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Abstract
Deposits of misfolded proteins in the human brain are associated with the development of

many neurodegenerative diseases. Recent studies show that these proteins have common

traits even at the monomer level. Among them, a polyglutamine region that is present in

huntingtin is known to exhibit a correlation between the length of the chain and the severity

as well as the earliness of the onset of Huntington disease. Here, we apply bias exchange

molecular dynamics to generate structures of polyglutamine expansions of several lengths

and characterize the resulting independent conformations. We compare the properties of

these conformations to those of the standard proteins, as well as to other homopolymeric

tracts. We find that, similar to the previously studied polyvaline chains, the set of possible

transient folds is much broader than the set of known-to-date folds, although the conforma-

tions have different structures. We show that the mechanical stability is not related to any

simple geometrical characteristics of the structures. We demonstrate that long polygluta-

mine expansions result in higher mechanical stability than the shorter ones. They also have

a longer life span and are substantially more prone to form knotted structures. The knotted

region has an average length of 35 residues, similar to the typical threshold for most poly-

glutamine-related diseases. Similarly, changes in shape and mechanical stability appear

once the total length of the peptide exceeds this threshold of 35 glutamine residues. We

suggest that knotted conformers may also harm the cellular machinery and thus lead to

disease.

Author Summary

Misfolding and aggregation of several proteins are known to be related to neurodegenera-
tive diseases. Among them, polyglutamine expansions are known to be responsible for at
least 9 diseases, including Huntington. Nonetheless, the structural properties of these
intrinsically disordered proteins are difficult to study using classical techniques because of
their rapid fluctuations that result in high conformational polymorphism. Here, we use
molecular dynamics simulations to study polyglutamines of different chain lengths, start-
ing with short non-pathogenic ones, and study the independent structures they are able to
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form. We characterize all structures by their geometrical properties, connectivity, putative
mechanical stability and residence time (life span). Similar to the findings of a previous
study with polyvalines, only some of the conformers are similar to those found in natural
globular proteins. Moreover, we find structures that contain knots in both polyglutamine
and polyvaline 60-mers, although the former contains many more knotted conformers
than the latter. We suggest that these knotted conformers may impair the cell machinery
for degradation and eventually lead to toxicity.

Introduction
Less than two thousands protein folds have been identified in nature [1, 2], indicating that sim-
ilar folds can be adopted by large numbers of sequences. These folds have been characterized
and classified in the CATH database [3]. Recently, Cossio et al. [4] considered a single
sequence—polyvaline (polyV) 60-mer (denoted here as V60)—and generated, through all-atom
simulations, an exhaustive database with 30 063 conformations. Interestingly, only a small frac-
tion of the V60 conformations turned out to be CATH-like in that they had at least one similar
structure in the CATH database. The similarity was assessed by a TM-score being higher than
45%. The score is obtained through an algorithm for protein comparison based on secondary
structure alignment [5]. Thus they explored, in their own words [4], the universe of protein
structures beyond the Protein Data Bank. They argued that there must be an evolutionary prin-
ciple that favors shorter loops and directs the evolution to a certain spot in the universe of pos-
sible conformations.

Long polyV chains do not exist in nature. However, many proteins in eukaryotic cells con-
tain homopolymeric tracts, defined as repetitions of the same residue. In particular, upon
inspection of the revised human proteome stored in UniProt Knowledge Database [6], we
found that 18.9% of the human proteome involves homopolymeric tracts of size 5 or greater,
while the probability of one happening by chance is 6 � 10−6. Among these, the longest chains
have been found for polyserine (polyS, 58 repeats, in the TNRC18 protein, with a random
probability of 4 � 10−76) and polyglutamine (polyQ, 40 repeats, in FOXP2 protein, random
probability of 9 � 10−53).

PolyQ chains are known to be responsible for several brain disorders, including Huntington
disease (HD). HD is caused by a protein in the human brain known as huntingtin (HTT)—of,
as yet, not fully elucidated function. HTT is known to be highly involved in development [7],
and is thought to be related to gene expression regulation [8] and to anchoring or transport of
vesicles [9]. A HTT mutant with an expansion of polyQ that exceeds the threshold of about
35-mer was linked to the disease [10]. Even though polyQ tracts have been extensively studied
[11–13], the molecular physiopathology behind the connection between sequence length and
disease remains elusive.

Another example of disease-related homopolymeric tracts is polyalanine (polyA), occurring
in transcription factors. Expansions of the polyA tracts beyond certain thresholds (e.g. 19) have
been recognized as the cause of congenital malformation syndromes, skeletal dysplasia and
nervous system anomalies [14, 15]. The strong evolutionary conservation of the polyA tracts
suggests the existence of critical structural or functional constraints [14]. It should be noted
that in human proteins the polyA tracts are short compared to those of polyQ [15].

