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The blood–brain barrier (BBB) is a tightly regulated interface in the Central Nervous System
(CNS) that regulates the exchange of molecules in and out from the brain thus maintaining
the CNS homeostasis. It is mainly composed of endothelial cells (ECs), pericytes and
astrocytes that create a neurovascular unit (NVU) with the adjacent neurons. Astrocytes
are essential for the formation and maintenance of the BBB by providing secreted factors
that lead to the adequate association between the cells of the BBB and the formation
of strong tight junctions. Under neurological disorders, such as chronic cerebral ischemia,
brain trauma, Epilepsy, Alzheimer and Parkinson’s Diseases, a disruption of the BBB takes
place, involving a lost in the permeability of the barrier and phenotypical changes in both
the ECs and astrocytes. In this aspect, it has been established that the process of reactive
gliosis is a common feature of astrocytes during BBB disruption, which has a detrimental
effect on the barrier function and a subsequent damage in neuronal survival. In this review
we discuss the implications of astrocyte functions in the protection of the BBB, and in the
development of Parkinson’s disease (PD) and related disorders. Additionally, we highlight
the current and future strategies in astrocyte protection aimed at the development of
restorative therapies for the BBB in pathological conditions.
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INTRODUCTION
The Blood Brain Barrier (BBB) is an essential regulatory compo-
nent of the neural interface with the brain vasculature. It exerts
a tightly regulation in the movement of ions, molecules and cells
between the neural cells and the blood (Daneman, 2012; Wong
et al., 2013), thus maintaining the ionic homeostasis, hormonal
and transmitter levels and transport of nutrients in the brain
(Luissint et al., 2012). In this aspect, BBB is important for the
separation of neurotransmitters pools and neuroactive agents that
regulate brain microenvironment (Abbott et al., 2006). Further-
more, the BBB supplies the brain with different nutrients, exerts a
restriction of ionic substances between the blood and the brain
through specific ion transporters, regulates the ISF (interstitial
fluid), prevents the formation of additional injuries during dis-
eases and cerebrovascular accidents and is an important barrier
for the brain transport and metabolization of drugs (Abbott et al.,
2006; Daneman, 2012; Wong et al., 2013).

The BBB is composed by brain capillary endothelial cells
(ECs), with a specific phenotype located in a strong associ-
ation with astrocytic endfeet processes and mesenchymal-like

cells pericytes. Importantly, the BBB is characterized by the
presence of tight junctions between ECs, and the expression of
specific polarized transport systems (Luissint et al., 2012). On
the other hand, astrocytes through their endfeet establish the link
between the endothelial blood flux and neurons, and are impor-
tant regulators in the formation and maintenance of the BBB
(Alvarez et al., 2013). BBB dysfunction has been associated with
pathological conditions and diseases including cerebral ischemia,
brain trauma, glioblastoma, stroke, multiple sclerosis, epilepsy,
Alzheimer and Parkinson’s Disease (PD; Haseloff et al., 2005;
Daneman, 2012; Alvarez et al., 2013).

PD is a progressive neurodegenerative disorder caused
by neuronal death in substantia nigra (SN), degeneration
of dopaminergic neurotransmission, and the presence of α-
synuclein and protein inclusions in neuronal cells, also known
as Lewy bodies (Nutt and Wooten, 2005; Halliday and Stevens,
2011). Main symptoms of Parkinson include asymmetrical
bradikinesia, rigidity, resting tremor and postural instability
(Fernandez, 2012; Singer, 2012). Initiation and progression of
PD is dependent upon cellular events, such as failures in the
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protein degradation machinery, oxidative stress, mitochondrial
dysfunction, defects in mitochondrial autophagy (mitophagy)
and the continuous accumulation of α-synuclein, driven through
cell to cell interactions between glial cells and neurons that
ultimately lead to apoptosis (Jenner, 2003; Halliday and Stevens,
2011; Vives-Bauza and Przedborski, 2011). Although there is not
a cure for the disease, the most used and cheaper treatment for PD
continues to be Levodopa, frequently accompanied by carbidopa
or benserazide (Singer, 2012; Ossig and Reichmann, 2013). How-
ever, about 40% of patients developed motor fluctuations and
dyskinesias after 4 to 6 years of treatment (Ogawa et al., 2005;
Fernandez, 2012), demonstrating that further pharmacological
research is needed in order to counterbalance these side effects.

