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Stroke is a disease of aging affecting millions of people worldwide, and recombinant
tissue-type plasminogen activator (r-tPA) is the only treatment approved. However, r-tPA
has a low therapeutic window and secondary effects which limit its beneficial outcome,
urging thus the search for new more efficient therapies. Among them, neuroprotection
based on melatonin or nitrones, as free radical traps, have arisen as drug candidates due
to their strong antioxidant power. In this Perspective article, an update on the specific
results of the melatonin and several new nitrones are presented.
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INTRODUCTION

Stroke is a disease of aging, affecting an increasing number of people worldwide, and the main
cause of disability (Flynn et al., 2008; Mathers et al., 2009). The ischemic cascade begins with the
energy failure produced by the obstruction of a blood vessel that produces a massive and prolonged
release of glutamate (Rothman and Olney, 1986). Physiopathological events associated with brain
ischemia are related to oxidative stress process, Ca2+ dyshomeostasis, mitochondrial dysfunction,
pro-inflammatory mediators and/or programmed neuronal cell death. In the ischemic stroke,
as the result of the obstruction of a blood vessel, a critical reduction in the cerebral blood flow
(less than 25%) occurred in brain, and neurons need a continued supply of oxygen and glucose.
Under deprivation of oxygen and glucose, cell death occurs in two phases: (a) first cell death from
anoxia/hypoxia and energy depletion, followed by; and (b) reperfusion that increase oxidative
stress and free radical formation, excitotoxicity and nitric oxide (NO) production with ulterior
energy failure and delayed death (Hossmann, 1994; Choi, 1996; Lee et al., 1999; Ito et al., 2003).

No effective therapeutic drugs to treat or prevent brain damage in ischemic stroke are
currently available. Only recombinant tissue plasminogen activator (r-tPA) is used to open
a blood vessel, but r-tPA has a very narrow therapeutic window of 3.5 h (Zivin et al., 1985).
Preventing brain damage during the ischemic penumbra, despite that it is a hypoperfused
and non-functional tissue, is still a viable tissue adjacent to the infarcted core. Finally, new
therapeutic agents are needed to recover tissue functionality before cell death, and to be
effective in dealing with several targets, including excitotoxicity and disturbed calcium ion
homeostasis, mitochondrial failure, oxidative and nitrosative stress, inflammation and apoptosis
(Paschen, 2000; Chan, 2001; Iadecola and Alexander, 2001; Lo E. H. et al., 2005; Niizuma
et al., 2010). In this Perspective article, we will focus on melatonin and nitrones, well-known
radical scavenging and antioxidant agents, for the potential therapy of stroke (Hardeland, 2009).
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MELATONIN

Stroke as a main cause of brain disease arouses great interest
in therapeutic strategies development. The fact that no effective
treatment for stroke has yet been approved to date makes
melatonin a promising molecule for stroke treatment, either
alone or in combination with other agents. A great number
of studies had been developed with melatonin prevention
or counteracting stroke damage at several steps of the
ischemic cascade, such as neuroinflammation, oxidative stress,
excitotoxicity and/or apoptosis (Barlow-Walden et al., 1995;
Sinha et al., 2001; Rodriguez et al., 2004; Ozacmak et al.,
2009; Reiter et al., 2009; Koh, 2012a; Kim and Lee, 2014;
Manchester et al., 2015; Zhao et al., 2015; Alluri et al., 2016).
We have recently demonstrated that in rat hippocampal slices
subjected to oxygen-glucose-deprivation (OGD) and glutamate
excitotoxicity, melatonin is able to mediate neuroprotection
(Patiño et al., 2016). Previously, we also demonstrated that
melatonin exerts its protective effect post-ischemia through
the nicotinic acetylcholine receptor α7 subunit modulated
by an overexpression of heme oxygenase-1 (Parada et al.,
2014).

