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There is evidence of altered vascular function, including cerebrovascular, in Alzheimer’s

disease (AD) and transgenic models of the disease. Indeed vasoconstrictor responses

are increased, while vasodilation is reduced in both conditions. β-Amyloid (Aβ) appears

to be responsible, at least in part, of alterations in vascular function. Cannabinoids,

neuroprotective and anti-inflammatory agents, induce vasodilation both in vivo and in

vitro. We have demonstrated a beneficial effect of cannabinoids in models of AD by

preventing glial activation. In this work we have studied the effects of these compounds

on vessel density in amyloid precursor protein (APP) transgenic mice, line 2576, and on

altered vascular responses in aortae isolated ring. First we showed increased collagen

IV positive vessels in AD brain compared to control subjects, with a similar increase

in TgAPP mice, which was normalized by prolonged oral treatment with the CB1/CB2

mixed agonist WIN 55,212-2 (WIN) and the CB2 selective agonist JWH-133 (JWH). In Tg

APP mice the vasoconstriction induced by phenylephrine and the thromboxane agonist

U46619 was significantly increased, and no change in the vasodilation to acetylcholine

(ACh) was observed. Tg APP displayed decreased vasodilation to both cannabinoid

agonists, which were able to prevent decreased ACh relaxation in the presence of Aβ. In

summary, we have confirmed and extended the existence of altered vascular responses

in Tg APP mice. Moreover, our results suggest that treatment with cannabinoids may

ameliorate the vascular responses in AD-type pathology.
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INTRODUCTION

Alzheimer’s disease (AD) is the major cause of dementia. This neurologic condition
is characterized pathologically by β-amyloid (Aβ) deposition, neurofibrillary tangles,
composed of hypophosphorylated tau, the degeneration of particular subsets of neurons and
neuroinflammation, as a consequence of glial activation. Although the existence of hereditary AD,
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with early onset, has been described, it only accounts for a small
percentage of cases (Hardy, 1996; Campion et al., 1999). The
actual cause of sporadic AD is unknown, but several risk factors
have been recognized (Grammas, 2011; Carnevale et al., 2016;
Hamel et al., 2016). Indeed, hypertension, hypercholesterolaemia,
ischaemic stroke, the ApoE4 allele and diabetes, all characterized
by a vascular pathology, constitute risk factors for AD. On
the other hand, several abnormalities in cerebrovascular vessels
have been observed, including amyloid cerebral angiopathy
(Thomas et al., 2000; Hardy and Selkoe, 2002; Kalaria, 2002;
Iadecola, 2010), with a prominent accumulation of Aβ in
vessels, alterations in smooth muscle or endothelial cells, and
thickening of basement membrane (Mancardi et al., 1980;
Kalaria, 2002; Iadecola, 2010;Morris et al., 2014).Moreover, there
are pathophysiological links among these actors, since increased
hypertension in mice results in Aβ deposition and cognitive
impairment (Carnevale et al., 2012). Similarly, in transgenic
models of the disease exists angiopathy, alterations in cerebral
microvasculature occur, with the presence of apoptotic vascular
cells in brain (Christie et al., 2001; Miao et al., 2005; Tong et al.,
2005).

Aβ induces several types of vessel dysfunctions. Indeed,
preincubation of aortae rings with the peptide diminishes
the vasodilator activity of acetylcholine (ACh), while the
vasoconstrictor responses to phenylephrine (Thomas et al., 1996)
and endothelin-1 (ET-1; Crawford et al., 1998) are enhanced. Free
radical generation appeared to mediate the effects of Aβ, since
the addition of the antioxidant enzyme superoxide dismutase
(SOD) avoided Aβ effects (Thomas et al., 1996; Crawford et al.,
1998). On the other hand, calcium channel blockers or calcium
chelators fully abrogate the enhancement induced by Aβ on
ET-1 vasoconstriction (Crawford et al., 1998). In regard to the
chemical species, it has been reported that Aβ 1-40 appears
to be the fragment inducing higher vasoactivity (Crawford
et al., 1998; Smith et al., 2007), compared to fragments 1–
42 or 25–35, both showing greater cytotoxicity. It should be
noted that Aβ1-42, more prone to aggregation, along with the
1–40 peptide fragment are deposited in senile plaques. However,
Aß1-40 is the chemical species present in blood. However, it
is not clear whether the presence of endothelium is required
for vasoactivity (Thomas et al., 1996; Crawford et al., 1998).
Interestingly, Aβ intra-arterial infusion to rats decreased blood
flow and increased vascular resistance specifically in cerebral
cortex (Suo et al., 1998), and enhances mean arterial blood
pressure (Arendash et al., 1999). In isolated middle cerebral
arteries from amyloid precursor protein transgenic mice (Tg
APP) the vasodilator responses to calcitonin gene related peptide
(CGRP) and ACh were significantly reduced, although the
vasoconstriction induced by ET-1 was preserved, and both
catalase and SOD addition restored to control values ACh-
induced vessel relaxation (Tong et al., 2005). Moreover, Tg APP
mice showed selective impairment in endothelium-dependent
regulation of the neocortical microcirculation, as measured by
laser-Doppler, which was counteracted by SOD (Iadecola et al.,
1999).

