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We study electroweak interactions in the multiscale theory with q-derivatives, a framework where
spacetime has the typical features of a multifractal. In the simplest case with only one characteristic time,
length, and energy scale t�, l�, and E�, we consider (i) the muon decay rate and (ii) the Lamb shift in the
hydrogen atom, and constrain the corrections to the ordinary results. We obtain the independent absolute
upper bounds (i) t� < 10−13 s and (ii) E� > 35 MeV. Under some mild theoretical assumptions, the Lamb
shift alone yields the even tighter ranges t� < 10−27 s, l� < 10−19 m, and E� > 450 GeV. To date, these
are the first robust constraints on the scales at which the multifractal features of the geometry can become
important in a physical process.
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The variety of theories of quantum gravity proposed in
the last 30 years has highlighted two facts. First, that there
are many languages and mathematical tools with which one
can describe consistent quantum geometries and that, while
some of these approaches are mutually exclusive, others
can be related in nontrivial ways or even embedded into
one another. Second, that despite their differences these
approaches (including causal dynamical triangulations in
the “de Sitter” phase, asymptotic safety, Hořava–Lifshitz
gravity, nonlocal gravity, loop quantum gravity and spin-
foams, noncommutative spacetimes, quantum black holes,
and more [1]) share some distinct features. One of the most
striking phenomena one comes across the landscape of
quantum-gravity models is dimensional flow, the change of
the dimension of spacetime (whenever a notion of space-
time emerges meaningfully in each approach) with the
probed scale [2,3]. In any approach to quantum gravity, the
effective dimension flows to four at low energies and large
scales, where general relativity is an impeccable description
of geometry. At small scales, however, the spectral dimen-
sion dS of spacetime can attain a completely different value,
usually equal to or smaller than 2. The transition between
the two regimes varies depending on the model but it is
usually difficult to have it under full analytic control. For
this and other reasons, most of the physical consequences
of dimensional flow in contexts as diverse as quantum field
theory (QFT) and cosmology remain elusive.
Nevertheless, it is surprisingly easy to reproduce ad hoc

the dimensional flow found in various quantum-gravity
theories [4]. This is achieved by placing a field theory
L½ϕμν…� on a geometry with action S ¼ R

d4x vL, where
vðxÞ ¼ v�ðtÞv�ðxÞ is a nondynamical profile (unrelated to
the volume density

ffiffiffiffiffiffi−gp
in curved spacetimes) with

v�ðtÞ ¼
�
1þ

���� tt�
����
α−1

�
; v�ðxÞ ¼

Y3
i¼1

�
1þ

���� x
i

l�

����
α−1�

:

ð1Þ

The parameter 0 < α < 1 is called fractional exponent (it
can be different along different directions, but here this
complication is not necessary). This geometry has
Hausdorff dimension dH ¼ 4 at large scales Δl ≫ l�
and late times Δt ≫ t�, while dH ¼ 4α < 4 at small scales
and early times. The spectral dimension dS has a similar
behavior and, in particular, dS ¼ 2 for α ¼ 1=2. Perhaps,
the most remarkable property of Eq. (1) is that it is not just a
heuristic profile useful to fit numerical data points or
asymptotic regimes; it also represents uniquely the con-
tinuum approximation of random multifractals [5,7].
Based on this observation, the theory of multiscale

spacetimes has been proposed recently [3,6,7] (see [8,9]
for reviews). By embedding dimensional flow by default, it
provides the means for an agile study of multifractal
properties of anomalous geometries, even not related to
quantum gravity. Early attempts to construct field theories
on specific fractals [10] were not manageable beyond a first
formal stage of development. The versatility of multiscale
models has permitted us to extract abundant phenomenol-
ogy and to satisfy our curiosity about how the world would
be if the fabric of spacetime was fractal. Regarded as stand-
alone proposals, the four extant multiscale theories (with
normal, weighted, fractional, and q-derivatives) should
address a number of questions, including the existence
and magnitude of exotic effects across all scales and the
possibility to constrain the theory with present or forth-
coming experiments. Much progress has been made
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regarding theoretical aspects such as accelerating cosmo-
logical solutions [9] and the renormalizability of QFTs
[11], but there is still little contact with observations.
In this paper, we examine the multiscale model with

