
MINI REVIEW
published: 17 July 2015

doi: 10.3389/fpls.2015.00496

Edited by:
Richard Sayre,

New Mexico Consortium at Los
Alamos National Labs, USA

Reviewed by:
Shan Lu,

Nanjing University, China
Clay Carter,

University of Minnesota Duluth, USA

*Correspondence:
Joaquín Azcón-Bieto,

Departament de Biologia Vegetal,
Facultat de Biologia, Universitat de
Barcelona, Avinguda Diagonal 643,

Barcelona 08028, Spain
jazcon@ub.edu

Specialty section:
This article was submitted to

Plant Physiology,
a section of the journal

Frontiers in Plant Science

Received: 31 March 2015
Accepted: 22 June 2015
Published: 17 July 2015

Citation:
Renato M, Boronat A and

Azcón-Bieto J (2015) Respiratory
processes in non-photosynthetic

plastids.
Front. Plant Sci. 6:496.

doi: 10.3389/fpls.2015.00496

Respiratory processes in
non-photosynthetic plastids
Marta Renato 1,2, Albert Boronat 2,3 and Joaquín Azcón-Bieto 1*

1 Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain, 2 Centre de Recerca en
Agrigenòmica, Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra, Spain, 3 Departament
de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain

Chlororespiration is a respiratory process located in chloroplast thylakoids which consists
in an electron transport chain from NAD(P)H to oxygen. This respiratory chain involves
the NAD(P)H dehydrogenase complex, the plastoquinone pool and the plastid terminal
oxidase (PTOX), and it probably acts as a safety valve to prevent the over-reduction of
the photosynthetic machinery in stress conditions. The existence of a similar respiratory
activity in non-photosynthetic plastids has been less studied. Recently, it has been
reported that tomato fruit chromoplasts present an oxygen consumption activity linked
to ATP synthesis. Etioplasts and amyloplasts contain several electron carriers and some
subunits of the ATP synthase, so they could harbor a similar respiratory process. This
review provides an update on the study about respiratory processes in chromoplasts,
identifying the major gaps that need to be addressed in future research. It also reviews the
proteomic data of etioplasts and amyloplasts, which suggest the presence of a respiratory
electron transport chain in these plastids.

Keywords: plastid, chromoplast, etioplast, amyloplast, chlororespiration, chromorespiration, PTOX, plastid
respiration

Introduction

Plastids likely originated through the process of endosymbiosis, which consisted in the integration
of a free-living photosynthetic prokaryote into a eukaryotic cell. This prokaryote was probably
an ancestor of current cyanobacteria and provided its host the capacity to obtain energy through
oxygenic photosynthesis (Bédard and Jarvis, 2005; Gould et al., 2008). Beside chloroplasts, different
types of non-photosynthetic plastids have evolved in plants, for instance chromoplasts, amyloplasts,
and elaioplasts. These plastids carry out specialized functions in non-green tissues, mainly the
biosynthesis and storage of carotenoids, starch and lipids, respectively (Whatley, 1978; Bédard and
Jarvis, 2005; Li and Yuan, 2013).

In cyanobacteria, photosynthetic and respiratory chains are interconnected in the same
membrane and share some electron carriers, like plastoquinone (PQ; Bennoun, 1982). Although the
endosymbiosis event resulted in a reduction of themetabolic complexity of the free-living prokaryote
(Gould et al., 2008), plastids could have retained some relics of its ancestral respiratory pathway
(Cournac et al., 2000). The first experimental pieces of evidences confirming the existence of a
respiratory chain in chloroplasts were provided byBennoun (1982), who defined chlororespiration as
a light-independent electron transport pathway fromNAD(P)H to oxygen in thylakoid membranes.
Afterward, the characterization of the Arabidopsis thalianamutant immutans demonstrated that the
oxidase responsible of the oxygen consumption in chlororespiration is the plastid terminal oxidase
(PTOX), a monomeric oxidase similar to the mitochondrial alternative oxidase (Carol et al., 1999;
Wu et al., 1999). Later studies indicated that the NAD(P)H-PQ oxidoreductase activity might be
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performed by the thylakoidal NAD(P)H dehydrogenase complex
(Ndh; Burrows et al., 1998; Endo et al., 1998; Sazanov et al., 1998)
or a type II NAD(P)H dehydrogenase (Desplats et al., 2009).

