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• HFRs and OPFRs were analysed in sedi-
ments and fish in three European river
basins.

• OPFRs were detected in sediment at
concentration higher than HFRs.

• Levels in fish suggest a weak bioaccu-
mulation power of OPFRs.

• Adige and Sava showed the higher
levels of contamination.
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Classic (polybromodiphenyl ethers, PBDEs) and emerging halogenated flame retardants (HFRs) such as
decabromodiphenyl ethane (DBDPE) and halogenated norbornenes, as well as organophosphate flame retar-
dants (OPFRs) were analysed in 52 sediments and 27 fish samples from three European river basins, namely
the Evrotas (Greece), the Adige (Italy) and the Sava (Slovenia, Croatia, Bosnia and Herzegovina and Serbia).
This is the first time that FR levels have been reported in these three European river basins. The highest contam-
inationwas found in the Adige and Sava rivers, whereas lower valueswere obtained for the Evrotas. The levels in
sediment samples ranged between 0.25 and 34.0 ng/g dw, and between 0.31 and 549 ng/g dw, for HFRs and
OPFRs respectively. As regards levels in fish, concentrations ranged between 9.32 and 461 ng/g lw and between
14.4 and 650 ng/g lw, for HFRs and OPFRs, respectively. Thus, whereas OPFR values were higher in sediments,
similar concentrations (in the Evrotas) and even lower concentrations than HFRs (Sava) were found for OPFRs
in thefish samples, indicating the lower bioaccumulation potential of OPFRs. Biota to sediment accumulation fac-
tors (BSAFs) were calculated and higher values were obtained for HFRs compared to those assessed for OPFRs.
. This is
©2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Chemical additives known as flame retardants (FRs) are incorporat-
ed into materials such as polymers to meet fire safety standard. There
are different types of FRs: (i) halogenated FRs (HFRs), with brominated
and chlorinated FRs (BFRs and CFRs, respectively), (ii)
organophosphorus-containing FRs (OPFRs) and (iii) inorganic FRs
(Van der Veen and De Boer, 2012).

HFRs are commonly used due to their low impact on the polymer's
characteristics, thus they are used inmany products such as electronics,
clothes, toys, plastics, etc. However, in most cases they are not fixed in
the polymer by chemical binding, and can therefore freely leak to the
surrounding environment. These compounds are now ubiquitous and
a number of scientific articles have dealt with their occurrence in differ-
ent abiotic and biotic matrices such as sediment (Barón et al., 2014a;
Brandsma et al., 2015; Matsukami et al., 2015; Sühring et al., 2016;
Zhen et al., 2016), air (Newton et al., 2015; Vorkamp et al., 2015; Xu
et al., 2016), soil (Wang et al., 2015a; Li et al., 2016) or fish tissue
(Barón et al., 2014b; Greaves et al., 2016; Matsukami et al., 2016).

For several decades, polybrominated diphenyl ethers (PBDEs) were
extensively used but due to their persistence, bioaccumulation and
biomagnification through food webs, long-range transport and toxicity,
their usewas banned for production anduse in the EuropeanUnion (EU,
European Court of Justice, 2008) and subsequently phased out in the
USA and other countries (US EPA, 2015). Moreover, PBDEs were classed
as persistent organic pollutants (POPs) and included in the list of global
elimination compounds under the Stockholm Convention.

Unfortunately, restriction of commercial BDEmixtures has not led to
an overall reduction in the application of FRs, but rather to a shift to-
wards the use of alternative FRs, including emerging FRs and some ex-
amples are hexabromobenzene (HBB), pentabro-moethylbenzene
(PBEB), decabromodiphenyl ethane (DBDPE) (Covaci et al., 2011) and
halogenated norbornenes (HNs) such as Dechlorane 602 (Dec 602),
Dechlorane 603 (Dec 603), Dechlorane 604 (Dec 604) and Dechlorane
plus (DP) (Sverko et al., 2011), and OPFRs, such as tributyl phosphate
(TBP), triphenyl phosphate (TPhP) and tris-(butoxyethyl)-phosphate
(TBOEP). In 2001, global consumption of OPFRs was 186,000 tons,
while it was 300,000 t in 2004, increasing to 500,000 t in 2011 and
680,000 t in 2015 (Wang et al., 2015b).

As regards HNs, DP is the most common in polymeric systems
such as electrical hard plastic connectors in televisions and computer
monitors, wire coating and furniture (Betts et al., 2006). The com-
mercially available formulation of DP contains two stereoisomers,
syn-DP and anti-DP with an approximate ratio of 1:3. Like BFRs,
dechloranes have been found in abiotic and biological matrices
such as air (Li et al., 2015), sediment (Yu et al., 2015), sewage sludge
(Sverko et al., 2015), fishes (Von Eyken et al., 2016) and humans
(Sahlström et al., 2014).

Another group of alternative FRs is OPFRs (Van der Veen and De
Boer, 2012). OPFRs are already widely used, not only as FRs but also as
plasticizers and antifoaming agents in a wide range of materials, due
to their excellent physicochemical properties and low cost.

To date, limited data on sediment have been reported, mainly in
studies in Austria, Spain and China (Cao et al., 2012; Cristale and
Lacorte, 2013). Limited information is also available on biota samples
(Chen et al., 2012; Brandsma et al., 2015; Malarvannan et al., 2015;
Greaves et al., 2016).