Cannabinoids are molecules interacting with cannabinoid
receptors, or with similar chemical structure to

tetrahydrocannabinol, the major constituent of Cannabis
sativa. Thus, cannabinoid agonists comprise molecules
derived from the plant, synthetic molecules, with higher
potency, and the endocannabinoids, present in living animals.
Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are
the major endocannabinoids, which along with their synthetic
and degrading enzymes, and specific cannabinoid receptors
constitute the endocannabinoid system (Di Marzo and De
Petrocellis, 2012; Pertwee, 2012), which has a modulatory role
with pleiotropic actions. Cannabinoid agonists have shown
neuroprotective and anti-inflammatory effects of interest for
the treatment of different neurodegenerative (Baker et al., 2000;
Glass et al., 2000; Arévalo-Martín et al., 2008; Fernández-Ruiz
et al., 2011) and mental disorders (Marsicano et al., 2002;
de Bitencourt et al., 2013; Leweke et al., 2016). We (Ramírez
et al., 2005; Martín-Moreno et al., 2012) and others (Wu et al.,
2013; Aso and Ferrer, 2014; Cheng et al., 2014) have described
beneficial effects relevant for AD treatment. Indeed, cannabinoid
agonists rescue the cognitive impairment in AD animal models,
affording neuroprotection by decreasing neuroinflammation
and Aβ levels. On the other hand, cannabinoid agonists are
hypotensive agents. Their cardiovascular actions are complex
(Randall et al., 2004; López-Miranda et al., 2008). They cause
vasorelaxation of isolated vessels in vitro, and in vivo they induce
multiphasic responses that lead to sustained hypotension. For
instance, anandamide, the endocannabinoid, caused a triphasic
response in anaesthesized rats: first, there is a hypotensive
response, vagally mediated, followed by a pressor response and
by a sustained hypotension (Varga et al., 1996). Moreover, WIN
55,212-2 and HU-210 in conscious rats induced pressor, and
renal and mesenteric vasoconstrictor effects, but hindquarters
vasodilator actions (Gardiner et al., 2001). Although in
some instances the classical cannabinoid receptors, the well
characterized CB1 and CB2 receptors, are involved in such
responses, in other occasions different receptors are activated,
the release of endothelial mediators may be implicated, or even
direct effects on transduction mechanisms have been invoked.

Given the vascular alterations observed in AD and in its
animal models, and that cannabinoid agonists show vascular
effects, in this work we sought to investigate the vascular
responses of two pharmacologically distinct cannabinoid
agonists, the CB1/CB2 mixed agonist WIN 55,212-2 (WIN) and
the CB2 selective agonist JWH-133 (JWH). We selected WIN
because it shows a slightly higher CB2 selectivity compared to
other mixed agonists, and JWH because it was one of the first
CB2 selective agonists synthesized and characterized (Huffman
et al., 1999). Since we have been using both compounds for years,
commencing with our seminal work on the cannabinoid receptor
alterations in AD and the effects of cannabinoid agonists on its
experimental in vitro and in vivo models (Ramírez et al., 2005),
we have gathered a broad knowledge on their pharmacology.
Furthermore, we tested whether they counteract the Aβ-induced
alteration in vessel function and if they maintain their effects
in vessels of a transgenic mouse model of the disease, Tg APP
mice (line 2576). The possible beneficial effects of cannabinoid
agonists on the vascular system may be of therapeutic interest in
a multifactorial disease such as AD.
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MATERIALS AND METHODS

