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We study the anti-Unruh effect in general stationary scenarios. We find that, for accelerated
trajectories, a particle detector coupled to a Kubo-Martin-Schwinger (KMS) state of a quantum field can
cool down (click less often) as the KMS temperature increases. Remarkably, this is so even when the
detector is switched on adiabatically for infinitely long times. We also show that the anti-Unruh effect is
characteristic of accelerated detectors and cannot appear for inertially moving detectors (e.g., in a
thermal bath).
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I. INTRODUCTION

It has been known since the 1970s that uniformly
accelerating particle detectors in flat spacetime, coupled
to the vacuum state of a scalar field, would detect a thermal
bath of particles [1]. This phenomenon has become known
as the Unruh effect. Despite the lack of direct experimental
confirmation, it is regarded as one of the cornerstones of
our understanding of quantum field theory. The temper-
ature of this thermal bath is proportional to the magnitude
of the proper acceleration of the detector. In fact, accel-
erated detectors carefully switched on and coupled for long
times to the Minkowskian vacuum thermalize [2,3].
However, recent work has shown that accelerated detec-

tors in 1þ 1D spacetimes, in the presence of an infrared
(IR) cutoff and switched on for short times (below the
detector’s Heisenberg time), can actually become cooler
instead of warm up in the sense that their clicking rate
decreases as the Unruh temperature increases [4].
To support this statement, the authors of Ref. [4] use the

excitation-to-deexcitation ratio (EDR) to define a temper-
ature estimator TEDR ¼ −Ω½logðPþ=P−Þ�−1 (where P� is
the excitation or deexcitation probability and Ω is the
detector’s energy gap). They found that TEDR was effec-
tively independent of the detector’s energy gap when the
anti-Unruh effect is present, a behavior usually associated
with stationarity. The results of Ref. [4] raise several very
interesting questions. In particular, is this unintuitive
“cooling” effect just transient behavior? Can it happen
under true stationarity conditions? How general is this
effect, and what is its cause?
In this work, we analyze the ingredients that can lead to

these anti-Unruh phenomena, study their relationship with
the Kubo-Martin-Schwinger (KMS) condition [2,5,6], and
single out general conditions under which it will or will not
take place.

With this aim, we will first study under what conditions
the EDR temperature estimator TEDR is independent of the
detector’s energy gap. We will show that this is actually, to
a very good approximation, the case in a variety of
scenarios for short and long interaction times.
Furthermore, we will characterize the anti-Unruh effect

for general KMS states (as rigorously defined in Ref. [2]) in
terms of two different behaviors. As a first variety of this
effect, we will show that under KMS a detector may indeed
click less often as the KMS temperature increases (weak
anti-Unruh). More strikingly, as a second variety, it may
also happen that the effective EDR temperature is almost
independent of the gap frequency and at the same time
decreases as the KMS temperature increases (strong
anti-Unruh).
These effects appeared in Ref. [4] for accelerated

detectors coupled to a massless scalar field in two scenar-
ios: (a) under a hard-IR momentum cutoff in free 1þ 1D
flat spacetime and (b) for a detector in a periodic cavity
from which the zero mode is removed. In those cases, the
Wightman function is not stationary; thus, strictly speaking,
theWightman function is not KMS. However, we will show
that the results in Ref. [4] are not due to this fact, since the
two modalities of anti-Unruh phenomena mentioned above
are also present in scenarios where the KMS condition is
fully satisfied.
As an example, we analyze in detail the case of a

uniformly accelerated detector coupled to the vacuum of a
massive scalar field in 1þ 1D. We will see that, for small
interaction times, the response function decreases as the
acceleration increases. Moreover, we will also show the
existence of regimes where the effective EDR temperature
decreases as the KMS temperature increases. The non-
monotonicity of TEDR as a function of the KMS temper-
ature disappears for long interaction times or large
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temperatures. Surprisingly, the observation that the tran-
sition probability can decrease as the detector’s acceleration
increases with the detector’s acceleration survives even in
the limit of infinitely long times under KMS. Therefore,
this modality of the anti-Unruh effect cannot be associated
with transient behavior in any way.
Interestingly, we will show that, under the KMS con-

dition and when the trajectory of the detector does not
depend on the KMS temperature (i.e., inertial detectors
interacting with a thermal state of a scalar field), the anti-
Unruh effect cannot appear at all. We will therefore show
that the perception of the anti-Unruh effect is linked to
accelerated observers and it is not present for inertial
observers coupled to generic thermal baths.
In Sec. II, we first summarize the main concepts and

tools concerning Unruh-DeWitt detectors interacting with
scalar fields and the KMS condition that characterize
equilibrium field states. Then we introduce the TEDR
temperature estimator and analyze its behavior for long
interaction times. Section III is devoted to the anti-Unruh
effect and its relation with the KMS condition. We first
define the two modalities of weak and strong anti-Unruh
behaviors and present necessary conditions for their
appearance. Then we present, discuss, and compare differ-
ent general situations with and without the anti-Unruh
effect. We summarize and conclude in Sec. V.