The aim of this work is thus to provide, for the first time, a survey of
FR contamination in sediment and biota samples from three European
river basins: a continental river (the Sava, which flows through
Slovenia, Croatia, Bosnia and herzegovina and Serbia), a Mediterranean
river (the Evrotas, in Greece) and an Alpine river basin (the Adige, in
Italy). Finally, biota to sediment accumulation factors (BSAFs) will be
evaluated for the different HFRs and OPFRs included in our work,
allowing us to compare the environmental behaviour of both FR
families.
2. Sampling

2.1. River basin description

Three European river basins were selected for our study: the Adige
(Italy), the Evrotas (Greece), and the Sava (Slovenia, Croatia, Bosnia
and Herzegovina and Serbia) (Fig. 1). The principal characteristics
(length, drainage basin area, land coverage) of the selected river basins
are provided in Table 1.

The Sava, Evrotas and Adige river basins encompass a rich set of
socio-ecological conditions (agricultural areas and industrial clusters,
forested mountainous areas, etc.), and cover a wide geographical area,
but they are all affected by water scarcity, due either to climatic or soci-
etal reasons. In addition, they are affected by significant environmental
pressures. For the River Adige the principal stressors are widespread
pollution from agriculture, hydropeaking effects and the release of pol-
lutants accumulated in glaciers.

The dominant pressures for the River Evrotas derivemainly from ag-
ricultural activities and include overexploitation of water resources for
irrigation, disposal of agro/industrial waste, agrochemical pollution
and hydromorphological modifications.

In the River Sava, the upper reaches are largely influenced by
hydromorphological pressures, and central stretches by agricultural ac-
tivities and biological processes related to eutrophication, while the
lower reaches are influenced mostly by stressors related to high pollu-
tion from industrial processing, along with untreated municipal waste
water discharge.

2.2. Sampling and pre-treatment

Two different sampling campaigns were conducted at each river
basin. Different sampling points were selected, and sediment and
biota samples were collected (Fig. 1, Table 2). Details regarding the
main sampling site characteristics for each river basin are provided in
Supporting Information (Table S1).

In the case of the Evrotas river basin, sampling campaignswere con-
ducted in June 2014 and July 2015, corresponding to two different flow
conditions, as both precipitation and discharge were higher in 2015.
Four sampling reaches were selected: two reference sites (Uskol and
Vivari), one drought impacted reach (Dskol) and one pollution impact-
ed reach (WWTP). During 2015, 10 Evrotas chub (Squalius keadicus)
with a sample size of 350–400 g were collected in each Evrotas reach
for analysis. In the case of theAdige, sampling campaignswere conduct-
ed in February and July 2015, reflecting two extreme situations for the
river basin: the winter season, characterised by heavy tourisms and
low stream flow, contrasted with the summer period with lower,
though appreciable numbers of tourists and high stream flow. Twelve
locations pertaining to seven water bodies were selected in order to in-
vestigate the effects of different stressors. Fish samples were collected
along seven reaches, from riverine brown trout (Salmo trutta fario) or
marble trout (Salmo marmoratus), bullhead (Cottus gobio), grayling
(Thymallus thymallus) and chub (Squalius cephalus), as representatives
of predator, benthivorous and omnivorous specimens, respectively
(Kračun-Kolarević et al., 2016). At each sites 6 to 8 marble trout
(250 g) and 1 bullhead, grayling and chub (1 kg) were collected. Finally,
sampling at the Sava river was conducted in September 2014 and Sep-
tember 2015, at 11 sampling sites. Fish tissue samples were collected
along 10 reaches from rainbow trout (Oncorhynchus mykiss), chub
(Squalius cephalus) and common barbel (Barbus barbus). At each reach
4 to 5 individuals weighing 200–300 g were collected.

According to theprotocol at each reach, sedimentwas collected from
the river banks, using grab sampling with a stainless steel spade from
the top 10 cm layer. At each site, approximately 1–2 kg of sediment
was taken, wet sieved first through a coarse 2 mm sieve and afterwards
through a 63 μm sieve. Samples were subsequently stored in high-
density polyethylene (HDPE) Ø 88 one litre bottles. Sediment samples



Fig. 1. Sampling locations at each river basin: (1) Adige (Italy); (2) Evrotas (Greece); and (3) Sava (Slovenia, Croatia, Bosnia and Herzegovina and Serbia).
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were kept at 4 °C prior to shipment to the laboratory. Once in the labo-
ratory, sediment and fish samples were lyophilised, ground and
homogenised, and stored in sealed containers at−20 °C until analysis.
Muscle portion was analysed and one fish sample was processed for
each sites.
3. Materials and methods

3.1. Standards and reagents

HBB, PBEB and DBDPE were purchased from Wellington Laborato-
ries Inc. (Guelph, ON, Canada). Native and 13C-labeled standards mix-
tures of PBDEs (BDE-28, BDE-47, BDE-99, BDE-100, BDE-153, BDE-154,
BDE-183 and BDE-209), syn- and anti-DP isomers and 13C-syn-DP
were obtained from Cambridge Isotope Laboratories Inc. (Andover,
MA, USA). Dec 602 (95%), Dec 603 (98%) and Dec 604 (98%) were
purchased from Toronto Research Chemical Inc. (Toronto, ON,
Canada). OPFR standards, including Tris(2-butoxyethyl)phosphate
(TBOEP), tris(chloroethyl)-phosphate (TCEP), tris(chloroisopropyl)-
phosphate (TClPP), trihexyl phosphate (THP) and tris(2-ethylhexyl)
phosphate (TEHP), were purchased from Santa Cruz Biotechnology
Table 1
Principal river basin characteristics.