Chloroplast respiration has been extensively studied and
reviewed (Peltier and Cournac, 2002; Rumeau et al., 2007;
McDonald et al., 2011; Foudree et al., 2012; Nawrocki et al.,
2015), but there is no consensus about its biological role. The
most accepted hypothesis is that chlororespiration acts as a
safety valve to prevent the over-reduction of the photosynthetic
machinery in stress conditions (Laureau et al., 2013; Paredes
and Quiles, 2013; Zivcak et al., 2013; Yu et al., 2014). Other
proposed roles are photoprotection during dark to light transition
(Joët et al., 2002) and balance the ATP/NADPH requirements in
chloroplasts (Rumeau et al., 2005). However, the overexpression of
PTOX does not result in higher photoprotection on photosystems
in stress conditions or during acclimation (Rosso et al., 2006;
Heyno et al., 2009). Moreover, chlororespiratory activity is very
minor given that the electron flux through PTOX is always two
orders of magnitude lower than through cytochrome b6f complex
(Trouillard et al., 2012). On the other hand, it has been shown
that PTOX has a dual role and also participates in carotenoid
biosynthesis, a crucial function during chloroplasts biogenesis
(Carol et al., 1999; Aluru et al., 2001; Shahbazi et al., 2007). In any
case, chlororespiration has always been considered a complement
of photosynthesis, being only an element of a large network of
factors involved in stress tolerance and photosynthesis regulation
(Foudree et al., 2012).

The study of respiration in non-photosynthetic plastids has
received less attention. Nevertheless, growing evidence has
accumulated about the presence of some respiratory components
in chromoplasts, etioplasts, and amyloplasts of different plant
species. As a consequence, a more global role of PTOX in plastid
metabolism has been suggested (Aluru et al., 2001; Morstadt
et al., 2002; Barr et al., 2004; Nixon and Rich, 2006; McDonald
et al., 2011; Foudree et al., 2012). Recently, two studies have
provided convincing evidence about the existence of an active
respiratory chain in tomato fruit chromoplasts linked to ATP
synthesis (Pateraki et al., 2013; Renato et al., 2014). This article
aims to review recently published results regarding the presence of
respiratory activity in non-photosynthetic plastids and to identify
the major gaps that need to be addressed in future research
projects.

Respiration in Non-Photosynthetic Plastids

Chromoplasts
Chromoplasts are plastids specialized in the biosynthesis and
accumulation of carotenoids. They are found in flowers, fruits,
and roots, conferring to these plant tissues their characteristic
red, orange, or yellow color. They are originated through
the differentiation of other plastids, mainly chloroplasts and
amyloplasts (Camara et al., 1995; Li and Yuan, 2013). Among
non-photosynthetic plastids, chromoplasts are the most studied
since carotenoids are relevant for the nutritional and organoleptic
quality of many agricultural products (Li and Yuan, 2013).

The first hints suggesting the presence of a respiratory
pathway in chromoplasts were obtained through the study of

phytoene desaturase (PDS), an enzyme involved in carotenoid
biosynthesis. PDS catalyzes two consecutive dehydrogenation
reactions of phytoene and transfers the electrons to PQ (Norris
et al., 1995). In daffodil (Narcissus pseudonarcissus) chromoplasts,
Mayer et al. (1992) and Beyer et al. (1994) proposed the
existence of enzymatic activities which regulate the redox estate
of PQs in darkness, using NADH and NADPH as electron
donors and oxygen as final acceptor. Nievelstein et al. (1995)
reported an oxygen consumption activity in daffodil chromoplast
membranes, which was dependent on NAD(P)H and sensitive
to respiratory uncouplers, suggesting that this respiration could
generate membrane proton gradients. This work was the first
to define chromorespiration as a respiratory redox pathway
in chromoplast membranes linked to phytoene desaturation.
Later, it was described that liposomes containing chromoplast
proteins and energized with an acid-base transition were able
to produce ATP, suggesting that daffodil chromoplasts contain
a functional H+-ATP synthase complex (Morstadt et al.,
2002).

Further studies brought molecular support to the enzymatic
activities attributed to chromorespiration. The PTOX was found
in chromoplasts from tomato (Solanum lycopersicum) and bell
pepper (Capsicum annuum) fruits (Josse et al., 2000). In both
species, PTOX expression increases during ripening, paralleling
PDS expression and the differentiation of chloroplasts into
chromoplasts. Thus, PTOX was proposed to participate in
carotenoid desaturation in ripening fruits (Josse et al., 2000). The
tomato ghost mutant is impaired in PTOX gene and is equivalent
to the Arabidopsis mutant immutans. The ghost phenotype is
similar to PDS-deficient mutants and, as a consequence, PTOX
was considered a PDS cofactor (Josse et al., 2000; Barr et al.,
2004).

