
processes

Article

Structural Properties of Dynamic Systems Biology
Models: Identifiability, Reachability,
and Initial Conditions

Alejandro F. Villaverde * and Julio R. Banga

Bioprocess Engineering Group, IIM-CSIC, Vigo 36208, Spain; julio@iim.csic.es
* Correspondence: afvillaverde@iim.csic.es; Tel.: +34 986231930 (ext. 860234)

Academic Editors: Rudiyanto Gunawan and Neda Bagheri
Received: 12 May 2017; Accepted: 31 May 2017; Published: 2 June 2017

Abstract: Dynamic modelling is a powerful tool for studying biological networks. Reachability
(controllability), observability, and structural identifiability are classical system-theoretic properties
of dynamical models. A model is structurally identifiable if the values of its parameters can in
principle be determined from observations of its outputs. If model parameters are considered as
constant state variables, structural identifiability can be studied as a generalization of observability.
Thus, it is possible to assess the identifiability of a nonlinear model by checking the rank of its
augmented observability matrix. When such rank test is performed symbolically, the result is of
general validity for almost all numerical values of the variables. However, for special cases, such as
specific values of the initial conditions, the result of such test can be misleading—that is, a structurally
unidentifiable model may be classified as identifiable. An augmented observability rank test that
specializes the symbolic states to particular numerical values can give hints of the existence of this
problem. Sometimes it is possible to find such problematic values analytically, or via optimization.
This manuscript proposes procedures for performing these tasks and discusses the relation between
loss of identifiability and loss of reachability, using several case studies of biochemical networks.

Keywords: identifiability; controllability; reachability; observability; parameter estimation; nonlinear
systems; differential geometry

1. Introduction

The study of parametric identifiability is a fundamental task of system identification, which can
be approached from structural or practical viewpoints [1–3]. Practical identifiability analysis aims
at characterizing the uncertainty in parameter estimates taking into account the deficiencies in the
data used for model calibration. Structural identifiability is a prerequisite for practical identifiability,
and seeks to establish whether the model parameters can be uniquely determined from observations
of the input-output behaviour of the model—that is, from the model equations only. The concept of
structural identifiability was coined in [4] and initially introduced in the context of linear systems.
It was soon extended to the nonlinear case and many methods were subsequently developed for
its study [3,5,6]. In parallel, the classic dual concepts of observability and controllability were also
extended from linear [7] to nonlinear [8]. The relationships between these properties make it natural
to study structural identifiability with the tools of nonlinear observability [9]. Indeed, it is possible
to check simultaneously the observability and structural identifiability of a model by including
its parameters in the state variables vector, and calculating the rank of the resulting (augmented)
observability matrix. Several computational methods that build on this idea have been presented in
the last decade [10–13].
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However, the results of these methods should be taken with caution. As emphasized by
Denis-Vidal et al. [14], identifiability may depend on the initial conditions. Saccomani et al. [15] noted
that differential algebra methods can incorrectly classify an unidentifiable model as identifiable for
certain initial conditions (a detailed distinction between “structural”, “geometric”, and “algebraic”
identifiability can be found in [16]).

Here we show that the differential geometry approach (which assesses local structural
identifiability by checking the rank of the augmented observability matrix) has in principle the
same limitation as the differential algebra approach with regard to initial conditions. When the
identifiability matrix is computed with the numerical values of certain problematic initial conditions,
its rank decreases with respect to the general case. However, this situation cannot be detected with
symbolic rank calculations. When the system evolves from such initial conditions it may become
impossible—depending on the particular case—to determine some of its parameters, which would
nevertheless be structurally identifiable if the system was started at a different state. In [15] loss of
reachability was identified as the cause of this loss of identifiability. However, other alternative causes
may also exist. To assess this possibility we propose to check if the identifiability rank condition is
satisfied in two ways: for the generic case (symbolically), and in the vicinity of the initial conditions of
interest (by specializing its states to those specific values). By performing the rank test both for generic
and particular state values we obtain a more complete diagnosis. Then, if a certain numerical state
vector leads to an incomplete identifiability rank, it may indicate that some state variables are no longer
reachable from it, which in turn may make the associated parameters unidentifiable. This situation
can be checked by assessing the reachability of the system both for generic and particular states—or,
alternatively, by simulating the model using the state vector as initial condition. This procedure
allows to determine precisely if the parameters are structurally locally identifiable for those values.
An alternative solution could be to check identifiability in a range of parameter and state values,
as proposed by [11], although the computational complexity of such test makes it infeasible for
medium or large-scale systems. Given that, in general, the identifiability condition may be misleading
when evaluated for generic values of the states, an important question is whether it is possible to
determine the specific values that violate this test. For small models it may be possible to find them
analytically by inspection of the system equations. In more complex cases an alternative is to search
for such values via optimization.

