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Summary. The air we breathe contains microscopic biological particles such as viruses, bacteria, fungi and pollen, some of 
them with relevant clinic importance. These organisms and/or their propagules have been traditionally studied by different 
disciplines and diverse methodologies like culture and microscopy. These techniques require time, expertise and also have some 
important biases. As a consequence, our knowledge on the total diversity and the relationships between the different biological 
entities present in the air is far from being complete. Currently, metagenomics and next-generation sequencing (NGS) may 
resolve this shortage of information and have been recently applied to metropolitan areas. Although the procedures and methods 
are not totally standardized yet, the first studies from urban air samples confirm the previous results obtained by culture and 
microscopy regarding abundance and variation of these biological particles. However, DNA-sequence analyses call into 
question some preceding ideas and also provide new interesting insights into diversity and their spatial distribution inside the 
cities. Here, we review the procedures, results and perspectives of the recent works that apply NGS to study the main biological 
particles present in the air of urban environments. [Int Microbiol 19(2): 69-80 (2016)]
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Introduction

Worldwide population is coarsely concentrated in urban 
environments where people are exposed to allergens and 
pathogens transported by the air like pollen, fungi, bacteria 
and viruses. Pollen and fungal spores may come from distant 
natural locations surrounding the metropolitan areas, while 
airborne active pathogenic bacteria and viruses come likely 
from closer sources inside the cities. We scarcely know the 

biodiversity present in urban areas and, strikingly, a reliable 
automatic system has not been developed yet in order to 
monitor the bioaerosols present in the air, partly because of 
the low concentration of the biological particles and sample 
collection difficulties [23]. Moreover, the different airborne 
biological particles are usually studied by different disciplines 
independently and, hence, we have a lack of information 
concerning the existence of relationships about their relative 
abundance or fluctuations to each other. 

During the last years, metagenomics have increased 
significantly our knowledge on the biodiversity in every 
environment compared with conventional methods. Current 
technologies in sequencing are not restricted to bacteria, so 
any biological sample with a complex mixture of organisms 
can be analyzed. Thus, next-generation sequencing (NGS) 
offers an interesting alternative to study the metropolitan 
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atmosphere and uncover the real diversity present in the air. 
Metagenomics and the technologies related have simplified 
the steps required to characterize a particular environment 
like the urban air (Fig. 1). Here, from sample collection to 
taxa characterization, we review the current knowledge about 
airborne biodiversity in urban environments from DNA 
sequencing-based studies. 

Sampling procedures in NGS studies 
applied to urban atmosphere

Traditional studies in microbiology for airborne bacteria 
and fungi are usually culture-based methods, whose bias 
concerning to biodiversity is widely known. Although several 
commercial devices are available, they are usually designed 
to fulfill air control legislation indoors, with fixed times and/
or volumes to sample. Sometimes it is the collection surface 
that determines these factors, like agar media, which tent to 
dehydration. Unfortunately, and according to our estimations, 
higher sampling volumes and times than those preselected 
in these devices may be required to study some biological 
particles present in the outdoor atmosphere by Next-
Generation Sequencing (NGS) [55]. 

In addition to vacuum filtration used in outdoor urban 
and also non-urban areas [8,9,18,51,70], most metagenomic 
studies conducted in metropolitan environments employ 
Particulate Matter (PM) collectors, as those operating in air 
quality monitoring stations [7,10,14,25,56] (Table 1). The 
particles are harvested in fiber filters at flows >200 l/min and 
the DNA is subsequently extracted. Some samplers employed 
typically in aerobiological studies for visual fungi and pollen 
identification (Hirst-type spore trap, Fig. 2) have been also 
recently tested in NGS studies by some authors including us 
[27,43]. The particles are collected on an adhesive tape and 
the airflow rate is significantly lower than the formers (ca. 10 
l/min), but closer to human inhalation rate. 