Here, we focus on polyQ chains of various lengths, Qn, where n goes from 16 to 80. The case
of n = 62 was the subject of a recent single-molecule force spectroscopy study [16] that revealed
a large conformational polymorphism (monitored as a spectrum of different breaking points
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and characteristic force-peak heights, up to 800 pN). The questions we ask are as follows: 1)
can we explain this conformational polymorphism? 2) can polyQ tracts generate non-CATH-
like conformers? 3) what are the structural and mechanical properties of the polyQ structures?
In order to answer them, we follow a bias exchange molecular dynamics approach (BEMD)
[17] also used by Cossio et al. [4]—one of the meta dynamics approaches—and explore the
structural and dynamical properties of Qn with a particular focus on Q20 and Q60, representa-
tive examples below and above the HD’s pathological threshold.

We take two perspectives in our analysis: 1) making comparisons of Q60 to V60 and to the
similar-sized proteins from the CATH database; 2) investigating the changes in the physical
properties of the conformations corresponding to Qn as one varies n. The dynamical properties
can be conveniently captured by their mechanical stability, as characterized by the characteris-
tic force, Fmax, needed to unravel a structure by pulling by its termini at a constant speed, vp.
This part of our studies makes use of a structure-based coarse-grained model [18, 19] to access
the regime of near-experimental speeds and to deal with the large statistics. It should be noted
that typical fluctuation times of these structures are much smaller than those needed to fully
unravel them [20]. Thus, the results on Fmax are merely indicators of the putative mechanical
stability of each specific conformer that do not take the intrinsic evolution of the disordered
protein into account.

We find that relatively large mechanical stability may arise not only from structures with
large secondary structure content (SS, measured as the percentages of residues belonging to α-
helices, β-strands and hydrogen-bonded turns) but also from those with SS of about 30%.
Interestingly, we also find spontaneous generation of knotted structures for n = 60, which tend
to be of a size of 36 residues, about HD’s threshold. This is a novel feature in neurotoxic pro-
teins that needs further investigation.

Methods

Generation and selection of structures
Our BEMD [17] simulations were carried out using the GROMACS molecular dynamics pack-
age [21] and the PLUMED extension [22]. The force field used is AMBER99SB [23] and the
implicit solvent model is the generalized Born surface area method [24]. The same force field
has been used before in folding simulations with explicit solvent [17, 25], but implicit solvent is
preferred in order to efficiently explore the energy landscape [4]. Structures were initialized
randomly using the MODELLER software [26]: 10 off-template models were done for each
protein; the models that contained knots were discarded and the remaining ones were mini-
mized through up to 1000 steps of the steepest descent method followed by up to 4000 steps of
the conjugate gradient algorithm [27]. The system which acquired the smallest potential energy
after the two minimization stages was chosen for further studies.

In order to generate a variety of Qn structures, we applied the BEMDmethod with six repli-
cas, each with a different secondary structure bias: the first one with no bias; the next three
with a preference to α-helix in the first, second and last third of the chain sequence; the fifth
with a preference to anti-parallel β-strands and the last one with parallel β-strands. The method
is explained in detail in the S1 Text.

We first obtained a number of conformations with a varying secondary structure content.
To select the structures of interest, we followed the three-sieve protocol used in [4], described
in the S1 Text, that yields structures with SS > 30 % which are temporally and structurally
independent. From a 2 μs simulation of Q60, 246 independent conformers were obtained from
953 time clusters. For Q20, a 0.66 μs simulation resulted into 491 independent conformers out
of 517 time clusters. Interestingly, half the simulation time for the short peptide yielded twice
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as many independent conformations as the longer one, which indicates higher polymorphism
and faster dynamics in Q20. The procedure led to the emergence of some knotted structures
even though there were no knots present in the initial homology-derived conformers.

After clustering, all independent structures underwent a minimization process of 10 000
steepest descent steps or until the maximum force between a pair of atoms was smaller than
0.25 J/(mol nm) so that the structure in the closest energy minimum is obtained. In this pro-
cess, some of the residues may form or break contacts, thus changing their secondary structure
content slightly. Therefore, even though the structures were selected with SS � 30 % before
the first clustering, some of the final structures may have a smaller SS content.

The structures of V60 were taken from ref. [4]. Their 50 μs simulation yielded 30 063 time
clusters. We have applied the structural clustering to this set and obtained 7076 independent
conformers—as these were not available. All the independent structures generated are provided
in the S1 Text.

