [93] is a data plane exten-
sion distributed control architecture which keeps most of the
traffic in the data plane. Difane offloads some control func-
tionalities to the data plane switches referred to as authority
switches which have more power and processing resources.
The controller generates flow rules, and then passes them to
the authority switches which then install them to the rest of
the switches. In DevoFlow [94], the authors aim to devolve
the control of most flows to the switches as well. The con-
troller would still control few significant flows referred to
as elephant flows; these are the flows that carry large traffic.
Some of these switches can even make routing decisions.

Kandoo [95] is another data plane extension solutionwhich
employs a rather different approach or method as compared
to DevoFlow and Difane. Kandoo scale the control plane
with local controllers at the data plane thereby creating two-
level control architecture. Local controllers execute local
applications but have no interconnection amongst themselves
and no global network view. The root controller is logically
centralized and has the global view of the entire network.
It executes non-local applications, i.e. applications that need
global network knowledge. The root controller in turn con-
trols the local controllers. Local controllers could also be
implemented at the switch. Frequent events are processed at
the data plane while rare events at the central control. The root
controller has to subscribe to events from the local controller;
otherwise those events would not be propagated.

E. SWITCH TO CONTROLLER MAPPING CONFIGURATIONS
Most of the distributed solutions observed above use static
configuration to map the switches to the controllers. Elas-
tic solutions in contrast, offer more flexibility and dynamic
assignment of switches to controllers [64], [97], [139], [140].
Elasticon [140] is a distributed control architecture in which
switches are dynamically shifted across the controllers to
balance the load; the controller pool is also dynamically
shrunk or increased. The controllers have a synchronized
coordinator providing a consistent control logic/state for the

network. A switch connects to many controllers but only one
can be the master while others are slaves. The load on the
network is shared. There is a threshold that is used to migrate
switches to other controllers and also, to reduce or increase
the controller pool. It has a load adaptation algorithm and
migration protocol. The model was tested using an enhanced
Mininet simulator.

Pratyaatsha [97] is also an elastic control solution
which, like Elasticon dynamically, assigns SDN switches.
In addition, it also assigns SDN application partitions to the
distributed controllers. It aims to address two issues: mini-
mize flow setup latency and minimize costs through efficient
resource allocation, which includes memory as opposed to
only CPU load. Pratyaatsha use the Integer Linear Program-
ming (ILP) algorithm to efficiently assign application state
partitions and switches to controllers. Aissioui et al. [64]
propose another elastic solution for 5G mobile cloud man-
agement. The authors aim to address issues of scalability
and performance in the context of 5G networks. The solution
is based on mobile cloud computing, particularly Follow-
Me Cloud (FMC) concept which ensures that mobile users,
subjected to lots of movement constraints and migrations, are
always connected to an optimal data centre. The proposed
elastic control solution has two levels: global FMC con-
troller (G-FMCC) and local FMC controller (L-FMCC). The
L-FMCC is deployed on demand using Network Function
Virtualisation (NFV) depending on the network dynamics and
traffic patterns. G-FMCCs are permanent and responsible for
generating, managing and installing OpenFlow rules which
ensure seamless migration of services on the cloud.

F. COMPARISON
The different types of controller implementations are sum-
marised in Table 6 below, which includes most of the existing
distributed system in addition to few centralized systems. The
SDWSN controllers are mostly centralised since most of the
work is still in a development stage. In contrast distributed
controllers are yet to be implemented in SDWSN. However,
traditional SDN distributed controllers can be used as a ref-
erence point to develop a tailored distributed controller for
SDWSN.

All controller types, apart from data plane extension, keep
the control functionality at the control plane, while the data
plane extension devolve some of the control functionality to
the data plane to reduce the overhead on the centralized con-
troller and reduce traffic in the network. In the logically cen-
tralised but physically distributed types, an East/westbound
API is used to enable interaction amongst the controllers.
However, not all distribution system considers the use of
the East/westbound API. Table 7 below summarises the con-
troller type implementation details and further highlights the
advantages and disadvantages of each type.

