**Supporting information** 

е

## The molecular recognition of epothilones by microtubules and tubulin dimers revealed by biochemical and NMR approaches

а

o n

d

Angeles Canales<sup>1</sup>, Lidia Nieto<sup>1</sup>, Javier Rodríguez-Salarichs<sup>1,2</sup>, Pedro A. Sánchez-Murcia<sup>3</sup>, Claire Coderch<sup>3</sup>, Alvaro Cortés-Cabrera<sup>3</sup>, Ian Paterson<sup>4</sup>, Teresa Carlomagno<sup>5</sup>, Federico Gago<sup>3</sup>, José M. Andreu<sup>1</sup>, Karl-Heinz Altmann<sup>6</sup>, Jesús Jiménez-Barbero<sup>1</sup> and J. Fernando Díaz<sup>1</sup>\*.

<sup>1</sup>Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain.

<sup>2</sup>Centro de Estudios Avanzados de Cuba, Carretera San Antonio km 1 1/2, Valle Grande, La Lisa, Ciudad Habana, CP 17100, Cuba

<sup>3</sup>Área de Farmacología, Departamento de Ciencias Biomédicas – Unidad Asociada de I+D+i al CSIC, Universidad de Alcalá E-28871 Alcalá de Henares, Madrid

<sup>4</sup>University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.

<sup>5</sup>Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

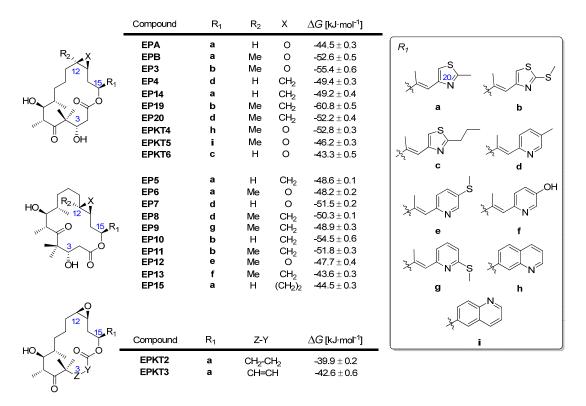
<sup>6</sup>Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, HCI H405, Wolfgang-Pauli-Str. 10, CH-8093 Zürich Switzerland

\*To whom correspondence should be addressed

| Tubulin             | $s^{0}_{20,w}(S)^{1}$ | signal [fringes]  | s <sub>20,w</sub> (S) | signal [fringes]   |
|---------------------|-----------------------|-------------------|-----------------------|--------------------|
| preparation         | (at age 2 h)          | (% of sedimenting | (at age 96 h)         | (% of sedimenting  |
| preparation         | (at age 2 II)         | protein analyzed) | (at age 50 fr)        | protein analyzed.) |
| W-TUB               | 5.8                   | 3.63 (94 %)       | 5.8                   | 1.45 (38%)         |
| column              | 9.3                   | 0.088 (2.3 %)     | 8.7                   | 0.099 (2.6%)       |
| $(13 \ \mu M)$      | 11.7                  | 0.037 (0.9 %)     | 11.2                  | 0.107 (2.8%)       |
| $(15 \mu \text{M})$ | 15.2                  | 0.037 (0.5%)      | 13.7                  | 0.369 (9.6%)       |
|                     | 13.2                  | 0.021(0.370)      | 15.7<br>$15-30^2$     | $nd^{3}$           |
| W-TUB               | 5.8                   | 3.47 (90 %)       | 5.9                   | 1.03 (27%)         |
| column              | 9.3                   | 0.124 (3.2%)      | 8.7                   | 0.068 (1.8%)       |
| $(13 \mu\text{M})$  | 11.7                  | 0.044 (1.1%)      | 12.4                  | 0.051 (1.3%)       |
| + EpoA              | 14.3                  | 0.021 (0.5%)      | 14.4                  | 0.129 (3.3%)       |
| (0.5  mM)           | 14.5                  | 0.021 (0.570)     | $15-30^2$             | $nd^{3}$           |
| W-TUB               | 5.8                   | 37.6 (92%)        | 10.50                 |                    |
| column              | 7.9                   | 1.84 (4.5%)       |                       |                    |
| (130 µM)            | 11.8                  | 0.84 (2.0%)       |                       |                    |
| (150 µWI)           | 14.6                  | 0.64 (1.6%)       |                       |                    |
| W-TUB               | 5.9                   | 38.1 (92%)        |                       |                    |
| column              | 9.5                   | 1.6 (3.7%)        |                       |                    |
| $(130 \mu\text{M})$ | 12.9                  | 1.2 (2.9%)        |                       |                    |
| + EpoA              | 17.2                  | 0.43 (1.0%)       |                       |                    |
| $(50 \ \mu M)$      | 17.2                  | 0.15 (1.070)      |                       |                    |
| W-TUB               | 5.9                   | 35.6 (92%)        |                       |                    |
| column              | 9.4                   | 1.7 (4.5%)        |                       |                    |
| $(130 \ \mu M)$     | 12.3                  | 0.84 (2.1%)       |                       |                    |
| + EpoA              | 15.4                  | 0.49 (1.3%)       |                       |                    |
| (150 µM)            | 13.4                  | 0.49 (1.370)      |                       |                    |
| W-TUB               | 6.0                   | 38.8 (94 %)       |                       |                    |
| column              | 9.4                   | 1.36 (3.3%)       |                       |                    |
| (130 µM)            | 12.3                  | 0.74 (1.8%)       |                       |                    |
| + EpoB              | 15.4                  | 0.39 (0.9%)       |                       |                    |
| + EpoB<br>(50 μM)   | 1.7.7                 | 0.57 (0.770)      |                       |                    |
| W-TUB               | 6.0                   | 30.2 (95%)        |                       |                    |
| Column              | 9.7                   | 1.22 (3.8%)       |                       |                    |
| $(130 \ \mu M)$     | 9.7                   | 0.50 (1.2%)       |                       |                    |
| • • •               | 12.1                  | 0.50 (1.270)      |                       |                    |
| + EpoA              |                       |                   |                       |                    |
| (150 µM)            |                       |                   | 1                     |                    |

