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To some extent contradicting the classical paradigm of the relationship between protein
3D structure and function, now it is clear that large portions of the proteomes, especially
in higher organisms, lack a fixed structure and still perform very important functions.
Proteins completely or partially unstructured in their native (functional) form are involved
in key cellular processes underlain by complex networks of protein interactions. The
intrinsic conformational flexibility of these disordered proteins allows them to bind multiple
partners in transient interactions of high specificity and low affinity. In concordance,
in plants this type of proteins has been found in processes requiring these complex
and versatile interaction networks. These include transcription factor networks, where
disordered proteins act as integrators of different signals or link different transcription factor
subnetworks due to their ability to interact (in many cases simultaneously) with different
partners. Similarly, they also serve as signal integrators in signaling cascades, such as
those related to response to external stimuli. Disordered proteins have also been found in
plants in many stress-response processes, acting as protein chaperones or protecting other
cellular components and structures. In plants, it is especially important to have complex
and versatile networks able to quickly and efficiently respond to changing environmental
conditions since these organisms cannot escape and have no other choice than adapting
to them. Consequently, protein disorder can play an especially important role in plants,
providing them with a fast mechanism to obtain complex, interconnected and versatile
molecular networks.
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PROTEIN INTRINSIC DISORDER
It is now recognized that a large fraction of the proteome, espe-
cially in eukaryotic organisms, lacks a fixed 3D structure in its
native form. In these proteins, either the complete chain (“intrin-
sically disordered/unstructured protein,” IDP/IUP) or part of it
(“intrinsically disordered/unstructured region,” IDR/IUR) do not
adopt a folded structure in its functional form, but exist as a flex-
ible mobile polypeptide (Dunker and Obradovic, 2001; Tompa,
2002; Uversky, 2013).

Intrinsically disordered proteins/intrinsically disordered region
were detected from diverse experimental evidences of lack of
fixed structure: e.g., missing segments in X-Ray-derived struc-
tures or lack of constraints to define a unique structure in NMR.
At the sequence level, IDRs are characterized by long stretches of
charged and polar residues almost lacking hydrophobic residues,
which consequently do not allow the formation of hydropho-
bic cores to initiate folding (Romero et al., 2001; Dyson and
Wright, 2005; Tompa, 2005). This particular (highly biased)
amino-acid composition was the basis of the first approaches
for detecting IDPs/IDRs from primary sequences. Later, as more
examples of experimentally determined IDRs accumulated, spe-
cific predictors were trained with them, such as PONDR (Romero
et al., 1997) or DISOPRED (Ward et al., 2004). These, together
with the latest methodologies based on physical principles, e.g.,
FoldIndex (Prilusky et al., 2005) and IUPRED (Dosztanyi et al.,

2005), constitute the current toolbox for predicting disorder from
primary sequences.

Research in this type of proteins was delayed in part by the fact
that they apparently contradicted the classic “structure-function
relationship”paradigm, which states that a protein has to be folded
in a fixed 3D conformation in order to perform its function. In
IDPs, it is actually their lack of structure what is instrumental to
perform their particular functions. This is because in most cases
the molecular function of these polypeptides is related to tran-
sient binding to multiple (different) partners. Such a particular
way of interacting could not be achieved by “fixed” surfaces, but
only by those able to adapt to different conformations. Indeed,
in many cases IDRs become structured upon binding to a part-
ner, and in some cases the same IDR can adopt different bound
structures depending on the partner (Tompa, 2005). This entropy
reduction due to the structural gain associated to the binding is
in part responsible for the special characteristics of the disorder-
mediated interactions. Besides binding, IDRs also act as flexible
linkers and “springs” within the cell (Dunker et al., 2002; Tompa,
2002; Cozzetto and Jones, 2013).

Disordered proteins/regions are associated with key cellular
processes such as signaling cascades, transcription regulation,
cell cycle control and chaperone activity (Iakoucheva et al., 2002;
Uversky et al., 2005; Tompa et al., 2006; Xie et al., 2007). These pro-
cesses require reversible transient interactions of high specificity
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and low affinity, eventually with different partners, exactly the type
of interactions mediated by these unstructured polypeptides. Con-
sequently, far from being “rare” or anecdotic, disordered proteins
are among the most important proteins in a given proteome, and
their mutation is, in many cases, either lethal or leads to diseases
(Iakoucheva et al., 2002; Midic et al., 2009). Indeed, the possibil-
ity of interacting with multiple partners makes IDPs being “hubs”
(highly connected nodes) in protein interaction networks (Haynes
et al., 2006) which are themselves related to lethality (Jeong et al.,
2001). For example, the highly studied human transcription fac-
tor (TF) p53 is disordered in half of its length and indeed uses
these IDRs to interact with its more than hundred different
known partners (Oldfield et al., 2008). Similarly, signaling net-
works are branched and interconnected, and they require transient
interactions of high specificity with different partners, making
unstructured proteins excellent candidates for them. Another
prototypical example are the molecular chaperones, for which a
growing body of evidence points to the involvement of disorder
in the activity of many of them (Kovacs and Tompa, 2012). Many
chaperones contain IDRs (which are involved in the regulation of
the chaperone or in the interaction with the substrate itself) or are
fully disordered (IDPs). Interacting through disordered segments
allows these chaperones to help in the folding of a much broader
range of substrates.