II. UNRUH-DEWITT DETECTORS
AND KMS CONDITION

A. Thermality and the KMS condition

Thermal states in quantum statistical mechanics are
described by the Gibbs distribution. This distribution is
well defined for systems with finite (or countably infinite)
degrees of freedom. However, for systems of continuous
variables, (e.g., quantum fields), the Gibbs distribution is
not well defined [7]. In those cases, it is still possible to
approach the problem considering large—but finite—
systems and then taking the thermodynamic limit.
The Kubo-Martin-Schwinger (KMS) condition [5,6] was

introduced in quantum statistical mechanics as a general
abstract definition of equilibrium states that, for continuous
variable systems, avoids the problems of having to see them
as limiting cases of systems with finitely many degrees of
freedom. As such, it has provided a more natural way to
define equilibrium states in quantum field theory.
Let us consider the evolution of a free scalar quantum

field ϕ̂ðxÞ along a timelike vector ∂τ. If xðτÞ is the curve
generated by ∂τ for some initial condition xð0Þ, the field at
time τ can be written as the pullback ϕ̂ðxðτÞÞ of the field
along the trajectory xðτÞ ¼ ðtðτÞ; xðτÞÞ.
The KMS condition for the field and the evolution

parameter τ can be formulated as follows.
We define the field’s Wightman function Wðτ; τ0Þ in a

given field state represented by ρ̂ as

Wðτ; τ0Þ ≔ hϕ̂ðxðτÞÞϕ̂ðxðτ0ÞÞiρ̂; ð1Þ

where h·iρ̂ represents the expectation value on the state ρ̂.
Then, this field state ρ̂ is said to satisfy the KMS condition
in the time parameter τ with inverse KMS temperature β if
and only if [2]

Wðτ − iβ; τ0Þ ¼ Wðτ0; τÞ: ð2Þ

The KMS condition connects the two-point correlations
in the field with the stationarity of the field state. In fact, it
can be shown [5,6] that the KMS condition (2) implies
stationarity of the Wightman function (i.e., invariance
under translations in τ). In other words, (2) implies that
the Wightman function depends only on the difference
between its two arguments:

Wðτ; τ0Þ ¼ Wðτ − τ0Þ ¼ WðΔτÞ: ð3Þ

Notice that the converse is not true (that is, stationarity is
necessary but not sufficient for KMS). It is easy to prove that
Gibbs states are KMS states. For example, the thermody-
namic limit of aGibbs state of a scalar field defined in a finite
volume satisfies the KMS condition even after taking the
limit where the volume tends to infinity [8,9]. As such, the
KMS condition is a necessary condition for thermodynamic
equilibrium. However, in general, it is not sufficient.
Namely, equilibrium usually requires extra conditions, such
as stability under perturbations. In general, equilibrium
states are passive, and all KMS states are passive [10].
The converse is true only under certain circumstances [11].
Let us now consider situations that lead to stationary

Wightman functions. In these circumstances, the KMS
condition can be formulated as an imaginary periodicity
condition on WðΔτÞ (see [2] for a precise definition):

WðΔτ − iβÞ ¼ Wð−ΔτÞ: ð4Þ

If we Fourier transform this equation, we obtain the
so-called detailed balance condition at inverse KMS
temperature β:

~Wð−ωÞ ¼ eβω ~WðωÞ; ð5Þ

where ~W is the Fourier transform of W:

~WðωÞ ¼
Z

∞

−∞
dτe−iωτWðτÞ: ð6Þ

Finally, the expectation value of the commutator

Cðτ; τ0Þ ¼ h½ϕ̂ðxðτÞÞ; ϕ̂ðxðτ0ÞÞ�iρ̂ ð7Þ

is the imaginary part of the Wightman function. Hence, if
W is stationary, C will also be stationary:
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CðΔτÞ ¼ Cðτ − τ0Þ ¼ 2iImðWðΔτÞÞ: ð8Þ

Note that the (expectation value of the) commutator CðΔτÞ
is independent of the field state ρ̂, despite the fact that that
the Wightman function is not. In terms of Fourier trans-
forms, this equation becomes

~CðωÞ ¼ ~WðωÞ − ~Wð−ωÞ: ð9Þ

This allows us to equivalently write the detailed balance
condition as

~Wðω; βÞ ¼ − ~Cðω; βÞPðω; βÞ; ð10Þ

where Pðω; βÞ is the Planckian distribution at inverse KMS
temperature β:

Pðω; βÞ ¼ 1

eβω − 1
: ð11Þ

Notice that in (10) and from now on, when we write a
Wightman function that satisfies the KMS condition, we
will write explicitly the dependence of ~W and ~C on the
inverse KMS temperature β.

B. Unruh-DeWitt detectors

Particle detectors are localized and controllable quantum
systems that are locally coupled in space and time to
quantum fields. With the introduction of particle detectors
we gain a tool to extract localized spatiotemporal informa-
tion from the fields. Particle detector models in quantum
field theory were pioneered by Unruh and DeWitt [1,12]
and can be found in the literature in several slightly
different (but fundamentally similar) formats, e.g., a field
in a box [1], a two-level system [12], or a harmonic
oscillator (see, e.g., [13–15]).
These models are commonly used in experimental setups

in quantum optics [16] and in superconducting circuits
[17]. For example, the orbital structure of an atom as a first
quantized system can serve as such a detector for the
second quantized electromagnetic field. Indeed, many
common light-matter interaction models are fundamentally
identical in nature to the Unruh-DeWitt (UDW) model [16].
In fact, the UDW model captures the features of the light-
matter interaction in quantum optics for processes that do
not involve an exchange of orbital angular momentum
[18–20].
The UDWmodel consists of a real scalar field ϕ̂ obeying

the Klein-Gordon equation and a two-level system, whose
ground jgi and excited jei states are separated by an energy
gap Ω. Their coupling is described by an interaction
Hamiltonian (in the interaction picture)

HI ¼ λχðτ=σÞμðτÞϕ̂ðxðτÞÞ; ð12Þ

where λ is the coupling strength, χðτ=σÞ is a square
integrable switching function satisfying ∥χ∥2 ¼ 1, σ is
an interaction duration time scale, μðτÞ is the monopole
moment of the detector, and xðτÞ is the spacetime trajectory
of the detector parametrized by its proper time τ. For a
detector initially in the ground state, and the field in an
initial arbitrary state ρ̂, the excitation probability at leading
order in the coupling strength λ turns out to be

