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Concepts and tools from network theory, the so-called Lagrangian Flow Network framework, have
been successfully used to obtain a coarse-grained description of transport by closed fluid flows. Here
we explore the application of this methodology to open chaotic flows, and check it with numerical
results for a model open flow, namely a jet with a localized wave perturbation. We find that network
nodes with high values of out-degree and of finite-time entropy in the forward-in-time direction
identify the location of the chaotic saddle and its stable manifold, whereas nodes with high in-degree
and backwards finite-time entropy highlight the location of the saddle and its unstable manifold.
The cyclic clustering coefficient, associated to the presence of periodic orbits, takes non-vanishing
values at the location of the saddle itself.

I. INTRODUCTION

The use of simple kinematic flows to study chaotic
transport has allowed a deeper understanding of its theo-
retical aspects and its laboratory and environmental ap-
plications [1, 2]. In the particular context of oceanic
processes these chaotic models, complemented with tools
and methods of nonlinear dynamical systems [3–5], pro-
vided advances in the study of ocean transport [6], ma-
rine particle dispersion [7, 8], the distribution of marine
organisms [9–12] and the dynamics of coherent structures
[13–15].

More recently, new tools coming from the theory of
Complex Networks are complementing and extending the
above results. The powerful framework of network the-
ory has become a standard toolbox in many scientific
fields ranging from social science to climate [16–18]. In
the context of fluid dynamics, Lagrangian Flow Networks
(LFNs) [19–23] have been introduced as a coarse-grained
representation of transport in which small regions in the
fluid domain are interpreted as nodes of a network, and
the transfer of mass from one of these regions to another
defines weighted links among them. They are based on
the concept of transport operators (also called transfer or
mapping operators; in fact they are the Perron-Frobenius
operators of the transport dynamics) [24–31].

The LFN methodology has been applied in previous
works to closed chaotic flows, which are characterized
by bounded chaotic trajectories of fluid parcels. Typical
properties of the flow are explained in terms of networks
measures: mixing and dispersion are related with the
degree and related quantities [19], betweenness central-
ity highlights preferred transit nodes connecting distant
regions [20], closeness and eigenvector centrality distin-
guish regions dominated by laminar or by strong mix-
ing, and identify structures related to invariant manifolds
[22], network communities identify coherent fluid regions
[19, 32], and so on. Contrarily to these, open flows are
characterized by the escape of fluid particles from the do-
main of interest, and chaoticity is restricted to a subre-
gion from which fluid particles are continuously escaping.
Their behavior is thus very different and we present in

this paper a first study of the specificities of LFN built for
open flows. A full characterization of these goes through
determining escape rate and distribution, constructing
non-attracting chaotic sets and their invariant measures
and dynamical invariants [33]. The objective of this pa-
per is expressing some of these quantities in the language
of networks and illustrate them with a simple model sys-
tem.

The outline of the paper is as follows: in the next sec-
tion we review general open flow properties, then in Sect.
III we discuss them in terms of network measurements.
In Sec. IV we check our results with a simple flow model.
In Sec. V we present our conclusions.

II. CHAOTIC OPEN FLOWS

We summarize here the main properties of open chaotic
flows, stressing differences with closed ones. The La-
grangian description of transport by a flow is character-
ized by the equations of motion of a fluid particle in the
velocity field v

ẋ(t) = v(x(t), t). (1)

By integrating this equation for different initial condi-
tions the flow map Φτt0 is obtained. It gives the position
at time t0 + τ of the fluid particle started at x0 at time
t0:

x(t0 + τ) = Φτt0(x0) . (2)

Evaluation at every initial condition inside a set A defines
the action of the flow map on the fluid region, Φτt0(A).