Recent proteomic studies have reported the presence of several
proteins related to electron transport and ATP synthesis in
chromoplasts. Subunits of ATP synthase, cytochrome b6f complex
and Ndh are present in chromoplasts from tomato fruits (Barsan
et al., 2010). Moreover, when comparing the proteome of fruit
plastids at different ripening stages, it was found that some
electron carriers and the ATP synthase subunits are maintained
at significant levels in red tomatoes (Barsan et al., 2012). This
was also confirmed in chromoplasts from watermelon (Citrullus
lanatus), carrot (Daucus carota), orange cauliflower (Brassica
oleracea), red papaya (Carica papaya), red bell pepper, and sweet
orange (Citrus sinensis) (Zeng et al., 2011; Wang et al., 2013).
Interestingly, these electron carriers and ATP synthase subunits
are present even when chromoplasts are not originated from
chloroplasts and they have never performed photosynthesis, like
in carrots or in watermelon and orange pulp.

On the other hand, a large number of proteins involved in
carbohydrate metabolism were found in chromoplasts of several
species, for instance some enzymes of glycolysis and the pentose
phosphate pathway, translocators of triose-phosphate, glucose-6-
phosphate, adenine nucleotides, etc. (Siddique et al., 2006; Zeng
et al., 2011; Barsan et al., 2012;Wang et al., 2013). Also, it has been
described that isolated chromoplasts are able to synthesize large
amounts of lipids without external supply of ATP (Angaman et al.,
2012). All these findings suggest an important activity of energy
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FIGURE 1 | Model proposed for chromorespiration. The electron
transport chain is located in the inner membranes of chromoplasts, and the
electron entrance through NADH and NADPH takes place by the stromal
side. The electron carriers shown are: Ndh-1, NAD(P)H dehydrogenase
complex; Ndh-2, type II NAD(P)H dehydrogenase; PDS, phytoene

desaturase; PTOX, plastid terminal oxidase; Cyt b6f, cytochrome b6f
complex; Cyt c6, cytochrome c6. A possible cytochrome c oxidase or similar
(Oxidase) is proposed. ATP synthase complex is also shown. Electron
transfer reactions are indicated by black arrows and proton movement
across membrane by white arrows.

production within chromoplasts and points out a more general
role of chromorespiration beyond its contribution to carotenoid
desaturation.

Chromoplastic ATP synthesis was further evidenced when an
atypical isoform of the ATP synthase complex was identified
in tomato fruit chromoplasts (Pateraki et al., 2013). This ATP
synthase contains a specific γ-subunit (γ2) which increases its
expression during ripening and is absent in green tissues. The
silencing of this subunit caused an inhibition of chromoplast ATP
synthesis (Pateraki et al., 2013). In photosynthetic tissues, the γ-
subunit (γ1) of ATP synthase has a regulatory role. It contains
a dithiol domain which provides a redox switch to inactivate
the complex in dark conditions, preventing ATP hydrolysis
(Samra et al., 2006). However, the γ2 isoform does not have
the cysteine residues of the dithiol domain, suggesting that
the ATP synthase complex is always active. This atypical γ2-
subunit is also found in plastids from other non-photosynthetic
tissues, like roots (Kohzuma et al., 2012). It is possible that the
γ2-subunit has evolved to work efficiently in the physiological
conditions of non-photosynthetic plastids, which may present
lower electrochemical potentials than chloroplasts (Pateraki et al.,
2013).

Respiration and ATP synthesis were quantified in isolated
tomato fruit chromoplasts using NAD(P)H as electron donors
(Renato et al., 2014). It was found that octyl gallate, an inhibitor of
PTOX, prevented both respiration and ATP synthesis, confirming
experimentally that PTOX is involved in chromorespiration
(Renato et al., 2014). Also, the use of specific inhibitors suggested
the participation of two different NAD(P)H dehydrogenases and
the cytochrome b6f complex. Moreover, the existence of proton
gradients through chromoplast membranes was evidenced by the
study of proton uncouplers and sonicated chromoplasts (Renato
et al., 2014).