G. SUMMARY OF DISCUSSION
The SDN model centralises the control intelligence of the
whole network. Although this abstraction brings lots of
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TABLE 6. Distributed controllers in SDN.

TABLE 7. Detailed comparison of the controllers.

positive benefits, it also introduces several challenges. The
entire network could be at risk if the central controller gets
compromised. Failure of the controller could also negate
the availability of the network, thereby rendering it unre-
liable. The performance of the network will also suffer as
a result of overhead. The distance between the gateway
nodes and the controller would also affect the performance.
Thus a centralised controller would not be viable for a
wireless sensor network, more so considering the inherent
challenges such as unreliable links, low bandwidth, etc.
Performance and efficiency will also suffer as the network
grows.

VIII. FUTURE RESEARCH CHALLENGES
Most of the existing SDWSN architectures may differ in cer-
tain aspects. However, they share fundamental commonalities
to which most are influenced by the OpenFlow protocol.
While there seem to be a converging consensus with the
application of OpenFlow, it is yet to be adequately proven
for SDWSN. This section looks at some of the shortcomings
of the reviewed SDWSN architectures, while aligning them
for future research considerations.

A. WSN INHERENT CHALLENGES
Most WSN inherent challenges are also not yet adequately
addressed. Although the SDN paradigm promises a huge
reduction in energy consumption by the nodes, the extent
of this assertion needs to be evaluated and quantified. The
local in-node processing needs to be scrutinized in detail
and its impact thereof. The amount of processing needed in
proportion to energy usage should be determined. Process-
ing is very critical in alleviating issues such as implosion,
redundancy, etc. As far as processing is concerned, when cou-
pled with energy considerations, what amount of processing
should be left on the node? The trade-off between internal
processing and controller processing need to be evaluated so
to also address the issue of aggregation. The aggregation of
the sensed data is also paramount and needs closer research
attention. Another particular problem is processing the dif-
ferent data attributes that these sensor nodes represent. The
aggregation problem in heterogeneous networks also needs
to be explored to include the model of abstraction.

The transmission of the data is also a concern. It might not
be pragmatic to have all sensor nodes transmitting their raw
data to the controller as that will result in an excessive delay
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and congestion on the network. As some architectural designs
above have in-network processing on the sensor nodes; this
has to be tested for its efficiency. Having a local controller on
the sensor node has been suggested in [3] while others suggest
having a sink node which houses the local controller.

Most of the switches used for SDN purposes use Ternary
Content-Addressable Memory (TCAM). Memory is one of
the scarce resources inWSNs and remains to be seen whether
TCAMwould work or even be affordable. The memory man-
agement techniques explored in [180] could be investigated
from the SDWSN perspective. The other question that begs
research attention is how the sensor nodes dynamically join
the network and also what happens when a change is effected
when a particular node is down.

B. NETWORK OPERATING SYSTEM
There seem to be a disparity on the use of the network operat-
ing system and a functional protocol. Some implementations
above seem to bemore inclined to anOSwhich includes some
basic functionalities of a protocol and likewise the protocol
based architectures seem to include some functionalities of an
OS. This standoff needs proper evaluation, to also determine
if this two should co-exist or operate independently.

C. PRACTICAL IMPLEMENTATION AND EVALUATION
Although there have been research efforts that made inroads
in tailoring OpenFlow for SDWSN, there has been no prac-
tical application, because most are simulated or just a pro-
posed general framework. The practicality of the SDWSN
would provide a clear indication of the progress made thus
far. That would also usher in an opportunity to evaluate
common wireless network issues such as QoS, reliability,
packet loss, bandwidth, stability, efficiency, scalability, etc.
Although [7] and [90] propose an architecture for the physical
sensor nodes, they were only tested through simulation and
therefore there is a need for an actual prototype of the SDN
based sensor node.

