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ABSTRACT 

 This work is focused on the effect of marine aerosols on soda-lime, potash-lime 

and lead silicate glass samples. Two kinds of tests were carried out, the first one under 

laboratory controlled condition during 36 days to evaluate the alteration of glass surface 

by NaCl aerosols, and the second one in a marine atmosphere in Cabo Vilano (Galicia, 

Spain) for up to three months. Both tests showed similar results. NaCl aerosols acted as 

condensation nuclei in high humidity environments favoring the lixiviation of the 

alkaline and alkaline-earth ions from the glass surface and the solubilization of 

atmospheric gases (CO2, SO2).  

 Marine aerosols could also accelerate the corrosion attack inducing the loss of 

the surface hydrogen bonds and the opening of the network accelerating the corrosion 

mechanism. Results also confirmed that high humidity favored the alteration of the 

glass surface and the formation of new crystalline phases. Soda-lime silicate and lead 

silicate glasses were the most durable ones, whereas potash-lime silicate glass presented 

a fissured alteration layer due to the hydrolytic attack of the surface. New crystalline 

phases including chlorides, carbonates and sulfates were detected on the glass surfaces 

which can be related to marine aerosols, environmental particles and the reaction of the 

cations lixiviated from the glass with the atmospheric gases.  

Keywords: Glass, Degradation, Sodium chloride, Aerosols. 
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HIGHLIGHTS 

 NaCl aerosols induced the formation of a water layer on the glass surface and 

the network opening  

 High humidity during long time favored the alteration of the glass and the 

formation of new crystals 

 The ions lixiviated from the glass reacted with atmospheric gases solubilized in 

the water layer 
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1. INTRODUCTION 

 Stained glass windows are the historical glasses the most affected by 

atmospheric degradation because they are located as part of the facade of the buildings 

daily submitted to wet and dry deposition. They are affected by soiling, which concerns 

the deposit of soot particles and soluble salts over the glass surface. These deposits can 

be anthropic, biogenic, terrigenous or marine [1], and can generate a loss of 

transparency and an increase of the roughness and the hygroscopicity of the surface [2].  

 Stained glass windows also undergo chemical alteration. The water retained by 

the glass surface can induce the hydrolytic attack of the glass by the breaking of the 

siloxane bonds (Eq. 1) and the lixiviation of the alkaline ions (Eq. 2). In acid 

environments, the lixiviation of alkaline-earth ions can also occur accelerating the 

degradation rate of the glass (Eq. 3) [3-6]. 

≡Si-O-Si≡ + H2O ↔ 2 ≡Si-OH  (1) 

≡Si-O-M + H2O → ≡Si-OH + M+ + OH‾ (2) 

≡ Si − O − Ca − O − Si ≡  + 2 H2O 
pH≪7
→    2 ≡ Si − OH + Ca(OH)2 (3) 

 As consequence of the hydrolytic attack, the altered areas present a high content 

of silanol groups (Eq. 1-3) which can polymerize between them to form a porous 

network enriched in SiO2 (Eq. 1) [7]. The diffusion of environmental water molecules is 

favored in these areas, and they can react with the bulk glass to form pits or degradation 

layers [3, 8-11]. 

 Dealkalization produces also the accumulation of OH‾ groups in the altered 

areas (Eq. 2, 3), which can transform the hydrolytic attack into a basic one. This basic 
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attack accelerates the breaking of the siloxane bonds and the dissolution of the glass 

structure accelerating the alteration rate, mainly at pH > 9 (Eq. 4) [12, 13].  

≡Si-O-Si≡ + OH‾ → ≡Si-OH + ≡Si-O‾  (4) 

Tensions between altered and unaltered areas can generate fissures, cracks and craters 

[14, 15]. Additionally, the ions leached during the hydrolytic attack can react with 

atmospheric gases (CO2, SO2, NOx) to form deposits over the surface and inside the 

cracks (Eq. 5, 6) [16-19]. The most common deposits are carbonates (calcite) and 

sulfates (gypsum and syngenite) [20-24].  

Ca(OH)2 + CO2 → CaCO3 + H2O  (5) 

CaCO3 + SO2 + ½ O2 + 2 H2O → CaSO4·2H2O + CO2 (6) 

 Several works have assessed the influence of atmospheric conditions, especially 

climatic factors and pollution, on the degradation mechanism, either in real 

environments [2, 25-28] or in climatic chambers [5, 29, 30]. These studies proved that 

high relative humidity and high concentration of gaseous pollutants accelerate the 

degradation rate of historical glasses. Moreover, soiling, deposited particles and 

chemical alteration can provide exogenous elements for secondary phases or change the 

local condition of water retention and the chemical composition of the water film [18]. 