Thus, solid surfaces seem preferable to collect airborne 
biological particles when DNA-sequencing technologies 
are applied in urban environments. Only a few works have 
employed liquid collection [20,74], likely because water-based 
buffers tend to evaporate quickly, restricting the airflow rate 
and sampling time. However, new devices as the Spin-Cyclon 
used by Yooseph et al. [77] look an interesting option, with 
an airflow rate of 450 l/min. Fahlgren et al. [17] performed 
a study comparing the results obtained from three different 
devices (a modified impactor, a liquid impinger, and a Teflon 
membrane filter), concluding that there are no significant 

differences on the bacterial diversity and dominant species 
based on 16S rRNA sequences analyses. However, Hoisington 
et al. [33] conducted a similar survey indoors employing and 
comparing diverse air samplers, finding significant disparities 
in the OTUs of bacteria and fungi detected by each device. 
Thus, more studies analyzing the concordance between the 
results of different sampler-types for NGS analyses and also 
for different biological particles should be performed to 
confirm and standardize the sampling methodology. 
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Fig. 1. Workflow scheme for metagenomic studies applied to air samples 
designed for the Program AIRBIOTA-CM.
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In addition to the variety in sampling devices, no consensus 
exists about the volume of air to analyze. Strikingly, works 
applying NGS to urban areas have employed air samples that 
range from 2.5 to 5000 m3 (see Table 1). Fahlgren et al. [18] 
for bacteria, and Fierer et al. [20] for both bacteria and fungi, 
were able to performed microbial identification by cloning 
the DNA collected in air samples of only ≤3 m3. Less than 
10 m3 are necessary to conduct high-throughput sequencing 
according to the data provided by Kraaijeveld et al. [43] and 
Woo et al. [75], who employed different samplers and analyzed 
airborne eukaryotic organisms. In regards to viruses, Whon 
and colleagues [74] were able to carry out a metagenomic 
study with 54 m3 of air in the near-surface atmosphere. On the 
contrary, Yooseph et al. [77], despite the fact that they sampled 
large volumes of outdoor air (5900 m3 at the 22nd floor air, 
101 m above street level in Midtown Manhattan, New York 
City) did not obtain enough DNA, highlighting the influence 
of the altitude on airborne biological particles abundance.

Diverse sampling times have been also selected for each 
author, without any correlation with the final volume of air 
collected (see Table 1). Consequently, each work analyzes 
specimens from different devices, with different volume 
collected and different times sampled, what may lead the 
results between studies to differ, especially regarding the 
minor representatives of the airborne communities. 

As we previously reviewed [55], biological particles 
abundance and diversity vary significantly across the year 
and they are also susceptible of quick changes (in days or 
even hours). Therefore, sampling volume and time are two 
variables to consider in order to obtain a representative sample 
of the “airbiota” in a certain area, and it may be necessary to 
modify these parameters throughout the time and depending 
on the purposes of the study. 

DNA extraction

In addition to the different methodology for sampling, 
the DNA extraction procedure is something to take into 
account. Quality and high concentration are desirable for 
NGS analysis but difficult to obtain when samples come 
from poorly inhabited environments like the air. Some 
studies comparing different methods suggest that there are 
remarkable differences regarding yield and purity, which 
could bias the further analysis [30], although it has been 
also exposed that DNA yield does not always correlate with 
differences in microbial diversity after the analysis [78]. The 
debate is even more controversial regarding DNA extraction 

for viral metagenomic studies because of the difficulty of the 
procedures for purifying these organisms [5,72].

While some traditional methods (phenol:chloroform 
extraction or CTAB procedure) are still in use to study 
airborne microorganisms [18,51,63,74], the tendency is to 
incorporate commercial DNA purification kits when NGS 
technology is applied [4,7,9,10,68,70,76] (see Table 1). 
Nowadays, commercial kits provide similar quality than 
handling methods, saving time and preventing manipulation 
issues. A common factor is to include mechanical disruption 
such as a bead-beating step in addition to chemical disruption 
[78]. Accordingly, Jiang et al. [36] have recently described a 
protocol for purifying DNA from particulate matter to identify 
airborne microorganisms by metagenomics, which includes 
the use of a commercial kit for the DNA extraction with some 
modifications.