The organization of this paper is as follows: in Section 2 we provide a compact presentation of the
necessary background on structural identifiability, observability, and reachability (controllability) of
nonlinear systems, and of the relations between these concepts. When available, necessary and/or
sufficient conditions under which these properties hold are given. This is presented using the
differential geometry formulation. Then in Section 3 we illustrate with six example models several
situations and issues that can appear in relation to loss of structural identifiability, and how this
relates to observability and reachability. We begin in Section 3.1 by remembering the known fact
that reachability is neither necessary nor sufficient for identifiability. Then in Section 3.2 we show
that identifiability rank tests can sometimes (i.e., for certain state vectors) be misleading. We further
remark, in Section 3.3, that the knowledge of initial conditions of unmeasured states can improve the
identifiability. In Section 3.4 we propose a procedure that assesses whether the identifiability rank test
is being misleading, and in Section 3.5 we propose an optimization-based procedure to find particular
state vectors will cause loss of identifiability. Finally, we summarize the Conclusions in Section 4.
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2. Background: Nonlinear Observability, Reachability, and Identifiability

2.1. Notation and Differential Geometry Concepts

We consider a general class of nonlinear time-invariant systems modelled as a structure M with
the following dynamic equations:

M :


ẋ(t) = f (x, p, u) = f1(x, p) + f2(x, p) · u(t)
y(t) = h(x, p)
x0 = x(t = 0, p)

(1)

where f , f1, f2, and h are vector functions, p ∈ Rq is a real-valued vector of parameters, u ∈ Rr

is the input vector, x ∈ Rn the state variable vector, and y ∈ Rm the output or observables vector.
The dependency of f , f1, f2, and h on the parameters p will be usually dropped for ease of notation.
The following paragraphs define several differential geometry concepts that will be used throughout
this paper.

Given a smooth function z(x) and a vector field v(x), the Lie derivative of z with respect to v is:

Lvz(x) =
∂z(x)

∂x
v(x) (2)

where ∂
∂x z(x) is a row vector containing the partial derivatives of the smooth function z(x). In the

present work, z(x) can be either the m-dimensional vector function h(x) (when studying observability)
or the r-dimensional vector function f2(x) (when studying controllability). For a k-dimensional
function z and an n-dimensional vector x and function v, ∂

∂x z(x) is a k× n matrix, and Lvz(x) = ∂z(x)
∂x v(x)

is a k× 1 column vector. Higher order Lie derivatives can be defined recursively as:

L2
vz(x) = ∂Lvz(x)

∂x v(x)
· · ·

Li
vz(x) = ∂Li−1

v z(x)
∂x v(x)

(3)

Given two vector fields v1(x), v2(x), their Lie bracket is the vector field defined by

[v1, v2] =
∂v2

∂x
v1 −

∂v1

∂x
v2 (4)

A k−dimensional distribution ∆ on X is a map which assigns, to each x ∈ X, a k−dimensional
subspace of Rn such that for each x0 ∈ X there exist an open set U ⊆ X containing x0 and k vector
fields f1, . . . , fk, such that

1. { fl(x), . . . , fk(x)} is a linearly independent set for each x ∈ U.
2. ∆(x) = span{ f1(x), . . . , fk(x)}, ∀x ∈ U [17].

2.2. Observability

Conceptually, a system is observable if for each state there exists at least one input which
allows to discriminate between this state and all nearby states, by measuring the output [17]. More
formally, two states x0 6= x1 are said to be distinguishable when there exists some input u(t) such
that y(t, x0, u(t)) 6= y(t, x1, u(t)), where y(t, xi, u(t)) denotes the output function of the system for the
input u(t) and initial state xi(i = 0, 1). The system is said to be (locally) observable at x0 if there exists
a neighbourhood N of x0 such that every other x1 ∈ N is distinguishable from x0.
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2.2.1. Linear Observability

Before proceeding to nonlinear systems, let us recall that a linear system of the form

ẋ = A · x + B · u
y = C · x (5)

is observable if and only if rank(O) = n, where O is the linear observability matrix [7],

O(x) =


C

C · A
C · A2

...
C · An−1

 (6)

2.2.2. Nonlinear Observability

The extension to the nonlinear case is straightforward. For a system given by (1), the nonlinear
observability matrix is built using Lie derivatives as follows:

O(x) =



∂
∂x h(x)

∂
∂x (L f h(x))
∂

∂x (L2
f h(x))
...

∂
∂x (Ln−1

f h(x))

 (7)

Theorem 1. Observability Rank Condition (ORC). If the system M given by (1) satisfies rank(O(x0)) = n,
where O is defined by (7), then M is locally observable around x0 [8].

The ORC is a sufficient and “almost necessary” condition for observability [17], meaning that if
M is locally observable around x0, then rank(O(x0)) = n for all the states belonging to an open dense
subset of the state space. Note that, in passing from linear to nonlinear, the rank condition has changed
from being sufficient and necessary to being “sufficient and almost necessary”.