Pþ ¼ λ2jhejμð0Þjgij2σF ðΩ; σÞ; ð13Þ

where

F ðΩ; σÞ

¼ 1

σ

Z
∞

−∞
dτ0

Z
∞

−∞
dτχðτ=σÞχðτ0=σÞWðτ − τ0Þe−iΩðτ−τ0Þ

ð14Þ

is the so-called response function of the detector. In terms
of Fourier transforms, this expression can be written as

F ðΩ; σÞ ¼ 1

2π

Z
∞

−∞
dω̄j~χðω̄Þj2 ~WðΩþ ω̄=σÞ; ð15Þ

where ω̄ is a dimensionless integration variable. Recall that
~χ is square integrable. However, for (15) to be well defined
for an arbitrary Wightman function, we need to require
additional conditions on how fast ~χðωÞ decays. For our
purposes, it will be sufficient to assume ~χ decays faster than
a polynomial, which is a fairly mild assumption that covers
the typical cases considered in the literature (e.g., ~χ
corresponding to Gaussian, Lorentzian, or sinc switching
functions χ). Note that the response function does not
depend on the internal structure of the detector.
It is straightforward to check that the decay probability

from the excited to the ground state is

P− ¼ λ2jhejμð0Þjgij2σF ð−Ω; σÞ: ð16Þ

Let us define another quantity of interest. We define the
EDR of the detector RðΩ; σÞ as the ratio between the
excitation and decay probabilities:

RðΩ; σÞ ¼ F ðΩ; σÞ
F ð−Ω; σÞ : ð17Þ

Let us consider first the limit of arbitrarily long inter-
action time σ and compute (15) in this limit. Recall that to
take the limit under the integral sign for each value of Ω,
and for an arbitrary Wightman function, we need to impose
conditions on the decay of ~χðωÞ. Again, for our purposes it
will be sufficient to assume that ~χ decays faster than a
polynomial. The result of taking such a limit is
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F ðΩ; σÞ →
σ→∞

~WðΩÞ: ð18Þ

In this limit, the EDR is

RðΩ; σÞ →
σ→∞

~WðΩÞ
~Wð−ΩÞ : ð19Þ

This means that we have pointwise convergence. However,
it can be shown that the convergence is not uniform [2].
If we further assume that the field state is KMS so that ~W

satisfies the detailed balance condition (5), we recover the
well-known expression for thermalized detectors:

RðΩ; σÞ →
σ→∞

e−βΩ: ð20Þ

C. EDR and interaction time

As the last part of this section, let us analyze how the
equilibrium EDR expression (20) is modified away from
the infinitely long interaction time regime.
In order to understand the thermalization process at finite

times, we would like to study the response of particle
detectors in the regime of long (but finite) interaction times
σ. One possible approach is to try to find a representation of
~W as a power series on ω̄=ðσΩÞ. The main problem is that,
in general, ~WðΩþ ω̄=σÞ is not an analytic function of ω̄,
(e.g., those satisfying the KMS condition). Let us call ω̄c
the convergence radius of the power series expansion of
~WðΩþ ω̄=σÞ centered at ω̄ ¼ 0. We can divide the integral
(15) in two parts: one below and one above ω̄c. Namely, we
define

F inðΩ; σÞ ¼
1

2π

Z
ω̄c

−ω̄c

dω̄j~χðω̄Þj2 ~WðΩþ ω̄=σÞ; ð21Þ

so that the response function (15) can be split in two parts
as

F ðΩ; σÞ ¼ F inðΩ; σÞ þ F outðΩ; σÞ; ð22Þ

where the integration range of F outðΩ; σÞ is jω̄j > ω̄c.
Now, for jω̄j < ω̄c, ~W can be represented by the

following power series:

~W

�
Ωþ ω̄

σ

�
¼

X∞
k¼0

1

k!
dk ~WðΩÞ
dΩk

�
ω̄

σ

�
k
: ð23Þ

If we choose a “fat” switching function such that its
Fourier transform ~χ is compactly supported within the
convergence radius ω̄c of the expansion (23), we have that
F outðΩÞ ¼ 0, so that F ðΩÞ ¼ F inðΩÞ. Then, we can
formally write

F ðΩ; σÞ ¼
X∞
k¼0

~Wð2kÞðΩÞ
ð2kÞ! σ−2k

Z
∞

−∞
dω̄ω̄2kj~χðω̄Þj2: ð24Þ

The remaining integral is just the 2kthmoment of the Fourier
transform of the switching function (squared). Successive
integrations by parts allow us to write it as the square of the
norm of the kth derivative of the switching function ∥χðkÞ∥22,
as can be checked straightforwardly. Then,

F ðΩ; σÞ ¼ ~WðΩÞ þ
X∞
k¼1

∥χðkÞ∥22
~Wð2kÞðΩÞ
ð2kÞ! σ−2k; ð25Þ

where we have singled out the infinite interaction time
contribution.
Notice that we have implicitly assumed above that the

integral of the series is the series of the integral. As we will
discuss below, for the series of the integral to converge we
need to impose extra conditions on the switching function.
In particular, let us consider that the Fourier transform of

the switching function ~χ is compactly supported for −A <
ω̄ < A with A < ω̄c. Recall that χ is a square integrable
switching function of L2 norm unity. This means that ~χ is
bounded. We can bound the 2kth moments of ~χðω̄Þ as
follows:

2A2kþ1 ~Xinf

2kþ 1
≤
Z

A

−A
dω̄ ω̄2kj~χðω̄Þj2 ≤ 2A2kþ1 ~Xsup

2kþ 1
; ð26Þ

where ~Xinf and ~Xsup are, respectively, the infimum and
supremum of j~χðωÞj2 within its compact support.
If χ satisfies the assumptions above, we can see that the

series (24) is convergent if A ≤ 1. In other words, for
switching functions whose Fourier transform is compactly
supported for the interval −1 ≤ ω̄ ≤ 1, the series (24)
and (25) converge to the detector’s response function
provided that ω̄c ≥ 1.
The set of switching functions that satisfy the conditions

above is seriously restricted, although it still contains a
certain generality. Examples of these include general
convolutions of smooth functions with a sinc function.
In the cases where (25) represents the detector’s

response, we can also write the EDR (17) as a series
expansion in order to study the thermalization behavior of
an Unruh-DeWitt detector. The radius of convergence ω̄c of
the power series of the Wightman function depends on its
analytic structure and is specific to each particular case.