A distinctive local characteristic of the dynamical sys-
tem (1) or (2) is the Finite Time Lyapunov Exponent
(FTLE). It is defined as [34, 35]

λ(x0, t0; τ) =
1

2|τ |
log |Λmax| (3)

with Λmax the largest eigenvalue of the right Cauchy-
Green strain tensor:

C(x0, t0, τ) =
(
∇Φτt0(x0)

)T ∇Φτt0(x0) . (4)
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∇Φτt0(x0) is the Jacobian matrix of the flow map, and

MT means the transpose of the matrix M . If τ > 0
this is the forward FTLE. If instead trajectories are com-
puted backwards in time (τ < 0), then we obtain the
backwards FTLE field. The Lyapunov exponent charac-
terizes the typical rate of separation, averaged in an in-
terval of time τ , of infinitesimally close initial conditions
located around x0 at time t0. In two-dimensional (2d)
flows there is a second eigenvalue of C(x0, t0, τ), which
defines a second Lyapunov exponent, say λ′(x0, t0; τ),
via a formula similar to Eq. (3). In 2d incompress-
ible flows, the case that will be considered here, we have
λ(x0, t0; τ) = −λ′(x0, t0; τ). The dependence on t0 is
determined by the time dependence of v(x, t). For ex-
ample, if the velocity field is time-periodic of period T ,
v(x, t) = v(x, t + T ), the same holds for the FTLE:
λ(x0, t0; τ) = λ(x0, t0 + T ; τ).

Under standard conditions [3, 34], as τ →∞ the FTLE
approaches a constant value λ, called the Lyapunov ex-
ponent, at almost all points x0 in an ergodic region,
a positive value of this quantity being a common indi-
cator of chaotic behavior. Strong inhomogeneities typ-
ically persist, however, in sets of locations x0 of zero
Lebesgue measure. This dependence on x0, often of fil-
amental aspect, becomes more evident at intermediate τ
and has been used to characterize important transport
structures (Lagrangian coherent structures) [36–38]. In
particular, for properly chosen values of τ > 0, the for-
ward FTLE, λ(x0, t0; τ), tends to take large values for x0

on stable manifolds of strong hyperbolic trajectories or
structures, whereas large values of the backwards FTLE,
λ(x0, t0;−τ), tend to highlight the location of unstable
manifolds [37]. Homoclinic and heteroclinic connections
and tangles are also identified.

An open flow is one in which fluid leaves the domain
of interest, say D (we do not consider here the possibility
of fluid entering the system). The quantity

S(D, t0; τ) ≡ e−τκ(D,t0;τ) ≡
m
(
D ∩ Φ−τt0+τ (D)

)
m(D)

(5)

is the proportion of fluid initialized in D at t0 that re-
mains in D after a time τ . It defines the finite-time es-
cape rate κ(D, t0; τ). In contrast with the FTLE, this is
not a local quantity defined at each point, but depends
on a whole region D. We will think here on m(A) as
the Lebesgue measure – area, volume, etc.– of a set A,
although other measures, such as mass or heat content
of the region, could be considered. A probabilistic inter-
pretation of Eq. (5) is that it gives the probability for
a particle released at t0 at a random position in D to
remain in D after a time τ . The probability density of
escape times τ is then f(τ) = −dS/dτ . If the flow simply
sweeps the fluid out of the region, as for example a sim-
ple constant velocity field would do, no fluid remains in
D after some time and then κ(D, t0; τ → ∞) = ∞. But
an interesting situation happens when κ(D, t0; τ → ∞)
approaches a finite non-zero limit, the asymptotic escape

rate κ, meaning that there is some fluid (in an expo-
nentially decreasing amount) circulating inside D for ar-
bitrarily long times. If for these trajectories λ is suf-
ficiently large compared to κ, fluid elements there are
being stretched into thin filaments which elongate faster
than they can leave the system, so that they pile up in
a fractal manner. This reveals the existence inside D
of the so-called chaotic saddle, which is a non-attracting
zero-measure fractal chaotic set traced by fluid elements
that never leave the system [3, 33]. This object has sta-
ble and unstable manifolds, which intersect at the saddle
itself. In 2d flows, the dimension of the saddle is given
by Dsaddle = 2(D0 − 1), where D0 is the dimension of
the stable and unstable manifolds (they have the same
dimension in incompressible flows), given by D0 ≈ 2− κ

λ
where λ is the positive average Lyapunov exponent of the
system in the mixing region. Typical trajectories close
to the stable manifold approach and spend a long time
close to the saddle, undergoing transient chaotic behav-
ior, to leave the system along the unstable manifold after
some time. The trajectories starting rightly at the stable
manifold approach the saddle and move there chaotically,
without never escaping [3, 33].