Materials
ßA1−40 (Polypeptide Group, France) was dissolved in PBS
(1.72mg/ml), aliquoted and stored at −80◦C until used. WIN
was purchased from Sigma, JWH was from Tocris (Cookson
Ltd., UK), SR141716 (SR1; Rinaldi-Carmona et al., 1994) and
SR144528 (SR2; Rinaldi-Carmona et al., 1998) were kindly
donated by Sanofi-Synthelabo (Montpellier, France). For in vitro
experiments each of these compounds was dissolved in DMSO at
10mM, aliquoted and stored at −80◦C. Before their use, drugs
were diluted in appropriate solvent and DMSO never exceeded
0.1% in pharmacological experiments. For in vivo experiments,
WIN and JWH were initially dissolved in chloroform (on ice),
quickly aliquoted to prevent evaporation, dried under a stream of
N2, and aliquots stored desiccated. Before their use, drugs were
diluted in ethanol and added to the drinking water. Salts and
other reagents were analytical grade fromMerck.

Human Post-mortem Brain Tissue
For immunocytochemistry, cryoprotected and fixed frozen
frontal cortex samples were obtained from the Neurologic
Tissue Bank, Hospital Clinic, Barcelona, Spain, and processed
as previously described (Ramírez et al., 2005). Human brains
were obtained by the Neurologic Tissue Bank following written
consent. Controls consisted of 3 males and 2 females (median
70.0, range 38.0–0.0 years of age; median 17.0, range 3.5–
21.0 h of post-mortem interval), and clinically diagnosed and
neuropathologically defined AD patients consisted of 3 females
and 3 males (median 74.0, range 66.0–88.0 years; median 5.5,
range 4.0–9.0 h).

Animals and Treatments
TgAPP transgenicmice were obtained via heterozygous breeding
of mice expressing the 695 aa long isoform of the human
APP containing a double mutation Lys 670-Asn, Met 671-Leu
(swedish mutation) under transcriptional control of the hamster
prion promoter on a C57BL/6 breeding background (Hsiao et al.,
1996). Male Tg APP, and wild type (wt) littermates, used as
controls, were 7 months old at the beginning of the experiments.
Mice were group-housed (4–5 animals per cage) under controlled
temperature (23 ± 2◦C), with a 12:12 h light/dark cycle and with
ad libitum access to food and water. All of the experiments were
performed according to ethical regulations on the use and welfare
of experimental animals of the European Union and the Spanish
Ministry of Agriculture, and the procedures were approved by the
bioethical committee of the CSIC.

WIN and JWH were administered in the drinking water at a
dose of 0.2 mg/Kg/day using ethanol (0.1%) as vehicle (Martín-
Moreno et al., 2012). The amount of water drank by the animals
was assessed every other day and the treatment was adjusted
to their weight. There was no difference in the body weight or
the ingested water between groups, all along the experiment,
discarding a possible reinforcing effect of cannabinoids.

Animals were sacrificed by cervical dislocation followed
by decapitation at 11 months of age after 4 months chronic
treatment. The brain was sagittally divided. One brain

hemisphere was rapidly dissected on a cold plate, frozen on
dry ice and stored at−80◦C until assayed. The other hemisphere
was immersion fixed in 4% paraformaldehyde (4% PF) in sodium
phosphate buffer (PB) 0.1M for 24 h, cryoprotected in sucrose
15% (24 h) and 30% (24 h) in PB, snap frozen in hexane (−60◦C),
and stored at−20◦C until cut with a sliding microtome.

For pharmacological studies male mice, wt used as control,
or Tg APP mice (line 2576) (25–30 g, 12 months of age) were
sacrificed by decapitation following cervical dislocation. The
thoracic aorta was removed, cleaned and cut into segments of
2mm length. Rings were mounted in Multy Myograph System
610M (Danish Myo Technology, Denmark) at 37 ± 0.5◦C and
gassed continuously with a mixture of 95% O2-5% CO2, in a
solution of the following composition: PSS (mM): NaCl 140,
KCl 5, MgCl2 1, CaCl2 1.5, HEPES 5, and glucose 10. After
equilibration, arterial rings were mounted between two parallel
tungsten wires under a resting tension of 2 g. The isometric
force was digitalized by Myodaq 2.01 program (Danish Myo
Technology, Denmark) and displayed on a personal computer.