Nonetheless, one remarkable conclusion from Hart et al. 
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Fig. 2. (A) Volumetric Hirst-type spore trap for fungi and pollen collection 
employed in aerobiological studies placed on the roof of the Higher 
Technical School of Industrial Engineering, Technical University of Madrid 
(Madrid, Spain). (B) Agarose gel showing the results of the PCRs to detect 
the DNA from different groups of organisms obtained with such collector 
after sampling for 7 days (50 m3) in April 2015 (unpublished data from the 
Program AIRBIOTA-CM).
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[30] is that the method for DNA extraction must be amended 
for each case. This is particularly important when we require 
the characterization of different types of organisms (with their 
physical and chemical particularities) coming from a complex 
habitat like urban air.

Next-Generation Sequencing (NGS)

Clinical and environmental samples containing a complex 
combination of organisms (viruses, archaea, bacteria, fungi, 
animals and/or plants) can be currently analyzed at once 
thanks to metagenomics, saving time and avoiding the 
previous bias of culturing. Traditional studies in aerobiology 
can also take advantage of this new branch of genomics to 
identify fungi and plants that are hardly assigned to low 
taxonomic levels (genus or species). Moreover, this novel 
methodology is particularly interesting for those unculturable 
organisms or obligate-intracellular parasites such as viruses 
or zoonotic pathogens from the genera Rickettsia, Coxiella 
or Chlamydia. 

Although some recent DNA-based identification studies 
still apply traditional molecular stages (cloning, Sanger 
sequencing of RFLPs, etc.), current high-throughput DNA 
sequencing technologies permit to skip these steps. 454 
pyrosequencing (Life Science, Roche) was the pioneer 
platform for the so-called next-generation sequencing 
(NGS). While it is still in use, more recent platforms as 
Illumina (MiSeq/HiSeq), Ion Torrent/Proton (ThermoFisher 
Scientific), MinION (Oxford Nanopore Technologies) 
or PacBio RS system (Pacific Biosciences) have quickly 
replaced the former, improving the cost, timing and reliability 
[26]. 

Two main approaches exist in environmental NGS studies:
• Targeted Amplicon Sequencing (TAS). This strategy 
implies the selection of a target region of the DNA to 
analyze. Any region can be chosen but it is usually 
one present in all the organisms to study, especially in 
biological diversity surveys (16S rRNA gene for bacteria 
or 18S rRNA gene/ITS for eukaryotic organisms). 
The technique requires a previous PCR amplification 
step by using specific primers for the preferred region. 
“Universal primers” have been described for each group 
of organisms (archaea and bacteria [2], fungi [67,73], 
eukarya [35], plants [13,34]), and the use of degenerated 
oligonucleotides reduces the bias for sequence poly-
morphisms. Unfortunately, there is always a fraction 

of sequences that are amplified with less efficiency, so 
some groups of organisms can be underestimated or 
undetected while others are magnified, sloping the relative 
abundance. Furthermore, this methodology is limited for 
viral identification because these organisms do not share 
any common marker gene (such as 16S rRNA in bacteria 
or 18S rRNA in eukaryotes), so a shotgun approach is the 
only way to uncover viral communities [64,74]. Despite 
these limitations, targeted sequencing is currently widely 
adopted for biological diversity characterization.

• Shotgun metagenomics (see Sharpton [69] for a 
full review). The entire DNA present in the sample is 
sequenced without specific-region enrichment, reducing 
the bias introduced in the other modality. Although 
bioinformatics analyses after sequencing are challenging, 
the results from this strategy include taxonomic 
biodiversity (mainly from ribosomal DNA fragments) and 
biological functions (from DNA coding sequences). This 
approach, frequently used for whole genome sequencing 
(WGS), is especially interesting for assembling genomes, 
functional metagenomics, viral identification and global 
biome characterization, providing also absolute abundance 
information. 
In regards to urban environments, far from exclusive, both 

approaches are complementary, offering critical knowledge 
for results interpretation. However, because of the cost, 
the difficulties to obtain enough DNA from some areas and 
the complexity of the bioinformatics analyses for shotgun 
analyses, TAS is the favored strategy to study microbial 
communities in urban airborne spaces (see Table 1).