Table S1. Aggregation state of tubulin in D<sub>2</sub>O buffer at 25 °C determined by sedimentation

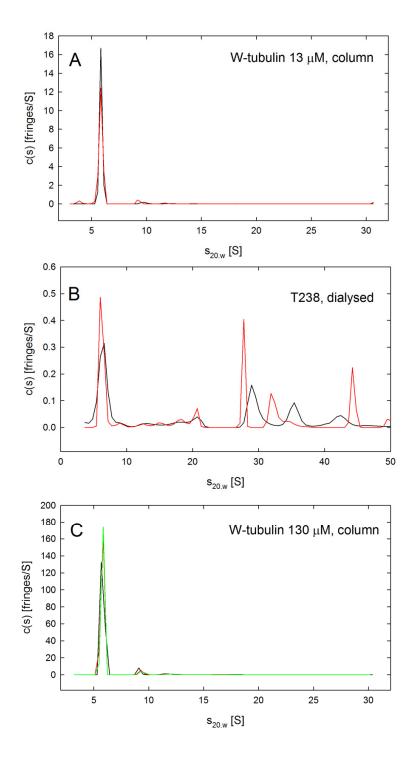
velocity in the analytical ultracentrifuge


<sup>1</sup>The sedimentation coefficient of tubulin was corrected by concentration employing the previously determined correction for the concentration dependence of the sedimentation coefficient of tubulin dimers, (sC = s0(1 - gC), where C is the tubulin concentration (g/L) and g = 0.019 L/g (43).

<sup>2</sup>broadly sedimenting zone <sup>3</sup>not determined

Table S2. Dihedrals angles of EpoA and EpoB in their respective microtubule-bound conformations. The values reported are calculated as the average of the three lowest energy conformers found in the conformational searches which are in agreement with the experimental NOE data. \*Dihedral angle of the major conformer, syn conformation. The anti conformer is also present in solution and it is characterized by a C16C17C18N torsional close to twenty degrees. EpoA dihedrals reported by Carlomagno et al. (*14,20*) are given for comparison.

|                 | EpoA<br>Carlomagno et al. | <b>EpoA</b> (major conformer, syn) | <b>EpoB</b> (major conformer, syn) |
|-----------------|---------------------------|------------------------------------|------------------------------------|
| C1C2C3C4        | -152,5                    | -174,7                             | 174,3                              |
| C2C3C4C5        | -51,7                     | -58,6                              | -61,9                              |
| C3C4C5C6        | -43                       | -74,6                              | -52,0                              |
| C4C5C6C7        | 156,4                     | 147,1                              | 152,7                              |
| C5C6C7C8        | -70                       | -61,4                              | -64,2                              |
| C6C7C8C9        | -74,8                     | -68,2                              | -74,8                              |
| C7C8C9C10       | 164,1                     | 168,1                              | 161,3                              |
| C8C9C10C11      | -171,9                    | 177,1                              | 170,0                              |
| C9C10C11C12     | -178                      | 170,9                              | 146,1                              |
| C10C11C12C13    | -129,2                    | -105,7                             | -102,3                             |
| C11C12C13C14    | 4,1                       | -2,8                               | -2,0                               |
| C12C13C14C15    | 76,3                      | 98,0                               | 103,1                              |
| C13C14C15O1     | -62,6                     | -75,4                              | -63,3                              |
| C14C15O1C1      | 179,5                     | 149,7                              | 112,6                              |
| C1501C1C2       | 176,3                     | 164,8                              | 163,9                              |
| <b>O1C1C2C3</b> | -124,3                    | -47,1                              | -55,2                              |
| C14C15C16C17    | -129,7                    | -116,7                             | -118,1                             |
| C15C16C17C18    | 178.9                     | 176,3                              | 176,6                              |
| C16C17C18N      | 137.9                     | 151,8*                             | 151,2*                             |


Table S3. Chemical structures and thermodynamic binding data of the epothilones included in the SAR study.