Current research suggests that the exact cause of PD remains
unknown (Hirsch et al., 2003; Fernandez, 2012; Schwartz and
Sabetay, 2012). Mutations in various proteins such as LRRK2,
PARK2), phosphatase and tensin homolog (PTEN)-induced puta-
tive kinase 1 (PINK1), and (DJ-1) have been observed in familiar
cases of Parkinson, which only account for 10–15% of diagnosed
cases (Hirsch et al., 2003; Rappold and Tieu, 2010; Pan-Montojo
et al., 2010; Wang et al., 2011). Similarly, various environmental
factors have been found to induce PD-like symptoms, includ-
ing vascular insults to the brain, oxidative stress, neuroleptic
drugs, heavy metals exposure and the exposure to pesticides like
rotenone or paraquat (Betarbet et al., 2000; Brown et al., 2006;
Rappold and Tieu, 2010; Tanner et al., 2011). Similarly, there
is clinical and in vitro evidence of BBB disruption during PD
development (Kortekaas et al., 2005; Hirano et al., 2008; Ohlin
et al., 2011; Lee and Pienaar, 2014). In this aspect, previous studies
have suggested that α-synuclein deposition has an increase in BBB
permeability (Jangula and Murphy, 2013), suggesting the impor-
tance of α-synuclein in BBB disruption and PD development.
(Braak et al., 2006; Halliday and Stevens, 2011).

A great body of research has shown the importance of astro-
cytes in the maintenance of BBB properties both during normal
and pathological conditions (Ramaswamy and Kordower, 2009;
Yasuda and Mochizuki, 2010; Alvarez et al., 2013). Astrocytic
secreted molecules are important for the regulation of inter-
actions between BBB components such as ECs and pericytes
(Alvarez et al., 2013; Lee and Pienaar, 2014). Furthermore, astro-
cytes produce antioxidative molecules like GSH, ascorbate and
SOD (superoxide dismutase) and a great number of growth fac-
tors and neurotrophins, important for brain cell survival during
neurodegenerative processes (Dringen, 2000; Ramaswamy and
Kordower, 2009; Yasuda and Mochizuki, 2010; Zheng et al., 2010;
Barreto et al., 2011).

In the present review we provide a throughout overview of the
astrocytic functions in the BBB and its importance during patho-
physiological events elicited in PD. Additionally, we highlight the
current and future strategies in astrocyte protection aimed at the
development of restorative therapies for the BBB in pathological
conditions.

COMPONENTS OF THE BBB
ENDOTHELIAL CELLS
ECs within the brain have a characteristic phenotype that
makes them different from EC located elsewhere (Dejana, 2004;

Stamatovic et al., 2008; Nag, 2011; Daneman, 2012). For exam-
ple, brain ECs have similarities with epithelial cells, as they are
polarized cells that express some specific transporters and in
that they are connected by circumferential tight junctions that
interfere with the paracellular transport of molecules and ions
between cells (Nag, 2011; Daneman, 2012). As well, brain EC have
an increased density of mitochondria when compared with the
peripheral vasculature, suggesting a higher risk of reactive oxygen
species (ROS) formation (Nag, 2011; Lee and Pienaar, 2014).
Structurally, EC are in contact with astrocytic endfeet and pericyte
through the basal lamina, thus forming the neurovascular unit
(NVU), with neurons (Hawkins and Davis, 2005; Stanimirovic
and Friedman, 2012; Najjar et al., 2013).

Among its functions in BBB maintenance, EC are important
in the bidirectional transport across the brain through ion trans-
porters, protein and peptide carriers and active efflux transport
(Nag, 2011). Furthermore, EC have highly organized tight and
adherent junctions which restrict the passage of polar substances
including hexose sugars, amino acids, nucleosides monocar-
boxylic acids, and vitamins (Grammas et al., 2011; Mokgokong
et al., 2014). Importantly, the integrity of tight junctions is
essential to prevent the paracellular transport of many molecules
and ions, and its disruption is associated with pathological events
in the brain such as microbial infection, cancer, inflammatory
responses, stroke, Alzheimer disease and PD (Stamatovic et al.,
2008; Luissint et al., 2012). Moreover, some studies have shown
alterations in endothelial tight junctions during PD development
(Kim et al., 2003; Chen et al., 2008; Lee and Pienaar, 2014). For
example, Chen et al. (2008) found a decrease in the tight junction
proteins occludin and ZO-1 in a MPTP murine model of PD.
Similarly, the exposure of murine EC to ROS increased the activity
of metalloproteinase-9 (MMP-9), which caused degradation of
the basal lamina and BBB disruption. This oxidative damage was
reduced by the overexpression of SOD1 and catalase, suggesting
the importance of oxidative stress in BBB disruption (Kim et al.,
2003). Additionally, there is in vitro and clinical evidence of angio-
genic activity in PD development caused by an upregulation in
the expression of vascular endothelial growth factor (VEGF; Wada
et al., 2006; Lee and Pienaar, 2014). In summary, the cellular and
molecular properties of brain ECs are essential for maintaining
BBB permeability through an adequate ionic balance, conserva-
tion of the junctional structure and an adequate interaction with
cells of the NVU.