The presence of salts increased the glass degradation by extending the time of wetness 

of the glass surface and forming saline solutions in the case of deliquescent salts [31]. 

However, the influence of the marine aerosols on atmospheric degradation of glasses is 

poorly studied. The deposition of saline particles from marine atmospheres is known to 

accelerate the degradation of historical stone materials [32-34]. In aqueous solution, 

other studies have demonstrated that the salts from seawater lead to increase the 

corrosion rate of quartz, silica [35-40] and silicate glasses [41, 42]. The proposed 
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mechanism points that alkaline cations in aqueous solutions were easily exchanged by 

protons from the silanol groups. Due to the steric hindrance, these bonds were situated 

perpendicularly to the surface, favoring the opening of the structure and, consequently, 

raising the degradation rate [35]. The same mechanism could occur with the deposit of 

marine aerosols on the glass surface because the alkaline chlorides (NaCl, KCl…) are 

the major contributors of marine aerosols, but the information about the effect of 

atmospheric salinity on glass degradation is scarce.  

 The alteration of glass is also dependent of its chemical composition. Generally, 

the most vulnerable glasses to the alteration are those with high content of alkali ions, 

mainly potassium, or low content of stabilizer ions, such as calcium or magnesium [43, 

44]. However soda-lime silicate glasses can also be altered by environmental factors 

[15, 23]. 

 Therefore, the main objective of this work is to assess the influence of NaCl 

particles, the principal marine aerosols, on the degradation of glasses with three 

different compositions: soda-lime silicate, potash-lime silicate and lead silicate glasses. 

Two experiences were developed, in laboratory and in a real environment. The 

laboratory tests were set up in order to evaluate the alteration of the glass surfaces 

caused by NaCl aerosols in temperate climates [45]. The laboratory results were 

compared afterwards with the glass alteration in the marine atmosphere of Cabo Vilano 

(Galicia, Spain), which is a more complex real environment. 

This research will be especially useful to evaluate the conservation of historical stained 

glass windows located in places near the coast. 
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2. EXPERIMENTAL 

2.1. Glass Samples 

 Three model glasses were formulated in the laboratory following the 

composition of the main representative historical glass types (Table 1). Glass NCS was 

a soda-lime silicate glass, similar to modern conventional window glasses [46]; glass 

KCS was a potash-lime silicate glass with similar composition to medieval glasses [47, 

48]; and glass PS was a lead silicate glass with high content of PbO, similar to crystal 

glass [49]. The raw materials were melted at 1450 ºC,  for the KCS and PS glasses, and 

1550 ºC,  for the NCS glass, during 3 h and then annealed from 600 ºC to environmental 

temperature during 6 h. 

The obtained model glasses were cut in slices of 10 × 10 × 2 mm and then polished 

using emery paper and an aqueous suspension of cerium oxide to obtain optical quality. 

Previous to the experiment, the samples were cleaned with ethanol to remove organic 

adsorbents or oily species in the surface which could affect the tests. 

Table 1. Chemical composition of the glasses used in this study analyzed by semi-quantitative XRF and 

normalized to 100% (wt. %).  

 
Chemical composition  

Glass Na2O MgO Al2O3 SiO2 P2O5 SO3 K2O CaO TiO2 MnO Fe2O3 ZnO As2O3 Sb2O3 BaO PbO 

NCS 15.1 4.7 1.9 71.5 - 0.3 0.3 8.4 - 0.0 0.1 - - - - - 

KCS 0.8 2.9 3.6 46.2 3.3 - 21.9 20.5 0.1 - - - - - - - 

PS 8.6 - 0.3 60.9 - - 5.0 0.1 - - - 1.2 0.4 0.9 3.3 15.4 

 

2.2. Laboratory corrosion tests  

 The laboratory experience was developed to evaluate the alteration of the glass 

surfaces caused by NaCl aerosols in temperate climates [45]. NaCl was deposited on the 

glass samples. For that, samples were placed inside the CIME corrosion chamber 

developed to simulate dry atmospheric deposition on materials [50]. A solution of 100 
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g/L NaCl was prepared and nebulized into CIME using an AGK 2000 (Palas®) 

collision-type atomizer equipped with a dryer system. To increase in a realistic manner 

the production of marine aerosol, 100 g/L NaCl only represents four times the 

concentration of this salt in seawater and three times its salinity [51, 52].  