1. KMS massless field in 3þ 1 dimensions

Let us consider the case of 3þ 1 dimensions and an
inertial detector coupled to a massless scalar field in a KMS
state with respect to the time parameter τ and inverse KMS
temperature β. For example, this could correspond to the
case of an inertial detector in a thermal background at
temperature T, where β ¼ 1=T and τ is the proper time of
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the inertial detector. Equivalently [9], this could correspond
to the case of the field in vacuum and where τ is the proper
time of an accelerated detector of proper acceleration a and
where β ¼ 2π=a.
In these cases, the Fourier transform of the Wightman

function has the form [9]

~Wðω; βÞ ¼ ω

2πðeβω − 1Þ : ð27Þ

The function ~WðΩþ ω̄=σÞ presents singularities in the
complex ω̄ plane, in particular, when βðΩþ ω̄=σÞ ¼ 2πni
with n ∈ Z. Hence, the radius of convergence of (23)
is ω̄c ¼ σΩ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2π=βΩÞ2

p
.

As discussed above, for the convergence of (25), we need
to demand that ω̄c > 1. This is guaranteed if σΩ > 1; that
is, this series expansion is guaranteed to converge to the
detector’s response function for times above the Heisenberg
time of the detector Ω−1. The series is also valid for times
below the Heisenberg time of the detector provided
that β=σ < 2π.
In summary, for interaction times above the Heisenberg

time of the detector, the response function can be written as

F ðΩ;σ;βÞ ¼ ~WðΩ;βÞþ ∥χ0∥22
2

∂2
Ω
~WðΩ;βÞσ−2þO

�
1

Ω4σ4

�
:

ð28Þ

From the EDR (17), we can now define an effective inverse
EDR temperature as

βEDRðΩ; σ; βÞ ¼ −
log ðRðΩ; σ; βÞÞ

Ω
; ð29Þ

which in the limit σ → ∞ coincides exactly with the inverse
KMS temperature β, as can be seen from (20). Using the
series expansion (28), we can write

βEDRðΩ; σ; βÞ

¼ β þ ∥χ0∥22
2Ω

�
1þ 2

∂Ω ~WðΩ; βÞ
β ~WðΩ; βÞ

��
β

σ

�
2

þO
�

1

Ω4σ4

�
;

ð30Þ

which expanded to next to leading order in βΩ acquires the
form

βEDRðΩ; σ; βÞ

¼ β

�
1 −

∥χ0∥22
12

�
1 −

ðβΩÞ2
60

þOðβ4Ω4Þ
��

β

σ

�
2
�

þO
�

1

Ω4σ4

�
: ð31Þ

From this expression, we see that the dependence with the
detector gap Ω appears only in higher orders. This means
that, to a fairly good approximation, the EDR remains
exponential also for finite times, although with a modified
temperature βEDRðΩ; σ; βÞ that depends nontrivially on the
KMS temperature and on the interaction time but is mostly
independent of the gap frequency.
We will see in the following sections—where we will not

rely on the series expansion (31)—that the same weak
dependence of βEDR on the detector’s gap Ω is present
without restricting the switching function and also in the
short time regimes.

III. THE ANTI-UNRUH EFFECT AND THE
KMS CONDITION

We will now analyze the phenomenology first reported
in Ref. [4] under the name of anti-Unruh phenomena. As
we discussed in the introduction, the surprising result found
in Ref. [4] was that for short times “the transition
probability of an accelerated detector can actually
decrease with acceleration.” Besides finding these results,
the authors of Ref. [4] further discussed that if one were to
define an EDR effective temperature βEDR, as in (29), one
would find that βEDR appears to be almost independent of
the detector gap, a characteristic feature of the scenarios
where the KMS condition is satisfied for detectors inter-
acting for long times [see (20)].
To shed some light on this anti-Unruh effect, let us

introduce the following two definitions.
Weak anti-Unruh.—We define the weak anti-Unruh

regime as the set of values of the detector gapΩ, interaction
times σ, and KMS temperatures TKMS ¼ 1=β for which the
detector’s response function decreases as the KMS temper-
ature increases, i.e.,

∂βF ðΩ; σ; βÞ > 0: ð32Þ
In plain words, the detector detects fewer field excitations
when the temperature increases.
Strong anti-Unruh.—We define the strong anti-Unruh

regime as the set of values of the detector gapΩ, interaction
times σ, and KMS temperatures TKMS ¼ 1=β for which the
effective EDR temperature TEDR—defined in (29)—
decreases as the KMS temperature increases, i.e.,

∂ββEDR < 0: ð33Þ
Notice that the latter definition becomes important if

βEDR, which is defined through the detector’s EDR, does
not depend very strongly on Ω. This was the case in
Ref. [4]. In fact, as we discussed above and as we will see
later in this section, this is very generally the case.
We will see below that it is possible to have weak anti-

Unruh phenomena and yet not observe strong anti-Unruh
phenomena, but is the opposite possible? Let us analyze
more closely the relationship between the two:

THERMALIZATION OF PARTICLE DETECTORS: THE … PHYSICAL REVIEW D 94, 104048 (2016)

104048-5



∂ββEDR < 0⇔
∂βF ðΩ; σ; βÞ
F ðΩ; σ; βÞ >

∂βF ð−Ω; σ; βÞ
F ð−Ω; σ; βÞ : ð34Þ

From this condition we can directly see that strong anti-
Unruh implies weak anti-Unruh, except if the following
two conditions are simultaneously satisfied:

∂βF ð−Ω; σ; βÞ < 0; ∂βF ðΩ; σ; βÞ < 0: ð35Þ

Since ~Cðω; βÞ is an odd function of ω as discussed
above, from (15) and (10) we can see that

∂βF ð�Ω;σ;βÞ

¼ −
1

2π

Z
dω̄j~χðω̄Þj2

�
P
�
�Ω� ω̄

σ
;β

�
∂β

~C

�
Ωþ ω̄

σ
;β

�

þ ~C

�
Ωþ ω̄

σ
;β

�
∂βP

�
�Ω� ω̄

σ
;β

��
: ð36Þ

Since sgnð∂βPðω; βÞÞ ¼ −sgnð∂βPð−ω; βÞÞ, (36) shows
that, if the commutator is independent of the KMS
parameter, then

sgnð∂βF ðΩ; σ; βÞÞ ¼ −sgnð∂βF ð−Ω; σ; βÞÞ; ð37Þ

and (35) cannot be fulfilled. In other words, if the detector
moves along a trajectory that does not depend on the KMS
temperature, the absence of weak anti-Unruh also implies
the absence of strong anti-Unruh.
In view of (15), a necessary condition for the weak anti-

Unruh condition (32) to hold is that the Fourier transform of
the Wightman function ~W has to grow as β increases
somewhere in its domain.
As we discussed above, if the KMS condition is satisfied,

~W is the product (10) of the Planckian distribution and the
Fourier transform of the commutator. Therefore, the
necessary condition for having weak anti-Unruh phenom-
ena when the KMS condition is satisfied can be simply
written as

∂βð ~Cðω; βÞPðω; βÞÞ < 0: ð38Þ

Let us analyze the relationship between the KMS
condition and the presence of anti-Unruh phenomena in
two different scenarios: (a) when the commutator is
independent of the KMS parameter (e.g., inertial detectors
in a thermal background) and (b) when the commutator
depends explicitly on the KMS parameter (e.g., accelerated
detectors coupled to the vacuum of a massive field).

A. ~C does not depend on the KMS parameter

If ~C does not depend on the KMS parameter, we see from
(38) that the necessary condition for weak anti-Unruh
phenomena is

~CðωÞ∂βPðω; βÞ < 0: ð39Þ

From (11), we know that

sgnð∂βPðω; βÞÞ ¼ −sgnðωÞ: ð40Þ

This implies that the necessary condition for weak anti-
Unruh (38) can be simplified in this case as

ω ~CðωÞ > 0: ð41Þ

From (9) we see that ~Cð−ωÞ ¼ − ~CðωÞ, which means that
ω ~CðωÞ is even. On the other hand, since ~W is positive [2],
from (10) we see that sgnð ~CðωÞÞ ¼ −sgnðωÞ. Therefore,
ω ~CðωÞ < 0 for all ω ∈ R, and the condition (41) will never
be satisfied.
This leads to the following general result: For KMS

states with respect to a timelike vector ∂τ generating
trajectories for which the commutator is independent of
the KMS temperature, there is no weak anti-Unruh effect.
In other words, the probability of detector excitation is
monotonically increasing with the KMS temperature. This
is the case of the following examples.

(i) An inertial detector coupled to a thermal state of a
scalar field of mass m ≥ 0 in arbitrary spatial
dimensions, even in the presence of an IR cutoff
Λ. Explicitly, in this case the commutator is

~CðωÞ ¼ −
π

2−d
2 sgnðωÞ

2d−1Γðd=2Þ ðω
2 −m2Þd−22

× Θðjωj −mÞΘðjωj − ΛÞ; ð42Þ

where we recall m is the field mass, d is the number
of spatial dimensions, and Λ is an IR cutoff.
Note that this is also true for a scalar field in a

finite volume imposing Dirichlet or periodic boun-
dary conditions (the latter as long as we do not
neglect the contributions coming from the zero
mode [21]).

(ii) Uniformly accelerated detectors coupled to the
vacuum state of a massless scalar field in d ¼ 1
or d ¼ 3 spatial dimensions. In these cases, it can be
shown [9] that for m ¼ 0, Λ ¼ 0, the commutator is
the same as in the inertial case, thus leading to the
same conclusion. The critical relationship between
an IR cutoff or a field mass and the anti-Unruh
phenomena will be further analyzed below.