PERICYTES
Pericytes are enwrapping cells of blood microvessels, and are
located between the EC and astrocytic endfeet and neurons
(Wong et al., 2013). They are important regulatory cells for the
maintenance of both homeostasis and hemostasis in the BBB
(Dore-Duffy and Cleary, 2011). Additionally, pericytes are rele-
vant in functions such as stromal regeneration, angiogenesis and
neovascularization, antigen presenting cells under brain patholo-
gies, control of EC proliferation, and promotion of neural stem
cell properties (Lange et al., 2013; Elali et al., 2014; Hurtado-
Alvarado et al., 2014). In this regard, pericytes have shown to
differentiate in vitro into chondrocytes, vascular smooth mus-
cles cells (VsMCS), osteoblasts and skeletal muscle, suggesting a
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promising clinical use for pericytes in Central Nervous System
(CNS) injuries and other pathologies (Armulik et al., 2010; Lange
et al., 2013). Both pericytes and EC are enveloped by a basal
membrane that is continuous between the two cell types, which
separates pericytes from astrocyte endfeet (Sá-Pereira et al., 2012).
This association is achieved through the endothelial secretion of
PDGF-B and other angiogenic factors such as VEGF, TGF-β and
angiopoietins (Angs), through the interaction of multiple signal-
ing pathways (Dore-Duffy, 2008; Armulik et al., 2010; Ribatti
et al., 2011).

Morphologically, pericytes exhibit an oval cell body with a
great number of projections that enwrap ECs in different patterns,
along the abluminal surface (Armulik et al., 2010). The two main
types of pericytes, granular (95% of total pericytes) and agranular
have been described in the brain according to the presence or
absence of lysosome granules in the cytoplasm. Interestingly,
alterations in granular pericytes have been associated with amy-
loid deposition, and lipid accumulation in human brain cultures,
suggesting the importance of pericyte alterations in Alzheimer
disease and other pathologies (Castejón, 2011).

Of greater importance are the interactions between astro-
cytes and pericytes. In this aspect, it has been shown that
both pericytes and astrocytes are essential for brain vascu-
logenesis and BBB maintenance possibly through the activa-
tion of PDGFRB signaling (Dejana, 2004; Bonkowski et al.,
2011). Moreover, both pericytes and astrocytes are important
in the preservation of EC tight junctions through the reg-
ulation of proteins like occludin, claudin and ZO-1 (zona
occludens-1, Haseloff et al., 2005; Wolburg et al., 2009;
Bonkowski et al., 2011). This result suggests the importance of
astrocyte-pericyte communication in brain physiology. However,
further research is needed in order to understand the implica-
tions of the mentioned interactions during neurodegenerative
disorders.

ASTROCYTES
Astrocytes are the most common cell type in the mammalian
brain, conforming the glia with oligodendrocytes and microglia
(Chen and Swanson, 2003). Among its many functions, astro-
cytes are essential for many metabolic processes in the brain
such as the promotion of neurovascular coupling, the attrac-
tion of cells through the release of chemokines, K+ buffering,
release of gliotransmitters, release of glutamate by calcium sig-
naling, control of brain pH, metabolization of dopamine and
other substrates by monoamine oxidases, uptake of glutamate
and γ-aminobutyricacid (GABA) by specific transporters and
production of antioxidant compounds like glutathione (GSH)
and enzymes such as superoxide dismutases (SODs; Volterra
and Meldolesi, 2005; Chinta and Andersen, 2008; Hamby and
Sofroniew, 2010; Kimelberg and Nedergaard, 2010; Parpura et al.,
2011).

Globally, astrocytes are characterized by the expression of the
intermediate filaments vimentin (Vim) and glial fibrillary acidic
protein (GFAP), which are upregulated under CNS insults, in
a process known as astrogliosis (Volterra and Meldolesi, 2005;
Hamby and Sofroniew, 2010; Céspedes et al., 2013). Morpho-
logically, astrocytes are characterized by a stellate shape with

multiple processes and ramifications (Chen and Swanson, 2003;
Volterra and Meldolesi, 2005), and become activated following
brain injuries and degenerative diseases (Barreto et al., 2007, 2009,
2011, 2012; Adelson et al., 2012).

Although a great heterogeneity exists among astrocytes, two
main types have been described in the CNS: protoplasmic astro-
cytes of the grey matter which envelope neuronal bodies and
synapses, and fibrous astrocytes from the white matter that
interact with the nodes of Ranvier and oligodendroglia (Halliday
and Stevens, 2011; Oberheim et al., 2012). Current research has
suggested that only protoplasmic astrocytes have an increase in
the accumulation of α-synuclein, and these are of importance
for PD development (Braak et al., 2006; Halliday and Stevens,
2011). Interestingly, protoplasmic astrocytes are arranged in non-
overlapping domains forming a syncytial network that may
contact approximately 160.000 synapses, thus integrating neural
activity with the vascular network (Bushong et al., 2002; Barreto
et al., 2011). This architecture is altered under pathological
events such as Alzheimer and Epilepsia and has been associated
with reactive astrogliosis (Oberheim et al., 2012), suggesting the
importance of structural alterations during damaging processes.