so-called q-derivatives, which is more intuitive and under
better control than the others. After introducing the
SUð2Þ ⊗ Uð1Þ QFT of electroweak interactions, we con-
sider the decay rate of the muon and the Lamb-shift effect
in the hydrogen atom, and we ascribe the experimental
uncertainty of the most recent measurements to multifractal
effects. This strategy, originally adopted in early toy models
of dimensional regularization [12], is crude but quite
effective, since it will allow us to place the first absolute
bounds on the time, length, and energy scales character-
izing the geometry. The full Standard Model with the
inclusion of strong interactions, the details of the calcu-
lations, and the (much more involved) study of the multi-
scale theory with weighted derivatives will be presented in
a companion paper [13]. In the following, c ¼ 1 ¼ ℏ and
we ignore curvature effects.
The theory.—In the multiscale theory with q-derivatives,

the volume element d4x in any action S is replaced by a
measure d4x vðxÞ which depends on some characteristic
time and length scales t� and l�. The length l� determines
the difference between “infrared” and “ultraviolet,”while t�
sets the time scale below which a physical process (e.g., a
particle scattering) feels the imprint of fractal geometry.
It can also be interpreted as the end of an early cosmo-
logical era dominated by fractal effects [14]. The simplest
possible multiscale measure vðxÞ is the binomial profile (1)
and corresponds to a random multifractal. On the other
hand, many deterministic multifractals [5,7] are approxi-
mated by the measure vlogðxÞ¼ ½1þjt=t�jα−1Fωðln jt=t∞jÞ�Q

i½1þjxi=l�jα−1Fωðln jxi=l∞jÞ�. An analysis of the
spectral and walk dimension shows that these spacetimes
have all the main properties of multifractals [15]. The
modulation factor Fωðln jx=l∞jÞ ¼ A cosðω ln jx=l∞jÞ þ
B sinðω ln jx=l∞jÞ features logarithmic oscillations with
frequency ω, representing a discrete scale invariance x →
expð2πn=ωÞx of the geometry. The fundamental scales t∞
and l∞ are much smaller than t� and l�. In [16], it was
argued that if one identifies these quantities with the Planck
scales t∞ ¼ tPl and l∞ ¼ lPl, then multiscale spacetimes
with the measure vlogðxÞ provide the natural completion of
κ-Minkowski spacetime. Theoretical aspects of the mea-
sure, such as changes in presentation [vðxÞ → vðx − x̄Þ],
are further discussed in [9,13]. Log oscillations have no
direct impact on the physics at LHC scales, but we will
reintroduce them at the end of the paper for a crucial unit
conversion.
ForanymeasurevðxÞ, relativisticactionswithq-derivatives

are invariant under the nonlinear q-Poincaré symmetries
q0μðxμÞ ¼ Λν

μqνðxνÞ þ aμ, where qμðxμÞ≔ R
xμ dx0μvμðx0μÞ

are called geometric coordinates. The measure can be
rewritten as d4x vðxÞ ¼ d4qðxÞ ¼ dq0ðx0Þ…dq3ðx3Þ.

For the binomial measure (1), the geometric coordinate in
the time direction is

q�ðtÞ ¼ tþ t�
sgnðtÞ
α

���� tt�
����
α

: ð2Þ

The expression of the measure d4pðkÞ in momentum space
and of its coordinates pμðkμÞ is universal and valid for
arbitrary geometric coordinates [9]: pμðkμÞ ¼ 1=qμð1=kμÞ,
where all the time-length scales appearing inqμ are replaced
by a hierarchy of energy-momentum scales fE�;k�g. Here
we will be interested in the energy geometric coordinate
associated with Eq. (2):

p�ðEÞ ¼
�
1

E
þ sgnðEÞ

E�α

����E�
E

����
α
�
−1
: ð3Þ

Thedynamicsof anysystemof interest (Einsteingravity, the
Standard Model, and so on) is easily defined. It is the usual
one under the replacement

x → qðxÞ; k → pðkÞ ð4Þ

everywhere. A Lagrangian L½∂x;ϕμν…ðxÞ� with generic
fields ϕμν… becomes Lf∂qðxÞ;ϕμν…½qðxÞ�g. Multiscale
spacetimes are a framework where q-measurements are
performed with instruments which adapt with the observa-
tion scale [17]. This adaptation is encoded in the structure
of the integration measure and of differential operators,
where characteristic time, length, and energy scales
appear. Measurement units for the coordinates must be
specified. Time and spatial coordinates scale as lengths,
½t� ¼ −1 ¼ ½xi�, which set our clocks and rods. On the other
hand, geometric coordinates have an anomalous scaling
with respect to these clocks and rods: in the ultraviolet, one
has q ∝ xα and an anomalous scaling for α ≠ 1. By defi-
nition of the theory, time intervals, lengths, and energies
arephysicallymeasured in the framewith coordinatesxμ (kμ