River basin Length Drainage basin area Land coverage

Adige 410 km 12,000 km2 Forest (56%)
Grassland and sparse vegetation
(both around 17%) Agriculture (12%)

Evrotas 82 km 2418 km2 Semi-natural areas 61%
Agricultural areas 38%
Urban areas account for 1%.

Sava 945 km 97,713 km2 Forest and semi-natural areas (55%)
Agricultural surfaces (42%)
(Santa Cruz, CA, USA). Isodecyldiphenyl phosphate (IDPP) and
2-ethylhexyldiphenyl phosphate (EHDP) were purchased from
AccuStandard (New Haven, CT, USA). Diphenyl cresylphosphate
(DCP), tributyl phosphate (TBP), TPHP, triphenylphosphine oxide
(TPPO) and tris(1,3-dichloro-2-propyl)phosphate (TDCPP) were pur-
chased from Sigma-Aldrich (St. Louis, MO, USA). Tri-cresyl phosphate
(TMCP) was purchased from Dr. Ehrenstorfer (Augsburg, Germany).
Isopropyl phenyl phosphate (IPPP) was purchased from Chiron
(Trondheim, Norway). d15-TDCPP, d27-TBP, d12-TCEP and 13C2-TBOEP
were purchased from Wellington Laboratories Inc. (Guelph, ON,
Canada). d15-TPHP was obtained from Cambridge Isotope Laboratories
Inc. (Andover, MA, USA).

Al-N cartridges were provided by Biotage (Uppsala, Sweden). Alu-
mina (0.063–0.2 mm) and copper (b63 μm) were obtained from
Merck (Darmstadt, Germany). Acetone, dichloromethane (DCM), hex-
ane, methanol, toluene, water and sulphuric acid were purchased
from Merck (Darmstadt, Germany).
3.2. Sample preparation

FR analysis was carried out using previously optimised analytical
methods (Barón et al., 2012, 2014b; Giulivo et al., 2016).

For HFRs, sediment and biota samples were extracted using a
pressurised liquid extraction (PLE) method. Lyophilised samples (1.0
and 1.5 g dry weight (dw)) of sediment and fish respectively were
spiked with 13C-PBDEs mixture and 13C-syn-DP. Spiked samples were
kept in the fridge overnight to equilibrate. In the case of sediment,
spiked sampleswere groundwith alumina and copper (1:2:2) and load-
ed into a 22 mL extraction cell previously loaded with 8 g of alumina.
Dead volumewas filled with hydromatrix. The extraction cell was filled
with a hexane:DCM mixture (1:1) until the pressure reached 1500 psi
(1 psi = 6894.76 Pa), and heated to 100 °C. After an oven heat-up
time of 5 min under these conditions, two static extractions of 10 min



Table 2
Sediment and biota samples collected from the Evrotas, Adige and Sava river basins.

River basin Sampling campaign Sediment samples Biota samples

Evrotas (Greece) June 2014 n = 8 –
July 2015 n = 4 n = 4

Menida (Squalius keadicus)
Adige (Italy) February 2015 n = 12 –

July 2015 n = 8 n = 13
Riverine brown trout (Salmo trutta fario)
Marble trout (Salmo marmoratus)
Grayling (Thymallus thymallus)
Bullhead (Cottus gobio)
Chub (Squalius cephalus)

Sava (Slovenia, Croatia, Bosnia
and Herzegovina and Serbia)

September 2014 n = 11 –
September 2015 n = 9 n = 10

Rainbow trout (Oncorhynchus mykiss)
Chub (Squalius cephalus)
Common barbel (Barbus barbus)
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at constant pressure and temperature were developed. After this static
period, fresh solvent was introduced to flush the lines and cell, and
the extract was collected in the vial. The flush volume amounted to
100% of the extraction cell. The extractionwas cycled twice. The volume
of the resulting extract was about 35mL. Extracts were concentrated to
incipient dryness and re-dissolved with toluene for a final volume of
40 μL.

As regards fish, spiked sampleswere loaded into an 11mL extraction
cell. Dead volume was filled with hydromatrix and PLE was carried out
using the same conditions as for sediment samples. Extracts were con-
centrated to dryness, kept in the oven at 95 °C for 2 h and lipid content
was determined gravimetrically. Then the extracts were treated with
sulphuric acid in order to remove lipids. After acid treatment, the organ-
ic phase was cleaned through solid phase extraction (SPE) using Al-N
cartridges (5 g) conditioned with hexane and eluted with hexane:DCM
(1:2). Extracts were concentrated to incipient dryness and re-dissolved
with toluene for a final volume of 40 μL. Finally, both sediment and fish
extracts were analysed using gas chromatography, coupled to tandem
mass spectrometry (GC–MS-MS).

For OPFRs, sediment was extracted using PLE: one gram dw was
loaded into a 22 mL extraction cell previously filled with copper and
hydromatrix, and extracted with hexane:acetone (1:1) at 1500 psi
and 100 °C. Extracts were concentrated to incipient dryness and re-
dissolved with methanol for a final volume of 500 μL. Ultrasound was
chosen for fish samples, mainly because it offers a mild extraction
allowing a smaller amount of interfering compounds. 0.5 g dw was ex-
tracted with 15 mL of hexane:acetone (1:1). The extract was
reconstituted in 5 mL of hexane:methanol (1:3). The solution was cen-
trifuged and 200 μL were collected for instrumental analysis. Prior to
analysis using turbulent flow chromatography-liquid chromatography
(TFC-LC) coupled to MS-MS, labeled compounds, TCEP-d12, TDCPP-d15,
TBP-d27, TPHP-d15 and 13C2-TBOEP, were added as internal standards.