Two terms related to observability are detectability and reconstructability. Detectability is a similar
notion to observability, but slightly weaker: a system is detectable if all the unstable modes are
observable. Reconstructability is also similar, but it refers to the ability of determining the present state
of a system from past and current (as opposed to future) measurements.

2.3. Controllability and Reachability

While observability studies whether it is possible to reconstruct the internal state x of a model by
observing its output y, controllability asks whether it is possible to control x by manipulating its input
u. Controllability and reachability are subtly different concepts: in reachability the question is which
states x(t f ) can be reached in finite time from the initial state, x(t0), which is fixed. In controllability
the question is which states x(t0) can be driven to a final state, x(t f ), which is fixed. A more precise
definition of reachability is as follows: a system (1) is said to be (locally) reachable around a state x0 if
there exists a neighbourhood N of x0 such that, for each x f ∈ N, there exist a time T > 0 and a set of
inputs u such that, if the system starts in state x0 at time t = 0, it reaches x f at time t = T. It should be
noted that for nonlinear systems, the possibility of reaching from any given state a set of full dimension
has also been called weak (local) controllability [8] and accessibility [18]. Here, following [17], we will
refer to it as nonlinear reachability or simply reachability.
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2.3.1. Linear Controllability and Reachability

A linear system given by (5) is reachable if and only if rank(C) = n, where C is the linear
controllability matrix defined as:

C(x) =
(

B|A · B|A2 · B| · · · |An−1 · B
)

(8)

While the condition rank(C) = n is both sufficient and necessary for reachability, for controllability
it is only sufficient; that is, if A is singular, the system may be controllable even if rank(C) < n.

The “duality” between observability and controllability/reachability can be noticed by inspecting
the linear observability (6) and controllability (8) matrices, since:

rank
(
B|A · B|A2 · B| · · · |An−1 · B

)
= n⇔

⇔ rank


BT

BT · AT

BT · (AT)2

...
BT · (AT)n−1

 = n
(9)

Thus, the pair (A, B) is reachable if and only if the pair (AT, BT) is observable.

2.3.2. Nonlinear Controllability and Reachability

The nonlinear controllability matrix of the system (1) is as follows:

C(x) =
(

f2(x) L f1 f2(x) L2
f1

f2(x) . . . Ln−1
f1

f2(x)
)

(10)

The controllability matrix can be used to determine reachability with the following theorem:

Theorem 2. Controllability Rank Condition (CRC). If the system M given by (1) satisfies rank(C(x0)) = n,
then M is (locally) reachable in a neighbourhood N(x0) of x0 [17].

Note that the CRC is a conservative criterion, since it provides only a sufficient—but not
necessary—condition for reachability. A necessary condition can be obtained from the so-called
controllability distribution ∆c(x), which is computed iteratively as a sequence of distributions:

∆0 = span{ f2} → ∆1 → ∆2 → . . .→ ∆n−1 = ∆c, (11)

with the following recursive rule:

∆i+1 = span
{

∆i
⋃
{[ f1, q], [ f2, q] : q(x) ∈ ∆i(x)}

}
(12)

Theorem 3. Reachability Theorem. The system M given by (1) is (locally) reachable around x0 if and only
if there exists a neighbourhood N of x0 such that the distribution ∆c(x), constructed as in (11,12), has constant
dimension n for all x ∈ N [17].

While Theorem 3 provides a necessary and sufficient condition, it is more difficult to check than
the CRC.

2.4. Structural Identifiability as Observability

Assuming that the model structure M (1) is correct, that the data is noise-free, and that the inputs
to the system can be chosen freely, it is always possible to choose an estimated parameter vector p̂
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such that the model output h(x, p̂) equals the one obtained with the true parameter vector, h(x, p∗).
If p̂ = p∗ this is trivially the case.

A parameter pi is structurally locally identifiable if for almost any p∗ ∈ R there is a neighbourhood
N(p∗) such that

p̂ ∈ N(p∗) and h(x, p̂) = h(x, p∗)⇒ p̂i = p∗i (13)

A model M is structurally locally identifiable (s.l.i.) if all its parameters are s.l.i. If (13) does not
hold in any neighbourhood of p∗, parameter pi is structurally unidentifiable. A model M is structurally
unidentifiable if at least one of its parameters is structurally unidentifiable.

Identifiability analysis can be formulated as a nonlinear observability problem [9,19]. To do so,
let us augment the state variable vector so as to include also the model parameters:

x̃ =

[
x
p

]
(14)

Accordingly, the f function that describes the time evolution of the state variables in equation (1)
is augmented as follows:

f̃ (x̃) =

[
ẋ
ṗ

]
=

[
f (x, u)

0

]
(15)

where 0 is a zero-valued (since the parameters are constant in time) column vector of dimension q× 1.
The resulting generalized observability-identifiability matrix, OI(x̃), can be written as:

OI(x̃) =



∂
∂x̃ h(x̃)

∂
∂x̃ (L f̃ h(x̃))
∂

∂x̃ (L f̃ 2 h(x̃))
...