D. INTER AND INTRA-PLANE COMMUNICATION
The communication between the controller and the applica-
tion layer is important for the overall structural security of the
network. Hence any protocol considered needs to adequately
address the security impasse. The communication between
the controller and the infrastructure devices, the southbound
interface, is also particularly paramount because it is the
enabler of the transition from the resourced control plane
to the less resourced data plane. This transition presents an
open research problem to be explored. The communication
amongst the sensor nodes also need to be defined properly
amid TCP/IP (IPv4) being ruled out [58], thus the exploration
of 6LoWPAN needs to be intensified.

E. STANDARDISATION
The architectures also differ fundamentally on the allotment
of different functionalities along the two SDN planes. Most
of these architectures focus on one or two entities, thus there

is a need for a holistic architecture which covers all building
blocks of the model. The lack of standards in SDWSN could
derail the development and also further exacerbate the issue
of dependant compatibility, which the SDN model seeks to
avoid.

There is an urgent need for SDWSN standardisation.
The lack of it would result in different incoherent and
incompatible architectures, which goes against the SDN’s
principle of heterogeneity. Whilst there is yet a formal stan-
dard for SDWSN to emerge, the standardisation of its con-
stituents, WSN and SDN have been developing with pace,
IEEE 802.15.4 [72], ZigBee [71] and ONF [43], IETF [38]
respectively. It is not yet known whether conformation to
these two standard groups would satisfy the requirements
of SDWSN, or perhaps a new standard will be necessary.
The standardisation of the IoT framework is also imperative
which likewise has seen standardisation of its constituent
networks [181]. Thus there is a need for a holistic standard
or specification, which will guide the compliance of future
networks.

F. SECURITY
Security is a very critical architectural consideration espe-
cially in this cyberage, where everything is envisaged to be
connected. However security in SDWSN is still a very open
area that is yet to receive much attention. Most of the work
in SDWSN is still very much on the architectural framework,
partly due to the infancy of this field. But nonetheless, since
SDWSN synergises two areas, we ought to draw reference
from their respective work. The security structure of the
model needs to take care of the SDWSN network itself, the
controller, the sensor node device and the communication
protocols among others.

Most research work addresses security in traditional SDN
and WSN networks respectively. Some of these concepts can
be adapted into SDWSN while others are very improbable.
The network needs to be proactive and alert about any poten-
tial threats. Ali et al. [36] outline different network verifica-
tion solutions on the traditional SDN networks, which deals
with security configuration, threat detection, threat remedia-
tion and network verification (refer to section II.D). The pro-
grammability of the SDN makes it vulnerable to attacks [36],
since applications can be installed with ease.

In reference to WSN, the security solutions are mostly
implemented on the sensor nodes and such protocols tends
to be energy intensive and hence not practical [36]. These
protocols can be implemented at the controller or application
level. Some of these solutions are outlined in detail in [1].
The implementation of these concepts in SDWSN remains
open to the research community. Furthermore, most security
solutions can also be implemented through Network Function
virtualization (NFV), which virtualises network functionali-
ties.

From an SDN perspective, the control layer is more likely
to be targeted by adversaries and thus needs to be safeguarded
accordingly [59]. The communication protocol also should
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TABLE 8. Security threats on both WSN layers and SDN [36].

be protected against any form of interception. The OpenFlow
protocol uses a secure TCP protocol on port 6633 and/or
also a secure channel based on TLS [45]. However, as [36]
maintains the impracticality of running SSL/TLS protocols
on small devices, the question of securing network commu-
nication remains an interesting research question.

Another major challenge in traditional SDN networks is
that the switches are connected to traffic generating hosts,
which could be used as gateways for attacks. However, in
contrast, sensor nodes are at the periphery of the network,
generating traffic. As a result, security threats through the
switches are considered to be of less concern as they are
just sheer devices, which only understands few entries in the
flow table, although further study is needed to confirm this
opinion. Table 8 maps the WSN OSI layers along the three
planes of SDN together with the security threats associated
with those layers.