Within these long disordered segments, particular stretches of
amino-acids, generally with increased evolutionary conservation,
have been found to be important for determining the interaction
specificity. They can be seen as a sort of “functional sites” within
disordered segments. These include “molecular recognition fea-
tures” (MoRFs), which have a tendency to form certain secondary
structures (α-MoRFs, β-MoRFs, . . .) realized when they bind to
a partner (Fuxreiter et al., 2004; Mohan et al., 2006), “eukaryotic
linear motifs” (ELMs; Gould et al., 2010), and “short linear motifs”
(SLiMs; Diella et al., 2008).

These proteins are not only involved in central cellular processes
but they are also more abundant than previously anticipated. The
development of specific predictors able to detect IDPs/IDRs from
primary sequences, and their massive application to complete
proteomes rendered surprising results. Almost 1/3 of eukary-
otic proteins are mostly disordered and half of them contains at
least one long IDR (>30 residues). This rises to 70% for proteins
involved in signaling (Iakoucheva et al., 2002; Vucetic et al., 2003;
Ward et al., 2004).

Moreover, there is a relationship between disorder content and
what one intuitively regards as “organism complexity.” Even if
this is controversial mainly due to the imprecise definition and
quantification of “organismal complexity,” at least there is a clear
difference between the relatively low disorder content of prokary-
otic organisms and the high disorder found in eukarya (Ward et al.,
2004; Schad et al., 2011). This can be related to the involvement
of disorder in cellular processes that are apparently more complex
and interconnected in higher and multicellular organisms (cell
cycle control, signaling cascades, etc.).

Taking together all these observations point toward the involve-
ment of disorder in the generation of the highly-connected
and intricate molecular interaction networks which underlie the
complex biological processes characteristic of higher organisms.

Indeed, protein interactions mediated by IDRs are recognized as
a way of introducing plasticity in protein interaction networks
(Tompa et al., 2005; Uversky et al., 2005). Along the same line,
it has also been shown that in many cases alternative splicing
isoforms are characterized by the addition/deletion of IDRs so
as to add/remove interacting regions and consequently tune the
“wiring” of the networks these isoforms are involved in (Romero
et al., 2006; Buljan et al., 2013).

PROTEIN DISORDER IN PLANTS
LARGE-SCALE QUANTIFICATIONS OF DISORDER
In principle, protein disorder in plant proteomes follows the same
trends reported for other species. A number of studies focused
on plant model organisms showed that disorder is present in the
typical processes involving transient interactions with multiple
partners. For example, a genome-wide analysis of protein disorder
in Arabidopsis thaliana (Pietrosemoli et al., 2013) showed that the
biological processes more enriched in disordered proteins were
related to cell cycle, signaling, DNA metabolism, RNA splicing, etc.
In this study, disorder predictions were generated for all proteins
in this model organism. These data, together with a functional
classification of the proteins in biological processes, allowed to
evaluate the degree of disorder of the different biological processes.
Carrying out the same process for the Human proteome allows
to perform comparative studies on the usage of disorder in both
organisms. The proteome of A. thaliana follows the expected trend
regarding whole disorder content: as an eukaryotic organism, it has
much more disorder than bacterial proteomes and, leaving apart
discussions on the definition of “organism complexity” and its
quantification, Arabidopsis is globally less disordered than Human,
an organism intuitively regarded as of higher complexity (Schad
et al., 2011; Pietrosemoli et al., 2013).

In spite of this lower overall disorder content, there are some
biological processes that are more enriched in disorder in A.
thaliana than in Human. Many of these processes are related
to the detection and response to external (environmental) stim-
uli (Pietrosemoli et al., 2013). These include processes related to
the perception of light, response to abiotic stress, protein fold-
ing (chaperones) and secondary metabolism (mediating plant
response to stress). A hypothesis to explain that these processes
related to the perception and response to stimuli are more disor-
dered in plants than in organisms of higher complexity involves
that plants might have evolved very complex, versatile and intri-
cate systems for interacting with the environment since, being
sessile organisms, they cannot escape from environmental haz-
ards and changes, as animals do, and have no other option than
responding to them (Pietrosemoli et al., 2013). Protein disorder
is a possible way for increasing the “wiring” (connectivity) of the
molecular networks underlying a given biological system. As a
consequence, such system becomes more intricate and complex.
This relationship between disorder in plants and their increased
ability to respond to changing conditions has also been noted by
other authors (Sun et al., 2013).