Arteries were preconstricted with 123.5mM K+ (KPSS) for
4 min, washed, and then a) concentration-response curves for
phenylephrine (Phe, 0.1-10µM) and the thromboxane analog
U46619 (0.01-0.1µM) were performed; b) in a different set of
experiments arterial rings were preconstricted with a submaximal
concentration of U46619 (0.03µM) for 15 min and then
vasodilation to ACh 10µM was assessed. After 2 washes vessels
were incubated with Aβ (1µM) for 15min, and stimulated with
U46619 (0.03µM) for 15min followed by relaxation with ACh
10µM. To assess the vasodilatory effects of WIN and JWH
concentration-response curves (1nM-10µM) were performed in
segments preconstricted with U46619. Concentration-response
curves for WIN and JWH were performed in arterial segments
treated with the selective CB1 or CB2 antagonists (SR1 and
SR2), added 5 min before preconstriction with U46619. To
investigate the effect of cannabinoid agonists on ACh-induced
vasodilation, agonists were added to arterial rings at 0.5µM after
15min incubation with Aβ (1µM). Given that the effect of Aβ

is irreversible (Thomas et al., 1996) different arterial rings were
used for each experiment. Tension was expressed as mN/mm
artery length, or as a percentage of initial preconstriction (either
with K+ or U46619). Indeed each ring was its own control,
avoiding the variance between the responses of different rings
from the same animal (decreased responsivity as the rings
approached the abdominal aortic region).

Immunohistochemistry
Immunostaining was performed on floating sections (30µm
thick) as described (Gómez Del Pulgar et al., 2002). Sections
were incubated with the different antibodies overnight at
4◦C. Dilutions of antibodies were as follow: polyclonal anti-
CB1 (1:900, CC2, raised in our laboratory, De March et al.,
2008), polyclonal anti-collagen IV (Col IV; 1: 400, ref.
CR013X; Fitzgerald, MA, USA). The CC2 antibody was
raised in rabbits using as immunogen the 15 aa N-terminal
end of the CB1 receptor protein coupled to keyhole limpet
hemocyanin. The antiserum was affinity purified, and it was
characterized in wt mice and in CB1 KO mice brain. CB1
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immunoreactivity brain distribution was in agreement with
previous studies (Tsou et al., 1997, 1999). The anti-collagen
antibody has been raised in rabbits using as immunogen Col
IV from human and bovine placenta. It shows negligible
cross reaction with Col I, Col II, Col III, and Col V.
Development was conducted by the Avidin-Biotin Complex
(ABC) method (Pierce), and immunoreactivity was visualized by
3,3′-diaminobenzidine oxidation as chromogen, with (CB1) or
without nickel enhancement (Col IV). Omission of primary or
secondary antibodies resulted in no immunostaining.

Images were acquired with a Zeiss Axiocam high resolution
digital color camera, using the same settings and segmentation
parameters (MCID software; InterFocus Imaging, UK) for a
given marker and experiment. The mean value for each animal
per region results from the analysis of 5–6 sections. The
percentage of the brain area covered by Col IV positive vessels
was assessed by image analysis with MCID software.

Analysis of mRNA Levels by RT-PCR
Total RNA from pooled aortae (n = 3–4) was extracted using
TRIzol reagent according to the manufacturer’s instructions
(Invitrogen). To avoid interference with potential genomic DNA
amplification 1µg of total RNA was treated with 1µl DNAse I
(Invitrogen) plus 1µl of 10X Buffer (Invitrogen) and incubated
for 15min at RT, then EDTA (25mM) was added and incubated
at 65◦C for 15min to inactivate DNAse I. For cDNA synthesis
a total of 1µg of RNA were reverse-transcribed for 75min at
42◦C using 5U of avianmyeloblastosis virus reverse transcriptase
(Promega) in the presence of 20 U of RNAsin (Promega). The
PCR reaction was performed using TaQ polymerase (TaQ DNA
polymerase Sigma) and a mixture of reverse and forward primers
(5 pmol). The primers used were CB1 forward 5′-AGCTTTGTT
GACTTCCAGTGT and CB1 reverse 5

′-CTGCCCACAGATGCT
GTGAA, CB2 forward 5′-AGGAGCTGTCAGCTCAGGGTAT
and CB2 reverse 5′-CTGCGCCCCTAAGGACCTA. The PCR
reaction (final volume10µl) was performed in a Veriti thermal
cycler (Applied Biosystems) and the PCR program was as
follows: initial denaturation for 10min at 95◦C, then 40 cycles of
denaturation (15 s, 95◦C), annealing (30 s, 60◦C), and extension
(30 s, 60◦C). The PCR products were analyzed by standard
agarose gel electrophoresis, and gene expression levels were
detected by the use of ethidium bromide.