Samples were then subject to different levels of relative humidity (RH): 100 % RH, 23 

% RH, and cycles 23/100 % RH, which represented the day/night cycle, and a constant 

temperature of 20 °C. Three samples of each glass (NCS1, KCS1, PS1) were placed in a 

sealed box whose bottom is filled with ultrapure MilliQ water to maintain the RH at 100 

%, three other samples (NCS3, KCS3, PS3) in a second box filled with a supersaturated 

saline solution of CH3COOK used to fix the RH at 23 % [53, 54]. For cycles, three 

samples (NCS2, KCS2, PS2) were weathered for 2 days in the CIME chamber at a daily 

rate: 23 % RH during 8 hours and at 100 % during 16 hours. Then they were placed 

inside sealed boxes and switched manually following the same rate during the week and 

at 100 % during the weekends. The experiment was carried out for 36 days.  

2.3. Field exposure  

 A second kind of test consisted in the exposure of samples (10 × 10 × 2 mm) 

with the same chemical composition in a real marine atmosphere for up to three months 

in Cabo Vilano wind farm (Galicia, Spain). They were placed in vertical position 

unsheltered from the rain in a corrosion station located at 280 m to the shore. It was 

measured 643.51 mg/(m²·day) of chloride during the exposure period [55]; the 

atmospheric SO2 content was negligible. Frequent heavy rainfall and high relative 

humidity levels were recorded at the test site, indicating prolonged times of wetness of 

the glass surface [56]. 

 



9 
 

2.4. Characterization techniques 

 Glass samples were characterized by the following techniques: X-ray 

fluorescence spectroscopy (XRF), optical microscopy (OM), scanning electron 

microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), measurement of the 

contact angles, µ-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), 

grazing incidence X-ray diffraction (GIXRD) and rugosimetry.  

 Semi-quantitative chemical analyses by XRF were carried out by a S8 TIGER 

wavelength dispersed X-ray spectrometer equipped with a tube of rhodium, LiF crystal 

analyzer and generator of 4 kW. The chemical composition of the glasses was 

calculated with a standard-less analysis program (QUANT-EXPRESS™, software) 

which depended on fundamental parameters. This method related the measured 

intensities of characteristic radiations with the concentration of each element in the 

sample [57]. 

 The optical microscope (OM) was a Leica Leitz Laborlux 12POLS used in the 

reflection mode and equipped with a CCD camera connected to the Histolab-

Microvision® image processing system.  

 SEM observations of the CIME lab corrosion test were undertaken by a tabletop 

LV-SEM TM3030 Hitachi® that is a low-vacuum SEM equipped with energy 

dispersive spectrometer Quantax 70 EDS Bruker. SEM observations of the Cabo Vilano 

exposition were obtained using the secondary electron detector of a Hitachi S-4800 

microscope. An accelerating voltage of 15 kV in charge-up reduction mode has been 

used in both devices. 

 Contact angle measurements between the glass samples and distilled water were 

performed using the Easy Drop Standard “Drop Shape Analysis System” Kruss DSA 
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100 measurement apparatus under ambient laboratory conditions with the aim of 

evaluating the wettability of the original glass samples. The contact angle of each glass 

was measured at least three times, and the average value and standard deviation were 

calculated. 

 The µ-Raman spectroscopy analyses were performed with a Labram 300 Jobin 

Yvon spectrometer, equipped with a solid state laser of 50 mW of power operating at 

532 nm. The laser beam was focused either with a ×50 magnification Olympus 

objective lenses. The analyses were the result of 15 accumulations of 20 seconds carried 

out with a D0.3 filter. Analyses were performed on the surface of the glasses. Spectra 

were recorded as an extended scan. The attribution of the Raman spectra was made 

using the RRUFF database project on minerals. 

The measurements of Fourier transform infrared spectroscopy (FTIR) were measured by 

a 4300 Handheld FTIR spectrometer of Agilent Technologies. The measurements were 

obtained in Attenuated Total Reflection (ATR) mode with a spectral range from 4000 to 

650 cm-1 and a spectral resolution of 4 cm−1. Each spectrum was the product of 32 

internal scans.  