Three previous works have explored the aggregation properties of Qn by computer simula-
tions. In the first of them, the focus is on the temporal stability of the structures and on the eval-
uation of their amyloidogenesis and fibrillation capabilites [28]. The second study explores the
landscape of possible conformations by simplifying the structure of glutamine and generating a
model that efficiently samples many conformations [29]. Finally, the third one applies replica
exchange molecular dynamics to explore the dimerization of polyQ [30]. The three works show
structures such as steric zippers and a β-helix, which have been found in our sampling among
the strongest Q60 and Q20 conformations shown in S1 and S2 Figs. Furthermore, rod-like con-
formers with close to 100% α-helical content were also described in the aforementioned works
and have likewise been found in this sampling. Our simulations did not find the mainly β con-
formations suggested in Ref. [30] because we consider monomers instead of dimers.

Descriptors of the structures
Our structural analysis deals with several descriptors. One is the radius of gyration, Rg, which
characterizes the linear size of the molecule. Another is the w parameter which describes the
shape [31, 32], which is defined through the diagonalization of the tensor of inertia and by
making combinations of the three main radii such that a near-zero w corresponds to a globular
shape, a positive w to an elongated one, and a negative w to a flattened object. The third
descriptor is the SS parameter, which is determined by using the DSSP procedure [33]. This
parameter is a sum of several ingredients: the α-helical content, the β-content (strands and
bridges), and the hydrogen-bonded turn content.

The next two descriptors are Fmax and hzi—the average coordination number. The former
relates to the dynamics directly, while the latter relates to it indirectly since zmeasures the
number of residues a given residue interacts with. These interactions are of two kinds: through
the peptide bond with the two nearest residues along the sequence and through contact interac-
tions with residues which are not sequential neighbors. The contacts play a dynamical role in
coarse-grained structure-based models but they can also be used as descriptors in all-atom
models. The specific definition of the contacts we use is based on enlarged van der Waals
spheres associated with the heavy atoms [18, 19] and the radii of the spheres are given in ref.
[34]: a contact between two residues exists if there is at least one pair of heavy atoms with over-
lapping spheres.

In the structure-based model, we assign Lennard-Jones potentials of depth ε to these con-
tacts (the potential minimum is at the distance between the Cα atoms in the reference struc-
ture) so that larger values of hzi are expected to correspond to more stable structures. Maxwell
demonstrated [35] that large three-dimensional systems of particles with pairwise interactions
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are stable provided the hzi is bigger than 6. In particular, this finding has been shown to be con-
sistent with the behavior of virus capsids [36]. In our case, the structures are much smaller
than the capsids and, therefore, the threshold value of hzi is reduced, as explained in the S1
Text. Furthermore, the systems we study are also endowed with the local backbone stiffness—a
four-particle interaction [37]—which favors the local chirality of the reference state. Thus non-
zero values of Fmax for structures with hzi smaller than 6 are allowed.

A stretching force (F) vs. displacement (d) curve may include articulated force peaks –which
exceed the thermal noise level of about 0.1 ε/Å—before the F raises indefinitely due to stretch-
ing of the peptide bonds. The calculations are done at the temperature of 0.3 ε/kB, where kB
denotes the Boltzmann constant. The number of peaks is denoted by np. Fmax is defined as the
height of the largest peak. If none exists then Fmax is defined to be zero, even though it could
take any value below the baseline of the curve (around 0.4 ε/Å). We simulate stretching at vp of
5 � 10−3 Å/τ, where τ is of order 1 ns. Experimental vp’s are typically lower, e.g. 4 � 10−6 Å/ns in
ref. [16]. We have calibrated [19] ε to be 110 pN Å (with a 25% error bar) by comparing theo-
retical and experimental values of Fmax in 38 proteins (the theoretical results involved extrapo-
lation to the experimental vp’s). The temperature in the coarse-grained simulations is in the
vicinity of the room temperature.

Finally, one can consider the contact order (CO) as yet another structural descriptor. It is
related to the number of contacts as well as the average distance along the sequence between the
contacting residues, as defined in Ref. [38] as CO ¼ 1

L�N
P

kSk, where Sk is the distance between

the residues that form contact k, L is the number of residues in the protein andN the number of
contacts. There is a question whether CO correlates with the folding time or not (see [39] and
[40] for the arguments for and against it), so one may also inquire whether Fmax correlates with
CO. It seems unlikely that the free energy barrier to mechanical unfolding is of the same nature
as the one for folding (or thermal unfolding) [41] but this does not preclude a correlation with
CO. However, we do not find the correlation to be valid (see the S1 Text) which is consistent
with the fact that the green fluorescent protein (PDB code 1GFL) has a bigger Fmax than the I27
domain of titin (the PDB code 1TIT), 2.7 vs. 2.1 ε/Å [19], whereas its CO is smaller, 0.22 vs. 0.36.