Electron Microscopy
Aortae 1–2mm long rings were fixed in 4% PF/ 2.5%
glutaraldehyde in cold 0.1M Na cacodylate buffer immediately
after dissection, for 6 h. The segments were washed five times
with cacodylate buffer every 30min, and left overnight at 4◦C.
The segments were postfixed with 1% osmium tetroxide and
potassium ferrocyanide in distilled water for 1.5 h, they were
washed with distilled water (3 × 10min washes) and dehydrated
in increasing acetone solutions (50–100% each for 15min).
The segments were then gradually embedded in resin (1:3, 1:1,
3:1 acetone:pure resin) and finally left in pure resin (TAAB
812 mix) at 60◦C overnight. The resin embedded samples
were sectioned by diamond knife, and the 80 nm sections were
collected onto copper grids and post-stained with 1% uranyl

acetate and Reynolds lead citrate for 4 and 3min, respectively.
Electron micrographs were obtained using a Jeol JEM-1010
high resolution transmission electronic microscope (Jeol, Tokyo,
Japan).

Statistical Analysis
In pharmacological experiments we used one vessel per mouse,
therefore n represents number of animals. In brief, each aorta
was cut into 5 different rings and each ring was used for a given
treatment to avoid artefactual results. Results are expressed as
mean ± standard error mean (SEM) or as mean ± standard
deviation (SD). Statistical analysis was assessed by using two-
way or one-way analysis of variance (ANOVA) followed by
Wilcoxon’s test, if the data follow a Gaussian distribution (KS
normality test), or by Kruskal-Wallis test, followed by Dunn’s test
(version 5.0, Prism software, GraphPad, USA). A value of p <

0.05 was considered significant.

RESULTS

Vascular Density is Increased in AD Frontal
Cortex and Tg APP Mice
Previous studies have reported vascular alterations in the brain
of AD affected individuals, such as increased vessel density and
greater collagen deposition at the structural level. As shown in
Figures 1A,B) we found an increase (≈30%) in Col IV positive
vessel density in the gray matter of frontal cortex from AD
patients compared with control subjects. Vessel density was
significantly lower in the white matter compared to the gray
matter. No difference in vessel density in the white matter was
found between the control and AD group (Figures 1A,B). Vessel
density in Tg APP mice was much higher (≈50%) in cortical
areas compared to wt mice, however it showed similar density
in the hippocampus (Figures 1C,D). Interestingly, prolonged in
vivo oral treatment (0.2mg/Kg/day) with both WIN, a mixed
CB1/CB2 agonist, and JWH, a CB2 selective agonist, counteracted
the increased Col IV vessel density. In summary, similar vessel
alterations were found in the neurologic condition and in the
experimental model of AD, where a prolonged oral treatment of
a cannabinoid agonist prevented vascular changes.

Vascular Dysfunction in Tg APP Mice,
Contribution of β-Amyloid and Vasodilatory
Effect of Cannabinoid Agonists
We next examined whether mice aortae expressed CB1 and CB2
receptors. CB1 immunoreactivity has been previously reported
in brain vessels (Ashton et al., 200), but the presence of
CB2 receptors is uncertain. CB1 receptors were expressed in
endothelial cells, at the basal lamina, but not in smooth muscle
cells (Figure 2A, representative image of n = 3), while Col IV
immunoreactivity just stained the basal lamina of the aorta
(Figure 2B, representative image of n= 3). The immunostaining
was very reproducible for both antibodies. There is debate on the
specificity of CB2 receptors antibody (Cécyre et al., 2014; Li and
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FIGURE 1 | Vessel density is altered in AD compared to controls. (A) Representative collagen IV immunostaining of cortical vessels in human controls (n = 5)

and AD patients (n = 6). Scale bar, 100µm. GM, gray matter; WM, white matter. (B) Collagen IV positive vessels are significantly increased in gray matter. Results are

mean ± SD (n = 5–6) and they are expressed as percentage of area occupied by vessels. *p < 0.05 versus controls, #p < 0.05 versus gray matter vessel density

(Student’s t-test). (C) Tg APP vehicle treated mice showed increased collagen IV vessel density in cortex vs. wild type (Wt) vehicle treated mice. Cannabinoid agonists

normalized vessel density of Tg APP mice. Results are mean ± SD (n = 7–8) *p < 0.05 vs. controls (Wt-veh), #p < 0.05 vs. Tg APP-veh (Kruskal-Wallis, followed by

Dunn’s test). (D) No changes in vessel density were found in hippocampus due to genotype and/or drug treatment.