III. THE NETWORK APPROACH

The network representation of fluid flow [19, 22] uses
the set-oriented approach to transport [24–26, 28], and
requires the discretization of the fluid domain D in small
boxes, {Bi, i = 1, 2, ..., N}, which are identified with
network nodes. Then, a directed link with a weight
P(t0, τ)ij , the proportion of the fluid started in Bi which
is found in Bj after a time τ , is assigned to each pair of
nodes i, j:

P(t0, τ)ij =
m
(
Bi ∩ Φ−τt0+τ (Bj)

)
m(Bi)

. (6)

P(t0, τ)ij is called the transfer or transport matrix, and
is a discrete approximation to the Perron-Frobenius op-
erator of the flow. P(t0, τ)ij can be interpreted as the
probability for a particle to reach the box Bj , under the
condition that it started from a uniformly random posi-
tion within box Bi. In the network approach, P(t0, τ) is
the adjacency matrix of a weighted and directed network.

Numerical estimation of P(t0, τ) can be done by re-
leasing a large number ni of particles randomly placed
in box Bi, computing their trajectories for a time τ , and
counting the number of particles arriving to each Bj

P(t0, τ)ij ≈
# of particles from box i to box j

ni
. (7)

Note that this strategy immediately gives also the stan-
dard way to compute S(D, t0; τ) in Eq. (5): simply
count the fraction of the number of initially released par-
ticles which still remain in D after a time τ . A standard
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network-theory quantity, the out-strength of node i:

SO(i) ≡
N∑
j=1

P(t0, τ)ij ≡ e−κi(t0,τ)τ (8)

gives the fraction of particles started in i still in the sys-
tem, and defines a local finite-time escape rate κi(t0; τ) of
box Bi (we have not written explicitly the t0 and τ depen-
dence on SO(i)). The global escape fraction (that defines
the global escape rate κ) is a kind of weighted average
of the SO(i)’s: S(D, t0; τ) =

∑
im(Bi)SO(i)/m(D). In

closed flows, SO(i) = 1 ∀i, and the matrix P(t0, τ) is
row-stochastic, but for open flows SO(i) < 1. One can
define an alternative transfer matrix Q(t0, τ):

Q(t0, τ)ij ≡


P(t0, τ)ij
SO(i)

if SO(i) 6= 0 ,

0 if SO(i) = 0 .

This matrix is now row-stochastic, i.e.
∑N
j=1 Q(t0, τ)ij =

1. It represents the probability of reaching Bj condi-
tioned to starting in Bi and to still remaining in the sys-
tem. Because of its restriction to the non-escaped fluid,
it represents effectively a closed-flow network.

There is still another matrix which is used in the net-
work description of fluid transport, the binary version of
P:

A(t0, τ)ij =

{
1 if P(t0, τ)ij > 0 and i 6= j ,

0 if P(t0, τ)ij = 0 or i = j .

Note that the same matrix results if using Q instead of
P. Taken as an adjacency matrix, A defines a directed
unweighted network in which the weight information in
P is neglected. The out-degree of node i, i.e. the number
of nodes receiving fluid from i can be computed as

KO(i) ≡
N∑
j=1

A(t0, τ)ij . (9)

Again we have not made explicit the dependence on t0
and τ . The corresponding in-strength and in-degree can
also be defined:

SI(i) =

N∑
j=1

Pji , (10)

KI(i) =

N∑
j=1

Aji . (11)

The paper [19] introduced a family of network en-
tropies Hq

i (t0, τ), q = 0, 1, 2, ... relating the matrix P to
the statistics of FTLE in finite boxes for the closed-flow
case. The row-stochastic matrix Q can be interpreted
formally as a transfer matrix defining a closed-flow net-
work. Then the definition and properties of the entropies
in [19] can be taken directly by using Q instead of the

complete open-flow transfer matrix P. In particular, in
the case in which all boxes {Bi} have the same measure
(and then transfer matrices are computed numerically by
releasing the same number of particles in each node) and
τ > 0 the members q = 0 and q = 1 of the family are
defined by:

H0
i (t0, τ) ≡ 1

τ
logKO(i) , (12)

H1
i (t0, τ) ≡ −1

τ

N∑
j=1

Q(t0, τ)ij logQ(t0, τ)ij . (13)

H1
i is the finite-time entropy of [39]. Reference [19]

related H0
i and H1

i in the closed flow case to aver-
ages over x0 in the box i of quantities related to the

FTLE, namely eτH
0
i = KO(i) ≈

〈
eτλ(x0,t0,τ)

〉
Bi

and

H1
i ≈ 〈λ(x0, t0, τ)〉Bi

. Here these expressions will be
modified by the escape process, but the heuristics used
in [19] still suggests that KO(i) and H1

i take high values
in boxes i inside which λ(x0, t0; τ) is large, i.e. on the
saddle and on its stable manifold.