 GIXRD measurements were collected with a Bruker AXS D8 diffractometer 

equipped with a cobalt X-ray tube. A Goebel mirror optics was applied to obtain a 

parallel and monochromatic X-ray beam. A current of 30 mA and a voltage of 40 kV 

were employed as tube settings. Operational conditions were selected to obtain X-ray 

diffraction diagrams with sufficient counting statistics. XRD data was collected with a 

beam incidence angle of 1˚ between 20 and 100˚ with a step size of 0.03˚ and a counting 

time of 3 s/step. 
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 The microroughness of the surface was measured with an Optic rugosimeter 

TRACEiT from Innowep GmbH. 3D topographical maps (5 x 5 mm) were carried out 

with a resolution of 2.5 μm (Z axis) and 2.5 μm (in X/Y axes). To compare the samples, 

the roughness maps were flattened and the arithmetic average roughness (Ra) was 

measured with the software Gwyddion version 2.32 [58]. 

3. RESULTS  

3.1. Lab corrosion test 

3.1.1. Morphology of deposits and glass surface properties 

 Aerosols with an approximately diameter of 1.0 ± 0.5 µm [50], were produced 

and seeded homogeneously on the surface (Fig. 1a). However, after two days at 100 % 

RH the deposits looked totally different (Figs. 1b, 1c, 1d). In soda-lime silicate glass, 

the deposits were small square crystals of ~ 10 µm, although it could be observed big 

crystals up to 50 µm (Fig. 1b). Lead silicate glasses presented a similar behavior (Fig. 

1d). Nevertheless, aerosols on potash-lime silicate glasses formed conglomerates of 

crystals in form of arrowhead in circular organizations (Fig. 1c).  

 This difference can be related with the hygroscopic behavior of NaCl aerosols in 

humid environments and the contact angle of the glasses. In environments with a 

relative humidity above 76 %, which is the deliquescence point of the NaCl, the 

particles act as condensation nuclei forming drops on the glass surface [59]. The 

formation and distribution of these drops depended on the contact angle of the glasses 

(Table 2). NCS and PS glasses presented a similar contact angle (~ 10˚) and this low 

value was related with the high wettability of the glass surface [60].  
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 In the corrosion test carried out at 100 % RH, the glass surface was covered by a 

layer of water where the NaCl aerosols were dissolved. When the samples were taken 

out, crystals were homogeneously formed on the surface. In KCS samples, the contact 

angle was ~ 70˚ (Table 2). In these samples, the wettability was less, and independent 

water drops covered the glass surface [60]. NaCl aerosols were dissolved in each drop, 

forming the circular conglomerates of crystals (Fig. 1c). 
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Fig. 1. OM images of a) NCS1 sample after the aerosol deposition, b) NCS1 sample after two days at 100 

% RH, c) KCS1 sample after two days at 100 % RH, d) PS1 sample after two days at 100 % RH. 
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Table 2. Average of contact angle values (in degrees) and standard deviation measured for drops of 

distilled water on the glass surfaces. 

Glass Contact angle (˚) Measurement method 

NCS 12 ± 6 Circle Fitting 

KCS 69 ± 3 Young Laplace  

PS 8.9 ± 0.5 Circle Fitting 

 

 After 36 days of test, the samples exposed to a high humidity (100 % RH and 

100-23 % RH) presented deposits with different morphology. Square and dendritic 

deposits appeared principally on NCS and PS samples (Figs. 2, 3a, 3c), while KCS 

samples presented linear and irregular deposits and small fissures on the surface (Figs 2, 

3b). In contrast, those samples exposed to 23 % of humidity (NCS3, KCS3 and PS3) 

presented the same aspect than the original ones because the humidity was not enough 

to deliquesce the NaCl aerosols (Figs. 1a, 2) [59, 61]. 

 

Fig. 2. OM images of the glass samples after 36 days of corrosion test. 
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Fig. 3. SEM images of glass samples after 36 days at 100 % RH: a) NCS1, b) KCS1, c) PS1. 

3.1.2. Composition of the deposits 

 GIXRD was carried out on the surface of the glass samples to identify the 

chemical composition of the deposits after the tests (Table 3). In general, those samples 

exposed to 100 % RH presented more complex species than on the other tests.  

Soda-lime silicate glasses (NCS1, NCS2 and NCS3) only presented NaCl deposits 

(Table 3, Fig. 4) which were related with the original aerosols.  