∂
∂x̃ (L f̃ n+q−1 h(x̃))


(16)

where L f̃ h(x̃) is a Lie derivative defined as in equation (2), that is, L f̃ h(x̃) = ∂h(x̃)
∂x̃ f̃ (x̃), and higher

order derivatives are defined recursively as in equation (3).

Theorem 4. Observability-Identifiability Condition (OIC). If M given by (1) satisfies rank(OI(x̃0)) =

n + q, then M is (locally) observable and identifiable in a neighbourhood N(x̃0) of x̃0.

Proof. It follows immediately from Theorem 1 and the definition of x̃.

3. Results

Here we discuss the relationships between the structural properties defined in Section 2 and some
issues that may appear. We illustrate them with several case studies, which are listed in Table 1 along
with a summary of their properties.

3.1. Reachability Is Neither Necessary Nor Sufficient for Identifiability

For linear systems it was established early on that, despite the relationships that exist between
those properties, observability and controllability are neither necessary nor sufficient conditions for
structural identifiability. This was noted by DiStefano [20] by providing simple counter-examples
(although DiStefano’s brief note was disputed, see [21,22] and the author’s replies to those comments).
In a similar way, this section shows by means of three small examples that, for nonlinear systems,
reachability—or lack thereof—has in principle no implications for structural identifiability.
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Table 1. Main properties of the examples used in this paper. The term “generic” applied to SI (structural
identifiability) or reachability means that the model has said property for almost all values of x. The last
three columns refer to the possibility of losing said properties for certain values of x. N/A stands for
Not Applicable.

Example Ref. (Generic) (Generic) Decrease Loss Loss of
SI Reachability in rank(OI) of SI Reachability

1 This paper YES NO NO NO N/A
2 This paper NO YES N/A N/A NO
3 [23] NO YES N/A N/A YES
4 [11] YES NO YES YES N/A
5 [24] YES NO YES NO N/A

6.A [14] NO NO N/A N/A N/A
6.B [14] YES NO YES NO N/A

Example 1. A model that is structurally identifiable but unreachable:

M1 :


ẋ1 = p1 · (x2

1 + A),
ẋ2 = p2 · (x1 · x2 + B) + u,
y1 = x1,
y2 = x2

(17)

where {p1, p2} are unknown parameters and {A, B} known constants, all of which are positive
quantities. The controllability distribution of M1 is

∆c(x) = span

{
0 0
1 −p2 · x1

}
(18)

which has dimension 1 < n = 2, so M1 is unreachable (Theorem 3). Its observability-identifiability
matrix is

OI(x̃) =


1 0 0 0
0 1 0 0

2 · p1 · x1 0 x2
1 + A 0

p2 · x2 p2 · x1 0 x1 · x2 + B

 (19)

which has rank(OI(x̃)) = 4 = n + q, which means that it is observable and identifiable (OIC).

Example 2. A model that is structurally unidentifiable but reachable:

M2 :


ẋ1 = p1 · x1 · x2

2 + u,
ẋ2 = p2 · x1,
y = p3 · x1

(20)

The controllability distribution of M2 is

∆c(x) = span

{
1 −p1 · x2

2
0 −p2

}
(21)

which has dimension 2, so M2 is reachable (Theorem 3). It is straightforward to calculate OI(x̃)
(not shown here due to its large size) and see that rank(OI(x̃)) = 3 < n + q = 5, which means that
it is unidentifiable (OIC). Specifically, p2 is identifiable but p1 and p3 are not. It can also be noticed
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that, according to the classic definition of observability (which assumes that the parameter values are
known) model M2 is observable, since

O(x) =

(
1 0

p1 · x2
2 2 · p1 · x1 · x2

)
(22)

and thus rank(O(x)) = 2 and the ORC holds.

Example 3. A model that is structurally unidentifiable but (almost everywhere) reachable:

M3 :


ẋ1 = p1 · x1 · x2,
ẋ2 = p2 · u,
y = x1

(23)

This model is taken from [23]. For this system n + q = 4 and rank(OI(x̃)) = 3. Thus the
observability-identifiability condition (OIC) of Theorem 4 does not hold; the model as a whole,
and {p1, p2} in particular, are structurally locally unidentifiable. This unidentifiability result was
obtained symbolically, for generic values of the initial conditions. To illustrate this lack of identifiability,
the time evolution of M3 is shown in Figure 1 for two different parameter vectors: {p1 = 1, p2 = 1}
and {p1 = 1.6, p2 = 1.25}. If the model is simulated from the initial conditions {x1(0), x2(0)} = {1, 1},
the model outputs are distinguishable for the two different parameter vectors (panel A). However,
when the model is simulated from {x1(0), x2(0)} = {1, 0}, the outputs are identical (panel B): for these
initial conditions the parameters are indistinguishable, i.e., the model is unidentifiable. Furthermore,
even if the model is started from a different initial condition, x2 6= 0, its output may be the same to that
of x2 = 0 for two different parameter vectors (panel C). Thus, the structural unidentifiability of this
model is not exclusive of the initial condition x2 = 0. Note that, however, if we were able to measure
not only x1 but also x2, the model would become identifiable, since the time course of x2 is different in
each of the aforementioned cases.