G. DISTRIBUTED CONTROL SYSTEM
In order to realise scalability, reliability and performance in
SDWSN, an efficient distributed control system is needed.
Distributed control solutions have been proposed for SDN
enterprise networks, but few for SDWSN. This encourages
the need to investigate a novel distributed control system for
SDWSN without compromising any of the quality impera-
tives.

IX. DESIGN REQUIREMENTS
In order to address the WSN inherent challenges, this section
highlights some of the requirements that need to be consid-
ered in the future design of SDWSN. The requirements are
depicted in Fig. 13 which is an extension of the architecture
presented in Fig. 4. The main differences between the two
is that Fig. 4 represents the requirements as currently applied
by different studies while Fig. 13 enhance the requirements in
accordance with the lessons learned and future architectural
considerations. The added functions are coloured in dark

blue. The relationship mapping between the controller and
the sensor nodes is 1:M, however, this figure represents a
distributed control environment.

A. DUTY CYCLES
The SDWSN should support duty cycling, i.e. switching the
radio communication to a sleep mode, when not in use [29].
That can be achieved in different ways, either reactively on
demand or periodically through diligent synchronization [1].
Low duty cycle operations are preferred in WSNs because
high duty cycling could be more detrimental to energy effi-
ciency. Saraswai and Bhattacharya [182] evaluated this trade-
off and concluded that energy consumption decreases if duty
cycle is less than 0.01% and 0.02% for dense and less dense
networks respectively, but otherwise duty increases energy
consumption.

B. IN-NETWORK DATA AGGREGATION AND DECISION
FUSION
In-network processing of data must be supported to avoid
sending raw data to the sink or the controller [29]. Different
data aggregation methods should be used to collate the data
and transmit only the processed information. The aggregation
of data could be based on the source, destination or the
application attribute [1]. The protocol should allow a dynamic
setting of these combinations through predefined permuta-
tions. The determination of what would guide the method of
choosing these factors needs proper structural evaluation.

C. FLEXIBLE DEFINITION OF RULES
In line with the SDN premise of simple management,
SDWSN should support flexible definition and application
of rules and policies. There should also be a mechanism to
prevent any advent clashes of rules or policies. FortNox [63]
is a perfect example of such, albeit implemented for basic
SDN, the inference is relative to note. The rules placement
problem is expounded with a comprehensive review of dif-
ferent solutions in [180].
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D. NODE MOBILITY
Mobility is a very important design consideration for
SDWSN, because the deployment of the sensor nodes varies
per application: some structural and others not. Thus nodes
could move and change positions. The SDWSN should be
able to deal with the inevitably rapid physical topology
changes.

E. UNRELIABILITY OF WIRELESS LINKS
WSNs consists of various RF (Radio Frequency) wireless
communication links [79]. Thewireless links are unstable and
therefore not reliable. The instabilities are as a result of com-
mon factors, such as a limited bandwidth, node failures, etc.
The duty cycling also affects the availability of nodes. The
design of the SDWSN should consider the rapid topological
changes caused by temporary unavailability of nodes.

F. SELF-HEALING ABILITY
Node failures inWSN network are to be expected and thus the
SDWSN network needs to be dynamic with swift reorganiza-
tion to deal with such occurrences. The controller is expected
to be logically centralized to avoid a single point of failure
scenario, i.e. physically distributed but operating logically
as one controller. CPRecovery [183] is a technique used to
ensure resiliency in case of controller failure. It restores the
state of the applications (components) to the backup com-
puter. This method employs a central controller and will thus
suffer scalability demands.

G. BACKWARD AND PEER COMPATIBILITY
The SDWSN network should be compatible with existing
WSN networks, and SDN-based sensor nodes should be able
to interface with normal sensor nodes. There should also be
a peer compatibility with other networks i.e. other OpenFlow
networks. The SDWSN should also integrate well within the
IoT framework and its protocols.

H. DATA-CENTRIC AND ADDRESS-CENTRIC
(MULTIPLE IDENTIFICATION)
WSNs have always been considered data centric [1], [7], but
recent studies are leaning towards address-centric approaches
using IP addresses, more so IPv6 (6LoWPAN [77]). More-
over authors in [78], [75], and [132] states that augmenting
WSNs with IP is an adequate solution for integrating WSNs
into IoT. A SDWSN therefore should support both scenarios.