in momentum space), where coordinate transformations
are described by the nonlinear q-Poincaré symmetries.
Equation (4) (which is not a coordinate transformation)
governs the passage between a frame fxμ; kμg, called frac-
tional picture, where physical observables should be com-
puted and a frame fqμ; pμg, called integer picture, where
intermediate stepsof suchcalculations canbecarriedon.An
exampleof thenontriviality of theq-theory, due to theexotic
structure (3) of momentum space, is the primordial cosmo-
logical spectrum of inflation [9].
Since the frame where physical measurements are

performed is established uniquely, it is possible to predict
deviations of particle-physics observables from the stan-
dard lore. However, when the action is written explicitly
in x coordinates, it resembles an inhomogeneous field
theory in ordinary spacetime with noncanonical kinetic
terms and nonconstant couplings. For example, the action
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of a static real scalar field with polynomial potential in one
dimension would be Sϕ ¼ −

R
dq½ð∂qϕÞ2=2þ

P
nλnϕ

n� ¼
−
R
dxfð∂xϕÞ2=½2vðxÞ� þ

P
nλ̄nðxÞϕng, where λ̄nðxÞ ¼

vðxÞλn. Since we do not know how to define a fully
predictive perturbative QFTwith varying couplings [11] or
inhomogeneous kinetic terms, it is necessary to perform all
calculations in geometric coordinates. At the end of the
calculation, one must return to the physical frame to
interpret the results correctly. Any “time” or “spatial”
interval or “energy” predicted in the integer picture are
not a physical time or spatial interval or energy, since they
are measured with q-clocks, q-rods or q-detectors. The
results must be reconverted to physical measurement units
in the fractional picture.
Therefore, in the case of the SUð3Þ ⊗ SUð2Þ ⊗ Uð1Þ

Standard Model (discussed in detail in [13]), it is sufficient
to go to the integer picture, where it coincides with the
usual Standard Model that can be found in textbooks, and
respectfully borrow any theoretical result we wish to
compare with experiments. The only nontrivial step is
the unit reconversion. We give two examples of this
procedure: the muon lifetime and the Lamb shift.
Muon decay rate.—In ordinary flat spacetime, the

probability distribution for the energy E of an unstable
particle with mass m is governed by the Breit-Wigner
distribution fBWðEÞ ∝ Γ=½ðm2 − E2Þ2 þ ðmΓÞ2�, where Γ
is called decay width. fBWðEÞ is the square of the quantum
amplitude describing the decay of the resonance, which, in
turn, is proportional to the propagator of the particle. The
decay width can be calculated explicitly for the unstable
particles appearing in the Standard Model. To a scattering
process described by a one-particle initial state jii and a
many-particle final state jfi, one computes the Feynman
amplitude hfjii up to a certain perturbative order. From the
transition probability Pði → fÞ ∝ jhfjiij2 ¼ fBW, the decay
rate Γ for the resonance jii is then extracted. In the case of
the muon, the process is μ− → e−ν̄eνμ and it is mediated by
a gauge bosonW. Neglecting the masses of the electron e−

and the neutrino νe, one has

Γ ¼ G2
Fm

5
mu

192π3
þ � � � ; ð5Þ

where GF is Fermi’s constant, mmu is the muon mass and
the ellipsis denotes loop corrections to the tree-level
contribution. The mean lifetime τmu of the resonance is
identified with the inverse of Γ, τmu ¼ τ0 ≔ 1=Γ.
In the theory with q-derivatives, one works in the integer

picture and obtains (5). However, Γ is a composite object
no longer equal to the inverse of the muon lifetime. From
the form of the propagator ∝ ½p2ðkÞ þm2

mu þ immuΓ�−1, it
is natural to make the identification Γ ¼ p�ð1=τmuÞ ¼
1=q�ðτmuÞ, and the physically observed muon lifetime is
found by inverting the relation