Regarding reachability, the controllability distribution of M3 is

∆c(x) = span

{
0 −p1 · p2 · x1

p2 0

}
(24)

which has dimension 2, so M3 is reachable (Theorem 3). Thus, M3 is generically reachable and
structurally unidentifiable. So is M2; however, there is a difference between both models: unlike in the
case of M2, the dimension of the controllability distribution of M3 can decrease for certain values of
x: specifically, for x1 = 0, its dimension decreases from 2 to 1, as can be seen in Equation (24), and in
that particular case the model is no longer reachable. This is illustrated in panel D of Figure 1, which
shows that if x1(0) = 0⇒ x1(t) = 0 ∀t. We remark that this loss of reachability is not the cause of the
model’s unidentifiability, since the model is also unidentifiable for the initial conditions shown in the
other panels, for which there is no loss of reachability.
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Figure 1. Time courses of the M3 model used in Example 3. Panel (A) shows the evolution of the
system starting from non-zero initial conditions, for two different parameter vectors. From this plot it
would seem that the model is structurally identifiable, since different parameter vectors yield different
model outputs; Panel (B) shows the same time courses for initial condition x2(t = 0) = 0; in this
case the model output is identical for two different parameter vectors, which makes the parameters
indistinguishable; Panel (C) shows that it is actually impossible to distinguish between initial condition
x2(t = 0) = 0 and initial condition x2(t = 0) = 1: the output of the model simulated with two wildly
different parameter vectors can be the same. This illustrates that unidentifiability is inescapable if we
only measure x1; Panel (D) shows the model output for two parameter vectors and initial condition
x1(t = 0) = 0; for this case the model output remains at zero, and there is a loss of reachability.

3.2. The Results of Identifiability Tests Can Be Misleading for Certain State Vectors

The OIC of Theorem 4 represents a general result, which is valid for all values of the states and
parameters except for a set of measure zero. For these exceptions, however, its results may be misleading.
This section illustrates this fact with an example.

Example 4. A structurally identifiable model that loses identifiability for certain values of x:
Consider the following biochemical network [11]:

E + S
p0
�
p2

ES
p3−→ E + P; P

p1−→ ∅ (25)

If we denote by x1, x2, and x3 the concentrations of substrate (S), enzyme (E), and product (P), respectively,
this system can be modelled by the following equations [11]:

M4 :


ẋ1 = −x1 · x2 + p2 · (10− x2),
ẋ2 = −x1 · x2 + (p2 + p3) · (10− x2),
ẋ3 = −p1 · x3 + p3 · (10− x2)

y1 = x1, y2 = x3

(26)

Note that these equations were obtained by August and Papachristodoulou [11] after making two
assumptions: (i) that [ES] + [E] = 10, which allows omitting [ES] from the equations by replacing it with
[ES] = 10− [E] = 10− x2; and (ii) that the reaction rates are normalized, such that p0 = 1 is a known constant.
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For this example n + q = 6 and rank(OI(x̃)) = 6, which means that the OIC of Theorem 4 holds.
Therefore methods based in the OIC [10,11,13] classify the model as observable and identifiable for
generic values of the states and parameters. However, note that for the particular initial conditions
{x1(0) = 0, x2(0) = 10}, two of the states remain at zero {x1(t) = 0, x2(t) = 0} ∀t ≥ 0, and in
this case only p1 appears in the equations. Thus, for these particular initial conditions the model is not
identifiable, since it is not possible to determine the values of p2 and p3. Obviously, model M4 is
not reachable, since it does not have any control inputs and thus its controllability distribution is
empty. Therefore the loss of identifiability cannot be attributed to a loss of reachability for certain
initial conditions. However, it is linked to the fact that {x1, x2} remain equal to zero if the system
is started from {x1(0) = 0, x2(0) = 10}. This situation is not rare: indeed, by examining the
Equation (17) that describe model M1, it can be noticed that if A = 0, state x1 would remain equal to
zero if started in that condition, and the model would be unidentifiable, since the third column of its
observability-identifiability matrix (19) would be zero.

Example 4 shows how a model that is “generally” structurally identifiable—that is, it is identifiable
for almost all values of its state variables—can lose its identifiability for certain particular values of its
states (or equivalently, for certain initial conditions). This loss of identifiability results from some of the
states of M4 remaining at zero value from certain initial conditions, which prevents some parameters
appearing in the equations of those states from being identified. This loss of identifiability causes a loss
of rank in the OIC: if the model states are replaced with the initial conditions of interest, x0∗, it results
that rank(OI(x0∗)) < n + q; thus the loss of identifiability entails a rank deficiency.