I. SCALABILITY
The SDWSN framework should be scalable and one way to
realize that is to ensure that as the sensor nodes scale up,
there is equally sufficient controller service. Although studies
in [137] and [139] state that one controller can handle
millions of flows per second on traditional SDNs with
switches, the same is yet to be ascertained for sensor nodes.
Nunes et al. [13] state that to achieve a reliable and robust
scalability, the logically distributed controllers should also be
physically distributed as in [92].

J. EAST/WESTBOUND INTERFACE
To realise scalability, a distributed control plane should
be considered. A distributed control plane requires con-
sistent and synchronized communication between the con-
trollers. The communication between the controllers is herein
referred as East/Westbound API [12]. Like with the north-
bound API, there has been very little attention paid to
this interface. However work such as SDNi [176], [142],
which focus on flow setup coordination and reachability of
exchange information, is a progressive step. The develop-
ment of distributed controllers such as Onix [139], Hyper-
flow [92], ONOS [91], Kandoo [95], Elasticon [139], [140],
Pratyaastha [97] and [64] will necessitate the development
and standardization of a common interface.

K. OPTIMUM DEVICE PLACEMENT
(CONTROLLERS AND NODES)
The placement of controllers and nodes is very critical
and will have to be in line with the scalability consid-
erations. This, however, varies from network to network.
Heller et al. [184] thoroughly evaluated the controller place-
ment problem.

L. NORTHBOUND AND SOUTHBOUND INTERFACES
The northbound and southbound interfaces are very important
to SDWSN for the fluidity of vertical cross layer commu-
nication. However, there has been a lot of work focusing
on the southbound interface and less on the northbound.
As [13] and [163] note, there is yet to be a standardised
API or an interface for northbound communication. How-
ever, the SDWSN framework should create a platform for
interoperability. The northbound interface is very important
as it connects to most of the functionalities that were removed
from the node. This interface has to be rigid with security and
conflict prevention measures, [43], [110]. As heterogeneity is
expected to be high in IoT, this interface could be used in con-
junction with a virtualization layer, same as OpenRoads [53]
did with heterogeneous wireless networks. Sneps-Sneppe et
al. [186] asserts the need to have a metadata-based interface
for the NB API and further suggests that the NB API will
be based on REST [187]. However, unlike its counterpart
service-oriented architecture (SOA) [187], REST does not
offer metadata. Although SOA services such as WSDL (Web
Service Definition Language), XSD (XML Schema Defini-
tion) provides metadata, they define different interfaces for
each service application. Thus, for the purpose of ubiquity
and heterogeneity, REST would be feasible, but the metadata
remains an open challenge.

M. SECURITY
Security is a very important consideration for SDWSN frame-
works. As SDWSN is envisaged to play a critical role in the
IoT framework, it is equally imperative that security be as
stringent as possible. Most of the architectures do not have
security as a build-in feature for SDN [59]; Kreutz et al. [60]
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FIGURE 13. SDWSN design requirements. This captures the requirements as currently applied and also those that should be considered for
future considerations.

rightfully state that security and dependability of SDN should
be built-in from design. Most of the current SDN security
measures are earmarked for enterprise networks, where the
network devices are switches or routers. These need to be
adapted to consider wireless sensor network. Security is dis-
cussed in detail at the beginning of section III.

X. LESSONS LEARNED
This paper reviewed the current state of the art application of
SDN in WSNs, the SDWSN. The SDWSN falls within the
broader context of the Internet of Things and as such, some
of the related concepts were also highlighted. This exercise
was also to locate the purpose and role of SDWSN within the
IoT space. The IoT paradigm seeks to create a networking
environment for all devices expected to partake. Most of the
devices will be equipped with sensors and actuators. Data
from these devices will be carried by various networks such
as enterprise, mobile wireless and optical networks. Various
computing platforms such as cloud, fog, mobile cloud and
mobile edge computing will feature prominently for ser-
vice provisions. The application of SDN on these networks
and computing platforms has been receiving significant and
devoted attention from both the academic and industrial
research. This paper has highlighted the bottom-up approach

on the application of SDN to the realisation of IoT. Sensors
and actuators are located at the bottom as collectors of data,
thus the evaluation of SDWSN.