Astrocytic terminal processes, known as endfeet, contact the
brain vasculature surface facing ECs and pericytes and enwrap
the neuronal synapses, enabling the modulation of both neuronal
activity and cerebral blood flow, following an elevation in intra-
cellular Ca2+ levels in the endfeet (Zonta et al., 2003; Maragakis
and Rothstein, 2006). Importantly, astrocytic endfeet express spe-
cialized molecules such as Kir4.1 K+ channels and aquaporin 4
that regulate BBB ionic concentrations, and protein transporters
such as glucose transporter-1 and P-glycoprotein, suggesting the
importance of the endfeet in astrocyte polarization (Abbott et al.,
2006; Nag, 2011). Additionally, astrocytes communicate between
each other through gap junctions forming a functional syncitium
with well-coordinated responses (Theis et al., 2005; Alvarez et al.,
2013). In this aspect, it has been suggested that the astrocytic
mechanisms that regulate vasodilation and vasoconstriction are
transmitted through this inter-astroglial gap junctions (Alvarez
et al., 2013). Furthermore, astrocytes are important in the devel-
opment and maintenance of BBB characteristics in ECs through
the release of growth factors like VEGF, glial cell line-derived neu-
rotrophic factor (GDNF), basic fibroblast growth factor (bFGF),
and ANG-1 (Alvarez et al., 2013; Wong et al., 2013). These growth
factors are important in the formation of tight junctions, the
promotion of enzymatic systems and the polarization of trans-
porters (Wong et al., 2013). Astrocyte-secreted growth factors
are also important for neuronal growth and maintenance, and
have survival properties during brain damaging processes like PD
(Hamby and Sofroniew, 2010).

EXTRACELLULAR MATRIX (ECM)
In addition to the different cell types which constitute the BBB,
the extracellular Matrix (ECM) is an important structural ele-
ment of the BBB that serves as an anchor for the endothelium
through the interaction of endothelial integrin receptors and
matrix proteins such as laminin (Hawkins and Davis, 2005).
In the brain, the ECM is composed of hyaluronan, hyaluronic
acid, lecticans, proteoglicans and tenascins, which are important
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for the maintenance of the paracellular diffusion in the BBB
(Hawkins and Davis, 2005; Wong et al., 2013). Previous studies
have suggested that the disruption of the ECM is strongly asso-
ciated with an increase in BBB permeability during pathogenic
states such as glioblastoma multiforme, ischemia and hemor-
rhagic necrosis of the brain. For example, during ischemia, the
basement membrane suffers a breakdown caused by the increased
expression of the matrix metalloproteinases (MMPs) MMP9 and
MMP2 which in addition may cause microglial activation (del
Zoppo and Milner, 2006; Lau et al., 2013). Furthermore, increased
expression of MMP9 and GFAP in astrocytes was observed in
a parkinsonian mouse model with MPTP (1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine; Annese et al., 2014). These results
suggest the importance of ECM breakdown in glial activation
during neurodegeneration and PD.

PARKINSON DISEASE AND BBB
CAUSES OF DISRUPTION OF THE BBB
Several processes may affect the integrity of the BBB, including
an increase in ROS production, elevated levels of proinflam-
matory cytokines, inappropriate clearance of Ab peptide and
other toxic substances (Minagar and Alexander, 2003; Popescu
et al., 2009; van Sorge and Doran, 2012). Previous studies have
shown an increase in BBB permeability associated with age that
is in part responsible for pathological alterations such as white
matter lesions (Simpson et al., 2007; Popescu et al., 2009). In this
aspect, it has been reported that elder individuals and senescence
mouse models have a higher albumin and IgG concentration
than younger individuals caused by a leakage through the BBB
(Popescu et al., 2009). Moreover, ageing is also associated with an
increased production of ROS and proinflammatory cytokines in
vascular ECs, which have been linked with memory and learning
impairment in mouse models (Fukui et al., 2001; Popescu et al.,
2009; Enciu and Popescu, 2013). Aged people have shown a
diminished activity of the P-glycopotein efflux transporter that
is associated with a limited removal of toxic substances from the
brain (Popescu et al., 2009), demonstrating an important correla-
tion between ageing processes (such as the increased expression of
ROS) and BBB dysfunction. Taking into account that PD is associ-
ated with both age and ROS production, it is important to explore
the cellular and molecular mechanisms that are activated during
BBB disruption in this pathology and its protective mechanisms.