Results

Properties of Q60 and Q20

We first consider the Q60 set, so that one can compare with V60 from [4] and with the experi-
mental results on Q62 in [16]. S1 Fig shows structures corresponding to the top five values of
Fmax. Similar figures for other sets studied are shown in S2 and S3 Figs. The values range
between 2.1 and 2.3 ε/Å (approximately between 230 and 250 pN) which is of the order of
what has been found—about 200 pN—for the I27 domain of titin [42, 43] at smaller vp’s. The
fact that these values are much smaller than the ones found experimentally in [16] can be
attributed to a small statistics, since the experimental systems yielded high force only with low
probability (p(Fmax > 200 pN) = 7 ± 6%). The figure also shows the corresponding F − d pat-
terns together with distances at which particular contacts break down (the distance in the con-
tact exceeds the reference distance by 50%) for the last time. The contacts are labeled by the
sequential distances ji − jj between residues i and j. The number of force peaks varies between 1
and 4, corresponding to several substructures forming in each conformer. The third column of
panels in S1 Fig provides the values of the relevant descriptors. Rg is seen to range between
11.05 and 14.20 Å and the values of w indicate that the fifth structure is elongated while the
other four are nearly globular. The most stable structure of the five shown (the top row of pan-
els) corresponds to the largest hzi (7.67), and SS (66.7%)—the secondary structure is, in this
case, exclusively of the β type.
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Interestingly, the second most robust structure, as judged by the value of Fmax, has very low
hzi (5.33) and SS (28.3%).

This system was compared to Q20, which is unrelated to disease and is close to Q19, which
was studied experimentally [16]. The two left columns of Fig 1 refer to all structures in sets Q20

and Q60. In particular, the first row represents the geometries obtained on the Rg—w plane.
The convention we use is that we represent the data corresponding to structures with SS of at
least 50% and those with lower SS by filled and open symbols, respectively. The structures
from Q60 are seen to overlap with the region taken by Q20 but they also extend to much larger
Rg and to bigger w. The largest value of Rg corresponds to a low SS, while high w can be
achieved with any value of SS.

The two bottom rows of Fig 1 show scatter plots that compare the values of Fmax in Q60 to
those in Q20 when represented as a function of hzi and SS. S4 Fig provides a continuation in
which Fmax is plotted against the α-, β-, and turns (τ) content. It is clear that, for a given n, the
mechanical stability is not related in any simple manner to either hzi, CO or SS content. This is
because typical high-force motifs include β-structured regions, while high hzi and SS can be
achieved with α-structure and hydrogen-bonded turns [43]. S4 Fig shows that mechanical sta-
bility has no direct correlation to α-content or hydrogen-bonded turns (τ), and while most of

Fig 1. Scatter plot relating the specified variables for four differentsets, from left to right, Q20, Q60, V60 and CATH. The empty black points represent
the conformers with less than 50% secondary structure content, while the filled red dots represent the more structured conformers. The vertical dotted lines in
the middle panels mark the simply stiff limits of stability for each case (see the S1 Text). The conformers to the left of this line are more volatile. The horizontal
dashed lines in the middle and bottom panels mark off the top five conformers with respect to the value of Fmax.

doi:10.1371/journal.pcbi.1004541.g001
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the high β-content conformers lead to high forces, these can also be observed in cases with no
β-content. Similar results are shown in the top panels of S5 Fig for the CO.

Furthermore, in the top left panel of Fig 2 there is a comparison of the distributions of Fmax

for Q60 and Q20. We observe that although our BEMD simulations bias the chain towards the
acquisition of SS, many conformers do not produce any articulated force peaks above the 10%
noise level (Fmax = 0). In particular, Q20 presents (79 ± 2)% of this kind of conformers, while Q60

only contains (34 ± 3)% of them. This result is consistent with the experimental data [16], where
no force peaks were detected in Q19, while some were found in Q62. Remarkably, although the
diversity in mechanical stability for Q20 is smaller than for Q60, the frequency of independent
structure generation is greater in the former (see S6 Fig), so its conformational polymorphism
should be higher. The volatility of each conformer, as assessed by hzi lower than their threshold,
also agrees with this result, with (49 ± 2)% volatile conformers in Q20 vs. (13 ± 2)% in Q60.