However, this rank check is not a definitive proof: the next model provides a counter-example
that shows that, even when the rank of a (generally structurally identifiable) matrix decreases for
certain initial conditions, this does not necessarily result in structural unidentifiability.

Example 5. A structurally identifiable model despite rank deficiency of OI for certain values of x:
Robertson [24] proposed as a case study an autocatalytic reaction with the following scheme:

x1
k1−→ x2; 2x2

k2−→ x2 + x3; x2 + x3
k3−→ x1 + x3 (27)

Its kinetics are given by the following equations:

M5 :


ẋ1 = −k1 · x1 + k3 · x2 · x3,
ẋ2 = k1 · x1 − k2 · x2

2 − k3 · x2 · x3,
ẋ3 = k2 · x2

2
y1 = x1, y2 = x2

(28)

This model was showcased in [25] as an example of an unidentifiable model, and later used as
a case study in [26]. Specifically, Eydgahi et al. stated that “the inability of estimation to recover
the parameter values used to generate synthetic data is not due to problems with the computational
procedures. Instead, it represents a fundamental limit on our ability to understand biochemical systems
based on time-course data alone”. However, this model is in fact structurally identifiable (OI is full
rank for generic values of x), although its practical identifiability is poor. A reason for its lack of
practical identifiability is that, for the nominal parameter values, x2 has very low values compared
to the other two states (six orders of magnitude smaller). Thus, the difficulty in recovering the true
values of its parameters is not due to a structural deficiency, but to numerical limitations.

Interestingly, when x2(0) = x3(0) = 0, the observability-identifiability matrix OI is not full rank,
so the system may seem to be structurally unidentifiable from those initial conditions. However, such
a loss of identifiability is “strictly local”. By this we mean that, as can be seen in Figure 2, all the states
(including x2 and x3) reach non-zero values immediately after t = 0 (note that the concentration curves
have been normalized to adopt values between 0 and 1, to facilitate the visualization). For example,
at t = 10 the state vector is {x1(10) = 0.8414, x2(10) = 1.623 · 10−5, x3(10) = 0.1586}, and OI has full
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rank when evaluated at that point. Therefore the model is still identifiable when simulated from these
initial conditions. This example shows that, even when the OI loses its full rank for certain values of
the state variables, this does not necessarily lead to loss of identifiability, as long as it does not produce
loss of accessibility.
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Figure 2. Time courses of the Robertson model used in Example 5. The vertical axis shows the
concentration curves, which have been normalized to adopt values between 0 and 1 to facilitate
the visualization.

3.3. Knowledge of Additional Initial Conditions Can Increase Identifiability

So far we have assumed that the initial conditions of the states corresponding to measured outputs
are known, and that those of unmeasured states are unknown. This is the typical situation: in general
we do not have information about unmeasured states; on the other hand, since structural identifiability
analysis assumes unlimited measurements, we can consider all the values of the measured states
known—including, naturally, their initial conditions.

However, in certain cases we may possess information about the initial condition of a state, even
if we are not able to measure its subsequent behaviour. In this case, such additional information can
help identify some parameters that would be unidentifiable without it. This possibility was noted
by Chappell and Godfrey [27], who used a case study which they claimed to be the first example of
a real-life nonlinear model that was not globally identifiable. Here we illustrate this case with the
following example:

Example 6. A structurally unidentifiable model that becomes identifiable if the initial conditions (of unobserved
states) are known:

Denis-Vidal et al [14] proposed the following model to illustrate how the identifiability of uncontrolled
models may depend on the initial conditions.

M6 :


ẋ1 = θ1 · x2

1 + θ2 · x1 · x2, x1(0) = 1
ẋ2 = θ3 · x2

1 + x1 · x2, x2(0) = b
y = x1

(29)

It can be seen that parameters θ2 and θ3 are structurally unidentifiable; we refer to this case as
Example 6.A (as written in Table 1). However, if we know the initial condition of the unmeasured state,
x2(0) = b, then the model becomes structurally identifiable; we refer to this variant as Example 6.B.
In this case, a decrease in the rank of OI (from full rank, 5, to 4) takes place if b = 0, but, similarly to
Example 5, the state x2 immediately departs from zero and the model is structurally identifiable.
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3.4. Guaranteeing the Results of the Structural Identifiability Test

The examples of the preceding section show that local structural identifiability is a generic property
that may be lost for particular values of the state variables, and that such loss of identifiability may not
be detected by differential geometry methods such as those based on the OIC. This issue is shared by
differential algebra methods: for them, [15,28] concluded that the result of the identifiability test is still
correct if a model is globally inaccessible (unreachable), but problems appear when a model is only
inaccessible from initial points belonging to a thin set.