FIGURE 2 | CB1, CB2,
and collagen IV expression in mouse aorta. (A) CB1 immunostaining shown at endothelial cells (short arrow) and basal lamina (arrow),

(B) while collagen IV is restricted to the basal lamina (arrow). Scale bar, 50µm; representative images of n = 3 aortae for each immunostaining. (C) CB1 and CB2

mRNA expression in extracts from mouse aorta. RPL4 was used as control. Representative image of n = 3 independent experiments done with 3–4 pooled aortae.

Kim, 2015), therefore we used PCR to demonstrate CB2 and CB1
receptor expression in aorta extracts (Figure 2C).

Constriction of aorta rings with high potassium (123.5mM
K+) was decreased by 50% in Tg APP mice aortae compared
to those from wt mice (1.07 ± 0.13 and 2.25 ± 0.30mN/mm
respectively; p < 0.01, Student’s t-test). Next, we tested two

pharmacologically distinct vasoconstrictors: phenylephrine and
the thromboxane analog U46619 (Figure 3). The vasoconstrictor
response to 0.1µM phenylephrine was enhanced by 2 fold
in Tg APP compared to wt mice (Figure 3A), and that of
0.1µM U46619 around a 50% (Figure 3B). We did not
find any differences in the vasodilation induced by ACh
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FIGURE 3 | Alterations in aorta contractility of Tg APP mice. Tg APP

aortae showed increased phenylephrine (A) and U46619-induced (B)

contraction compared to aortae from wt mice. Vessels were precontracted by

123.5mM K+ and washed before other treatment addition. Aβ (1µM)

incubation increased U46619 (0.03µM) contraction (C) and decreased ACh

(10µM) relaxation (D) in wt aortae, but not in Tg APP aortae. Preconstriction

levels were similar for all the vessels (approximately 5.44mN). Results are

mean ± SEM of n = 7 mice and are expressed as percentage of 123.5mM

K+-induced contraction, considered 100%. *p < 0.05 (Kruskal-Wallis,

followed by Dunn’s test).

(100µM) between groups (data not shown). Furthermore,
the cannabinoid agonists (15min preincubation) under
study did not change ACh vasodilation either (data not
shown).

Given that Tg APP mice are continuously exposed to
circulating Aβ we wondered whether the peptide would
mediate those responses. Aβ (1µM) preincubation increased
vasoconstriction to 0.03µM U46619 (Figure 3C) and decreased
vasodilation to 10µM ACh (Figure 3D), in aortae from
wt mice, although the peptide alone did not show any
vasoactivity. However, incubation with Aβ did not alter
arterial vasoconstriction or vasodilation in Tg APP mice aortae
(Figures 3C,D). Interestingly, both cannabinoid agonists rescued
ACh-induced vasodilation in the presence of Aβ (Figure 4) in wt
mice.

WIN concentration-dependently induced vasodilation in
control mice, with a maximal effect of 80% at 1µM (Figure 5A).
The vasodilatory effect of JWH was smaller than the one induced
by WIN, with a maximal effect of 56% at 1µM (Figure 5B). In
Tg APP aortae the vasodilation induced byWINwas significantly
decreased at all the concentrations tested (Figure 5A), but in the
case of JWH the effect at lower concentrations (1 and 10 nM) was
decreased and at higher concentrations was similar between wt
and Tg APP mice (Figure 5B).

Taken together these results show that vascular function is
markedly altered in Tg APP mice and that Aβ may play a role
in those altered responses. Furthermore, cannabinoid agonists
induce vasodilation in aortic rings, which is partially preserved
in Tg APP mice.

FIGURE 4 | Cannabinoid agonists prevent Aβ reduction of ACh

relaxation. Vessels from wt mice were precontracted with U46619 (0.03µM)

and ACh (10µM) vasodilation assessed in the absence and presence of WIN

and JWH. Preconstriction levels were similar for all the vessels (approximately

5.44mN). Results are mean ± SEM of n = 6 mice and are expressed as

percentage of U46619 contraction. *p < 0.05 vs. untreated-aortae;
#p < 0.05; ##p < 0.01 vs. Aβ treated alone (Kruskal-Wallis, followed by

Dunn’s test).