Numerous experimental in vivo studies evidenced that doses
in a range of 5–15 mg/kg of melatonin, mainly administered
intraperitoneally, exert neuroprotective effects in the ischemic
cascade at several critical points (Guerrero et al., 1997; Pei et al.,
2003; Pei and Cheung, 2004; Chen H. Y. et al., 2006; Carloni
et al., 2008; Signorini et al., 2009; Balduini et al., 2012; Alonso-
Alconada et al., 2013; Paredes et al., 2015).

In vivo data confirm the efficacy of this indoleamine.
Melatonin has been related to brain repair by comparing
pinealectomized and non-pinealectomized animals, observing a
greater neurodegeneration in the last group (Manev et al., 1996).
Some studies showed its capacity to counteract oxidative stress
downregulation or scavenging oxygen and nitrogen species and
its free radical detoxification capacity (Guerrero et al., 1997; Pei
et al., 2003; Rodriguez et al., 2004; Chen H. Y. et al., 2006; Koh,
2008d).

Other results in stroke models reveal the efficacy of
the antiapoptotic properties of melatonin through several
mechanisms like increasing levels of Bcl-2, blocking caspase
cascade or by preventing mitochondrial depolarization (Sun
et al., 2002; Andrabi et al., 2004; Koh, 2008b).

In stroke, elevated extracellular glutamate is critical in
neuronal damage. Herein, melatonin has also demonstrated a
neuroprotective effect in vivo, mitigating Ca2+ influx (Camello-
Almaraz et al., 2008) via melatonin receptor (Das et al.,
2010) by reducing lipid peroxidation (Kim and Kwon, 1999;
Wakatsuki et al., 2001). Interestingly, melatonin is a free
radical scavenger, which inhibits NO synthesis, a mediator of
glutamate and therefore reducing the excitotoxicity (Chung and
Han, 2003). In animal stroke models, inflammation leads to
numerous pathological events, but melatonin treatment reduces
macrophage brain infiltration, activated microglia prevents
IL-1β, TNF-α and GFAP overexpression (Lee et al., 2007; Paredes
et al., 2015), which taken together inhibit the inflammatory
response.

Nonetheless, blood brain barrier (BBB) integrity is
compromised after cerebrovascular insults, by an increased
release of proinflammatory mediators (COX-2, TNF-α, IL-1β,
IL-6), ROS, protein extravasation and interstitial edema. In
animal models, melatonin significantly reduces BBB dysfunction
through several mechanisms, NO, ROS and RNS levels,
preserves tight junction proteins as claudin-5 and modulates
hyperpermeability (Chen H. Y. et al., 2006; Grossetete et al.,
2009; Song et al., 2014; Moretti et al., 2015; Alluri et al., 2016).
In light of these results melatonin shows a suitable profile to
preserve BBB functional integrity.

Among brain cell populations, neural stem cells (NSCs) have
the potential to regenerate new neuronal population. It has
been described that after a melatonin treatment, neurogenesis is
induced through melatonin receptor MT2 (Chern et al., 2012).
Despite molecular neuroprotective mechanisms are not well
defined, melatonin has demonstrated to enhance neurogenic
cells of the ischemic brain, in striatum neurons and the
hippocampal region (Kilic et al., 2008; Ayao et al., 2010; Lee
et al., 2014). Furthermore, mesenchymal stem cells (MSCs) are
used in implantations after the ischemic insult, but unfortunately
this procedure involves the difficulty that approximately the
80% of the grafted cells do not survive (Roh et al., 2008).
Melatonin pre-administration achieves a higher percentage of
MSCs survival, also through a receptor-mediated mechanism
(Tang et al., 2014).

As far as signal transduction pathways are involved in stroke,
melatonin has emerged as a versatile neuroprotective regulator.
Melatonin neuroprotective effects are achieved through receptor-
mediated mechanisms (MT1, MT2 and MT3; Reiter et al., 2007;
Tan et al., 2007; Slominski et al., 2012; Lacoste et al., 2015).
Activation of MT1 melatonin receptor leads to the stimulation of
a large variety of G proteins (Brydon et al., 1999), upregulation of
MT2 promoted neurogenesis and preservation of BBB integrity
(Chern et al., 2012) and stimulation of MT3 may contribute to
the antioxidant potential of melatonin (Tan et al., 2007).