Taken together, these results show that Fmax is inherently different in Q20 and Q60 sets, even
when SS is similar. This further points to Fmax not being related to hydrogen-bonded turns, α
helices and even β-strand content and SS, and also neither to CO nor to hzi.

Comparisons of Q60 to the remaining sets of structures
Fig 2 shows the normalized distributions of Fmax within the Q60, Q20, V60, CATH60, and
CATH sets. The distributions do not show the peak at Fmax = 0, but its value is shown in the
caption and contributes to the normalization. CATH60 is defined as structures containing
between 57 and 63 residues and it contains 256 proteins. In order to exclude short peptides and
most multidomain proteins we take CATH to represent all those proteins in the CATH data-
base that are 40 to 250 residue long. This set comprises 5403 structures.

Fig 2. Distributions of Fmax for the studied species. The top left panel shows the distribution for Q20 in a
thick line. The conformations with no force peaks are not plotted in the histograms but contribute to
normalization. The amount of such non-mechanostable conformers is (79 ± 2)% for Q20, (34 ± 3)% for Q60,
(16.5 ± 0.2)% for V60, and (47 ± 3)% and (20.2 ± 0.5)% for CATH60 and CATH, respectively. The errors were
computed using a bootstrapping method and the size of the error bar indicates the standard deviation.

doi:10.1371/journal.pcbi.1004541.g002
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The characteristic forces grow on moving from Q20 to Q60. However, in all sets but Q20, the
most probable Fmax is about the same, 1.2 ε/Å, but the shapes of the distributions differ. The
distributions are comparably broad for CATH and CATH60 and comparably narrower for Q60

and V60, indicating the role of the stronger compositional homogeneity in the latter two sets.
The rougher look of the distribution for Q60 is likely due to the one order of magnitude smaller
statistics. Furthermore, it should be noted that, among the systems of about 60 residues,
CATH60 leads to the biggest number of situations with no force peaks, (47 ± 3)%; and V60 to
the smallest, (16.5 ± 0.2)%.

Despite the similarity of the distribution of the forces between Q60 and V60, the geometrical
character of structures in the two sets are distinct. Fig 1 shows that V60 conformers are more
compact and less elongated than Q60 or CATH60. Furthermore, this figure indicates that size
and shape of a chain need not be correlated.

Fig 1 further shows that most of the structures in the 60-sized sets, and also for CATH,
come with hzi between 5.5 and 8.5. However, the largest values of Fmax arise for hzi between 6.3
and 8.1 and many large hzi structures come with average or even small forces, including Fmax

of 0. Similarly, Fig 1 also demonstrates that large SSmay come with low or zero forces and
large Fmax may arise when SS is at its lower range. Furthermore, the scattering of the data
points in the Fmax–CO plane shown in Fig. [38] also points in the direction of statistical inde-
pendence. This observation further proves that there is no correlation between Fmax and hzi,
CO or SS. Interestingly, none of the independent V60 structures obtained from [4] have hzi
below the volatility threshold, while (5.5 ± 1.4)% of the ones in CATH60 and (2.3 ± 0.2)% of
CATH do. Our comparison reinforces the remarkable conclusion that Fmax is unrelated to CO,
SS or hzi and extends it to general globular proteins instead of being a property specific for
polyQ. This is further discussed in the S1 Text, where the independence of Fmax with the rest of
parameters is proved.

Life span of the structures
In order to test whether the coordination number is actually related to temporal stability, we
performed 10 ns free-dynamics simulations on 100 structures chosen randomly from each set:
Q20, Q60 and V60. We have studied the time dependence of RMSD relative to the initial struc-
ture and the last time that it fluctuated below 2 Å was recorded for each conformer as its time
of residence (tR). Similarly, we define the escape probability (Pe(t)) as the probability of leaving
the initial conformation before time t.

Fig 3 shows the results of this study. The top panel shows that Q60 conformers last longer
than Q20 in a specific state, while the average escape probability of V60 initially is lower but
soon rises much faster than the other two sets. For completeness, we run the same study on
three regular proteins: Trp-cage (PDB code 1L2Y, 20 residues long), an immunoglobulin bind-
ing domain of protein G (1GB1, 56 residues) and the 27th immunoglobulin domain of human
cardiac titin (1TIT, 89 residues). All of them remained in the same conformation for longer
than 10 ns: their RMSD was never higher than 2 Å.

The bottom panels of Fig 3 show scatter plots of tR vs. hzi. This figure shows that hzi is not
only unrelated to Fmax, but also to the temporal stability of the conformers (as measured by tR)
in the cases where hzi is above the simply stiff limit. In the case of conformers with hzi below
this limit, however, tR is always below 1 ns, reinforcing Maxwell’s theory on frame stiffness [35].