3.3. Instrumental analysis

Instrumental analysis of HFRswas carried outwith GC–MS-MS using
an Agilent Technologies 7890AGC system coupled to 7000A GC/MS Tri-
pleQuadrupole. Chromatographic separationwas carried outwith aDB-
5ms column (15m×0.25mm×0.1 μmfilm thickness). For PBDEs,HBB,
PBEB and DBDPE, GC–MS-MS using electron ionisation (EI) was applied
(Barón et al., 2014b), whereas HNs were analysed with GC–MS-MS
using negative chemical ionisation (NCI) (Barón et al., 2012). Due to
low sensitivity to decabrominated analytes using GC-EI-MS-MS, BDE-
209 andDBDPEwere determinedwithGC-NCI-MS (Eljarrat et al., 2004).

For OPFR analyses, online sample purification and analysis was per-
formedwith a Thermo Scientific TurboFlow™ system consisting of a tri-
ple quadrupole (QqQ) MS with a heated-electrospray ionisation source
(H-ESI), two LC quaternary pumps and three LC columns, two for
purification and one for separation. The TurboFlow™ purification col-
umns employed were: Cyclone™-P (0.5x50mm) and C18-XL
(0.5 × 50mm). Chromatographic separationwas subsequently achieved
using an analytical column: Purosphere Star RP-18 (125mm× 0.2mm)
with a particle size of 5 μm (Giulivo et al., 2016).

Selective reaction monitoring (SRM) mode was used for all com-
pounds with two transitions monitored for each analyte. The most in-
tense transition was used for quantification, while the second
provided confirmation.

3.4. Quality control

Instrumental parameters such as recoveries, method limits of detec-
tion (mLODs) and method limits of quantification (mLOQ) are
summarised in Supplementary information (Table S2). Recoveries
ranged between 48–114% and 49–99% for sediment and fish samples,
respectively, always being within the range of acceptability (40–120%)
for analytical methods based on quantification by isotopic dilution. For
sediment samples, mLODs and mLOQs ranged from 0.0001 to 1.65 and
from 0.0003 to 5.49 ng/g dw, respectively. As regards fish samples,
mLODs and mLOQs ranged from 0.002 to 19.3 and from 0.008 to
24.8 ng/g dw, respectively.

3.5. Data analysis

One way analysis of variance (ANOVA) and two-sample t-tests were
carried out, using the EXCEL program, to determine significant differ-
ences (p ≤ 0.05) between the three river basins selected.

4. Results and discussion

4.1. Sediment samples

Table 4 summarises the results obtained in the three river basins, in-
dicating the detection frequency and concentration ranges as well as
mean values (for individual sample results see Supporting Information,
Tables S3, S4 and S5).

4.1.1. HFRs
HFRs were detected in all sediment samples, with the exception of

one sample (River Evrotas). ΣHFR levels (ΣPBDEs + ΣEmerging
BFRs + ΣHNs) ranged from nd to 6.82, 0.26 to 11.9 and 0.25 to
34.0 ng/g dw for the Evrotas, Adige and Sava respectively.

One-way ANOVA test was applied and statistical differences were
observed between the three case studies. Student's t-test showed signif-
icant statistical differences for the Sava basin in relation to the Adige
(t = 2.06, d.f = 23, p b 0.05) and Evrotas river basins (t = 2.07, d.f =
22, p b 0.05), while insignificant differences were observed between
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the Adige and Evrotas river basins (t=2.04, d.f = 29, p N 0.05). Indeed,
significantly higher HFR levels were found in the Sava river basin com-
pared with the Adige and Evrotas basins (p b 0.05). This trend is princi-
pally correlated to the dominant pressures for the river basins. The Sava
is indeed mostly influenced by high pollution from industrial pro-
cessing, while the principal stressors for the Evrotas and Adige are
agricultural activities. The reason also lies in the dense population
of the Sava river basin 8.2 million inhabitants. Moreover, the t-test
suggests that HFR levels did not change significantly in the first
and the second sampling campaign (t-test, p N 0.05) for the Evrotas
and Adige rivers, whereas for the River Sava significant differences
were observed between the two sampling campaigns (p ≤ 0.05).
Significantly higher values were observed for the sampling cam-
paign undertaken in 2014.

It iswell known that the properties of sediment, such as total organic
content (TOC), can influence the concentration levels of organic pollut-
ants. Nevertheless, the range of TOC values for the River Evrotas (be-
tween 2.08% and 7.18%) was similar to that obtained for the other two
river basins (between 1.08% and 7.37%). Thus, the reason for the lower
contamination levels in the Evrotas is probably more related to the dif-
ferent activities in the basin.