WSNs are envisaged to be a significant building block of
the IoT paradigm. However WSNs inherently exhibit major
constraints in resources such as power, processing, memory,
etc. Most of the attempted solutions thus far are not efficient,
thereby exacerbating the challenges at cost. SDN comes as a
potential to solve some of these challenges. The SDN premise
of decoupling the control logic from the forwarding engine
brings a substantial respite as most of the energy intensive
functions are relocated to the controller.

The paper also delved into the importance of SDN in
WSNs. Issues such as energy, network management, con-
figuration, scalability, routing, mobility, localisation inter-
operability, communication and security are envisaged to
improve. It is also noted that the centralization of the con-
troller could pose a security threat, as it could be a potential
target and a reliability threat resulting in a single point of
failure. However, various research strides are been made to
resolve this.

The fusion of SDN and WSN beget SDWSN, which is
relatively a new research area. The paper looked at different
components of SDWSN, such as the architecture, network

VOLUME 5, 2017 1893



H. I. Kobo et al.: Survey on Software-Defined WSNs

management, routing, etc. Due to the infancy of this field;
most of the studies are still unriddling the architectural frame-
work. As such, some architecture, such as [7] and [29] are
more leaned towards the sensor node, while some such as
Gante et al. [33] are leaned towards the controller. Some such
as [29] and [134] have some processing on the node while
Jacobsson and Orfanidis [3] have a local controller on the
node. Others, such as [29] and [90], propose the use of a serial
connection between the controller and the sink, which could
stifle scalability. The lack of practicality is understandably
common, with most of the work still on simulation, except a
few.

The challenges besetting SDWSN were presented for
future consideration. These challenges include among others;
some of the WSN inherent challenges not wholly addressed
by SDN, such as processing clarity, memory, etc. Other
challenges identified include standardisation and security.
Standardisation is very pertinent to the ideals of IoT hetero-
geneity, while security will also be central in IoT to ensure
that future networks are secure and reliable. Finally, after the
evaluation of the state of the art architectures and their current
challenges, design requirements were identified.

XI. CONCLUSION
The SDWSN model is very challenging, as it comprises of
two unfledged models which are still entangled in their own
complexities. The WSN networks are resource constrained,
which compels all research efforts to be energy conscious.
Despite many efforts, this is yet to be fully realised and thus
have yet to reach their optimal efficacy. The introduction of
SDN in WSN presents a very novel and progressive step in
leveraging the challenges of resources in WSN. However, the
SDN model brings along its own challenges, especially the
trade-off between functionalities that need to be retained on
the sensor device and the impact on common network factors
such as latency, congestion, etc.

This paper has reviewed the current work in SDWSN.Most
of the architectures proposed are still in the development
stage. The prevalence of the OpenFlow protocol in SDN
applications seems to have inspired influence even towards
the SDWSN model and thus, we envisage it to play a major
role in the development of this model. Although there are still
many challenges in this model, great strides have been made
thus far. However, the lack of standardisation in SDWSN is
still a concern and standards have to be developed to create
an oversight for compatibility and sustainability.

The paper also discussed the SDWSN design requirements
that need to be carefully evaluated and considered in design-
ing and implementing a practical SDWSN framework. These
design requirements would assist in overcoming the various
challenges inherent to WSN as well as the other challenges
associated with SDN. Finally the paper tried to highlight
some of the open research challenges that require more atten-
tion by the research community.

APPENDIX
All the acronyms used in the paper are enlisted in Table 9.

TABLE 9. Definitions of all acronyms used in the paper.
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