For τ < 0 the above quantities should be computed
with the time-reversed velocity field or, equivalently, by
replacing the matrix Q(t0, τ) by the one giving the time-
backwards dynamics [19, 39]:

QB(t0, τ)ij ≡ Q(t0,−τ)ij =
Q(t0 − τ, τ)ji∑
kQ(t0 − τ, τ)ki

. (14)

Values of H1
i computed with this matrix should be large

in boxes where λ(x0, t0;−τ) is large, i.e. on the saddle
and its unstable manifold. Note also that the out-degree
values computed from QB are related to the in-degree
values computed with Q. As a consequence, we also ex-
pect large values of KI(i) to be associated to the saddle
and its unstable manifold.

Another fundamental set of quantities in network the-
ory are the clustering coefficients. Generally speaking,
the clustering coefficient of a node measures the propor-
tion of closed triangles in the network having that node
as a vertex. [40, 41]. Different clustering coefficients can
be defined depending on the type of network (weighted,
directed, ...) and of the kind of triangles one is inter-
ested in [42, 43]. Of interest here are cyclic triangles. A
cyclic triangle, or 3-cycle motif, is one of the 3-node con-
nected subgraphs useful to characterize the local topol-
ogy of networks [44]. It is a path in the network joining
3 nodes (i, j and k) as i → j → k → i. Given a node i
with in-degree KI(i) out-degree KO(i) and with KB(i) of
these links being bidirectional (KB(i) =

∑
j 6=iAijAji),

a cyclic clustering coefficient Cci is defined as the ratio
of all cyclic triangles involving node i present in the net-
work, divided by all possible cyclic triangles that could
have been constructed with these values of KI(i), KO(i)
and KB(i). It can be computed [43] from the diagonal
elements of the third power of the adjacency matrix A :

Cci =

(
A(t0, τ)3

)
ii

KI(i)KO(i)−KB(i)
. (15)
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Cci takes values in [0, 1]. Since it is constructed from
A which neglects any weight information, the important
point is whether Cci is zero or not at node i. If it is
non-vanishing then there is at least one directed triangle
involving i in the network.

In Ref. [23] it was shown that, under the standard ap-
proximation of Markovian dynamics (i.e. P(t0, τ1+τ2) ≈
P(t0, τ1)P(t0 + τ1, τ2)) [28, 29, 45]), for velocity fields ei-
ther steady or periodic with period T , and for values of
τ multiple of T , Cci is non-zero at nodes containing the
position at time t0 of a periodic trajectory of period 3τ .
In open flows, periodic orbits can only appear on the
non-escaping set, i.e. the saddle. Thus, we expect non-
vanishing values of Cci to identify the saddle location.
Generalized clustering coefficients involving paths with
more that 3-nodes can be considered, but we showed in
[23] that they lead to noisier results.

In summary, our expectation on the properties of the
coarse-grained description of transport given by the La-
grangian Flow Network methodology is that the saddle
and its stable manifold, where forward FTLE’s take large
values, are also identified by nodes with high values of
the out-degree KO(i) and of the forward finite-time en-
tropy H1

i . Analogously, the saddle and its unstable man-
ifold, associated to large values of the backward FTLE,
would be highlighted by high values of the in-degree
KI(i) and of the backwards finite-time entropy. Finally,
non-vanishing clustering coefficient values are to be found
at the saddle. In next Section we check numerically the
validity of these expectations for a particular example of
open flow.