 Potash-lime silicate glasses (KCS1, KCS2 and KCS3) presented NaCl deposits 

and also new crystalline phases on the surface of the glasses KCS1 and KCS2 (Table 3, 

Fig. 4). Not only chlorides were detected, also carbonates and sulfates were formed. 

High humidity favored the solubilization of atmospheric gases (CO2 and SO2) and the 

formation of complex species. These new species presented K+ and Ca2+ ions which 

came from the ion exchange of the glass network with the Na+ or H+ ions from the 

surface water (Eq. 2, 3).  

 In lead silicate glasses (PS1, PS2 and PS3), the formation of new species (KCl, 

PbCl2, PbOHCl and CaCO3) was also favored (Table 3, Fig. 4). Similarly to previous 

glasses, high humidity favored the formation of complex species. Although, KCl and 

PbCl2 were also identified in the samples exposed to 23 % RH (Table 3). 
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Table 3. Species identified by XRD in the surface of the glasses after 36 days of corrosion test. 

Compound NCS1 NCS2 NCS3 KCS1 KCS2 KCS3 PS1 PS2 PS3 

Chlorides Halite 

(NaCl) 

                  

 Sylvite 

(KCl) 

           

 Cotunnite 

(PbCl2) 

          

 Lauronite 

(PbOHCl) 

          

Carbonates Natrite 

(Na2CO3) 

         

 Calcite 

(CaCO3) 

         

Sulfates Potassium 

sulfate 

(K2SO4) 

         

 

 

Fig. 4. XRD patterns of NCS1, KCS1 and PS1 after 36 days at 100 % RH. 
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3.1.3. Glass alteration 

The alteration pathologies on the glass surface were identified by FTIR analyses. 

The samples exposed during 36 days at 100 % RH (NCS1, KCS1 and PS1) presented 

the stretching and bending of the hydroxyl groups (Fig. 5), in special in the sample 

KCS1. This stretching was related to the adsorption of molecular water in the glass 

surface and to the formation of hydroxyl groups due to the glass alteration [62].  

 Lead silicate glass was the less altered sample according to FTIR because their 

spectra before and after the exposition were very similar (Fig. 5). Soda-lime silicate 

glass presented a slight increase in the intensity of the symmetric stretching bands of 

SiO‾ and the longitudinal optical (LO) component of the asymmetric stretching of SiO2, 

which can be related to the formation of a very thin hydration layer on the glass surface. 

There was also observed a few increased in the stretching band of the carbonate ions 

(Fig. 5),  even when they were not observed by XRD (Table 3, Fig. 4). In the case of 

potash-lime silicate glasses, the FTIR spectra showed a few increase in the asymmetric 

stretching bands of SiO2, both the transverse optical (TO) and the longitudinal optical 

(LO) components (Fig. 5), which was related with the presence of a thin layer of 

hydrated silica on the glass surface [63]. Small fissures were observed previously by 

SEM (Fig. 3b). The stretching band of the carbonate experienced a high increase in the 

KCS glass after the lab corrosion test due to the formation of natrite (Na2CO3) and 

calcite (CaCO3) on the glass surface (Figs. 4, 5, Table 3). The stretching band of the 

sulfate also experienced a few increase due to the formation of potassium sulfate 

(K2SO4) detected by XRD (Figs. 4, 5, Table 3). 
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Fig. 5. Normalized FTIR spectra of the original samples (NCS, KCS and PS) and the samples after 36 

days of corrosion test (NCS1, KCS1 and PS1). Types of vibrations: υ: stretching; δ: bending. 

3.2. Cabo Vilano field exposure 

3.2.1. Morphology of deposits 

 The surface of the samples exposed to the atmosphere in Cabo Vilano (Spain) 

was covered by small crystals (Figs. 6a, 6b, 6c). The soda-lime and potash-lime silicate 

glasses presented rectangle particles up to 3 μm of length and aggregations of small 

particles with an average diameter of 100 nm (Figs. 6a, 6b, 6d, 6e). This type of 

particles was also observed in the lead silicate glasses (Figs. 6c, 6f). The morphology of 

the salts was completely different to the CIME lab experiment (Figs. 3a, 3b , 3c) as 

aerosols were only pure NaCl with a concentration four times higher than in seawater 

[51], whereas in Cabo Vilano the aerosols were salts from the seawater and also soil 

particles from the environment. KCS was the only sample which presented fissures in 

the surface (Figs. 6b, 6e) which could be related with the formation of a surface 

alteration layer. 
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Fig. 6. SEM images of glass samples after the exposition in Cabo Vilano (Spain): a, d) NCS_CV; b, e) 

KCS_CV; c, f) PS_CV. 