q�ðτmuÞ ¼ τmu þ
t�
α

�
τmu

t�

�
α

¼ τ0 ¼
1

Γ
: ð6Þ

The replacement of τmu ¼ τ0 with this formula gives a
characteristic prediction that can be compared with that in
standard Minkowski spacetime. The muon lifetime is not
observed directly. Experiments determine the Fermi con-
stant GF ¼ 1.1663787ð6Þ × 10−5 GeV−2 and the muon
mass mmu ¼ 105.6583715ð35Þ MeV [18], where the num-
bers in round brackets denote the first nonzero digits of the
1σ-level experimental error and apply to the last figure(s)
given in the number. Using Eq. (5), one has τ0 ¼
2.1969811ð22Þ × 10−6 s for μ− [18]. The lifetime of μþ
is almost the same and we can ignore the difference. If we
knew both α and t�, we would invert Eq. (6) and find the
multiscale prediction for τmu. As we do not, we opt for a
different approach. We assume realistically that t� is small
enough so that the scale-dependent part of the measure is
small and τmu ≈ τ0 to a very good approximation. Then, we
account for all the experimental error δτ ≈ 6.6 × 10−12 s at
the 3σ-level as setting an upper limit on the effects of
anomalous geometry: ðt�=αÞðτ0=t�Þα < δτ, implying that

t� <
�
αδτ

τα0

� 1
1−α
: ð7Þ

Computing (7) as a function of 0 < α < 1, we find that the
maximum t� is attained for α ≈ 0.06. This value of α has no
special meaning in the theory but it sets the absolute upper
bound t� < tmax ¼ 10−13 s, independent from any other
parameter of the model. To get stronger constraints, one can
pick the central value α ¼ 1=2, which is special not only for
its position in the middle of the prescribed interval (0,1) [6],
but also because it gives 2 dimensions in the ultraviolet
[15], a feature much celebrated in quantum gravity [2,3]
(other theoretical justifications for α ¼ 1=2 can be found in

[6,7]). In this case, the allowed range t� < tðα¼1=2Þ
max is

lowered by 5 orders of magnitude, tðα¼1=2Þ
max ¼ 5 × 10−18 s.

Lamb shift.—According to quantum electrodynamics,
the spectrum of the electron in the hydrogen atom depends
on the principal and orbital-momentum quantum numbers.
The emission and absorption of virtual photons by elec-
trons and the production of virtual electrons in internal
photon lines in Feynman diagrams give rise to a splitting of
the spectral lines of different spin orbitals and, in particular,
to a shift in the energy of the 2P1=2 state with respect to the
2S1=2 state. The measurement of this shift is one of the
precision tests of perturbative QFT and has by now been
verified for a number of light hydrogenic atoms [19]. For
instance, the measured shift ΔE ¼ E2S − E2P in hydrogen
is [20]

ΔE ¼ 4.37489ð1Þ × 10−6 eV: ð8Þ
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The theoretical value predicted by quantum electrodynam-
ics is in excellent agreement with observations.
In the theory with q-derivatives, the theoretical calculation

of the radiative corrections to the Lamb shift is identical
to the ordinary one upon the replacement E → p�ðEÞ.
Since we expect E� to be much larger than the characteristic
energy scale involved in these experiments, we can make
the approximation E� ≫ E in (3). A check a posteriori
will confirm this step. For 0 < α < 1, one has p�ðEÞ≃
E − ðjEj=αÞjE�=Ejα−1, so that the difference Δp�ðEÞ ¼
p�ðE1Þ − p�ðE2Þ between geometric energies is related
to the difference ΔE ¼ E1 − E2 between energies by
Δp�ðEÞ≃ΔEþ½ð2−αÞ=α�jE1=E�j1−αðjE2j−jE1jÞ, where
we have used the fact that, for the levels 2S and 2P of
hydrogenic atoms, ΔE=E1 ∼ ΔE=E2 ≪ 1. The expansion
xa − 1 ¼ aðx − 1Þ þO½ðx − 1Þ2� then applies. Identifying
E1 ¼ E2S and E2 ¼ E2P with the energy of, respectively,
the 2S1=2 and 2P1=2 state and noting that both E2S and E2P
are negative, the relation between geometric and physical
Lamb shift is

Δp�ðEÞ≃ ΔEþ 2 − α

α
ΔE

����E2S

E�

����
1−α

: ð9Þ

Since the multifractal correction is going to be small, it is
safe to assume that Δp�ðEÞ≃ ΔE. Then, the second term in
(9) cannot be larger than the experimental error δE, which
establishes a lower bound for the energy E�:

E� >
�

α

2 − α

δE
ΔE

� 1
α−1jE2Sj: ð10Þ

The smaller the experimental uncertainty δE=ΔE and the
energies jE1;2j involved, the larger the lower bound on E�.
From Eq. (8), the relative experimental uncertainty on the
2S-2P Lamb shift of hydrogen is δE=ΔE ≈ 8.2 × 10−6 at
the 3σ confidence level, the same as for deuterium (for
helium, δE=ΔE ≈ 5.5 × 10−5). The energy of the 2S1=2
state is E2S ≈ −3.4 eV. Plugging these values into
Eq. (10), the right-hand side has a minimum at (again)
α ≈ 0.06, resulting in the absolute lower bound E� >
Emin ¼ 35 MeV. Consistently, jE2Sj=E� ≪ 1. For the pre-
ferred value α ¼ 1=2, the lower bound is much larger,
E� > Eðα¼1=2Þ

min ¼ 450 GeV. Interestingly, this is not far from
the energies currently probed in the LHC.
So far, we have treated the fundamental length, time, and

energy scales l�, t�, and E� in the binomial measure as
independent, and l� has not even appeared in the analysis.
A dramatic simplification of the theory takes place when all
these scales are related to one another by a unit conversion.
Here, the most fundamental scales of the system are those
appearing in the full measures (in position and momentum

space) with logarithmic oscillations, l∞, t∞, and E∞.
Identifying these scales with the Planck scales tPl ≈
5.3912 × 10−44 s, lPl ≈ 1.6163 × 10−35 m, and mPl ≈
1.2209 × 1019 GeV in four topological dimensions, we
postulate that E� ¼ tPlmPl=t� and t� ¼ tPll�=lPl. Then,
from the bounds t� < tmax and E� > Emin we have obtained
on t� and E�, we extract new bounds summarized in
Table I. For each part of the table (absolute bounds and
bounds with α ¼ 1=2), the “muon lifetime” row is
(tmax;lmax ≔ tmaxlPl=tPl, Ēmin ≔ mPltPl=tmax) while the
“Lamb shift” row is (t̄max ≔ tPlmPl=Emin, l̄max ≔ lPlmPl=
Emin; Emin). In general, the Lamb-shift bounds are much
stronger than those from the muon lifetime. For α ¼ 1=2,
the length and time scales cannot be larger than about
1016 − 1017 Planck scales.
These are the first stringent constraints ever obtained

on the scales of the multifractal theory with q-derivatives.
Compared with the only other extant limit t� < 106 s
from the variation of the fine structure constant at
cosmological scales [14] (in a different multiscale theory,
with weighted derivatives, but which has a very similar
scale hierarchy [7,13]), we have improved the experi-
mental bounds on t� by up to 33 orders of magnitude
and found brand new constraints on l� and E�. Since t�
and l� are much smaller than the characteristic scales of
the electromagnetic (tQED ∼ 10−21–10−16 s, lQED ¼ ∞),
weak (tweak ∼ 10−10–10−6 s, lweak ∼ 10−18 m), and strong
interactions (tQCD ∼ 10−23 s, lQCD ∼ 10−15 m), it is rea-
sonable to conclude that processes involving only such
forces cannot feel multiscale effects. It will be interesting
to explore other physical settings, in particular cosmol-
ogy, and see what experiments can further say about
multifractal geometry.

The work of G. C. is under a Ramón y Cajal contract and
is supported by the I+D grant FIS2014-54800-C2-2-P. D.
R. F. is supported by a GRUPIN 14-108 research grant from
Principado de Asturias.

TABLE I. Absolute and preferred (α ¼ 1=2) bounds on the
hierarchy of multifractal spacetimes with q-derivatives. Bounds
obtained only from experiments, without the theoretical input
of unit conversions, are in boldface. All figures are rounded.

Absolute bounds t� ðsÞ l� ðmÞ E� ðeVÞ
Muon lifetime <10−13 <10−5 >10−3

Lamb shift <10−23 <10−15 >107

α ¼ 1=2 t� ðsÞ l� ðmÞ E� ðeVÞ
Muon lifetime <10−18 <10−9 >102

Lamb shift <10−27 <10−19 >1011
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