The realization in [15,28] suggests performing an additional check on the reachability of a system:
if for a certain state x0 we find both a decrease in the rank of the observability-identifiability matrix
OI(x0) and a decrease in the dimension of the controllability distribution ∆c(x0), we can conclude that
the model is not identifiable when started from the initial conditions x0. However, there are issues that
cannot be revealed by this test: we have seen that such a loss of identifiability for particular x0 can
also happen in uncontrolled models such as Example 4, which are by definition unreachable and for
which the dimension of ∆c is always zero. Therefore, for such cases an alternative is to simulate the
model from x0—as we did for Example 5 in Figure 2—to see whether there are states that remain at
zero. In general, structural identifiability can be assessed for particular initial conditions x0 as follows:

1. Check the Observability-Identifiability condition (OIC, Theorem 4) for a generic symbolic
augmented vector x̃. If the matrix is not full rank, i.e., rank(OI(x̃)) < n + q, then the model
is structurally unidentifiable and no further tests are needed. If, however, it is full rank,
i.e., rank(OI(x̃)) = n + q, the model is generically structurally identifiable. However, in this case
there may be loss of identifiability for certain states; to assess this we proceed to the next step.

2. Check the Observability-Identifiability condition (OIC, Theorem 4) for a particular vector of
initial conditions of interest, x̃0. If rank(OI(x̃0)) < n + q, there has been a loss of rank which
indicates loss of local identifiability (as in Example 4), but that may be possible to overcome (as in
Example 5). To assess this point, we go to step 3.

3. Simulate the model starting from x0 to see if there are any states that remain zero.

In the present work we have carried the rank calculations using a recently presented tool called
STRIKE-GOLDD [13]. STRIKE-GOLDD is a methodology for local structural identifiability analysis
that evaluates the OIC symbolically. Although it considers in principle generic initial conditions, it can
also test particular initial conditions by specializing the generic x in the OI matrix to the particular
initial conditions of interest, x0. If the system under study is rational, it is also possible to carry
out a similar test with the Exact Arithmetic Rank (EAR) method [10]. EAR allows specifying initial
conditions and uses a computationally efficient numerical procedure for obtaining rank(OI(x0)).
Unlike EAR, STRIKE-GOLDD evaluates the OIC symbolically and does not require that the system is
rational, although this generality results in a computationally more expensive procedure. In another
related work, [11] evaluated the OIC using a more conservative and computationally expensive
procedure, recasting the rank calculation task as a sum-of-squares optimization problem. Its advantage
is that it provides a result that is not only valid for a particular point x0 but for range of values, that is,
for all states that fall within certain bounds, xL < x < xU . Unfortunately, these calculations are only
feasible for small systems due to computational limitations. For rational systems it is also possible
to use the differential algebra method DAISY [29], which allows specifying initial conditions. It is
important to be aware of the advantages and limitations of these methods when choosing one for
assessing the structural identifiability of a model.

3.5. Finding Specific Initial Conditions That Lead to Loss of Rank in the OIC

If the initial conditions are not fixed a priori, a question naturally arises: given a nonlinear
model that is generally structurally identifiable, is it possible to find the specific values of the initial
conditions—if there exist any—for which the OIC does not hold?
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3.5.1. Finding Solutions Analytically

It may be possible to find such values analytically. For example, by examining Equation (26) it
can be observed that for {x1 = 0, x2 = 10, x3 = 0} the right hand side of the ODEs are made zero
and the system remains in a steady state, thus eliminating any influence of the parameters on the
output and rendering them unidentifiable. However, there are also other combinations that lead to
loss of identifiability. A general way of finding these initial conditions is to calculate the singular
values of OI using a symbolic software, such as Mathematica or the MATLAB Symbolic Math Toolbox.
Then, the state vectors x∗ that decrease rank(OI(x∗)) can be found by equating the expressions of the
singular values to zero and solving the resulting equations. However, this approach involves symbolic
calculation of the singular values, which is a very complex task for which explicit solutions can be
obtained only for very small models. For example, this approach did not yield results for a model of
moderate size such as the one in Example 4, even after fixing the parameter values to random numbers
to reduce the problem size.

3.5.2. Finding Solutions via Optimization

An alternative, generally applicable way of answering this question is by formulating it as
an optimization problem. In it, the decision variables are the system states, and the objective to
minimize is the rank of the observability-identifiability matrix. Is this rank can be made zero for
particular values of the state variables, those values correspond to initial conditions that lead to lack
of structural identifiability. Since the rank is an integer, it is more convenient for computational
optimization to use as the objective function the smallest singular value of OI , which is a positive real
number and thus leads to a continuous function value. Thus it is possible to calculate a singular value
decomposition of OI numerically and use its smallest singular value as the objective; if it can be made
zero, the matrix is not full rank and structural identifiability is lost. In order to calculate a numeric
value for the singular values we must replace the symbolic variables by numbers; using non-repeated
prime numbers minimizes the risk of accidental cancellations that could artificially reduce the rank.
Then the optimization problem can be mathematically formulated as follows:

min
xL<x<xU

{ fobj = inf[sing(OI(x̃))]} (30)

That is: find the vector x that minimizes the objective function consisting of the smallest singular
value of the observability-identifiability matrix, for values of the states that lie within some lower and
upper bounds, xL < x < xU .