PBDEs contributed between 58–100% (mean value of 93%), 25–100%
(mean value of 77%) and 3–100% (mean value of 68%) of total HFR con-
tamination in the Evrotas, Adige and Sava respectively. PBDEs were de-
tected in all sediment samples, with the exception of one sample (River
Evrotas). Total PBDE levels ranged fromnd to 4.52, 0.26 to10.8 and nd to
14.0 ng/g dw in the Evrotas, Adige and Sava respectively. Statistical dif-
ferences in PBDE concentrations in the three river basinswere observed.
PBDEs behaviour followed the same trend as for HFRs, with significant
differences for the Sava basin in relation to the Adige (t = 2.00, d.f =
28, p b 0.05) and Evrotas river basins (t=2.03, d.f= 22, p b 0.05). How-
ever, no significant differences were observed between the Adige and
Evrotas river basins (t = 2.04, d.f = 28, p N 0.05). Again, no significant
differences between the first and the second sampling campaign
(p N 0.05 in all case studies) were found. Significantly lower PBDE con-
tribution was found in samples collected along the Sava river basin, in
which a high DBDPE contributionwas found. Five different PBDE conge-
ners were detected, i.e. BDE-28 (in only one sediment sample), BDE-47,
BDE-99, BDE-100 and BDE-209. These results indicate the use of Penta-
andDeca-BDE commercialmixtures in the three study areas. Penta- and
Deca-BDE are mainly used in mattresses, plastics such as high impact
polystyrene, electronic equipment, electrical cable coatings, the con-
struction sector, textiles and furniture. BDE-209was themost abundant
compound in sediment from the Adige and Sava rivers. In the River
Adige BDE-209 contributed between 36–100% with a mean value of
46%, while in the River Sava, the contribution was between 12–100%,
with a mean value of 41% of total PBDE burden. Their contribution
was lower in the case of the River Evrotas, and was not detected or
below mLOQ in 67% of sediment samples, indicating less use of the
Deca-BDE commercial mixture in this area.

BDE-209 mostly dominates the BDE congener profile in freshwater
sediments all around the world, reflecting the fact that use of the
Deca-BDE technical formulation accounts for 75% of overall BDE con-
sumption (Martellini et al., 2016). BDE-209 was found to dominate in
Taiwan, Korea, Indonesia and Spain freshwater sediments (Hong et al.,
2010; Ilyas et al., 2011; Jiang et al., 2011; Lee et al., 2012; Moon et al.,
2007; Barón et al., 2014a). A study of LakeMaggiore in Italy also showed
high abundance of BDE-209 in the BDE congener profile (Mariani et al.,
2008).

In the Evrotas samples, BDE-47was themost abundant PBDE conge-
ner, contributing between 17% and 100% (mean value of 37%) of the
total PBDE burden.

As regards emerging BFRs, HBB, PBEB and DBDPE were not detected
in any samples collected at the Evrotas and Adige rivers. DBDPE, intro-
duced as a replacement for the Deca-BDE mixture, was detected only
in the Sava river basin at concentration levels between nd to 20.8 ng/g
dw. In the case of samples in which both BDE-209 and DBDPE were de-
tected, the levels of the latter were higher (with RBDE/DBDPE values be-
tween 0.45 and 0.63), and only one sample showed a BDE-209
contribution higher than that of DBDPE (RBDE/DBDPE = 2.33).

Frequency detection for HNs was lower than that observed for
PBDEs.HNswere detected in 25%, 40% and 55%of the sediment analysed
from the Evrotas, Adige and Sava river basins, respectively. Total HN
levels ranged from nd to 2.30, nd to3.67 and nd to 2.80 ng/g dw in the
Evrotas, Adige and Sava samples respectively. Dec 602, Dec 603, syn-
DP and anti-DP were detected, both DP isomers being most frequently
detected and at the highest concentration levels. Fanti values (the iso-
meric ratio of anti-DP relative to the total amount of both isomers)
were calculated and compared with those found in commercial mix-
tures (from 0.64 to 0.80) (Xian et al., 2011). As expected, similar Fanti
values were obtained for sediment samples.

The ratio between BFRs (PBDEs+ Emerging BFRs) and HNswas cal-
culated. In most cases, BFR concentrations were higher than those of
HNs, with ratios between 1.36 and 26.9. However, in some samples (es-
pecially in some sediment from the Adige), this ratio was reversed, with
higher values for HNs.

OurHFR valueswere comparedwith those in other publishedworks.
Although a large number of published works have reported PBDE levels
in river sediments, there are limited data on emerging BFR or HNs (Law
et al., 2014; Iqbal et al., 2016). In any case, we focused our comparison
on data published in the last three years (Table 4). As shown, our
PBDE levels were within the concentration ranges obtained in other
European locations (Barón et al., 2014a) and slightly lower than the
levels found in China (Zhang et al., 2015). As regards HNs, our concen-
trations were similar to those obtained in Spanish river basins (Barón
et al., 2014a), and slightly higher than those obtained in samples from
the River Elbe (North Sea) (Sühring et al., 2015, 2016).

4.1.2. OPFRs
OPFRs were detected in all sediment samples. Table 3 summarises

the results obtained in the three river basins, indicating the detection
frequency and concentrations ranges as well as mean values (for indi-
vidual sample results see Supporting Information, Tables S3, S4 and
S5). ΣOPFR levels ranged from 0.31 to 31.0, 11.5 to 549 and 10.5 to
248 ng/g dw for the Evrotas, Adige and Sava respectively. On applying
the ANOVA test, differences concerning OPFR concentrations in sedi-
ment samples in the Evrotas, Adige and Sava river basins were not con-
sidered to be statistically significant, with p-values N 0.05. All the 14
OPFRs included in our analytical methodology were detected in at
least some sediment samples. In sediment collected along the Evrotas
river basin, TPPO was not detected and THP was only detected in
some samples, but below themLOQ. EHDP and TClPPwere themost fre-
quently detected (100%) followed by TPHP and TEHP (92%). Moreover,
EHDP and TCIPP were two of the most abundant OPFRs with values
ranging from 3.80 to 6.39 and nq to 7.62 ng/g dw respectively. IPPP con-
tribution was also higher with concentration levels ranging from nd to
7.09 ng/g dw. In the case of River Adige sediment, all 14 studied
OPFRs were detected in 100% of the sediment samples analysed, with
EHDPbeing themost abundant (between 4.27 to 288ng/g dw) followed
by TCIPP (0.53 to 53.7 ng/g dw) and IPPP (nq to 40.8 ng/g dw). Thus,
similar patternswere observed at both river basins. In sediment collect-
ed along the Sava river basin, TPPO and TPHP were not detected either.
TBOEP, TClPP, TEHP, IPPP and TMCP were the most frequently detected
(100%) followed by DCP and TBP (95%). Moreover, IDPP and IPPP were
two of the most abundant OPFRs with values up to 197 and 49.5 ng/g
dw, respectively.