Since in these cases the commutator is independent of
the KMS temperature, the fact that there is no weak anti-
Unruh effect implies that there is no strong anti-Unruh
effect either. In other words, the EDR temperature increases
monotonically with the KMS temperature.
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B. ~C depends on the KMS parameter

Although the commutator is independent of the field
state, it may still depend on the KMS temperature through
the trajectory xðτÞ. In this case, it is not straightforward to
derive a general result as in the previous case. Let us
consider some critical examples. If the field state is the
Minkowski vacuum of a scalar field, trajectories with
constant acceleration a ≥ 0 yield Wightman functions that
satisfy the KMS condition with KMS temperature a=ð2πÞ.
For the massive case, however, the commutator depends

explicitly on the acceleration [9]. Indeed, the Wightman
function has a nontrivial dependence on β ¼ 2π=a:

~Wdðω; βÞ ¼
βe−

βω
2

2π2

Z
dd−1k
ð2πÞd−1

����Kiβω
2π

�
β

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p �����
2

;

ð43Þ

which for d ≥ 2 becomes

~Wdðω; βÞ ¼
βe−

βω
2

2d−1π
dþ3
2 Γðd−1

2
Þ

×
Z

djkjjkjd−2
����Kiβω

2π

�
β

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p �����
2

; ð44Þ

while for d ¼ 1 the expression (44) reduces to

~W1ðω; βÞ ¼
βe−

βω
2

2π2

����Kiβω
2π

�
βm
2π

�����
2

: ð45Þ

In these cases the necessary condition (38) for weak anti-
Unruh can be fulfilled. In fact, it is easy to check explicitly
that this condition can actually be satisfied in both the 1þ
1D and 3þ 1D cases. Let us first focus on the 1þ 1D case.
In the massive 1þ 1D case, we can see (along the same

lines as in the massless 1þ 1D case with an IR cutoff
studied in Ref. [4]) that the accelerated detector experiences
the weak anti-Unruh effect: That is, the detector’s response
function can decrease as the KMS temperature TKMS ¼
1=β increases, as illustrated in Fig. 1(a) for a Gaussian
switching χðτ=σÞ ¼ π−1=4e−τ

2=ð2σ2Þ and in Fig. 1(b) for any
square integrable switching χðτ=σÞ in the infinitely adia-
batic limit σ → ∞.
Remarkably, this voids one of the major possible

criticisms that could have been raised against the relevance
of the anti-Unruh phenomena reported in Ref. [4]. Namely,
it could have been argued that in [4] the introduction of a
hard IR cutoff, which, rigorously speaking, yields nonsta-
tionary Wightman functions, was responsible for the
appearance of transients that give rise to the anti-Unruh
effect. However, we see that we do not require a breakdown
of the KMS condition to see the anti-Unruh effect.
Specifically, an accelerated detector coupled to a massive
field vacuum will experience the weak anti-Unruh effect in

spite of the fact that the KMS condition is satisfied in this
case. In other words, we can have a detector that, when
switched on for finite times, can decrease its transition rate
as the KMS temperature increases.
More so, this weak anti-Unruh behavior also shows up

even in the limit of detectors adiabatically switched on for an
infinite amount of time. Indeed, in this limit,we know that the
expression of the response function is particularly simple, as
shown in (18).We show in Fig. 1(b) that theweak anti-Unruh
effect is present in the strict limit σ → ∞, independently of
the particular form of the switching function χ (even
including nonadiabatic switchings for which the transition
rate is well defined). Therefore, the weak anti-Unruh effect
cannot be associated to transient behavior.
The strong anti-Unruh behavior, on the other hand, is

confined to short interaction times and small accelerations
(i.e., KMS temperatures), as shown in Fig. 2. In the figure,

(a)

(b)

FIG. 1. Weak anti-Unruh effect: Derivative of the response
function with respect to the KMS temperature TKMS ¼ 1=β for
1þ 1D, m ¼ 1. The different lines correspond to values of
Ω ¼ 15 (inverted purple triangles), Ω ¼ 10 (red triangles),
Ω ¼ 5 (green rhombi), Ω ¼ 2 (orange squares), and Ω ¼ 0.5
(blue circles). The two plots represent the short and the long time
regimes, namely, (top) σ ¼ 1 with a Gaussian switching
χðτ=σÞ ¼ π−1=4e−τ

2=ð2σ2Þ and (bottom) σ → ∞, independently
of the switching [this can be analytically evaluated through
(18)]. We see that for a broad range of the parameters this
derivative is negative (i.e., the response function decreases as
the KMS temperature increases), even for adiabatic (eternal)
switching.
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we see that, in the regime of small KMS temperatures, the
EDR temperature decreases as the KMS temperature
increases. We also see that, for larger KMS temperatures,
the EDR temperature approaches the KMS temperature, as
it should be from (20). Finally, this figure also shows that
the EDR temperature depends very weakly on the gap
frequency Ω, despite the detector not being in equilibrium
with the field. This behavior is entirely the same as that
found in Ref. [4]. There, a hard-IR cutoff (either removing
the zero mode in a periodic cavity or imposing a cutoff Λ in
the continuum case) causes the Wightman function not to
satisfy the KMS condition, but βEDR as defined in (29)
behaves as a function of acceleration exactly in the same
way described above.
In particular, we have proven that this is a genuine effect

of the acceleration of the detector, even when KMS is
satisfied, and that it would not be seen by an inertial
detector interacting for a finite time scale with a thermal
bath regardless of the number of spacetime dimensions and
the presence of cutoffs.
We have also discussed that in 3þ 1D (for accelerated

detectors and massive fields) the necessary condition for
weak anti-Unruh is satisfied. However, it is not sufficient
and it is still unclear whether the system will exhibit the
anti-Unruh effect.

IV. PARAMETER SPACE DEPENDENCE
OF THE ANTI-UNRUH PHENOMENA

In this section, we analyze in more detail in what region
of the parameter space we can find anti-Unruh phenomena.