In addition, melatonin is highly effective in preventing
Ca2+ dyshomeostasis during ischemic brain injury (Camello-
Almaraz et al., 2008; Koh, 2012b). The antiapoptotic effect of
melatonin in brain ischemia models is related to its actions at
the mitochondria level, preventing the injury-induced reduction
of pBad levels and the mitochondrial depolarization inhibiting
the mitochondrial permeability transition pore (mPTP; Andrabi
et al., 2004; Kilic et al., 2004b; Koh, 2008b). Cell proliferation,
differentiation, survival and apoptosis are regulated by the
PI3K/Akt signaling pathway and activation of iNOS signaling
is associated with PI3K/Akt inhibition. It has been reported
that melatonin upregulates this pathway, and decreases iNOS
levels (Kilic et al., 2005; Koh, 2008c,d). Matrix metalloproteinases
(MMPs) are a family of calcium-dependent zinc-binding
proteolytic enzymes that degrade the extracellular matrix
(ECM) components of the basement membrane (Montaner
et al., 2001). Administration of exogenous melatonin attenuated
postischemicMMP-9 activation reducing brain damage in stroke
models (Hung et al., 2008). The mitogen-activated protein
(MAP) kinase/extracellular-regulated kinase (ERK) 1/2 signaling
pathway regulates cell differentiation, growth, survival and
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apoptosis (Pearson et al., 2001). It has been reported that
melatonin plays neuroprotection through Akt and ERK1/2
phosphorylation, and activates MEK/ERK/p90RSK/Bad cascade
signaling (Kilic et al., 2005; Koh, 2008a). After hypoxic/ischemic
brain injury, endogenous vasoconstrictor endothelin-1 (ET-1)
levels are elevated leading to exacerbated brain injury, but when
melatonin is administered in mice stroke models a beneficial
neuroprotective effect was observed inhibiting ET-1 (Kilic et al.,
2004a; Lo A. C. et al., 2005). Phosphorylation/dephosphorylation
processes are the major form of cellular signaling (Gong
and Iqbal, 2008), and their deregulation turns in severe
pathologies including neurodegeneration (Sontag et al., 2004),
cancer (Ruediger et al., 2001), cardiovascular (Ling et al., 2012)
and metabolic disorders (Mandavia and Sowers, 2012). The
phosphoprotein phosphatase 2A (PP2A) is the principal member
of the family of Ser/Thr phosphatases (Liu et al., 2005), which
removes phosphate from serine and threonine residues. Several
compounds may activate or protect PP2A enzyme activity and
have neuroprotective actions in in vivo and in vitro models of
brain damage (Shah et al., 2015). In this context, melatonin
exerts an upregulation of PP2A enzyme activity, which implies
that the PP2Amalfunction observed in excitotoxic environments
could be mitigated by the administration of melatonin (Koh,
2012a). The protective effect of Silent information regulator 1
(SIRT1) on the brain has been well demonstrated (Yang et al.,
2013). Melatonin preserves SIRT1 expression, activates SIRT1
signaling in neuronal cells after hypoxia-ischemia attenuating
mitochondrial oxidative damage (Carloni et al., 2014; Yang et al.,
2015).

Finally, melatonin has been combined with other drugs, such
as t-PA (Chen T. Y. et al., 2006), topiramate (Ozyener et al.,
2012), nimodipine and other Ca2+ antagonists (Gelmers et al.,
1988; Toklu et al., 2009), meloxicam (Gupta et al., 2002) for
stroke therapy, giving promising results.