Our OPFR values were compared to those presented in other pub-
lished studies, but it should be pointed out that limited OPFR data are
currently available (Table 4). As shown, our OPFR levels were within
the concentration ranges detected in sediments from China (between
8.30 and 470 ng/g dw) (Tan et al., 2016) and higher than levels found
in the Western Scheldt estuary (Netherlands) (b0.1–19.6 ng/g dw)



Table 3
Summary of HFR levels obtained in sediment (expressed in ng/g dw) and fish (expressed in ng/g lw) collected from the three European river basins.

Evrotas river basin Adige river basin Sava river basin

Sediment Fish Sediment Fish Sediment Fish

ΣPBDEs % Positive 91.6 100 100 100 100 100
Range nd–4.52 9.32–116 0.26–10.8 18.7–187 nd–16.7 11.9–461
Mean* 1.68 42.4 2.14 94.9 5.6 135

ΣEmerging BFRs % Positive 0 0 0 0 35 10
Range nd nd nd nd nd–20.8 nd–2.94
Mean nd nd nd nd 9.0 2.94

ΣHNs % Positive 25 100 40 100 55 90
Range nd–2.30 nq nd–3.67 nq–19.7 nd–2.80 nd–5.08
Mean 1.60 nq 2.21 7.59 1.20 3.00

ΣHFRs % Positive 91.6 100 100 100 100 100
Range nd–6.82 9.32–116 0.26–11.9 22.3–187 0.25–34.0 11.9–461
Mean 2.11 42.4 3.02 99.7 9.2 136

ƩOPFRs % Positive 100 100 100 100 100 100
Range 0.31–31.0 34.1–55.5 11.5–549 50.6–650 10.5–248 14.4–196
Mean 10.4 40.1 82.6 286 50.1 84

nd: not detected (below mLODs).
nq: not quantifiable (below mLOQs).
Mean*: values obtained taking into account only positive results.
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(Brandsma et al., 2015) and in Bui Dau (Vietnam) (nq–4.5 ng/g dw)
(Matsukami et al., 2015).

While much research work has been conducted on HFR pollution in
river basins, it is also very important to know the degree of contamina-
tion by another group of FRs, OPFRs, which are also widely used and
applied. This is why it is important to analyse and compare the concen-
tration levels of both groups (HFRs and OPFRs) in the same series of
samples. Concentration levels of OPFRs in sediment samples were
higher than those of HFRs in the all river basins studied.

Similar findings were observed by Brandsma et al. (2015) in their
study on the Western Scheldt estuary (The Netherlands). In the abiotic
compartments (sediment and suspended particular matter) they found
that OPFR concentrations were often higher than those of PBDEs.
Table 4
HFR (PBDE and HN) and OPFR concentrations found in sediment (ng/g dw) and biota (ng/g lw

Site Location ΣPBDEs

Sediment
Spain Ebro river basin nd–37.3
Spain Llobregat river basin 1.50–44.3
South Africa Gauteng rivers 0.8–4
Netherlands Western Scheldt estuary 0.01–111
North Sea Elbe river nd–0.04
China Pearl River estuary 17.7–43.5
Vietnam Bui Dau 100–350
North Sea Elbe river nd–0.20
China Pearl river delta
Greece Evrotas river basin nd–4.52
Italy Adige river basin 0.26–10.8
Slovenia Sava river basin nq–16.7

Biota
China Taihu 1.13–97.5
Tanzania Tanzania lakes nd–34
Netherlands Western Scheldt estuary

Belgium Flanders 94c

Italy Po river 94.9–821
China Pearl river 3.88–59.8
Spain Llobregat river basin
China Pearl river delta 6.9–690
Vietnam Bui Dau
Greece Evrotas river basin 9.32–116
Italy Adige river basin 18.6–187
Slovenia Sava river basin 11.9–461

a Concentrations expressed in ng/g wet weight (ww) for benthic fish.
b Concentrations expressed in ng/g ww for pelagic fish.
c Mean values.
4.2. Fish samples

4.2.1. HFRs
HFRswere detected in all fish samples as, is evident in Table 3,which

that summarises the results obtained in the three river basins, indicat-
ing detection frequency, concentration rangesmean values (for individ-
ual sample results see Supporting Information, Tables S6, S7 and S8).
ΣHFR levels (ΣPBDEs + ΣEmerging BFRs + ΣHNs) ranged from 9.32
to 116, 22.3 to 187 and 11.9 to 461 ng/g lw for the Evrotas, Adige and
Sava respectively. Similarly to sediment samples, HFR levels in fish
seem to be higher in the Sava river basin, followed by the Adige and
Evrotas. However, a statistical analysis with this scope cannot be under-
taken, as the fish species in the three rivers are completely different.
) samples around the world.