Interestingly, both theoretical and especially experimental pulling experiments are typically
done at vp’s such that the time the protein is being pulled is far longer than 10 ns. In particular,
the pulling simulations performed in this work take� 50 μs to completely extend a protein
with 60 residues, while experiments such as the ones performed in [16] take around 60 ms to
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accomplish the same task. This leads to question whether the force peaks present in the experi-
mental traces really relate to the initial conformers or have actually been formed while the mol-
ecule was being pulled.

Therefore, one must look at Fmax carefully since it has different meaning in this kind of simu-
lation than in experiments such as those in [16]: Here, mechanical stability is associated directly
with a conformer, since simulations are based on the initial contact map. On the other hand, in
experiments, molecules are subjected to fluctuations with a characteristic time of 1 ns and the
F–d curves carry information not only about the initial conformer but also about the stretching-
unrelated intrinsic shape transformations that the protein may undergo. All in all, we observe
that disordered proteins such as polyglutamines are not long lasting when compared to struc-
tured globular ones, and that mechanical stabilities need to be looked at in the context of how
they were measured, either referred to the initial conformer if done through structure-based
modelling, or including bond formation during the stretching if performed experimentally.

Structures with knots
Even though the starting structures were not knotted, our BEMD simulation yielded some
knotted conformers. In particular, (9.3 ± 1.8)% of the independent Q60 conformers have a
knot, while Q20 include no knotted conformers. Moreover, only (3.6 ± 0.5)% of the V60 struc-
tures contain a knot, and none of the CATH structures have one. All knots generated in V60

Fig 3. Time evolution of the studied structures. For each set in Q60, Q20 and V60, 100 randomly chosen
structures have been placed under a free-dynamics evolution for 10 ns. After that, the RMSD has been
studied and the last time when it fluctuates above 2 Å is recorded as the residence time (tR). The top graph
shows the escape probability (Pe(t)), defined as the probability of having left the initial state of a conformer at
time t. We can see how Q20 fluctuates out of the initial structure much faster than Q60, while V60 starts more
slowly but rapidly outruns both Q60 and Q20. The inset shows the average evolution of the RMSD for the three
sets compared to an example of a similar-sized globular protein, an immunoglobulin binding domain of
protein G (PDB code 1GB1, 56 residues). The latter lasts for longer than 10 ns fluctuating around 2 Å, while
the other three rapidly evolve out of the initial structure. The bottom graphs show scatter plots of hzi vs. tR. No
simple relation can be established between these two quantities above the stiff limit (dashed vertical lines),
while below it residence times never exceed 1 ns.

doi:10.1371/journal.pcbi.1004541.g003
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are trefoil (31), while Q60 also contains one three-twist (52). Upon stretching, only (13 ± 7)% of
the Q60 knotted structures untie, while (45 ± 6)% of the V60 ones do. As shown in ref. [44],
tightening of knots may be associated with force peaks. Both for Q60 and V60, knot tightening
yields Fmax from 0.9 to 2.4 ε/Å.

Fig 4 shows an example of a 31 knotted conformer found in Q60 plus a histogram of the
ends of the knots (k−, k+) and their extension (Δk, measured as the number of residues con-
tained inside the knot) in the structures formed by sets Q60 and V60. An example of a 52 one
from Q60 and a 31 from V60 are shown in S7 Fig Significantly, not only does V60 form fewer
and less stable knots than Q60, but also the extension of the V60 knots is typically larger than
the Q60 ones. Furthermore, the average extension of the knotted Q60 conformers is 36 (with a
0.12% error), which corresponds to the median threshold value for most polyglutamine-expan-
sion-related diseases such as HD. We note that knotted structures would have been found
experimentally as putative events in [16], since the final length would be reduced and thus they

Fig 4. Knots in the studied conformers. The top left panel shows an example of a Q60 conformation
containing a trefoil (31) knot with the knot ends highlighted with yellow spheres. To its right, the same
conformation has been partially stretched, and the region inside the knot is highlighted in red and zoomed in.
The middle panels represent histograms of the knot end positions, k±, for Q60 (left) and V60 (right). The bottom
panel shows their corresponding extension, Δk. The percentage of knotted structures relative to to the total
number of independent conformers found for Q60 and V60 are (9.3 ± 1.8)% and (3.6 ± 0.5)%, respectively.
Shallow knots have an extension closer to 60 (the system size). Protein representations have been done with
VMD [48].

doi:10.1371/journal.pcbi.1004541.g004
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would render molecules with lower total contour length increase. Furthermore, knotted pro-
teins have previously been found in nature especially in enzymes such as methyltransferases
and carbonic anhydrases [45–47]. Nonetheless, the only hypothesized function of the knot
itself—as opposed to the whole protein—is to prevent the unfolding of the protein in a case
where the proteasome were to try to degrade it [46].