IV. NUMERICAL RESULTS FOR AN
EXAMPLE OPEN FLOW

A. A perturbed jet as an example of open flow

We use a model flow introduced in [46], in a plankton
ecology context, to model an oceanic jet perturbed by a
localized wave-like feature. We use it because it is partic-
ularly simple, but at the same time it has non-ideal fea-
tures such as the very slow velocity in some regions which
makes non-exact some of the hypothesis used. These hy-
potheses are mainly the supposition of hyperbolic behav-
ior, and the assumption that τ is large enough and the
fluid boxes small enough to guarantee that the image
of each box after a time τ is a thin and long filament
[19]. The hypotheses are reasonably fulfilled in the cen-
tral (|y| . l) region of the jet, but they are clearly non
correct in the slow regions outside it. Despite this non-
ideality we see that our expectations on the meaning of
the different network quantifiers are confirmed.

The velocity field v = (vx, vy) is two-dimensional and
incompressible, and is written in terms of a streamfunc-

tion Ψ(x, y, t):

vx =
∂Ψ

∂y

vy = −∂Ψ

∂x
. (16)

with

Ψ = Ψ0 tanh
(y
l

)
+ µ exp

(
−x

2 + y2

2σ2

)
cos (k(y − vt)) .

(17)
The first term is the main jet, of width approximately

l, flowing towards the positive x direction with maximum
velocity Ψ0/l at its center. The wave-like perturbation
(the region of chaoticity), of strength µ, is represented
by the second term. It is localized in a region of size
σ around the point (x, y) = (0, 0), and the wavenumber
and phase velocity (towards the positive y direction) are
k and v, respectively. The complete velocity field is time-
periodic with period T = 2π/kv.

Equations (16) and (17) define a time-periodic Hamil-
tonian dynamical system. This type of system typically
develops chaotic regions when increasing the strength of
the perturbation, µ. But fluid leaves the region D, so
that we have the situation of chaotic scattering: particles
enter D from the left, following essentially straight tra-
jectories, experience transient chaos when reaching the
wave region, and finally they leave the system. For µ
large enough, recirculation gives birth to a chaotic sad-
dle in D. We take l = 1, Ψ0 = 2, σ = 2, µ = 3, k = 1, and
v = 1, giving a flow period T = 2π/kv = 2π. Our domain
of interest will be D = {(x, y) | −9 ≤ x ≤ 9,−5 ≤ y ≤ 5},
from which we monitor the particle escape.

Figure 1 displays the values of the FTLE, for t0 = 0,
τ = 6T , and x0 on a grid of spacing 0.01 × 0.01. The
computation has been done by following all trajecto-
ries for the full interval τ without taking into account
whether they remain inside D or rather they leave the
domain. As expected, despite the information on the es-
cape is not explicitly taken into account, large values of
he FTLE identify filamental structures that reveal the
locations of the stable (top) and unstable (middle) man-
ifolds (compare with Fig. 1b of Ref. [46]). Bottom panel
displays the product of forward and backwards FTLE,
λ(x0, t0; τ)λ(x0, t0;−τ), which takes large values at the
intersection of the two manifolds, and then reveals the
location of the chaotic saddle. We note that, for this
particular flow, determining the saddle and their unsta-
ble and stable manifolds by the standard method [3, 33]
of plotting the locations of the nonescaping particles at
the middle, final, and initial times is rather inaccurate.
The reason is the nearly vanishing velocity field at points
with |y|/l not close to the center of the jet (y = 0), say
|y| & 3. Trajectories started at these points will finally
escape the system, but only after unpractically long in-
tegration times τ . The FTLE computation, however,
clearly distinguishes the saddle and manifold regions be-
cause of their large finite-time stretching effect on the
fluid elements.
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a)

b)

c)

y
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x

FIG. 1: Values of the FTLE at each initial location x0, for
t0 = 0 and τ = 6T . a) Forward integration (i.e. λ(x0, t0, τ));
large values occur at the stable manifold of the chaotic saddle.
b) Backward integration (i.e. λ(x0, t0,−τ); large values occur
at the unstable manifold of the chaotic saddle. c) The product
λ(x0, t0, τ)λ(x0, t0,−τ), which is large on the chaotic saddle.