Specific marker genes for sequencing-
based analyses

Although 16S rRNA gene (SSU) is widely accepted as a target 
for bacterial identification in metagenomic studies, one issue 
that remains controversial is the region to sequence to acquire 
the best representation. Ideally, the complete gene should 
be sequenced to obtain accurate taxonomic assignments. 
Since the diverse hypervariable regions present in SSU show 
different variability they provide different level of taxonomic 
discrimination [50]. Several studies involving direct cloning 
of the 16S rRNA gene from airborne microorganisms were 
published between 2008-2013 [17,18,20,58,60,61]. Universal 
primers 27F-1492R encompassing V1-V8 regions of the 16S 
rRNA [45] were very suitable for these analyses, providing 
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the first results extracting the microbial DNA directly from 
the collection surface. However, the current NGS tendency 
is to analyze the shortest length necessary to obtain good 
taxonomic identification, reducing the cost for sample and 
time for further bioinformatic analyses [26,42].

Accordingly, fragments comprising one or several regions 
within V1–V5 hypervariable span have been successfully used 
for both environmental and clinical studies [42,47,50,52], 
discarding V6–V9 regions for providing less resolution. 
Chakravorty et al. [12] and Salipante et al. [66] have 
demonstrated that the V1–V3 regions are more suitable for 
clinical studies, distinguishing important pathogenic bacterial 
species from the genera Staphylococcus, Mycobacterium, 
Streptococcus or Haemophilus. In recent published works 
using NGS, the amplification of fragments covering total or 
partial V1–V4 regions is favored to study airborne bacterial 
communities in urban environments (Table 1).

Although the results from any of these regions may be 
acceptable within the same study, a global consensus about 
the specific hypervariable regions to analyze is required for 
comparing among different studies in order to extract correct 
conclusions.

Similar to bacteria, ribosomal RNA is the favorite region 
for fungal taxa identification. Three regions: LSU (25S-28S), 
SSU (18S) and internal transcribed spacers (ITS1 and ITS2), 
are the most popular options for DNA sequence-based studies, 
being the latter (ITS2) proposed as universal barcode marker 
by the Fungal Barcoding Consortium [67]. Only a handful 
of studies performed in urban environments have analyzed 
fungal communities by NGS technologies (Table 1). Some 
authors have used LSU regions, domains D1 and/or D2 [56]; 
and some others the18S and/or ITS fragments [14,70,75,76].

Again, this dichotomy in the selected region makes more 
difficult to compare among different studies and extract 
significant conclusions, since the results obtained from LSU 
and ITS may not match completely [49].

Defining a DNA barcode for plants is a challenging task 
and the debate is still on. Starting with the genomic DNA 
region ITS2 [13,73], latest reports are focused on plastid 
genes such as rbcL, matK, trnH-pbsA, trnL or a combination 
of two for obtaining an undisputable taxonomic identification 
at species level [6,34]. Although affordable for individual 
analyses, current NGS platforms cannot integrate two distant 
markers at the same time. Sequencing-based identification 
is an attractive approach for pollen identification since 
morphological characters are not always sensitive enough to 
distinguish genus or species by microscopy (the plant families 
Poaceae or Chenopodiaceae, for instance). Just a few works 

have been recently published evaluating NGS technologies for 
plant identification using trnL as gene marker [43], ITS2 [40], 
or rbcL [24,31], being the former the only one that analyzes 
urban airborne samples and generates promising results for 
using DNA sequence-based strategy as an alternative to 
traditional methods for pollen identification.