The presence of knots on its own is not indicative of their relevance: they need to last long
enough to be able to have any effect. To that end, we performed 200 ns all-atom simulations
with explicit TIP3P water of three randomly chosen knotted conformers to see the behaviour
of these knots with time. The knot ends fluctuate along the protein as does the knot size, and in
some cases the knot unties just to be formed again some time later –the time of the protein
being in the untied conformation lasting for as long as 200 ps. Also, in two of the three cases,
preferred places for the left and right ends can be seen, the right end being the same for both of
them. The results of these simulations can be seen in S8 Fig.

Other lengths in polyQ chains
Given that the average extension of the knots corresponds with the median of the threshold of
the polyQ diseases, we applied the same methodology to other Qn tracts, with n = 16, 25, 33,
38, 40 and 80. As expected, no knots were found for n< 35; but there were no knots in sets
Q38, Q40 or Q80 either. This may be attributed to a low probability of knot formation combined
with small statistics, which would imply that BEMD took Q60 through a knot-forming path
while taking the rest of Qn studied through non-forming ones. This is reinforced by the fact
that the greater statistics of V60 do find knotted conformers. Therefore, an increase in the sam-
pling may catch these knotted structures in Q80 and Q40, while their formation is fairly improb-
able for n below 35 since the typical knot size is about this length.

Fig 5 shows the evolution of the mechanical stability and shape with the chain length. In
particular, the fraction of conformers with Fmax > 0, which we name χF, follow a logarithmic
law, while the maximum Fmax for each set, denoted as FM

max behaves like an avalanche system: it
has a constant value until n = 33, and then starts growing as a power law with exponent 0.562.
The average Rg appears to be saturating as n approaches 40, but it suddenly jumps for n = 60
and 80. Judging by w, the shapes of the conformers change around n = 35 from elongated to
more globular. Interestingly, V60 behaves differently than Q60 except that the average w (lower
right panel) is similar, suggesting the similarity of shapes. We also conclude that the fraction of
mechanically stable conformers increases uniformly with n, while the maximum Fmax presents
an avalanche behaviour for n> 30, once again close to HD’s threshold of 35.

Discussion
In this study, we have generated an ensemble of structurally independent conformers for gluta-
mine expansions with n residues. We have focused on n = 60 which, if present in huntingtin
protein, would result in Huntington disease, and on n = 20, which would not.

We have then expanded the study to n = 16, 25, 30, 33, 38, 40 and 80 in order to further
explore the structural nature of the n� 35 threshold in most polyQ-related diseases.

We find that proteins related to the disease exhibit less conformational polymorphism than
the ones unrelated to it in terms of independent structures and transition kinetics, even though
the former show much more mechanical variability (in terms of Fmax and np) as well as struc-
tural (measured by SS and hzi). We also conclude that, contrary to intuition, hzi, CO, SS and
β-content are not good predictors of either temporal or mechanical stability. This conclusion
extends not only for polyQ but also generally for all proteins in CATH.
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Finally, we prove the presence of knots of length 35 at least in Q60. The sequential size of
these knots suggests a relationship to HD. One of the possible mechanisms for the relevance of
the knots in pathology is impairing the process of proteasomal degradation, as suggested in
[46] and [16]. Moreover, although there is evidence for the toxicity of the monomeric polyQ
species [49], even if the toxicity was due mainly to the oligomers (see e.g. Ref. [50]), the block-
ade of the degradation machinery by a knotted monomer would induce an increase of the con-
centration of aggregating protein, and thus toxicity may be caused by the monomers even if
they are not toxic themselves.

Supporting Information
S1 Text. The details of structure generation and selection are explained here, together with
the stability associated to the coordination number. Furthermore, a statistical analysis of the
lack of relation between Fmax and the rest of the descriptors used in this work is also presented.
(PDF)

S1 Fig. Five conformers with highest mechanical stability in set Q60. The structure with the
biggest Fmax is at the top. The left column shows snapshots of the structures. The red ribbons
represent β strands and the red lines correspond to β bridges. The black lines indicate hydro-
gen-bonded turns. The orange spheres mark the termini, from which the molecule is pulled.
The center column displays the unfolding F − d curve (left axis) together with the unfolding
scenario diagram (right axis), i.e. the time a contact is broken vs. the distance between the resi-
dues that are in contact. The column on the right shows the values of the relevant descriptors.