3.2.2. Composition of the deposits  

 The GIXRD analysis of the samples exposed in Cabo Vilano showed a high 

variety of crystals. All samples presented NaCl and KCl (Fig. 7), which can be 

associated with the composition of the seawater [51]. Calcite was detected in NCS_CV 

and KCS_CV, the glasses with higher contents of calcium (Table 1) and could come 

from the environment or can be formed during the alteration. The KCS_CV also 

presented natrite. In the lead silicate glass, lead chloride and lead carbonate were 

identified (Fig. 7) and they were related with the extraction of lead cations from the 

glass surface. Hematite (Fe2O3) and anatase (TiO2) were also presented in all the 

samples. 
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Fig. 7. XRD patterns of NCS_CV, KCS_CV and PS_CV after 36 days of exposure in Cabo Vilano 

(Spain). 

 The analysis of the particles with enough mass and active vibration modes can 

be detected by µ-Raman spectroscopy and showed the presence of rutile and red ochre 

particles (Fig. 8). These particles come from the environment. TiO2 was detected by 

GIXRD in the crystalline form of anatase (Fig. 7). A phase transition could occur during 

the µ-Raman analysis transforming the anatase into rutile [64]. The red ochre, formed 

by a mixture of iron oxide, silica and clay, can be related with soil particles transported 

by wind. 

 

Fig. 8. µ-Raman spectra of particles on the samples exposed in Cabo Vilano (Spain). 



21 
 

3.2.3. Glass alteration 

 As result of the exposition in Cabo Vilano, all the samples presented the 

stretching and bending of the hydroxyl groups in the FTIR spectra due to the glass 

corrosion and the adsorption of water in the glass surface [62]. The stretching bands of 

carbonates or sulfates were not detected (Fig. 9). 

 Similarly to the lab corrosion test (section 3.1.3.), lead silicate and soda-lime 

silicate glass were the less altered samples because their spectra before and after the 

exposition were very similar (Fig. 9). Just a few increase in the intensity of the 

longitudinal optical (LO) component of the asymmetric stretching of SiO2 and the 

symmetric stretching bands of SiO‾ was detected in the soda-lime silicate glass 

spectrum, which was related to the formation of a hydration layer. On the contrary, the 

FTIR spectra of the potash-lime silicate glasses showed a completely different spectrum 

before and after the exposition due to the fast alteration of this type of glass. The 

asymmetric stretching bands of SiO2, both the transverse optical (TO) and the 

longitudinal optical (LO) components, experienced a significant increase (Fig. 9), which 

was related with the presence of a porous silica layer on the glass surface [63]. The 

increase of these bands followed by the relative decrease of the asymmetric stretching 

band of Si-O‾ pointed to the formation of a surface alteration layer due to the 

dealkalization of the glass network (Eq. 2) followed by a condensation reaction (Eq. 1) 

[65, 66]. The formation of an alteration layer justified the significant increase of the 

stretching bands of the hydroxyl groups due to the adsorption of molecular water. 

Fissures in the alteration layer were previously observed by SEM (Figs. 6b, 6e).  
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Fig. 9. Normalized FTIR spectra of the samples NCS, KCS and PS before and after the exposition in 

Cabo Vilano (Spain). Types of vibrations: υ: stretching; δ: bending. 

 The surface roughness of the glass was also modified during the exposition (Fig. 

10). The original glass presented an almost flat surface due to the polishing in optical 

quality, just two micrometrical holes were detected (Fig. 10a). After exposure, all 

samples experienced an increase of the roughness (Figs. 10b, 10c, 10d), although the 

deposits on the surface were not observed due to their small size. The roughness of NCS 

sample was twice the original value, whereas KCS and PS presented an increase of 

approximately a factor 5 (Fig. 10).  
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Fig. 10. Roughness maps from the surface of the samples a) NCS without be exposed, and the samples b) 

NCS_CV, c) KCS_CV, d) PS_CV after 36 days exposed in Cabo Vilano (Spain). The Z axis (µm) is the 

maximum value on the height and Ra is the arithmetic average roughness value determined by 

rugosimetry (5 × 5 mm) [58]. * The roughness was measured in a 2 × 2 mm area out of the cracks. 