A Model for Chromorespiration
Even though the components of the chromorespiratory pathway
are still unclear, we propose a preliminary model with the aim
of summarizing the available data and suggesting future research
(Figure 1). The electron transport chain is probably located in
the inner membranes of chromoplasts, which form elongated
sacs or convoluted compartments (Renato et al., 2014). Both
NADH and NADPH transfer electrons to the oxidized PQ pool
probably through the Ndh, which is similar to the mitochondrial
complex I and is able to pump protons across membranes. Ndh is
present in chromoplasts and its dysfunction severely affects fruit
ripening (Nashilevitz et al., 2010), so it could play a significant
bioenergetic role. However, type II NAD(P)H dehydrogenase
may also participate in chromorespiration (Renato et al., 2014).
Type II dehydrogenases are monomeric enzymes without proton
pumping activity which are targeted to mitochondria, plastids,
and peroxisomes (Carrie et al., 2008). The presence of these
enzymes in chromoplasts has not been yet tested, and further
studies are needed to clarify this issue. Besides, the PQ pool is
also reduced by PDS, which transfers the electrons resulting from
the desaturation steps of phytoene during carotenoid biosynthesis
(Norris et al., 1995).

The reduced PQ pool (PQH2) may transfer the electrons
directly to PTOX, the terminal oxidase which is responsible
of the oxygen consumption activity in chromoplasts (Renato
et al., 2014). Alternatively, the electrons could pass through
the cytochrome b6f complex, adding a supplementary proton
pumping site. This hypothesis is supported by themarked effect of
a cytochrome b6f inhibitor in chromoplast ATP synthesis (Renato
et al., 2014). However, the electron acceptor of the cytochrome
b6f is unknown. Plastocyanin plays this role in chloroplasts, but
it is only found in photosynthetic tissues (Wastl et al., 2002).
An alternative electron acceptor could be the cytochrome c6.
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This cytochrome is present in cyanobacteria and is involved in
the interconnection of respiratory and photosynthetic chains:
it takes electrons from cytochrome b6f and transfers them to
photosystem I or to cytochrome c oxidases (Ho et al., 2011).
Cytochrome c6 is also present in higher plants, although its
function is not yet known (Wastl et al., 2002). In tomato fruit,
cytochrome c6 expression increases during ripening, paralleling
PTOX expression and chromoplast differentiation (Renato et al.,
2014), suggesting that it may participate in chromorespiration.
Further experimental evidences are needed to clarify this
point.

As mentioned above, in cyanobacteria the cytochrome c6
can play a respiratory role and transfer the electrons to a
cytochrome c oxidase (Hart et al., 2005; Ho et al., 2011). Several
proteomic studies have reported the presence of some subunits
of cytochrome c oxidase in chromoplasts from tomato fruit
(Barsan et al., 2010, 2012; Wang et al., 2013), orange fruit (Zeng
et al., 2011), watermelon, carrot, papaya, and bell pepper (Wang
et al., 2013). This result may be interpreted as mitochondrial
contamination. However, it has been obtained repeatedly in
independent studies, so it is possible that chromoplasts could
contain a plastidial form of a cytochrome c oxidase. This oxidase
could have been inherited from cyanobacteria ancestor and could
participate in chromorespiration oxidizing the cytochrome c6
(Figure 1). Nevertheless, more studies are required to elucidate
this issue.

One or several components of the electron transport chain in
chromoplasts pump protons acrossmembranes (Figure 1) and the
proton gradients generated are used by the plastid ATP synthase.
Therefore, chromorespiration is a respiratory process that works
similarly to the oxidative phosphorylation ofmitochondria, where
there is an electron transfer from electron donors (NADH and/or
NADPH) to an electron acceptor (oxygen) coupled to proton
pumping and chemiosmotic ATP synthesis.

Other Non-Photosynthetic Plastids
To our knowledge, dark respiratory processes in non-
photosynthetic plastids other than chromoplasts have not
been reported. However, published data suggest the presence
of several electron carriers and subunits of ATP synthase in
etioplasts and amyloplasts. Etioplasts are differentiated from
proplastids in photosynthetic tissues grown in darkness. They
are characterized by the accumulation of protochlorophyllide
(chlorophyll precursor) and the presence of paracrystalline
prolamellar bodies (Plöscher et al., 2011). Although etioplasts
are a special type of plastid related to chloroplasts, we include
them in this work because they could present a light-independent
respiratory process when photosynthesis is not yet operative.
Amyloplasts are specialized in the synthesis and accumulation
of starch (Andon et al., 2002). We were not able to find any
information regarding respiratory components in any other
non-photosynthetic plastid, like elaioplasts and proteoplasts
(specialized in lipid and protein accumulation, respectively).