DISRUPTION OF BBB IN PARKINSON DISEASE
Disruption of BBB in PD has been quite controversial. It was
initially assumed that BBB remained unaltered during the devel-
opment of the pathology, as observed in animal models and per-
meability studies of PD drugs such as levodopa and benserazide
(Kurkowska-Jastrzebska et al., 1999; Haussermann et al., 2001).
More recently, clinical studies have presented evidence of BBB
disruption in PD patients (Kortekaas et al., 2005; Hirano et al.,
2008; Ohlin et al., 2011; Lee and Pienaar, 2014). For example,
an early study (Kortekaas et al., 2005) pointed out an increase
in the brain uptake of drugs that usually do not cross the BBB
including benzerazide and [11C] verapamil in PD patients and
rat models, suggesting a possible BBB breakdown. Additionally,
a PET study (positron emission tomography) found deficiencies

in cerebral blow flow in PD patients that were highly associated
with dyskinesias and levodopa treatment (Hirano et al., 2008).
These changes in cerebral blood flow have been associated with an
increased BBB permeability and angiogenesis that are mediated
by VEGF (Kortekaas et al., 2005; Ohlin et al., 2011). Similarly,
various toxin-induced PD models have shown BBB disruption,
including 6-OHDA treated rats and MPTP-treated mice (Carvey
et al., 2005; Chen et al., 2008). On the other hand, a growing
body of evidence has shown the importance of ABC multidrug
transporters such as P-gp in BBB disruption (Kortekaas et al.,
2005; Bartels et al., 2008; Bartels, 2011). In this aspect, KO mice
for P-glycoprotein have shown an increased accumulation of
neurotoxin ivermectin and the carcinostatic drug vinblanstine
in the brain, suggesting the importance of P-glycoprotein in the
clearance of toxic substances and a possible BBB disruption in PD
(Schinkel et al., 1994). Additionally, Kortekaas et al. (2005) has
suggested that Parkinson patients have a reduced P-gp (glycopro-
tein) function in the midbrain, which is associated with a BBB
disruption. Interestingly, some PET studies reported a decrease
in BBB P-gp function in several brain regions during aging,
demonstrating that elder people are more susceptible to the accu-
mulation of toxin compounds in the brain. Taking into account
that α-synuclein accumulation is associated with PD pathogene-
sis, it is possible that a reduction of P-gp could be related with
an accumulation of α-synuclein in the brain (Bartels, 2011).
However, further research is needed to assess the importance
of P-gp in this process. Finally, the release of proinflammatory
cytokines by microglia and astrocytes during PD is associated with
both an increased neuronal death and protein rearrangements in
tight junctions on EC surface (Figure 1; Desai Bradaric et al.,
2012). For example, increased levels of the cytokines IL-6, IL-
1B and TNF-A and a decrease in proteins ZO-1 and occludin in
tight junctions have been associated with a reduction in the trans-
endothelial electrical resistance, suggesting an alteration in BBB
permeability (Wong et al., 2004). Importantly, the loss of signaling
interactions between astrocytes and CNS vasculature through
changes in protein expression in astrocytic endfeet is associated
with morphological changes including hypertrophy, upregulation
of GFAP and vimentin and therefore triggering the induction of
astrocytes to a more reactive state (Robel et al., 2009; Alvarez et al.,
2013). These results highlight the importance of astrocytes in the
modulation of BBB properties and the involvement of the reactive
astrogliosis during BBB disruption (Figure 1).

REACTIVE ASTROGLIOSIS IN PD
Reactive astrogliosis is the main reaction of astrocytes following
brain insults such as infection, inflammatory processes, trauma,
α-synuclein accumulation, ischemia and neurodegenerative dis-
eases (Barreto et al., 2007, 2009; Gu et al., 2010; Hamby and
Sofroniew, 2010; Xiong et al., 2011; Adelson et al., 2012). This
process involves both molecular and morphological changes in
astrocytes, which include the hypertrophy of cell bodies and glial
processes, increased expression of proteins like GFAP, vimentin,
nestin, tenascin-C and chondroitin sulfate proteoglycans (CSPGs;
Alvarez et al., 2013). Other characteristics of the process are
the increased uptake of glutamate caused by an alteration of
vesicular transporters of GABA (vGAT) and glutamate (vGLUT),
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FIGURE 1 | BBB disruption in PD. During PD development, increased ROS
production leads to the accumulation of α-synuclein in DAneurons, and this is
accompanied by mitochondrial dysfunction and increased neuronal death.

Concurrently, astrocyte and microglia became activated, promoting cytokine
release, which in turn affects endothelial tight junctions, pericyte phenotype
and BBB permeability.

production of cytokines and chemokines that have a modulatory
effect on microglia (Croisier and Graeber, 2006), and in some
cases the formation of glial scar (Hirsch et al., 2003; Hamby and
Sofroniew, 2010; Kang and Hebert, 2011; Colangelo et al., 2014).