One legitimate question that one may ask is whether this
effect may be related with the fact that, even though the
response of a static detector in a thermal bath and the
response of an accelerated detector coupled to the field
vacuum are statistically identical, the two responses come
from fundamentally different physical effects.
In the inertial thermal case, the main contribution to the

detector’s excitation rate for sufficiently long times comes
from rotating-wave contributions (those involving proc-
esses where the detector gets excited by emitting a field
quantum [16]). However, in the Unruh effect, the contri-
bution of the rotating-wave and counterrotating-wave terms
(the detector gets excited by emitting a photon [16]) are
comparable. This is the fundamental difference in the two
processes, and this is ultimately the reason why the two
scenarios are different despite the fact that in both cases the
detectors display a thermal response.
One manifestation of this intrinsic difference is the fact

that the Unruh effect can excite a detector for masses below
the detector’s energy gap, while a thermal bath cannot. The
anti-Unruh effect is another remarkable manifestation of
this difference.
In light of this, the question could be asked whether the

relationship between the detector gap scale and the mass of
the field is what rules the appearance of the anti-Unruh
phenomena.
To answer this question, let us first consider the response

function of an accelerated detector coupled to a massive
field prepared in the vacuum state in the long time limit
(σ → ∞). As we showed in (18), the response function is
given by the Wightman function evaluated at ω ¼ Ω.
Specifically, for the 1þ 1D case the response function is
given by (45) evaluated at ω ¼ Ω.
Let us consider two different asymptotic limits of this

equation: the large mass limit and the small mass limit.
Let us begin with the large mass limit. Using the leading

order of the asymptotic expansion of the Bessel function for
large values of its argument

KiβΩ
2π

�
βm
2π

�
∼

πffiffiffiffiffiffiffi
βm

p e−
βΩ
2π ; ð46Þ

which is valid under the condition�
βΩ
2π

�
2

þ 1

4
≪

βm
2π

; ð47Þ

we get the following response function in the limit
σ → ∞ [9]:

F ðΩ; βÞ ≈ e−βðΩ=2þm=πÞ

4πm
: ð48Þ

The response function (48) is a monotonically increasing
function of the temperature and, thus, does not exhibit any
kind of anti-Unruh phenomena. This allows us to reach to
the conclusion that, in the asymptotic limit of a field mass

(a)

(c) (d)

(b)

FIG. 2. Strong anti-Unruh effect: (a) shows the EDR temper-
ature TKMS ¼ 1=β as a function of the KMS temperature for
1þ 1D, m ¼ 1, σ ¼ 0.04, and Ω ¼ 1. For large KMS temper-
atures, TEDR ≃ TKMS, while for small ones the EDR temperature
actually decreases, as seen in the enlarged (b). (c) displays (for
m ¼ 1, σ ¼ 0.04, and TKMS ¼ 8) the apparent linearity of
Ω=TEDR with Ω and hence the almost independence of the
EDR temperature with Ω. (d) shows [for the same parameters
as (c)] that this dependence is actually present, although it is
extremely weak.
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much larger than the detector gap for a constant KMS
temperature, there cannot be any anti-Unruh phenomena.
On the other hand, as shown in Ref. [9], the asymptotic

behavior of the response function in the limit of a small
mass is given by

F ðΩ; βÞ ∼ 1

ΩðeβΩ − 1Þ
�
1þ cos

�
βΩ
π

log
βm
4π

þ ϕ

�
βΩ
2π

���
;

ð49Þ

with ϕðzÞ ¼ 2ArgΓðizÞ, in the regime where

�
βΩ
2π

�
2

þ 1 ≫
�
βm
2π

�
4

ð50Þ

is satisfied.

In light of (49), we see that the response function in the
limit of small βm, where βΩ is kept constant, is not a
monotonically increasing function of β. In fact, (49)
becomes highly oscillatory as βm goes to zero, and, as
such, its derivative with respect to the KMS temperature
will take negative values. The anti-Unruh phenomena will
appear therefore for sufficiently small βm regardless of the
constant value of β and Ω.
The conclusion that we extract is that, although there

may be some relationship between the anti-Unruh phe-
nomena and the ratio between Ω and m, the existence of
the anti-Unruh effect is independent of the scale ofΩ, since,
for a sufficiently small mass, we can find anti-Unruh
phenomena regardless of the value detector gap. Instead,
the relevant figure of merit ruling the appearance of the
phenomena is the ratio between the field mass and the
acceleration.
We illustrate this in Fig. 3, where we show that the anti-

Unruh phenomena for detectors interacting for long times
(σ → ∞) can exist for a diverse range of parameters. In
particular, it can exist when m is more than an order of
magnitude larger than Ω [Fig. 3(a)] and also when m is
more than an order of magnitude below Ω [Fig. 3(b)]. In
both cases, it can be seen that the anti-Unruh effect ceases
to appear when βm≳ 1.

V. CONCLUSIONS

To shed light on the recently discovered anti-Unruh
phenomena [4], we have analyzed the role of the interaction
time in the thermalization of an Unruh-DeWitt particle
detector. In particular, it is well known that, for infinitely
long interaction times and if the Wightman function
satisfies the KMS condition, the EDR is determined by
the detailed balance condition. We have shown by explic-
itly writing a series expansion of the response function that,
for long but finite interaction times, the EDR depends very
weakly on the detector’s energy gap Ω.
This means that, even when the detector has not reached

equilibrium, the effective EDR temperature (29) can exhibit
an approximate independence of the gap. This independ-
ence has often lead to inappropriately regarding it as a true
temperature associated with some equilibrium state. Despite
being independent of Ω, the EDR temperature is not the
KMS temperature but a nontrivial function of the interaction
time and the KMS temperature itself. The independence of
TEDR on the detector’s gap appears to hold even in the very
short interaction time regimes (where the series expansion
discussed above is not valid). For instance, we have shown
that this is the case for an accelerated detector coupled to the
Minkowski vacuum of a massive scalar field at a sufficiently
low KMS temperature (i.e., acceleration) and sufficiently
small interaction times.
The anti-Unruh effect can be characterized in terms of

the behavior of the response function and the effective EDR
temperature with the KMS temperature TKMS. On the one

(a)

(b)