4. DISCUSSION 

4.1. Effect of marine aerosols on the glass alteration 

 The results confirmed that high humidity favored the alteration of the glass 

surface and the formation of new crystalline phases. NaCl aerosols on the glass surface 

acted as condensation nuclei when the environmental relative humidity was above 76 % 

RH [59, 67]. The formation of a layer of water on the glass surface favored the 

lixiviation of the alkaline and alkaline-earth ions (Eqs. 2, 3) and the solubilization of 

atmospheric gases (CO2, SO2). During the CIME lab corrosion test a great diversity of 

crystalline phases were formed on the glasses which depended on the time and the 
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relative humidity. High humidity during long time favored the formation of complex 

species. Potash-lime silicate glasses exposed to the cycles 23/100 % RH also presented 

complex species due to the low stability of the glass composition. However in soda-lime 

silicate and lead silicate glasses, more stable compositions, the samples exposed to the 

cycles 23/100 % RH presented crystalline phases similar to the samples exposed to 23 

% RH. 

 The formation of complex species was directly related to the Gibbs free energy 

of the salt and their solubility (Table 4). According to the Gibbs free energy, the 

evolution of the crystalline phases with sodium, potassium and calcium ions is: NaCl < 

KCl < CaCl2 < Na2CO3 < CaCO3 < K2CO3 < Na2SO4 < CaSO4 < K2SO4 (Table 4). 

CaCl2 and K2CO3 are intermediate species, but they were not detected in the corrosion 

tests because of their high solubility (Table 4). Na2SO4 and CaSO4 were also not 

detected because they needed a high content of environmental SO2 to be formed. This 

evolution was previously observed by Carmona et al. in historical medieval stained 

glass windows [22], where they showed that the carbonates acted as intermediate 

species in the formation of the corrosion crust of gypsum (Eq. 5, 6). 

Table 4. Solubility at 25 ºC and Gibbs free energy of formation in standard conditions (25 ºC and 100 

kPa) in aqueous solution of the species detected by XRD. Data obtained from [68], [69] (a) and [70](b).  

Compound Solubility 25 ºC (g/100 g H2O) ΔGf˚ (kJ·mol-1) 

NaCl 36 -393.1 

Na2CO3 30.7 -1051.6 

Na2SO4 28.1 -1268.4 

KCl 35.5 -414.5 

K2CO3 111 -1094.4 

K2SO4 12 -1311.1 

CaCl2 81.3 -816.0 

CaCO3 6.6·10-4 -1081.4 

CaSO4 0.205 -1298.1 

PbCl2 1.08 -286.9 

PbOHCl - - 383.7 (a) 

PbCO3 1.1·10-3 (b) -625.9 (b)  

PbSO4 4.3·10-3 (b)  -813.9 (b)  
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 In lead silicate glass, the formation of PbCl2, PbOHCl, PbCO3 and PbSO4 was 

also thermodynamically favored (Table 4). Nevertheless, the Gibbs free energy of the 

species with lead was higher than the equivalent compounds with alkaline and alkaline-

earth cations (Table 4), being the latter ones thermodynamically more stable. In 

addition, the lixiviation of the lead is less favored than the alkaline and alkaline-earth 

cations of potash-lime silicate glass, presenting comparatively a slow corrosion rate. 

 The salts detected in the samples exposed in Cabo Vilano (Spain) could be due 

to the deposition of marine aerosols and environmental particles, and also due to the 

reaction of the cations dissolved in the hydration water with the atmospheric CO2 [22]. 

However, the diversity of new species was relatively poor because the rainwater washed 

the glass surface cleaning it.  

4.2. Influence of glass composition on its alteration 

 Soda-lime silicate samples were the most stable glasses in both corrosion tests. 

The samples exposed to the CIME corrosion test only presented NaCl deposits on their 

surface which can be related to the original aerosols. The ion exchange could also occur 

on the glass surface, however the high concentration of Na+ ions dissolved in the 

hydration water did not favor the dealkalization of ≡Si-O-Na. In the real environment, 

more variety of salts was detected on the glass surface. No alteration layer was observed 

on the glass, however a slight increase in both the hydroxyl bands in the FTIR spectra 

and the surface roughness were detected. This slight increase could be related with the 

hydration period in the alteration mechanism of the glass, which is the first step of the 

degradation of soda-lime silicate glasses in river and marine aqueous media [42]. Stable 

glasses, such as soda-lime silicates, present a slow and long hydration process in 

aqueous media [35], which could be even slower in atmospheric environments. 
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 Lead silicate glass presented, in both tests, the formation of new crystalline 

species with lead, which just can proceed from the glass surface. The formation of these 

species demonstrates the ion exchange between the aerosols and the glass matrix. In 

addition, KCl was detected in the CIME lab corrosion test which proves that K+ ions 

were also lixiviated. The surface, measured with the rugosimeter, was severely altered 

during the exposition to a real environment, however the FTIR spectra just showed a 

slightly increase in the band of the hydration layer. The FTIR bands between 1200 and 