Importantly, reactive astrogliosis is a mechanism highly
dependent on the cellular and molecular context of the events
triggering it, therefore it may have both beneficial and detrimental
effects on surrounding neural and non-neural cells (Hamby and
Sofroniew, 2010). For example, the glial scar produced after severe
astrogliosis may separate necrotic tissue from healthy one, but
also has the detrimental effect of impairing axonal regeneration
through the expression of molecules like CSPGs, semaphorins and
ephrin (Fitch and Silver, 2008; Duffy et al., 2009).

Experimental evidence using cellular and animal models have
shown that environmental and biological toxins, like α-synuclein,
LPS (lipopolysaccharides), herbicides and pesticides like rotenone
or MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), can
induce both astrogliosis and microgliosis, which is accompa-
nied by altered striatal neuronal morphology, neuronal death,
mitochondrial dysfunction and nuclear fragmentation (Langston

et al., 1999; Samantaray et al., 2007; Niranjan et al., 2010).
Additionally, injection of LPS in rat brains was followed by an
increase in the inducible nitric oxide synthase (iNOS), suggesting
that chronic glial activation can cause oxidative stress in the
brain, similarly to that in neurodegenerative processes like AD
and Parkinson (Sugaya et al., 1998; Hirsch et al., 2003; de Oliveira
et al., 2011). Similarly, there is clinical evidence showing that
astrogliosis is present in different areas of the brain in PD patients,
including the SN, the putamen and the hippocampus (Baxendale
et al., 1998; Dickson et al., 2002; Dickson, 2012). Finally, some
studies have shown that activated glial cells can participate in
the death of dopaminergic neurons, probably via activation of
apoptosis by cytokines like TNF-α, IL-1B, IL-6 (Figure 2) and
interferon-γ and the subsequent production of nitric oxide by
the iNOS that may diffuse toward the neurons and induce lipid
peroxidation, DNA strands breaks and inhibition of mitochon-
drial metabolism (Hirsch et al., 2003; Rappold and Tieu, 2010).
Released cytokines may bind to TNFR1 and 2, specific receptors
in dopaminergic neurons, and activate proapoptotic mechanisms
through the activation of caspase 3, caspase 8, and cytochrome
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FIGURE 2 | Protective strategies of astrocytes during BBB disruption. In
advanced stages of PD, BBB disruption takes place and causes a lost in
barrier permeability, entrance of toxic substances and in some instances
immune cell infiltration. Processes such as increased ROS production,
reactive gliosis and cellular death will inevitably occur. Astrocytic response
to BBB disruption includes the production of antioxidative molecules like
GSH and ascorbate, generation of growth factors like Brain derived
neurotrophic factor (BDNF) and GDNF that could alleviate the cellular death
and promote angiogenesis. Furthermore, astrocytes are important in the
genetic regulation of endothelial proteins from the tight junction like
Occludin and ZO-1. During chronic brain damage, astrocytes also induce the
liberation of cytokines like TNF-α, IL-1B, IL-6, important in microglial
activation and neuronal death.

C (Hirsch et al., 2003). These results suggest that both the glial
reaction and the consequent inflammatory processes could be
considered as a promising therapy to reduce neuronal damage
during PD (Hirsch et al., 2003).

PROTECTION STRATEGIES OF ASTROCYTES IN BBB
DISRUPTION
Over the last years, much research has focused on specific
molecules produced by astrocytes as promising neuroprotective
strategies in neuropathologies. These molecules include antioxi-
dant enzymes such as SODs, growth factors, peptide hormones
and heat shock proteins (Dringen, 2000; Zheng et al., 2010;
Barreto et al., 2011). Many of them have shown protective effects
both in dopaminergic neurons and glial cells, and have been
used in animal models and clinical trials with remarkable results
(Ramaswamy and Kordower, 2009; Yasuda and Mochizuki, 2010).
In the last section of our review we discuss the current methods
used in neuroprotection based on astrocyte molecules. Addition-
ally, we highlight the future strategies in astrocyte protection

aimed at the development of restorative therapies for the BBB in
pathological conditions.