As pointed above, viruses do not possess common 
sequences to use as a marker to design universal primers, 
so the shotgun approach must be adopted. In addition, the 
small genome size of viruses is another limiting factor for 
recovering enough DNA to carry out the analyses. Thus, 
previous random amplification procedures as Multiple 
Displacement Amplification (MDA) [46], or Sequence-
Independent Single-Primer Amplification (SISPA) [38], are 
usually performed to increase the quantity of DNA or RNA, 
respectively. However, both techniques have some important 
biases [46,65]: MDA amplifies more efficiently circular 
DNA molecules than linear ones; and the SISPA method has 
a biased amplification that depends on the sequence of the 
primer used. Unfortunately, the best way to avoid such biases 
is, so far, to obtain sufficient viral biomass to sequence the 
sample directly. As a consequence, only Whon and colleagues 
[74] have confronted a complete airborne study of the viral 
communities in different locations in Korea using shotgun 
metagenomics, while two others surveys conducted in urban 
areas detected some viral sequences but not as a main goal 
[4,11].

Bioinformatics

Open-source programs and web-based tools for bioinformatics 
processing have been strikingly promoted by NGS technology. 
A complete review about the analytical tools applied in DNA 
sequence-base studies was published by Kim and colleagues 
[41]. MEGAN, RDP Classifier, Mothur, QIIME or Muscle are 
some examples of software suites frequently used to process 
high-throughput sequencing data in addition to BLAST. Some 
of them require an open-access database to assign taxonomic 
affiliations to the sequences. Greengenes for bacteria, UNITE 
for fungi, and Silva for bacteria and eukarya, are the most 
popular curated databases for stand-alone workflow, all relying 
on the sequences and annotations submitted to GenBank and 
regularly updated. 

After the bioinformatics processing, DNA sequences 
are assigned to taxonomic classification, providing the 
information necessary to characterize the diversity of each 
biological community in our samples.
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Lessons from DNA-sequencing studies 
in urban spaces

Abundance of microorganisms in the air. It is 
well characterized that some biological entities present in the 
air suffer important seasonal fluctuations as the noticeable 
variation in abundance and composition of the pollen grains 
throughout the year [28]. 

Likewise, culture-dependent studies performed in urban 
areas suggest that fungi and bacteria are, in general, more 
abundant in summer than in winter [19,37,54]. Recent 
culture-independent studies are in concordance with these 
results. Woo et al. [75] described that there is a peak of 
DNA concentration in the air in urban environments during 
summer season (June to September) independent on rural or 
urban environments. Consistently, some other authors have 
used different approaches as DAPI [10], shotgun sequencing 
[4] or qPCR [7] to show that airborne bacteria abundance is 
higher in summer, only outnumbered in spring by the group 
Plant-Fungi [4]. Moreover, both Dannemiller et al. [14] and 
Fröhlich-Nowoisky et al. [22] also agree on the fact that 
fungal richness is higher in spring, being reduced in winter.

However, Fierer et al. [20] showed that some airborne 
organisms are submitted to more rapid variations in 
metropolitan areas. In this study, they observed that the 
abundance of bacteria and fungi changes significantly within 
a period of 10 days, based on cloned sequences. Similar 
results were obtained by Shin et al. [70] and Oh et al. [56] 
using NGS. Furthermore, some culture-based studies have 
reported that daily precipitations can affect fungal abundance 
during the following days [32], and even diurnal oscillations 
for bacteria have been described [19,48,79]. Thus, some 
divergences between studies may be obtained depending on 
environmental factors as the weather or the time of day when 
the sampling is performed.

Relative abundance of different taxa. Contrary to 
culture-based studies in which spore-forming Gram-positive 
bacteria (e.g. Bacillus, Micrococcus) are usually the most 
abundant group identified outdoors [44,48,79], NGS has 
proved this is not necessarily real, showing an unexpected 
diversity of Gram-negative bacteria [18,25,75,77]. A general 
conclusion (independent on shotgun or TAS approaches) 
is that the phyla Actinobacteria and Proteobacteria are the 
most abundant in urban outdoor environments, followed by 
Firmicutes and Bacteroidetes [7,18,21,25,70,75].