ΣHNs ΣOPFRs Reference

nq–3.74 Barón et al., 2014a
0.02–3.68 Barón et al., 2014a

Olukunle et al., 2014
b0.1–19.6 Brandsma et al., 2015

nd–0.05 Sühring et al., 2015
Zhang et al., 2015

nq–4.5 Matsukami et al., 2016
nd–0.01 Sühring et al., 2016

8.30–470 Tan et al., 2016
nd–2.30 10.5–248 This study
nd–3.67 11.5–549 This study
nd–2.80 0.31–310 This study

Su et al., 2014
0.09–27 Polder et al., 2014

b0.06–17a Brandsma et al., 2015
b0.06–17b

673c Malarvannan et al., 2015
Viganò et al., 2015

0.18–6.88 Sun et al., 2015
nq–2423 Santín et al., 2016

Sun et al., 2016
b5-300 Matsukami et al., 2016

nd 34.1–55.5 This study
nq–19.7 50.6–650 This study
nq–3.80 14.4–196 This study



788 M. Giulivo et al. / Science of the Total Environment 586 (2017) 782–791
Therefore, comparison of HFR levels in pelagic and benthic fish
groups in the River Adige and the three fish species living in the
River Sava, respectively was undertaken, and no significant differ-
ences were found.

PBDEs contributed between 80% and 100% of total HFR contamina-
tion in fish. PBDEs were detected in all fish samples at levels ranging
9.32 to 116, 18.7 to 187 and from 11.9 to 461 ng/g lw in the Evrotas,
Adige and Sava respectively. On comparing PBDE levels in pelagic and
benthic fish groups in the River Adige and the three fish species living
in the Sava River respectively, no significant differences were found.
Eight different PBDE congeners were detected, BDE-28, BDE-47, BDE-
99, BDE-100, BDE-153, BDE-154, BDE-183 and BDE-209. BDE-47 was
the most abundant compound in fish samples, contributing between
44–90% (mean value of 58%), 10–75% (mean value of 40%) and 48–
82% (mean value of 65%) of total PBDE burden, for the Evrotas, Adige
and Sava respectively. The contribution of BDE-99 and BDE-100 was
also significant, with contributions of up to 54% and 52% respectively.
This PBDE pattern is the same as that presented in previous studies on
biota collected from different locations around the world (Van
Leeuwen and de Boer, 2008; Van Ael et al., 2013; Santín et al., 2013;
Ben Ameur et al., 2011).

BDE-209 was the main contributing PBDE congener in sediments,
but due to their largemolecule size, its bioaccumulation capacity was
lower than that observed for other PBDE congeners with a lower de-
gree of bromination (Eljarrat et al., 2007). As regarding BDE-209
levels, differences between pelagic and benthic fish species were ob-
served, although these differences were not statistically significant
(t = 2.36, d.f = 7, p N 0.05). Slightly higher BDE-209 levels were
found for benthic species, these results being consistent with a re-
cent study (Brandsma et al., 2015). The reason is probably associated
with the living and feeding area of benthic fish, on or near sediment
rich in BDE-209. The lowermetabolic capability of benthic organisms
compared to pelagic ones may also play an important role (Wilson
et al., 2013).

As regards emergingBFRs, PBEB andDBDPE, thesewere not detected
in any fish samples. Only HBB was detected in the Sava river basin at
concentration levels between nd to 2.94 ng/g lw.

Frequency detection for HNs was lower than that observed for
PBDEs. HNs were detected in the Adige and Sava river basins, but
not in the Evrotas. Total HN levels ranged from nq to 19.7 and nq
to 5.08 ng/g lw in the Adige and Sava respectively. Dec 602 and
Dec 604 were detected in the Adige samples, with Dec 602 being
the most frequently detected (54% of analysed samples) at levels
of up to 8.99 ng/g lw. DP was the only HN detected in the Sava sam-
ples. Fanti values ranged from 0.35 to 0.66, with a mean value of
0.56, lower than that found in Sava sediment (mean Fanti values of
0.65) and in commercial mixtures. This could be due to the higher
bioaccumulation capacity of the syn-isomer or because the anti-
isomer can be degraded more easily. Similar findings have been re-
ported in biota samples, such as fish or dolphins (Sverko et al.,
2011; Barón et al., 2015).

The ratio between BFRs (PBDEs+ Emerging BFRs) and HNswas cal-
culated. Similarly to sediment, BFR concentrations were higher than
those of HNs, with ratios ranging between 1 and 155 (mean ratio of
15 and 55 for the Adige and Sava respectively).

OurHFR valueswere also compared to those presented in other pub-
lished studies. Although a large number of those studies have reported
PBDE levels in riverinefish, there are limited data available on emerging
BFRorHNs.Nevertheless,we focused our comparison on data published
in the last three years (Table 4). As is evident in the table, our PBDE
levels were within the concentration ranges obtained in other
European locations (Malarvannan et al., 2015; Viganò et al., 2015) and
China (Su et al., 2014; Sun et al., 2015, 2016), and higher than those ob-
served in Tanzania (Polder et al., 2014). As regards HNs, our concentra-
tions were similar to those obtained in China (Sun et al., 2015) and
Tanzania (Polder et al., 2014).
4.2.2. OPFRs
OPFRs were detected in all fish samples. Table 3 summarises the re-

sults obtained in the three river basins, indicating detection frequency,
concentration ranges and mean values (for individual sample results
see Supporting Information, Tables S6, S7 and S8). ΣOPFR levels ranged
from 34.1 to 55.5, 50.6 to 650 and 14.4 to 196 ng/g lw for the Evrotas,
Adige and Sava respectively. The highest values were found in the
Adige (mean value of 286 ng/g lw), followed by the Sava (mean value
of 84 ng/g lw) and the Evrotas (mean value of 40.1 ng/g lw). No signif-
icant inter-species differences (River Sava fish species) and fish groups
(River Adige) were observed (ANOVA test, p N 0.05).