ASTROCYTIC ANTIOXIDANTS AND PD
Astrocytes secrete beneficial antioxidant molecules, including
GSH, (SODs 1, 2 and 3), and ascorbate, which are important for
cell survival during neurodegenerative processes (see Figure 2,
Anderson and Swanson, 2000; Dringen, 2000; Lindenau et al.,
2000; Sims et al., 2004; Mythri et al., 2011). The tripeptide
GSH is the main antioxidant in the brain, which is needed for
the conversion of methylglyoxal into d-lactate by glyoxalase 1
(Dringen, 2000; Bambrick et al., 2004). Furthermore, GSH is also
important in limiting and repairing the deleterious actions of NO
and other ROS in the brain such as nitrations and fibril forma-
tions of α-synuclein (Chinta and Andersen, 2008). Interestingly,
astrocytes possess a greater concentration of GSH (3.8 mmol/L)
than neurons (2.5 mmol) probably due to their higher content
of γ-glutamylcysteine-synthetase (Rappold and Tieu, 2010). In
this aspect, some studies demonstrated that neurons co-cultured
with astrocytes exhibit higher levels of GSH compared to neurons
cultured alone, suggesting that astrocytes may provide further
antioxidant defenses to neurons and BBB cells (Maier and Chan,
2002; Slemmer et al., 2008; Giordano et al., 2009). Additionally,
an increase in GSH peroxidase-containing cells showed to be
inversely correlated with the severity of dopaminergic cell loss
in cell populations from patients with PD, demonstrating that
the quantity of GSH peroxidase in cells might be critical for a
protective effect against oxidative stress during PD (Damier et al.,
1993). Different murine models have shown the importance of
GSH in BBB protection, including maintenance of BBB perme-
ability and oxidative protection of mouse pericytes (Shukla et al.,
1993; Agarwal and Shukla, 1999; Price et al., 2012). Similarly,
ascorbate was shown to protect BBB integrity in a rat ischemic
model by preventing changes in BBB permeability and increased
ROS production (Lin et al., 2010). One important problem
with the use of GSH as a possible therapeutic agent is that its
precursor, N-acetycysteine (NAC), does not cross the BBB in
significant amounts, therefore various strategies have been used
to improve the GSH transport into the brain, such as the use
of liposomes, nanoparticles and L-dopa conjugates (Smeyne and
Smeyne, 2013). However, further research is needed to address the
use of GSH in BBB disruption.

Previous studies showed that SODs exert neuroprotection in
PD and other oxidative-related events (Chen and Swanson, 2003).
For example, the overexpression of Cu/Zn SOD (SOD1) was
able to rescue dopaminergic neurons and diminishes locomotor
disabilities in a Drosophila mutant model for α-synuclein overex-
pression (Botella et al., 2008). Interestingly, a specific increase in
SOD levels in the SN, with no changes in activities of GSH per-
oxidase, catalase and GSH reductase, is observed in PD patients
(Chinta and Andersen, 2008). A similar increase was noted in the
mitochondrial isoform of SOD (SOD2) in motor cortex from PD
patients (Radunovic et al., 1997), suggesting that SODs have a
greater importance than other antioxidant enzymes during PD
development. Furthermore, the reduction or induced mutation
of SOD1 in astrocytes has been shown to induce neuronal degen-
eration and injury in ischemic and amyotrophic lateral sclerosis
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(ALS) murine models (Kondo et al., 1997; Kim et al., 2001;
Blackburn et al., 2009; Papadeas et al., 2011). Finally, it was also
reported that the overexpression of SOD1 in a transgenic mouse
model attenuated BBB disruption by superoxide anion during
ischemia (Kim et al., 2001). Altogether, these results emphasize
the importance of antioxidant enzymes for the treatment of PD
and BBB disruption.

GROWTH FACTORS AND BBB PROTECTION IN PD
Several neurotrophic and growth factors secreted by astrocytes
have been extensively used in animal models of neurodegener-
ative disorders for exerting protection of dopaminergic neurons
and glial cells against toxins and ROS during injury through
the activation of specific signaling pathways that are responsible
for cell survival, induction of antioxidant enzymes, and axonal
sprouting (See Figure 2, Ramaswamy and Kordower, 2009; Yasuda
and Mochizuki, 2010; Proschel et al., 2014). Some of them like
GDNF and neurturin (NRTN) have been tested in clinical trials
for PD and other neurodegenerative diseases (Peterson and Nutt,
2008; Ramaswamy and Kordower, 2009).

BDNF, from the neurotrophin family, has been shown to be
critical in the survival of cortical, hippocampal and serotonergic
neurons. Reduction in BDNF levels is associated with many
pathological conditions such as PD, AD, Huntington Disease,
ALS, depression and schizophrenia (Allen et al., 2013). Fur-
thermore, BDNF protects neurons against excitotoxicity through
activation of the transcription factor NF-kB, which induces
expression of antioxidant enzymes such as Mn-SOD and the anti-
apoptotic proteins, Bcl-2 and inhibitor of apoptosis proteins IAPs
(Mattson, 2008; Lee et al., 2009). Endogenous administration
of BDNF was demonstrated to protect neurons in SN following
6-OHDA and MPTP toxicity in rat and primate PD models
(Ramaswamy and Kordower, 2009).