B. Network construction and analysis

To construct the flow network, we discretize D into
N = 180 × 100 = 18000 boxes of size 0.1 × 0.1. We
release initially (taking t0 = 0) 100 particles inside
each box and compute their final position after a time
τ = 6T = 37.699. By counting the particles interchanged
between each pair of boxes we compute P(t0, τ) and the
associated matrices A(t0) and Q(t0, τ) (and QB(t0, τ)),
from which we calculate the different network-node prop-
erties defined above. Because of the escaping particles,
SO(i) < 1 in most nodes. The exception are many nodes
in |y| & 3 for which, as stated above, the velocities are so
small that particles remain essentially immobile. An esti-
mation of the escape rate excluding this region, and thus

characteristic of the saddle, is κ(D, t0; τ) ≈ 0.03 ± 0.01
so that the residence time is of the order of 33.33, or
approximately 5 T .

Figure 2 shows the degrees KO(i) and KI(i) (left) and
the network entropies H1

i (t0, τ) and H1
i (t0,−τ) (right).

The figures confirm that high values of these quantities
identify the stable and unstable manifolds of the non-
escaping set, as revealed by the Lyapunov fields in Fig.
1.

Figure 3 shows three ways in which the network ap-
proach locates a coarse-grained approximation to the sad-
dle, to be compared with the bottom panel of Fig. 1.
Top panel is the product KO(i)KI(i), and middle panel
is the product H1

i (t0, τ) H1
i (t0,−τ). As expected, these

quantities take large values at the nodes that contain the
large values in Fig. 1c, i.e. nodes containing pieces of the
chaotic saddle. The bottom panel in Fig. 3 shows the
nodes with non-zero values of the cyclic clustering coef-
ficient Cci . They are [23] the nodes containing at time t0
periodic trajectories of period 3τ = 18T , which can only
be present in this open system if embedded in the sad-
dle. Because of the large period 18T involved, and to the
finite width of the node boxes, these nodes cover indeed
most of the chaotic saddle, as seen when comparing to
panels a) and b) of Fig. 3 and to Fig. 1c).

V. CONCLUSIONS

We have presented some numerical results, based on a
simple open flow model, on the description of dynamical
properties of advection by chaotic open flows within the
framework of Lagrangian Flow Networks. The network
approach provides a coarse-grained version of transport,
and we expected that the association of network nodes
with high values of degree and entropy to locations with
high FTLE values, established previously for closed flows,
will remain valid at least qualitatively for open flows.
In particular, nodes with high values of the out-degree
KO(i) and of the forward finite-time entropy H1

i (t0, τ)
will give a coarse-grained identification of the saddle and
its stable manifold, whereas nodes with large in-degree
KI(i) and backward finite-time entropy H1

i (t0,−τ) will
highlight the saddle and its unstable manifold. Non-
vanishing values of the cyclic clustering coefficient are to
be found on periodic orbits embedded on the saddle itself.
We have numerically checked these expectations and then
confirmed that the Lagrangian Flow Network methodol-
ogy is a suitable framework to characterize finite-time
and coarse-grained view of transport even for open flows
with non-ideal characteristics.

As in the case of closed flows, we can not claim here
that the network approach is superior in all aspects to
more specific dynamical system tools. For example,
Lyapunov-exponent techniques for coherent structures
were available [36–38] before its reformulation in terms of
networks [19], specific algorithms to find periodic orbits
in dynamical systems are well developed [47], as well as
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FIG. 2: Network quantifiers at the different nodes, giving a coarse-grained description of the dynamical structures in the flow.
a) Out-degree KO(i). b) In-degree KI(i). c) Forward finite-time entropy H1

i (t0, τ). d) Backward finite-time entropy H1
i (t0,−τ).

The upper panels highlight the stable manifold of the saddle, and the lower ones its unstable manifold.

techniques to deal with open systems [33]. Usually the
network approach requires shorter trajectory integration,
but this advantage is compensated by the need to use
many initial conditions to cover the full domain. What
is interesting in the network approach is that it provides
alternatives to all these sets of techniques within a sin-
gle framework, that the coarse-graining step automati-
cally tests for robustness to noise or diffusion, and that
it allows the use of techniques, such as community detec-
tion or path-finding algorithms [19–21], beyond the scope
of standard dynamical-systems approaches. Future work
will focus on the theoretical justification of our heuris-
tically derived and numerically confirmed relationships,
and in the development of additional network indicators

more specifically designed to describe open flows.
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