All 14 OPFRs included in our analytical methodology were detected
in at least some fish samples. In fish collected along the Evrotas river
basin, six OPFRs were detected in all the analysed samples: EHDP,
TBOEP, TCEP, TClPP, TDCPP and IPPP. TBP was the most abundant
OPFR with values of up to 32.5 ng/g lw, followed by TCEP with values
of up to 18.2 ng/g lw and IPPP, with values of up to 7.81 ng/g lw. In
the case of River Adige fish, all the 14 studied OPFRs were detected,
but TBOEP levels were always below the LOQ. The highest values were
for TBP, with a mean concentration of 102 ng/g lw, followed by IDPP
(mean value of 52.5 ng/g lw) and EHDP (mean value of 31.8 ng/g lw).
For fish samples collected along the Sava river basin, IPPP was the
most abundant OPFR with a mean value of 39.5 ng/g lw, followed by
TBP (mean value of 25.7 ng/g lw) and TCEP (mean value of 18.0 ng/g
lw). Thus, different patterns were observed for the three river basins,
but we can conclude that TBP, TCEP and IPPP were among the most
abundant OPFRs in European fish.

Although limited information is available on the occurrence of OPFRs
in biota samples, our OPFR values, when compared with other pub-
lished studies (Table 4) appear to be lower than the values reported in
2016 by Santin et al., in Spanish river basins, with concentration levels
reaching 2423 ng/g lw.Malarvannan et al. (2015) published OPFR levels
in fish samples from Flanders (Belgium) and they too found similar con-
centrations to those we detected in the Adige. Matsukami et al. (2016)
showed levels in biota (b5–300) higher than the values obtained for
the Evrotas and Sava river basins.

Comparison between HFR and OPFR mean values obtained for both
sediment and biota samples in each river basin shows that, in fish sam-
ples, OPFR values were similar to HFR values in the Evrotas, and even
lower than HFR values in the Sava. Only in the Adige did HFR and
OPFR values in sediment and fish show a similar trend. These findings
could indicate higher bioaccumulation power for HFRs as compared to
OPFRs.

4.2.3. Biota to sediment accumulation factors (BSAFs)
BSAFs were calculated based on lipid weight concentrations in fish

compared to the concentrations in sediment normalised to organic car-
bon. Itwas only possible to determineBSAF values for those analytes de-
tected in both sediment and fish matrices. Fig. 2 shows BSAFs for some
PBDEs and OPFRs determined in the Sava (two sampling sites, two fish
species) and Adige (one sampling site, three fish species) river basins.
The same general trends were observed: BSAFs for PBDEs were clearly
higher than those obtained for OPFRs. Furthermore, aswidely described
in the literature, BSAF values for PBDEs decrease as the degree of bromi-
nation increases:we foundBSAFs of around10 for tetra-BDE-47,where-
as BSAF values for penta-BDEs (BDE-99 and BDE-100) decreased to
BSAF values of around 5. Of the different OPFRs tested, DCP, TBP, TCEP
and TMCP seem to have the highest bioaccumulation potential, with
BSAF values always lower than 1.

It should be pointed out that some compounds are usually found in
fish samples, indicating their bioavailability, but no accumulation factor
can be determined because they were not detected in sediment. This is
the case of THP, detected in sediment samples but at levels below the
mLOQ (0.22 ng/g dw), which was found in several fish samples, for in-
stance in 10 out 13 fish collected in the Adige river basin, THP was
found at concentration levels ranging between nd and 39.6 ng/g lw,



Fig. 2. Biota to sediment accumulation factors (BSAFs) for PBDEs and OPFRs in (a) Sava river basin; and (b) Adige river basin.
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with a mean value of 20.3 ng/g lw. Taking into account this mean value
in biota, a BSAF of 4 could be assumed for this OPFR, probably the OPFR
compoundwith the highest bioaccumulation potential. However, future
studies determining BSAFs for OPFRs in different scenarios must be car-
ried out in order to confirm this behaviour.
5. Conclusion

This is the first time that HFRs (including PBDEs, emerging BFRs
and HNs) and OPFRs have been analysed in sediment and biota
samples collected from the Evrotas, Adige and Sava river basins.
HFRs were detected in practically all the samples, with the Sava
basin being the most contaminated, followed by the Adige and
Evrotas river basins. PBDEs were the main contributors to HFR con-
tamination, while emerging BFRs were barely detected. HNs were
also found, but at concentration levels lower than those of PBDEs.
As regards OPFRs, they were also found in all the analysed samples.
In this case, the most polluted basin was the Adige, followed by the
Sava and Evrotas river basins. Different OPFR patterns were ob-
served in each area studied, but TBP, TCEP and IPPP were commonly
the most abundant OPFRs in fish.

This study is one of the few in which these two families of FRs, halo-
genated and organophosphate, have been analysed in the same sam-
ples. This has allowed a comparative study aiming to establish the
main contributors to river contamination by FRs. Whereas OPFR values
were higher in sediment, similar and even lower concentrations than
HFRswere found for OPFRs in fish samples. These findings seem to indi-
cate a higher bioaccumulation power of HFRs versus OPFRs. However,
more studies are required in order to better understand the bioaccumu-
lation processes of OPFRs in biota.
It is also important to remark that the increased demand for OPFRs
following the ban and phase out of PBDEsmay lead to a further increase
of environmental levels and a higher exposure of organisms to OPFRs.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.scitotenv.2017.02.056.
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