Interestingly, controversial results using NGS have been 
found within the fungal kingdom. It is unclear which group is 

more abundant in metropolitan spaces. Several authors have 
reported that the abundance of Ascomycetes in metropolitan 
spaces is greater than Basidiomycetes, and they are at all 
seasons [14,56,75]. The opposite is shown by other authors 
like Shin et al. [70] and Pashley et al. [57], supported by 
morphological identification, and these contradictory results 
are independent on methodology (cloning, TAS, shotgun) or 
the DNA region considered (LSU, ITS or 18S). However, 
as underlined above, some works suggest that significant 
changes in fungal abundance may occur within short periods 
of time (days or even hours). Since most of NGS analyses 
only register a few isolated days, both conclusions may be 
plausible. To shed some light on the matter, some morphology 
and culture-based surveys performed systematically along the 
year concluded independently that Ascomycetes spores are 
the main group in urban areas, being Cladosporium the most 
abundant fungal spore [15,16].

Additionally, it is widely accepted that Dothideomycetes 
(in which Cladosporium is included) is the most represented 
taxa in Ascomycetes, as Agaricomycetes is within the 
Basidiomycetes group [14,70,76]. Moreover, a positive 
correlation has been observed between relative humidity 
and Basidiomycetes spores. Analyzing the LSU region of the 
fungi present in urban atmosphere, Pashley and colleagues 
[57] found an increment of these microorganisms during wet 
days, what partly could explain the differences among studies. 

Regarding airborne viruses, Cao et al. [11] and Be et al. [4] 
have been able to detect viral sequences from urban airborne 
samples, mainly bacteriophages and some human-related 
viruses as herpesviruses and Adenovirus C. Additionally, 
most of the viruses identified by Whon and coworkers [74] 
in the city of Korea were related to geminivirus, circovirus, 
microvirus, nanovirus and bacteriophages (Caudovirales). 

The influence of meteorological factors is a challenge to 
address in urban environments employing NGS technologies. 
While traditional studies agree temperature and wind positively 
correlate with an increment of bacterial abundance according 
to counting and culture-based results [29,53], some NGS 
studies found no correlation with meteorological parameters. 
Shin et al. [70] did not find a direct correspondence between 
the abundance of microbial taxa and temperature or relative 
humidity during the study in childcare facilities (indoors and 
outdoors), neither did Bowers et al. [9] in bacterial composition 
from different land-use sites. Seasonal differences in microbial 
communities have been also detected [10,18,25,74], however, 
several parameters change altogether throughout the year so it 
is difficult to analyze the influence of each one separately.

The attempts to detect pathogenic organisms and 
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allergens using high-throughput sequencing technologies 
deserve a special remark. During the study conducted by 
Woo et al. [75] using TAS approach, they were capable of 
identifying members of the genera Legionella, Salmonella, 
Staphylococcus (potentially dangerous), in addition to 
Clostridium perfringens and Escherichia coli O157:H7 
sequences. The same tactic was followed by Shin et al. [70] to 
detect fungal allergens such as Cladosporium and Alternaria 
both indoors and outdoors. However, the best strategy may 
be shotgun metagenomics, employed by Be et al. [4] and Cao 
et al. [11]. Thus, sequences from Streptococcus pneumoniae, 
Klebsiella penumoniae, Staphylococcus epidermidis and fungi 
Alternaria, Cladosporium, and Aspergillus fumigatus can 
be detected in the same analysis and additional information 
about absolute abundance is provided.

Differential distribution of microorganisms in 
urban spaces. One interesting subject is whether particular 
places in the city have singular microbial communities and its 
correlation with anthropologic activities. Prussin et al. [62] 
studied virus-like and bacteria-like particles (VLPs and BLPs) 
concentration indoors and outdoors at different facilities, 
showing that the air composition outdoors (with higher VLPs 
counts) is the main source influencing the concentration of the 
indoor particles, both VLPs and BLPs. Similarly, Amend and 
coworkers [1] studied the fungal presence at different sites 
and countries, analyzing the ITS sequences extracted from 
dust samples. Besides a latitude connection, they concluded 
that fungal communities indoors are highly influenced by the 
outdoor environment, not finding differences among nearby 
buildings with diverse human activities. Some comparative 
studies performed at schools and childcare facilities support 
the idea that fungal populations are similar indoors and 
outdoors, while bacterial diversity differs due to human 
occupancy [63,70]. Thus, amplicon-sequencing results have 
shown common bacterial communities in both environments 
(indoors and outdoors) with species from Rhodobacteria and 
the genera Sphingomonas and Pseudomonas, but an increase 
in the relative abundance of human skin-associated bacteria 
indoors: Staphylococcus, Corynebacteria or Propionibacteria 
[18,63,70]. 