EXAMPLES OF INVOLVEMENT OF DISORDER IN PLANTS
The involvement of protein intrinsic disorder in a number of plant
molecular systems has been studied in detail. Again, in all the cases
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protein disorder allows the proteins in these systems to inter-
act transiently with multiple partners with high specificity and
low affinity. Moreover, in general these systems follow the trend
commented above regarding the relationship between disorder in
plants and versatility/complexity in the response to stimuli and
changing conditions.

Maybe the most studied example of disordered plant systems
are the dehydrins (Mouillon et al., 2006; Kovacs et al., 2008; Sun
et al., 2013). This large and diverse family of proteins, involved
in the response to drought and other environmental stresses, is
almost completely disordered: their content of “standard” sec-
ondary structure elements (α-helix and β-strand) is low, and they
present a significant content of poly-Pro helices (Mouillon et al.,
2006). This family includes protein chaperones such as ERD10
and ERD14 (Kovacs et al., 2008; Tompa and Kovacs, 2010) as well
as proteins involved in the binding of metal ions, protection of
membranes, and global protection of the cell during the highly
compact dry state characteristic of plant seeds (Sun et al., 2013).
It looks like dehydrins have evolved for maintaining this disorder
state and avoid forming compact folded structures (Mouillon et al.,
2006). The conformational flexibility associated to the disordered
state allows them to sequester water, ions, proteins (as chaper-
ones), and perform all the other molecular functions associated to
their roles in responding to water-related stresses.

Another plant-specific family of proteins heavily relying on dis-
order for functioning is the GRAS family (Sun et al., 2011; Sun
et al., 2012). These proteins play an important role in plant devel-
opment and are involved in signal transduction cascades, such as
those related to hormone response. Within these cascades, they act
as integrators of signals (i.e., from different hormones or environ-
mental inputs). It is indeed their disordered region (present in the
N-terminal) that allows them to interact with multiple partners
through different binding sites (MoRFs, see Introduction) and
consequently integrate the signals they represent. The most con-
served C-terminal domain of this family (which is actually what
characterizes it) is structurally ordered and contains also motifs
involved in protein interaction. Among them, there are Leucine-
rich regions probably involved in interactions with TFs so as to
transduce the integrated signals downstream.

In some cases, this integration of signals occurs at the level of
the TF itself, due to the presence of disordered domains (besides
the ordered DNA binding domain), which allows the TF to be
influenced by multiple partners. For example the NAC family
of plant TF is involved in a variety of processes such as plant
defense, stress response or development. These proteins present
a conserved (structured) N-terminal DNA-binding domain and a
more variable intrinsically disordered C-terminal region (Jensen
et al., 2010; Sun et al., 2013; Figure 1). This region acquires local
structure (α-helix) when binding to the multiple partners of these
proteins. This mechanism by which a TF is influenced by multi-
ple partners through disordered regions, which also happens with
other plant TFs such as the basic leucine zipper domain (bZIP)
family (Yoon et al., 2006), is similar to that of the human p53
commented.

It was also proposed that many chloroplast proteins whose
genes were originally encoded by the chloroplast genome acquire
disordered regions as they are transferred to the nucleus (Yruela

FIGURE 1 | Example of a highly disordered protein in A. thaliana.

Schematic representation of the structural features of the “putative NAC
domain-containing protein 94” (Uniprot: NAC94_ARATH). The disorder
prediction of IUPRED (Dosztanyi et al., 2005) show that, according with the
standard 0.5 threshold, most of the C-terminal part of the protein (from 150
to 337) is probably unstructured (dotted lines). The N-terminal DNA binding
domain is probably structured and, indeed, a structural model can be
generated based on the structure of a homolog (PDB:4dul_B, 62%
sequence identity; solid line). So probably this protein “looks like” the
representation above: a short structured DNA-binding domain followed by a
long flexible disordered region, involved in the binding of different partners.

and Contreras-Moreira, 2012). In concordance with its prokary-
otic origin, proteins coded in the chloroplast genome almost
lack disordered regions. Nevertheless, it looks like the “eukary-
otic machinery” of the nucleus adds disorder to them once they
become coded there. This reinforces the idea of the relationship
between disorder and the emergence of the complex molecular
machineries associated to eukaryotic organisms.

CONCLUSIONS
In summary, recent research is showing that, in contrast to the clas-
sical dogma, intrinsic disorder is an important feature for many
proteins to function. In general, protein disorder allows interac-
tion versatility and adds complexity to the interactomes. It is likely
a way in which evolution can increase the complexity of biological
networks without increasing excessively the size of the genomes. In
plants, the predominance of intrinsic disorder in proteins involved
in responses to environmental conditions could be explained as a
requirement of these processes to be more complex due to the
special characteristics of these sessile organisms.
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