The family of GDNF comprises ligands, such as GDNF, NRTN,
artemin (ARTN) and persephin. GDNF, secreted by astrocytes
and pericytes, is essential for the survival of dopaminergic neu-
rons, peripheral motor neurons and neurons from the locus
coeruleus (Yasuda and Mochizuki, 2010; Allen et al., 2013). In this
aspect, GDNF administration by catheter increases dopaminergic
neuronal resistance against 6-OHDA toxicity, with preservation
of motor functions in rat and rhesus monkey models (Safi et al.,
2012). More recently, GDNF was shown to increase the expression
of claudin-5 and the transendothelial electrical resistances of
brain microvascular ECs, suggesting that it may improve the bar-
rier function of the BBB (Sano et al., 2007). However, clinical trials
in patients that were administered GDNF in different regions of
the brain have shown mixed results, in part due to the mechanism
of administration, and the growth factor inability to cross the
BBB, therefore further research is needed in order to surpass this
obstacle (Gill et al., 2003; Ramaswamy and Kordower, 2009; Allen
et al., 2013).

The family of the fibroblast growth factors (FGF) includes 22
structurally related signaling molecules in humans, such as acid
FGF, and bFGF, which are important in processes like angiogene-
sis, wound healing and embryonic development (Itoh and Ornitz,
2011; Huang et al., 2012). Different studies have shown that bFGF
protects hippocampal and cortical neurons against glutamate

toxicity by changing the expression of N-methyl-D-aspartic acid
(NMDA) receptors and antioxidant enzymes like SODs and GSH
reductase (Timmer et al., 2004; Mattson, 2008). Furthermore,
a co-culture of transgenic Schwann cells overexpressing FGF-2
with dopaminergic neurons improved neuronal survival and the
behavioral outcome in a parkinsonian rat model lesioned with 6-
OHDA (Timmer et al., 2004). Additionally, bFGF preserves BBB
endothelial adherens junctions in a mouse model of intracerebral
hemorrhage through the inhibition of RhoA protein, suggesting
that bFGF maintains BBB integrity (Huang et al., 2012). Finally,
there are other neurotrophic factors with potential effects on BBB
protection including insulin-like growth factors (IGFs), vascu-
lar endothelial growth factor (VEGF-B), hepatocyte growth fac-
tor (HGF), mesencephalic astrocyte-derived neurotrophic factor
and platelet derived growth factor (PDGF; Aberg et al., 2006;
Ramaswamy and Kordower, 2009; Pang et al., 2010; Yasuda and
Mochizuki, 2010; Sullivan and Toulouse, 2011). For instance,
VEGF has shown to improve cerebral blood flow and the pericyte
coverage of brain ECs in a murine ischemic model (Zechariah
et al., 2013). Also, PDGF-BB impairment in mice has been
associated with a reduced number of pericytes, edema formation
and murine embryonic lethality, suggesting its importance in
BBB development and maintenance (Bergers and Song, 2005;
Bonkowski et al., 2011).

The main obstacle with the use of growth factors as therapeutic
agents in neurodegenerative diseases seems to be their inability
to cross the BBB thoroughly (Peterson and Nutt, 2008). In this
regard, different strategies have been used including injections
into the lumbar or ventricular CSF, viral vectors with growth fac-
tor genes, the temporal disruption of the BBB with hyperosmotic
agent like mannitol, the use of linked peptides or peptidomimetic
monoclonal antibodies or nanoparticles (Allen et al., 2013). For
example, a recent methodology using magnetic nanocarriers for
the transport of BDNF was able to cross the BBB without affecting
cell viability seems promising (Pilakka-Kanthikeel et al., 2013). A
different approach seems to be the transplantation of dopamin-
ergic neurons or glial precursor cells into the injured regions of
the brain, which increases the expression of growth factors like
BDNF, GDNF, and IGF (Hauser, 2011; Jankovic and Poewe, 2012;
Proschel et al., 2014). In this aspect, a recent study by Proschel
et al. (2014) has demonstrated that the transplantation of glial
precursor cells in 6-OHDA injured rats causes the recovery of
DA neurons of the striatum by an increase in the levels of GSH,
GDNF, and BDNF. These results suggest that growth factors are
essential in the recovery of BBB injuries and related pathologies.

CONCLUSIONS AND FUTURE PERSPECTIVES
Based on the past studies, it seems to be of greater importance
to understand the role of BBB in neurodegenerative diseases.
It is likely that the maintenance of the BBB and the NVU will
decrease the accumulation of Lewy bodies, α-synuclein fibrils
and ROS that worsen the effects of PD. It is important to
determine the extent of BBB disruption in PD, and how this
disruption may allow the transport of growth factors and antiox-
idant molecules to the site of injury. The combination of novel
drug therapies, such as the use of growth factors, antioxidant
molecules or nanoparticles combined with a better understanding
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of the astrocytic functions in the BBB, and the use of other
therapies that increase astrocyte survival and its antioxidant func-
tion may shed light on a prospective cure of PD in the near
future.
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