It has been also proposed that areas with high traffic 
density or sewage pollution have much higher concentrations 
of airborne bacteria [19,29], suggesting a strong influence of 
the antropogenic activities as a source of particular airborne 
biological communities. Accordingly, a metagenomic study 
conducted by Yooseph and colleagues [77] confirmed a 
common bacterial population in urban atmosphere with 

remarked abundance of some genera depending on the use 
of the building: Klebsiella and Bordetella in hospitals or 
marine-related Plantomyces, Pirellula and Synechococcus 
in piers. Alike, viral communities in the air of Korea can be 
distinguished based on the land use according to the study of 
Whon et al. [74].

Barberán and colleagues [3] performed a large-scale 
study collecting samples over a thousand houses in USA and 
evaluated dust-associated microorganisms by 16S and ITS 
analysis. Although they found that microbial communities 
compositions were highly variable across the United States 
(explained by climatic and soil variables), their results 
pointed out that microbial communities in urban air tend to 
homogenization, with less variability compared with rural 
areas (in accordance with Bowers et al. [9]). Additionally, 
Prussin et al. [62] observed that the concentration of VLPs 
and BLPs was similar between different city locations, 
supporting that the air is, in fact, a homogeneous fluid 
distributing microorganisms through all the spaces in the city 
and providing a common base of microbial diversity. 

Nonetheless, despite its singularities as a microbial biome, 
urban environments are susceptible to external incomes 
from sporadic events like dust storms. Several studies have 
analyzed the biological diversity associated to these particles 
coming from long-distance locations as those conducted by 
Katra et al. [39] and Maki et al. [51]. Though performed in 
different regions, they agree the richness of DNA sequences 
in the air belong to prokaryotes and eukaryotes during these 
events is significantly increased with uncommon taxa that 
usually correlates with the soil and vegetation of the dust 
origin. 

Taken all these studies as a whole, they clearly highlight 
the complexity of the urban airborne dynamics and the 
requirement to normalize the study procedures to reach a better 
comprehension of microbial communities in metropolitan 
environments. In perspective, these results remark the critical 
importance of the sampling organization (time, volume, 
synchronized sampling, etc.) and additional annotation 
regarding meteorological factors, human activity, microbial 
sources, etc. in order to obtain conclusive and comparable 
results.

Conclusions and final remarks

Recent studies have shown unexpected roles of the biological 
particles in the air, proving how important is to get a better 
knowledge of this habitat for environmental and clinical 
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reasons. The first challenge to face during the characterization 
of these airborne particles using NGS technologies is the low 
abundance of them and, as a result, low amount of DNA. Two 
approaches can be adopted to solve this problem: (i) to collect 
large volumes of air in a short time by using high volume 
cyclone samplers-type; (ii) to sample at lower flows but 
longer times. Assuming that the abundance and diversity of 
bioaerosols can shift very fast, the second option seems more 
appropriate to obtain a more representative sample. Even 
so, the first approach can be suitable for detecting specific 
pathogens or allergens in a particular site. Additionally, 
sampling at different weeks in a season can provide significant 
information to get a better characterization of the airborne 
biological diversity in a particular location. Either way, 
sampling methodology and devices should be adapted to the 
aims of the study.

Until shotgun metagenomics becomes economically 
more affordable, TAS is still a good proxy despite the loss of 
functional genes information and absolute abundance. V1-V4 
regions within the 16S rRNA gene for bacteria and ITS2 for 
fungal propagules and spores are the most favored regions for 
identification and taxonomic assignation in airborne studies 
(see Table 1). In regards to pollen/plant identification, the 
discussion about the DNA barcode is still open. Up to now, 
Kraaijeveld and colleagues [43], using trnL as gene marker, 
have published encouraging results from metropolitan 
environments comparing with morphological determination. 
We have also tested the 18S rRNA gene to perform similar 
assays [27], although poor resolution at genus or species level 
can be obtained from this marker. More recently, we have 
evaluated the resolution of ITS2, confirming that this region is 
more suitable as a genomic marker and overcome the trouble 
with 18S gene (unpublished data).