FIGURE 5 | Cannabinoid agonists induce dose-dependent vasodilation.

Cannabinoid vasodilation was reduced in Tg APP aortae compared to wt

(A,B). Concentration-response curves (1 nM-10µM) for WIN and JWH were

performed in segments preconstricted with U46619 (0.03µM). Preconstriction

levels were similar for all the vessels (approximately 8.9mN). Results are mean

± SEM of n = 6 mice and are expressed as percentage of U46619-induced

contraction. *p < 0.05, **p < 0.01 (two way ANOVA).

Ultrastructural Changes in Tg APP Aortae
Some reports have described changes in the structure of
Tg APP vessels (Christie et al., 2001; Tong et al., 2005).
Therefore, we sought to determine if changes at the
ultrastructural level may explain the vessel dysfunction
observed in Tg APP mice. Toluidine labeled vessels showed
similar vessel structure (Figures 6A,B). Endothelial cells
appeared unaltered in both strains (Figures 6C,D). Moreover,
smooth muscle cells also appeared normal, with normal
numbers of mitochondria (not shown). However, there
was a great difference in basal lamina collagen that was
markedly increased in Tg APP when compared with wt aortae
(Figures 6E,F).
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FIGURE 6 | Electron micrographs of wild type and Tg APP mice.

Representative images are shown for wt (A,C,E) and Tg APP mice aortae

(B,D,F). (A,B) toluidine blue micrographs showing similar structure (n = 20

animals/per group). BL: basal lamina, (C,D) endothelial cells show similar

appearance (wt n = 4, Tg APP n = 6). (E) smooth muscle cells surrounded by

collagen in wt mice aorta, (F) muscle cells are embedded in collagen in Tg APP

aorta (wt n = 4, Tg APP n = 6). Scale bars, 50µm in (A,B); 100 nm in (C–F).

DISCUSSION

In the present work we report that WIN, a mixed CB1 and CB2
agonist (Howlett et al., 2002), and JWH, a CB2 selective agonist
(Huffman et al., 1999), induce vasodilation of isolated aortae. Tg
APP vessels show altered vascular responses, in which Aβ may
play a role, that were restored by the cannabinoids under study.
We found an enhancement of collagen in basal lamina, that may
partly explain the vascular dysfunction in Tg APP mice. This
collagen increase was found in AD cerebrocortical vessels, and
in Tg APP mice as well, and was fully reverted by prolonged oral
treatment with both cannabinoid agonists. Taken together these
results suggest that cannabinoid have effects on vascular function
that may be beneficial in the treatment of AD.

Vessel function is compromised in Tg APP mice. Indeed we
have confirmed and extended previous reports on the increase
in the vasoconstriction to phenylephrine in isolated aorta rings
(Thomas et al., 1996), and we have found similar increases with
U46619, that decreased cerebral blood flow in vivo (Iadecola et al.,
1999). However, endothelium-independent vasoconstriction was
markedly reduced in Tg APP aortae, as judged by the decreased
vasoconstriction to high potassium. This change parallels the

attenuation in the vasodilator response to sodium nitroprusside
(an endothelial-independent vasodilator) observed in vivo by
multiphoton microscopy in Tg APP mice (Christie et al., 2001).
Although ACh vasodilation was decreased in cerebral arteries
from Tg APP mice (Tong et al., 2005), and following topical
application onto the brain (Christie et al., 2001), in our hands its
vasodilatory response was similar in wt and in Tg APP aortae.
These results may be explained by the different origin of the
vessels, cerebral compared to peripheral vessels, or the age of
the animals. In AD, vessels are continuously exposed to high
circulating levels of soluble Aβ, in contrast to the insoluble
form of the peptide present in senile plaques occurring in brain.
In our hands incubation with Aβ up to 15 min did not alter
mice vessel tone. This is in contrast with the results of Thomas
et al. (1996) and Crawford et al. (1998) obtained in rat aorta.
Given that the methods used were very similar, we speculate
that the rodent species accounts for this difference. However,
in wt mice Aβ significantly enhanced the vasoconstriction to
the thromboxane analog, paralleling the results obtained with
noradrenaline, phenylephrine or ET-1 reported by other authors
(Thomas et al., 1996; Crawford et al., 1998; Smith et al., 2007).
Similarly, in the present study the vasodilation to ACh was
decreased by Aβ (Smith et al., 2007) in wt mice. In contrast,
the vessel responses in Tg APP were not modified by Aβ. These
results suggest that in Tg APP mice, that express high levels of
APP in the brain and in peripheral organs, including cerebral
microvessels and the aorta (Paris et al., 2004), there is tolerance
to Aβ effects due to the continuous exposure to the peptide. More
importantly, both cannabinoids were able to normalize the Tg
APP dysfunctional responses.