Fig 5. Variability of the specified parameters with the length, n, of the polyQ chain (circles). The values
for V60 are indicated by a square. χF represents the fraction of conformers with at least one force peak for that
particular length. The dotted fits correspond to a logarithmic function (top left.352 ln(x/8.115)) and a
polynomial behavior (top right, y = 0.236x0.562), which is typical for avalanches. The bottom panels show
average over the structures of Rg andw. hRgi has a saturating behavior up to n = 40, but jumps for higher
values. hwi presents a transition around n = 35 from slightly elongated to more globular proteins.

doi:10.1371/journal.pcbi.1004541.g005
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All molecule cartoons were generated using VMD [48].
(TIF)

S2 Fig. Five conformers with highest mechanical stability in set Q20. The structure with the
biggest Fmax is at the top. The left column shows snapshots of the structures. The red ribbons
represent β strands and the red lines correspond to β bridges, while blue helices are α helices.
The black lines indicate hydrogen-bonded turns. The center column displays the unfolding F −
d curve (left axis) together with the unfolding scenario diagram (right axis). The column on the
right shows the values of the relevant descriptors.
(TIF)

S3 Fig. Five conformers with highest mechanical stability in set V60. The structure with the
biggest Fmax is at the top. The left column shows snapshots of the structures. The red ribbons
represent β strands and the red lines correspond to β bridges. The black lines indicate hydro-
gen-bonded turns and α-helices are depicted in blue. The center column displays the unfolding
F − d curve (left axis) together with the unfolding scenario diagram (right axis). The column on
the right shows the values of the relevant descriptors.
(TIF)

S4 Fig. Scatter plot of Fmax vs. α, β and hydrogen-bonded turns (τ) content for polyQ
chains. The horizontal dashed lines mark off the top five values of Fmax.
(TIF)

S5 Fig. Scatter plot of Fmax vs. CO for the specified sets. The horizontal dashed lines mark off
the top five values of Fmax.
(TIF)

S6 Fig. Kinetics of independent structure formation for Q60 (circles), V60 (triangles) and
Q20 (diamonds). Although more complete plots should be fit with a double exponential func-
tion [4], short trajectories correspond to a linear behavior. The fitted slopes are .28, .62 and .98
respectively. Data for V60 were taken from [4].
(TIF)

S7 Fig. Examples of knotted structures. The top structure corresponds to a three-twist (52)
knot in Q60, while the lower panels are for a trefoil knot from V60, where no other knots were
found. Left column shows a representation of the molecule before stretching, with the knot
ends highlighted with yellow spheres. Right panels show the molecules partially stretched, and
the region inside the knot is highlighted in red and zoomed in.
(TIF)

S8 Fig. Time evolution of the knots. Three randomly chosen knotted conformers were simu-
lated with all-atom and explicit solvent. One of them is shown in Fig 4. The top panel shows
the evolution of the knot size with time for one of the simulations. The middle panel shows a
histogram of the knot sizes along this time for the three simulations, each with a different
color. The bottom panel shows a histogram of the respective knot ends, the left end (k−,
inverted) and the right ones (k+).
(TIF)

S9 Fig. An example of the SS sieve and time clustering stages. The gray line in the top panel
shows evolution of SS with time for one of the replicas. Structures with SS> 30% (the thin
horizontal line) are taken for clustering. A cluster ends whenever the gap between successive
structured conformers becomes greater than 50 ps. The black dots correspond to structures
that represent clusters: these are the structures with the highest SS in the cluster. The red
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box in the top panel is shown zoomed in the middle panel, where clusters are represented by
red lines. The bottom panel shows the RMSD of each cluster representative relative to the pre-
vious one. All of these RMSD’s are greater than 2 Å so the clusters can be considered to be
uncorrelated in time.
(TIF)

S10 Fig. Color-map plots of the difference between the joint CDF and the product of the
independent CDFs of Fmax and the specified descriptor. Differences are always below 0.1,
and below 0.05 in three of the descriptors (SS, CO and τ). Therefore, Fmax is statistically inde-
pendent of the descriptors studied.
(TIF)

S1 Table. Parameters of a linear regression for the dependence of Fmax on various structural
descriptors. The top panel lists the values of the Pearson R2 coefficients with a 95% confidence
interval. The lower panel lists the slopes of the linear fits together with the error bars. The num-
ber in the parenthesis is the corresponding p-value. Even though the slope for each correlation
is significantly different from zero; R2 is never close to one, so no correlation can be established
between the descriptors and Fmax. This is also assessed in S10 Fig.
(PDF)
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