NITRONES

Based on the understanding of the biochemical processes
involved in the formation and development of a stroke, number
of products have been developed targeting the different ischemic
and reperfusion events. Despite the promising initial results,
neuroprotection drugs for stroke have failed in advanced
clinical phases, and consequently, no neuroprotective agent
has been approved by the FDA for stroke therapy. However,
neuroprotection is still a choice, and oxidative stress, a
suitable biological target. In this context, antioxidants such as
N-t-butylphenylnitrone (PBN; Figure 1; Novelli et al., 1986) and
NXY-059 (Figure 1; Dehouck et al., 2002), have attracted the
interest of a number of laboratories, resulting in therapeutic
candidates for cancer (Inoue et al., 2007; Floyd et al., 2008,
2010, 2011; Costa et al., 2015), neurodegenerative disorders
(Floyd et al., 2000), hearing loss (Floyd et al., 2008) and
stroke (Doggrell, 2006; Floyd et al., 2008). NXY-059 (Figure 1)
(Kuroda et al., 1999) is a well-known free radical scavenger
with good neuroprotective profile in rat models of transient
and permanent focal ischemia, and stroke model in rodents,
which has been launched several times in different program

FIGURE 1 | Structures of nitrones N-t-butylphenylnitrone (PBN),
NXY-059, and the nitrones RP19 and F2, assesed in our laboratories.

in advanced clinical studies, although with limited success
(Macleod et al., 2008). In fact and in addition, tert-butylnitrones,
such as NXY-059, are known to afford t-butylhydroxylamines
as powerful radical scavengers, after hydrolysis, that further
could be oxidized to 2-methyl-2-nitrosopropane which then
may synthesize NO radical, the source and origin of the
neuroprotection, as it has been already reported for NO donors
(Godínez-Rubí et al., 2013). Recently reported new developments
have highlighted the not previously described and powerful
neuroprotective effect shown by new PBN derivatives bearing
N-aryl substituents on human neuroblastoma cells, under
induced in vitro experimental oxidative stress (Matias et al.,
2016).

Starting in 2008, the group led by Marco-Contelles (CSIC,
Madrid, Spain) has designed, synthesized and developed a
number of nitrones for the potential treatment of stroke,
the most interesting compounds being RP19 (Figure 1;

TABLE 1A | In vitro antioxidant activity (A) and neuroprotection in neuronal
cultures and in vivo model of ischemia (B).

Nitrone AAPH (%)a (min)b DPPH (%)c ·OH (%)d O2·
− (%)e

RP19g 37 (78) 42.3 95 23
F2h 55 (nd)f 4 83 (nd)f

PBN no (0) (nd)f 90 15

aDetermined at 0.1 mM; b Induction time (tinh) produced by the tested nitrones;
cDetermined at 0.5 mM except for F2, that was determined at 0.1 mM;
dDetermined at 0.1 mM; eDetermined at 0.1 mM; fnd: not determined; gChioua

et al. (2012); hAyuso et al. (2015).
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TABLE 1B | In vitro antioxidant activity (A) and neuroprotection in neuronal cultures and in vivo model of ischemia (B).

Nitrone Cc Neuroprotection (%) Time after reperfusion Cc Cell death reduction (%) Apoptosis reduction (%)

PBN 5 mM 13.4 ± 1.9
NXY-059 250 µM 56.8 ± 2.5 5d 40 mg/kg 17 (CA1) 70 (C) 21 (CA1) 55 (C)
RP19a 10 µM 70.9 ± 2.2 5d 0.5 mg/kg 35 (CA1)∗∗∗ 63 (C)∗ 38 (CA1)∗∗ 79 (C)∗

50 µM 87.5 ± 3.2
F2b 1 µM 54.3 ± 1.3 5d 0.05 mg/kg 20 (CA1) 66 (C) 30 (CA1)∗ 89 (C)∗

5 µM 80.7 ± 2.7 5d 0.1 mg/kg 27 (CA1)∗∗ 83 (C)∗ 35 (CA1)∗∗ 91 (C)∗

∗P < 0.05, ∗∗P < 0.01 and ∗∗∗P < 0.001, compared with vehicle by Dunnett’s post test after ANOVA. aChioua et al. (2012). bAyuso et al. (2015).

Chioua et al., 2012), and F2 (Ayuso et al., 2015; Figure 1), in
collaboration with Dr. Dimitra J. Hadjipavlou-Litina (Aristotle
University of Thessaloniki, Greece) and Dr. Alcázar (Hospital
Ramón y Cajal, Madrid, Spain).