FIG. 3. Anti-Unruh effect dependence on the mass: For any
switching function shape, in the limit of infinite interaction time
σ → ∞, we show the derivative of the response function with
respect to the KMS temperature TKMS ¼ 1=β for 1þ 1D and for
m ¼ 0.1 (top) and m ¼ 10 (bottom). The different lines corre-
spond again to values of Ω ¼ 15 (inverted purple triangles),
Ω ¼ 10 (red triangles), Ω ¼ 5 (green rhombi), Ω ¼ 2 (orange
squares), and Ω ¼ 0.5 (blue circles). The top figure shows how
for m ≪ TKMS the oscillations of the derivative generate the anti-
Unruh effect in the low temperature zone, whereas the lower
shows that for m ≫ TKMS the anti-Unruh effect disappears. We
see in both figures that the anti-Unruh effect can exist for values
of Ω below and above the mass scale m.
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hand, we have called weak anti-Unruh effect those sit-
uations in which the excitation probability decreases as
TKMS increases (a detector clicks less often as the KMS
temperature of the field increases). On the other hand, we
have called strong anti-Unruh effect situations where the
effective EDR temperature—almost independent of the gap
frequency—decreases as TKMS increases.
We have seen that the weak and strong anti-Unruh effects

do not appear at all under some general conditions, namely,
that theWightman function satisfies theKMSconditionwith
respect to translations along the proper time of a detector
whose trajectory does not depend on the KMS temperature.
In particular, this implies that the anti-Unruh effects (both
weak and strong) are absent for inertial detectors coupled to
massless or massive scalar fields in a KMS state (for
example, a thermal state) with or without a momentum
cutoff and for any spatial dimensions. It is also absent for
accelerated detectors in the Minkowski vacuum of a mass-
less scalar field for one and three spatial dimensions.
The situation is entirely different for an accelerated

detector coupled to the Minkowski vacuum in two different
but related cases; namely, there can be anti-Unruh phe-
nomena for a massive scalar field or when an IR cutoff is in
operation. We showed that in these cases there appear clear
signatures of both weak and strong anti-Unruh behavior in
1þ 1 spacetime dimensions.
For the massive case, for small interaction times, and well

within the regime of validity of perturbation theory, we see
that (i) the response function decreases as the acceleration
(the KMS temperature) increases and (ii) the effective EDR
temperature decreases with the KMS temperature, depends
also on the interaction time, but is almost independent of the
gap frequency. Furthermore, for long interaction times or
large KMS temperatures, the strong anti-Unruh effect
disappears, but, remarkably, the weak version of it is still
at work; i.e., the derivative of the response function with
respect to the KMS temperature is negative. This is true even
in the strict limit of infinitely long adiabatic switching for
any square integrable switching function.
The massless case with an IR momentum cutoff was

studied in Ref. [4] with the same results. It must be stressed
that although in Ref. [4] the Wightman function was not
stationary and hence was not KMS, the anti-Unruh effect
cannot be associated with this fact, because it is also present
in the massive case, which certainly is KMS. This effect
cannot be dismissed as a transient either, since, as we have
discussed, the (weak) anti-Unruh effect (i.e., a detector
“seeing less particles” as the temperature of the medium
increases) is present even for infinitely long times.
Finally, let us note that the fact that the anti-Unruh effect

can be seen by relativistic accelerated observers but not by
inertial observers coupled to a thermal bath is a distinctive
signature of perceived particle creation by accelerated
observers, that can be singled out from the behavior of
detectors coupled to thermal backgrounds.
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APPENDIX: INFRARED CUTOFF
AND THE KMS CONDITION

In this Appendix, we show that the introduction of an IR
cutoff makes it impossible to satisfy the KMS condition.
Let us consider a momentum cutoff Λ. Then, the Wightman
function in the Minkowski vacuum state for any spatial
dimension d has the functional form

WdðyÞ ¼
Z

dkdþ1

ð2πÞdþ1
Θðk0Þδðk2 þm2Þeik·yΘðjkj − ΛÞ;

ðA1Þ

where k · y is the spacetime contraction of the spacetime
vectors k and y. We now perform a spatial rotation to a
frame such that yi ¼ 0 for all i ¼ 2; 3… and a Lorentz
boost along the direction y1 to the rest frame. If k0 is the
momentum in this new frame, the Wightman function
acquires the form

WdðyÞ ¼
Z

dk0dþ1

ð2πÞdþ1
Θðk00Þδðk02 þm2Þ

× e−ik
00sgnðy0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy0Þ2−ðy1Þ2

p
Θðjkðk0; yÞj − ΛÞ; ðA2Þ

where

jkðk0; yÞj2 ¼ ð−y1k00 þ y0k01Þ2
ðy0Þ2 − ðy1Þ2 þ k02 − ðk01Þ2: ðA3Þ

The pullback of the Wightman function along a linear
trajectory with uniform acceleration is obtained by evalu-
ating it at y ¼ Δx ¼ xðτÞ − xðτ0Þ. We see that the integrand
of WdðΔxÞ is invariant under time translations except
perhaps for the factor ð−Δx1k00 þ Δx0k01Þ2 in (A3).
Indeed, sgnðΔx0Þ is obviously invariant under time trans-
lations and so is the proper interval ðΔx0Þ2 − ðΔx1Þ2 ¼
ð4=a2Þsinh2ðaðτ − τ0Þ=2Þ for accelerated trajectories.
Finally, ð−Δx1k00 þ Δx0k01Þ2 is invariant for inertial tra-
jectories but not for not vanishing accelerations: In the
former case both Δx0 and Δx1 are proportional to the time
difference, while in the latter they are nontrivial combina-
tions of hyperbolic functions of the time parameter. Since
the Wightman function is not time-translationally invariant,
the KMS condition cannot be satisfied.
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