Proteomic studies have revealed high levels of Ndh in
etioplasts from barley (Hordeum vulgare, Catala et al., 1997;
Guera et al., 2000), pea (Pisum sativum, Lennon et al., 2003),
Arabidopsis (Peng et al., 2008), tobacco (Nicotiana tabacum,

Karcher and Bock, 2002), corn (Zea mays), and rice (Oryza
sativa) (Fischer et al., 1997). Its accumulation is independent
of light and decreases during greening, suggesting a possible
role in membrane energization when the photosynthetic electron
transport chain is not yet working (Guera et al., 2000).
In chloroplasts, the Ndh is assembled with PSI forming a
supercomplex (Peng and Shikanai, 2011). Etioplasts are devoid
of PSI and the Ndh is found as an independent functional
unit (Peng et al., 2008), so its composition could be different
in chloroplasts and etioplasts. Regarding this possibility, it has
been reported that some subunits of the Ndh complex are
modified through post-transcriptional editing. Particularly, the
transcript of the ndhB subunit is altered in one nucleotide in
photosynthetic tissues, but it is not edited in etiolated tissues,
and as a result two different isoforms of this subunit are
synthesized in chloroplasts and etioplasts (Karcher and Bock,
2002). Interestingly, this lack of transcript editing in ndhB
also happens in tomato fruit chromoplasts (Kahlau and Bock,
2008).

The cytochrome b6f complex is present in etioplasts from
pea and barley (Kanervo et al., 2008; Reisinger et al., 2008;
Plöscher et al., 2011). Also, one of its subunits has been reported
in proteomic analysis of wheat (Triticum aestivum) endosperm
amyloplasts (Dupont, 2008).

Several subunits of ATP synthase have been found in significant
amounts in etioplasts from pea, corn,Arabidopsis, rice, and barley
(Fischer et al., 1997; Kanervo et al., 2008; Plöscher et al., 2011).
The α-subunit has also been detected in amyloplasts from wheat
endosperm (Andon et al., 2002; Balmer et al., 2006; Dupont,
2008). In addition, the γ2-subunit of the ATP synthase, which
participates in chromorespiration, is predominantly expressed
in Arabidopsis roots. A knockout of this gene affected root
morphology, suggesting that it plays an important role in non-
photosynthetic tissues containing amyloplasts (Kohzuma et al.,
2012).

The PTOX is ubiquitously expressed inArabidopsis and tomato
(Aluru et al., 2001; Barr et al., 2004), including tissues containing
etioplasts and amyloplasts such as etiolated cotyledons and roots.
Also, the ultrastructure of etioplasts and amyloplasts is severely
affected when PTOX is not functional (Aluru et al., 2001),
indicating that some processes in these plastids depend on PTOX
activity. Moreover, PTOX expression is strongly upregulated
in etioplasts during the de-etiolation of dark-grown seedlings,
according to the reported accumulation of carotenoids in this
transition (Rodríguez-Villalón et al., 2009).

Therefore, proteomic and genomic data provide several hints
about the presence of a respiratory electron transport chain in
etioplasts and amyloplastswhich could be linked toATP synthesis.
However, further studies are required to better understand its
biological function and to identify all the electron carriers
involved in this activity.

Conclusions and Future Directions

Dark respiration is one of the less understood processes in plastids.
Chlororespiration is mainly considered a mechanism to adapt
photosynthesis to changing environmental conditions. Recently,
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chromorespiration has been shown to be linked to chemiosmotic
ATP synthesis, and proteomic studies suggest that a similar
respiratory process may be active in etioplasts and amyloplasts.

Future studies should be conducted to address the large
number of open questions regarding respiratory processes in
chromoplasts and other non-green plastids. For instance, the
source of the electron donors NADPH and NADH is unknown.
They could be generated inside the plastids or imported from
the cytosol instead. Also, the physiological role of the ATP
generated by chromorespiration is not known. In ripe tomato,
PTOX activity is responsible of one quarter of total fruit oxygen
consumption and contribute significantly to tissue ATP content
(Renato et al., 2014). It would be interesting to obtain more data
about plastid respiration and ATP synthesis in other plant tissues
containing chromoplasts or amyloplasts. Further understanding

of respiratory processes in these plastids could be useful to
overcome limitations in the biosynthesis of carotenoids and
starch, and thus to improve the quality of several agricultural
products. Besides, further studies about etioplast respiration
could provide new data regarding the etiolation and de-etiolation
transitions during germination.
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