As radical-trapping agents, nitrones are expected to
delay or prevent oxidation of easily oxidizable substrates,
therefore being considered antioxidants. In vitro radical
trapping and antioxidant activity were studied for nitrones
RP19 and F2, and PBN as reference compound, using
the DPPH quenching, •OH and O2

•− scavenging, and
inhibition of lipid peroxidation by AAPH tests. As shown
in Table 1A, DPPH and O2

•− scavenging activities were
low in general, with moderate values for RP19 (42.3% and
23%). Scavenging of •OH, as one of the most toxic radicals
generated during ischemic stress, was also determined, showing
that higher trapping activities were achieved than reference
compound PBN.

Testing in neuronal cultures and in in vivo experiments
were next evaluated. Thus, the neuroprotective effect of nitrones
RP19, F2, as well as PBN and NXY-059 as standards were
studied in primary neuronal cultures, which were subjected
to OGD as an in vitro model of ischemia. Cell viability was
evaluated by quantification of living, metabolically active cells,
as determined by the MTT assay. Neuroprotection is expressed
as the percentage to reach the control value (100%), from the
untreated ischemic neurons value (0%) (Table 1B). As shown,
all the nitrones tested afforded values in all cases higher than
the one determined for PBN (13.4 ± 1.9% at 5 mM) and
NXY-059 (56.8 ± 2.5% at 250 µM), being remarkable for
those observed for nitrones RP19 (87.5 ± 3.2% at 50 µM)
and F2 (80.7 ± 2.7% at 5 µM). Next, transient global brain
ischemia was performed on adult rats by the standard four-
vessel occlusion model, in which carotid arteries are occluded
during 15 min and 24 h after the irreversible occlusion of
both vertebral arteries by electrocoagulation (Pulsinelli and
Brierley, 1979; García-Bonilla et al., 2007). Ischemic animals
were treated with RP19 and F2; NXY-059 diluted in 10%
ethanol in saline as a vehicle by intraperitoneal injection when
carotid arteries were un-clamped for reperfusion. Animals
were studied after 5 days of reperfusion (R5d) after killing
by transcardiac perfusion performed under deep anesthesia.
Treatments were blindly and randomly performed and body
temperature of 37◦C was maintained (Table 1B). Cell death and
apoptosis were assessed in the hippocampal cornu ammonis 1
(CA1) region and cerebral cortex (C). Nitrones RP19 and F2
showed higher inhibition of cell death than for NXY-059. In

particular, best results were obtained with F2 at 0.1 mg/Kg
concentration, and RP19 at 0.5 mg/Kg concentration. Apoptosis
reduction by F2 (35% in hippocampal CA1, 91% in cortex,
at 0.1 mg/kg concentration) and RP19 (38% in hippocampal
CA1, 79% in cortex, at 0.5 mg/kg concentration) showed
the best results, both higher than the values observed for
NXY-059 (21% in hippocampal CA1, 55% in cortex), at the same
concentration.

CONCLUDING REMARKS

In this Perspective article, we have updated the current
neuroprotection studies and results for the development of
melatonin and new nitrones for stroke. Regarding melatonin,
the favorable in vitro and in vivo results reported, together
with its great safety profile even at high concentrations, convert
this indoleamine into an extraordinary therapeutic option to
reduce the multiplicity of effects resulting from the brain
ischemic cascade. Unfortunately, there is a lack of clinical
studies with melatonin that confirm these results, maybe
due to the lack of patentability of this molecule. The most
recent results reported by Marco-Contelles’ group confirm
that the neuroprotective strategy based on quinolylnitrones
and cholesteronitrones have created great expectations that
must still re-confirmed. These nitrones appear as promising
agents due to robust antioxidant properties capable to target
distinct steps of the biochemical pathways during and after
the ischemic insult. Nonetheless, due to the preclinical results
reviewed above, the use of melatonin or the new nitrones shown
here, or better, multifunctional nitrones bearing the melatonin
pharmacophoric motif, may rise as a potential tool to fight
against brain ischemia injury and its multiple pathophysiological
side-effects.
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