Currently, Illumina is the preferred platform for high-
throughput DNA sequencing in most researches. However, 
technical procedures are evolving and advancing strikingly 
fast. Ion Torrent, PacBio RS system or MinION are very 
promising platforms but they still need to prove their value in 
the environmental field. 

The studies under reviewed suggest that microbial 
diversity of urban environments holds singular features, 
as a particular biome. Fungal, viral and majorly bacteria 
communities are under the influence of human presence and 
the building use [63,70,74,77]. Both culture-dependent and 
-independent studies indicate that the spring and summer 
seasons correlate with higher abundance and richness of 
microorganisms in the air and, as a result, an increase in 
DNA concentration. However, some apparent contradictions 

can be found, especially when the abundance of organisms 
from different taxa are examined. The abundance of some 
biological entities in the air like bacteria or fungi can shift 
quickly [20,48,79]. Since most NGS studies are usually 
restricted to a few discrete days or even a few hours, some 
disagreements may be expected. Consequently, the application 
of combined techniques (sequence-based and traditional) to 
solve the discrepancies is the best strategy until sequencing 
becomes complete trustworthy, and standard procedures are 
established. In accordance, NGS yields an overwhelming 
amount of data, which is processed essentially by computers. 
Reviewing the results to confirm they are plausible is essential 
and a multidisciplinary collaboration among microbiologists, 
botanists and bioinformaticians is highly recommended to 
curate the NGS outcomes.

On the other hand, culture-independent studies have 
proved to be useful to detect allergens and airborne pathogens 
[4,11,70,75]. However, one intrinsic weakness of DNA 
sequencing methods is that it cannot be distinguished between 
alive and dead, or complete and fragmented biological particles. 
For pollen and fungal allergens, even fragments can induce 
clinical symptoms when a threshold is overpassed [71]. In 
contrast, pathogenic fungi, viruses, bacteria or resistant spores 
usually need to be metabolically active to induce any disease. 
In both cases, any approach for quantification may be quite 
helpful. The results obtained from TAS permit to calculate 
relative abundance but we must take into consideration that 
it is based on several prior PCR amplifications. Although 
the number of cycles of these reactions is kept at minimum 
to keep the proportional ratio, the conclusions on relative 
abundance must be carefully considered. Moreover, the 
values of abundance can be biased for the number of copies 
of the selected DNA region. Several fungal genera (e.g. 
Alternaria, Leptosphaeria, Stemphylium, Pleospora) produce 
multicellular spores, so they contain several copies of genomic 
DNA, magnifying their representation. A similar effect exists 
in pollen grains from polyploid species when sequences from 
genomic DNA are chosen (SSU, LSU or ITS). Likewise, 
plastid sequences are controversial because of the number of 
chloroplasts that can be found in pollen grains or if they are 
even present in the pollen of all species [6,24,43]. As a result, 
DNA-based scores compared with morphology surveys might 
differ, so novel and unexpected results must be supported by 
other methods.

Some attempts to infer absolute abundance from the 
sequencing outcome have been proposed by some authors 
[14,59], and recently the RDP Classifier have implemented an 
algorithm with a gene-copy-number adjustment for bacteria 
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and fungi to make the analyses more quantitative. Yet, more 
studies evaluating the effectiveness of these approaches are 
needed.

Overall, high-throughput sequencing is an outstanding 
technology with an extraordinary potential to come. Although 
some adjustments are needed to apply this methodology to 
metropolitan environments, its qualities for easy identification 
of any type of organism at once, flexibility to adapt to 
specific goals and its potential for pathogens and allergens 
identification make NGS a promising tool for real-time 
bioaerosols monitoring and revealing the air genome. 
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