Data for EpoA, EpoB and EP3-EP20 from ref. 9. Data for EPKT2- EPKT6 from ref. 19.

| Residue | van der Waals | residue        | electrostatic |
|---------|---------------|----------------|---------------|
| Leu 217 | 0.035         | Lys 19         | -0.212        |
| Asp 226 | 0.115         | Asp 26         | 0.224         |
| His 229 | 0.720         | Glu 27         | 0.254         |
| Leu 230 | 0.554         | Asp 226        | 0.215         |
| Ala 233 | -0.522        | Pro 274        | -0.138        |
| Phe 272 | 0.784         | Thr 276        | 0.010         |
| Pro 274 | 0.392         | Arg 278        | -0.035        |
| Leu 275 | -0.213        | Gln 281        | 0.598         |
| Thr 276 | 0.229         | Arg 284        | 0.566         |
| Arg 278 | 0.066         | Glu 290        | -0.310        |
| Gln 281 | 0.568         | Asp 297        | -0.121        |
| Arg 284 | -0.047        | Arg 320        | -0.166        |
| Ala 285 | 0.036         | Arg 369        | -0.203        |
| Leu 286 | -0.135        | Lys 372        | -0.009        |
| Glu 290 | 0.111         |                |               |
| Leu 371 | 0.165         | water molecule | 0.018         |
| Lys 372 | 0.031         |                |               |

Table S4. Selected projection to latent structure (PLS) pseudo-coefficients (absolute value  $\ge |0.01|$ ) for the amino acid residues (numbering as in PDB entry 4I50) that contribute the most to explaining the predicted binding free energy differences.



S6

Figure S1.- Aggregation state of tubulin samples equilibrated in different D<sub>2</sub>O buffers for NMR experiments. Sedimentation velocity experiments at 25 °C in an analytical ultracentrifuge equipped with interference optics, data analysis to determine the sedimentation coefficient distribution c(s) and correction of s values for solvent composition and temperature to standard conditions (H<sub>2</sub>O, 20 °C) were as described before (6). A. For sample preparation, tubulin purified in large scale in our laboratory and stored in liquid nitrogen (W-tubulin (40)) was equilibrated immediately before use in 10 mM sodium phosphate buffer, 0.1 mM GTP in 99.9 % D<sub>2</sub>O, pH\* 7.0 by chromatography through a Sephadex G-25 (medium) column (0.9x20 cm, 30ml/h). The tubulin concentration (13 µM W-tubulin) was measured spectrophotometrically employing an extinction coefficient of 116,000  $M^{-1}$  cm<sup>-1</sup> at 276 nm (40). The D<sub>2</sub>O concentration of the column effluent was ~ 99%, determined by gravimetric measurements. The c(s) distributions for samples without (black lines) or with 0.5 mM epopthilone A (red lines) are shown. B. For comparison with previous NMR studies (14,15,19), commercial lyophilized tubulin (T238 from Cytoskeleton, Denver, CO, USA) was dissolved and dialyzed (2 x 20h, 4 °C) against 2.5 mM PO<sub>4</sub>H<sub>3</sub>/NaOH, 1.5 mM Ca(OH)<sub>2</sub> made in 99.9 % D<sub>2</sub>O (the pD of the resulting buffer was 6.85), employing washed CelluSep dialysis membrane (4-6 kDa cutoff) in a QuixSep micro dialysis device (Membrane Filtration Products Inc., San Antonio, Texas, USA). A theoretical 10.7 µM tubulin concentration was dissolved, from which 6 µM tubulin was recovered. Commercial tubulin T238 was also column equilibrated in the same buffer as W-tubulin for comparison, it behaves essentially identically as W-tubulin. The c(s) distributions for samples without (black lines) or with 0.5 mM epothilone A (red lines) are shown. C. As control for the oligomerization state of tubulin in the binding experiments shown in Figure 1 W-tubulin was equilibrated immediately before use in 10 mM sodium

phosphate buffer, 0.1 mM GTP in 99.9 %  $D_2O$ , pH\* 7.0 by chromatography through Sephadex G-25 (medium). The tubulin concentration (130  $\mu$ M W-tubulin) was measured spectrophotometrically employing an extinction coefficient of 116,000 M<sup>-1</sup>cm<sup>-1</sup> at 276 nm (40). The c(s) distributions for samples without (black lines), with 50  $\mu$ M epothilone A (red lines) or with 50  $\mu$ M epothilone B (green lines) are shown.

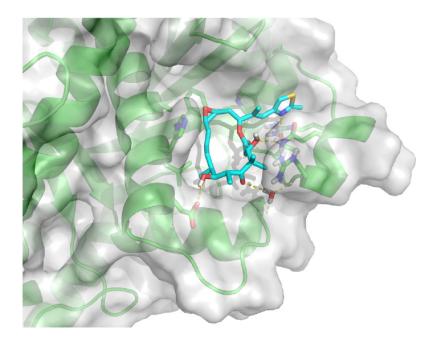



Figure S2.- Close-up view of EpoA bound to  $\beta$ -tubulin, as present in PDB entry 4I50. Note the extra water molecule that is proposed to bridge good hydrogen-bonding interactions between the carbonyl oxygen at position 5 of EpoA and both the main-chain NH of Arg278 and the main-chain CO of Leu217.