We applied this strategy to example 4, using as optimization method a general purpose
metaheuristic called enhanced scatter search (eSS), from the MATLAB (version R2015b, MathWorks,
Natick, MA, USA) implementation of the MEIGO toolbox [30]. Setting {xL = 0, xU = 20} as bounds
for the decision variables, and using FMINCON as local search method, the algorithm reported fobj = 0
after a few minutes, with the optimal decision variables being [x1 = 0, x2 = 10, x3 = 6.9081]. Since the
optimization method is not deterministic, different outcomes can be obtained. Running the algorithm
again we encountered the solution [x1 = 0, x2 = 10, x3 = 3.9086]; in this way it is easy to realize that
any vector in which [x1 = 0, x2 = 10] leads to unidentifiability regardless of the value of x3.

4. Conclusions

Structural properties (those that are determined exclusively by the model equations) provide
information about the behaviour of a system. Their analysis can reveal the existence of limitations
regarding system dynamics and model identification. In this paper we dealt with the relations
between the systemic properties of observability, reachability, and identifiability of nonlinear models.
Identifiability and observability are tightly related, since structural identifiability can be recast as
a “generalized” observability property (also called “augmented” or “extended”). On the other hand,
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observability and reachability (or similar terms like controllability and accessibility) are usually
considered as dual concepts.

Reachability is not a requisite for observability nor identifiability, nor vice versa. However,
in some cases a system which is in principle identifiable can become unidentifiable due to some of its
states becoming inaccessible (unreachable) from certain initial conditions. This problem is not always
detected by structural identifiability analysis methods. In general, the results of such methods—for
example, those based on differential geometry and differential algebra approaches—are valid for
“almost all” combinations of state and parameter values (i.e., for a dense subset of the state-parameter
space), but there may be exceptions for values belonging to thin sets (i.e., isolated values). To investigate
this possibility we propose to calculate the rank of the generalized observability-identifiability matrix
(OI) not only symbolically (which provides the generic result), but also numerically for the particular
initial conditions of interest. We have noted however that a loss of rank in the OI for particular
initial conditions x0 does not always imply a loss of structural identifiability: in some cases, such as
Example 5, the model can still be identified because the time evolution of the system escapes from the
pathological state. Thus, to assess if there is a loss of identifiability it is advisable to simulate the model
for the initial conditions of interest.

We have also noted in this manuscript that loss of reachability is not the only possible cause of
a loss of identifiability for specific initial conditions. Indeed, such unidentifiability can arise also in
uncontrolled models, whose controllability distribution ∆C is zero, as seen in Example 4. For this
reason we have seen that it is not entirely appropriate to assess the loss of identifiability by looking for
a possible decrease in the dimension of ∆C, and the aforementioned simulation-based analysis should
be preferred instead.

The related problem of finding which initial conditions lead to loss of identifiability is in general
more complicated. When such initial conditions are difficult to determine analytically, an alternative
is to use an optimization procedure. We have demonstrated the feasibility of this approach using an
example taken from the literature [11], for which this loss of identifiability had not been reported before.

We would like to mention that the idea of optimizing initial conditions to achieve a goal related
with identifiability has been applied in the literature before, albeit with a totally different purpose:
in the context of optimal experiment design, it may be desirable to find initial conditions that maximize
the practical identifiability of the parameters, as done e.g., by [31]. In contrast, here we have used it for
what can be considered as the opposite task: finding initial conditions that minimize (destroy) structural
identifiability. Both calculations provide useful information in different contexts.

The considerations presented in this paper should be taken into account before performing tasks
such as design of experiments or parameter estimation, in order to prevent identifiability issues that
may potentially render their results useless. For example, any attempts at calibrating a structurally
unidentifiable model will fail, resulting in a waste of time and effort and in wrong parameter estimates.
Furthermore, if this structural unidentifiability is mistaken for practical unidentifiability (a related
but different problem), it may lead to trying to solve the problem by investing additional efforts
in designing and performing new experiments, which will nevertheless be sterile. Therefore it is
advisable to assess the structural identifiability of a model for all the particular conditions of interest
before attempting at calibrating and further exploiting it.
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Abbreviations

The following abbreviations are used in this manuscript:

ORC Observability Rank Condition
CRC Controllability Rank Condition
OIC Observability-Identifiability Condition
ODE Ordinary Differential Equation
EAR Exact Arithmetic Rank
SI Structural Identifiability
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