700 cm-1 are directly related with the bridging and non-bringing bonds in the silica 

network, which seems to be non-altered during the exposure. Previous studies have 

proven that lead silicate glasses are susceptible to atmospheric [71, 72] and marine 

environment [42, 73] because of the ion exchange between the H+ ions of the medium 

and the Pb2+ cations in the glass network [74, 75]. Na+ ions from NaCl aerosols could 

favor these reactions due to the opening of the network proposed in the alteration 

mechanism of the silica [35]. 

 Finally, potash-lime silicate glass was the most altered glass in both corrosion 

tests. Humidity was the principal alteration agent because it favored the hydrolytic 

attack and lixiviation of the K+ ions from the glass surface. This lixiviation left a very 

porous structure because the ionic radius of K+ ions (RK+ = 0.133 nm) is higher than Na+ 

and H+ ions (RNa+ = 0.097 nm; RH+ = 0.010 m) [76]. This porous structure favored the 

diffusion of water molecules and Na+ ions through the alteration layer. The FTIR bands 

related with the bridging bonds of the silica increased their intensity in relation with the 

non-bridging bonds. This relative increase was related to the polymerization of the 

silanol groups to form a porous silica layer [63]. In addition, the high tension of the 

structure formed several fissures in the alteration layer which were observed in both 
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experiments. The high concentration of Na+ ions dissolved in the hydration layer could 

accelerate the alteration rate.  

 According to Dove and Crerar [35], the silanols groups formed during the 

hydrolytic attack can be replaced by ≡Si-O-Na groups which were placed 

perpendicularly to the surface to avoid the steric hindrance and the ionic repulsion 

favoring the opening the glass network. This substitution induced also the loss of the 

surface hydrogen bonds which protected the glass in acid medium favoring the 

alteration of the glass surface [4, 9, 12]. Regarding the crystals analyzed on the glass 

surface, complex salts formed by K+ and Ca2+ cations lixiviated from the glass surface 

and environmental gases were detected in the CIME lab corrosion test. In the exposure 

on Cabo Vilano, the salts could be related with the glass alteration, such as in the CIME 

lab corrosion tests, and also due to aerosols. 

5. CONCLUSIONS 

 Two tests were developed to determine the effect of marine aerosols on the 

alteration of silicate glasses. According to the results, NaCl aerosols have two main 

effects on the glass surface. The first one is that they acted as condensation nuclei in 

high humidity environments. The hydrated surface favored the lixiviation of alkaline 

and alkaline-earth ions from the surface and the solubilization of atmospheric gases 

(CO2, SO2). The salts detected after the tests presented a great diversity of crystalline 

phases. 

According to the Gibbs free energies, the evolution of these compounds are 

chlorides < carbonates < sulfates, however not all the intermediate species were 

detected due to the solubility of each salt. The second effect is that the Na+ ions 

dissolved in the hydration layer can accelerate the corrosion attack due to the 
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replacement of ≡Si-O-H groups by ≡Si-O-Na. This substitution induced the loss of the 

surface hydrogen bonds and the opening of the network accelerating the corrosion 

mechanism. 

 Regarding the type of glass, soda-lime silicate glass was the most durable one 

because of its high stability to environmental conditions. Lead silicate glass was not 

present any alteration pathology, however it experienced the lixiviation of Pb2+ ions to 

form lead chloride and lead carbonate. Finally, potash-lime silicate glass was the less 

durable glass because it presented a fissured alteration layer due to the hydrolytic attack 

of the surface. In addition, several compounds with K+ and Ca2+ ions were detected due 

to the dealkalization of the surface. 

 Moreover, this study highlights that airborne particles of natural origin such as 

marine aerosols have the ability to modify the properties of the glass surface and to 

favor its surface dealkalization in a very short exposure time (1 to 3 months only).  
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