Cannabinoids induce vasodilatory effects in different isolated
vessels, but so far these responses have not been studied in
Tg APP mice. The CB1/CB2 mixed agonist WIN induced
a concentration-dependent vasodilation of wt mice aortae,
reaching 80% decrease of the maximal constriction to U46619,
and higher than the vasodilation to ACh at 10µM. The maximal
vasodilatory effect to JWH in wt aortae was smaller compared to
WIN. Cannabinoid-induced vasodilation, in spite of the presence
of both CB1 (Ashton et al., 2004) and CB2 receptors in aortae,
was completely insensitive to either CB1 or CB2 antagonism (data
not shown). This is not without precedent, since the vascular
effects of cannabinoids in many instances have been shown to
be resistant to antagonism by cannabinoid antagonists, and they
may involve activation of other targets (Randall et al., 2004;
López-Miranda et al., 2008). We did not intend to characterize
the mechanism underlying the vasodilatory effects of WIN and
JWH in this work, since the pharmacology of the effects of
cannabinoids is increasingly complicated (Randall et al., 2004;
Stanley and O’Sullivan, 2014). Several possible targets could
be proposed such as the putative “endothelial” cannabinoid
receptor, potassium channel activation and calcium channel
blockade. On the other hand, several cannabinoid agonists,
including WIN, interact with peroxisome proliferator-activated
receptors (PPAR) (O’Sullivan, 2016), members of the family
of nuclear receptors, exerting vasodilation (O’Sullivan, 2007).
Importantly, the vasodilation to both WIN and JWH was
partially preserved in Tg APP mice, suggesting its possible
therapeutic endorsement in AD.
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We observed increased Col IV vessel density in AD specimens
compared to control subjects, with a similar increase in Tg
APP brain. Previous works have reported increased thickening
of basement membranes in AD (Mancardi et al., 1980; Kalaria,
2002; Miao et al., 2005), in particular Col IV (Miao et al.,
2005; Tong et al., 2005), associated or not with differences
in density. In Tg APP mice similar changes were observed
(Tong et al., 2005). Although the exact cause of increased
basement membrane is unknown, several factors could be
involved such as soluble Aβ and its progressive deposition in
vessels, inflammatory mediators derived from activated glial
cells around vessels and chronic changes in levels of vasoactive
mediators (Grammas, 2011). Cannabinoid agonists, in particular
CB2 selective agonists, impinge on several of these factors by
decreasing glial activation, inflammation and Aβ levels (Ramírez
et al., 2005; Martín-Moreno et al., 2012; Wu et al., 2013;
Chiurchiù et al., 2015), explaining the normalization in vessel
density following prolonged oral treatment with the drugs.
At the ultrastructural level, aortic endothelial cells appeared
normal in Tg APP aortae, in agreement with their preservation
found in other works (Iadecola et al., 1999; Miao et al.,
2005), which contrasts with the endothelial disruption in Aβ

treated vessels (Thomas et al., 1996). Therefore, altered vessel
function is not a consequence of endothelial disruption or
death. Interestingly the major change observed in Tg APP
aortae compared to wt mice was the increase in Col IV in
the basement membrane, paralleling the changes in AD brain
microvasculature, which may be involved in altered vessel
contractility.

We have here described important pharmacological effects
of cannabinoid agonists with relevance for the therapy of a
devastating disorder such as AD. Prolonged oral treatment
abrogated the changes in microvasculature that are important
for vascular function and the perivascular drainage of Aβ from
the parenchyma, that would initiate or worsen Aβ angiopathy,
leading to a vicious circle toward further accumulation of the
peptide. Moreover, both cannabinoids improved endothelial-
dependent relaxations impaired by Aβ and showed vasodilatory
effects that are maintained in Tg APP mice, albeit being reduced.
Finally, the therapeutic activation of CB2R is safe and it does
not trigger psychoactivity (Atwood and Mackie, 2010; Pertwee,
2012).
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