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Abstract. 1 

The infection cycle of filamentous fungi consists of two main stages: invasion 2 

(growth) and dispersion (development). After the deposition of a spore on a host, 3 

germination, polar extension and branching of vegetative cells called hyphae allow 4 

a fast and efficient invasion. Under suboptimal conditions, genetic reprogramming 5 

of hyphae results in the generation of asexual spores, allowing dissemination to 6 

new hosts and the beginning of a new infection cycle. In the model filamentous 7 

fungus Aspergillus nidulans, asexual development or conidiation is induced by the 8 

upstream developmental activation (UDA) pathway. UDA proteins transduce 9 

signals from the tip, the polarity-site of hyphae, to nuclei, where developmental 10 

programs are transcriptionally activated. The present review summarizes the 11 

current knowledge on this tip-to-nucleus communication mechanism, emphasizing 12 

its dependence on hyphal polarity. Future approaches to the topic will also be 13 

suggested, as stimulating elements contributing to the understanding of how apical 14 

signals are coupled with the transcriptional control of development and 15 

pathogenesis in filamentous fungi. 16 
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1. Introduction: Life-cycle characteristics behind the impact of filamentous fungi. 1 

 Filamentous fungi are widely used in industry and medicine as a source of 2 

enzymes, antibiotics or immunosuppressants (Gutierrez-Correa et al. 2012). However, 3 

they constitute one of the most threatening groups of fungal pathogens, severely 4 

affecting animal and plant species as well as the production and quality of grain and 5 

fruits (Bebber et al. 2013; Fisher et al. 2012). Filamentous fungi grow fast and 6 

efficiently on a variety of substrates and their genomes also encode information for 7 

disseminating and responding to environmental perturbations (Adams et al. 1998).  8 

The cell-type that best represents these traits is the vegetative hypha. After its 9 

deposition on a substrate and a period of isotropic growth, a spore from the model 10 

fungus Aspergillus nidulans establishes a polarity site and germinates (Figure 1A). 11 

Spore germination is subjected to environmental determinants such as light, conidial 12 

density or the presence of 8-carbon oxylipins (Braga et al. 2015; Herrero-Garcia et al. 13 

2011; Rohrig et al. 2013). Spore germination and germ-tube extension generate 14 

syncytial (multinucleated) and cylindrical cells with a slightly tapered apex. Hyphae are 15 

continuously polarized and apical extension is mediated by the addition of new 16 

plasmatic membrane and cell-wall materials that are transported from distal regions to 17 

the subapex on microtubules and then to the apex on actin tracks (Riquelme 2013; 18 

Takeshita et al. 2014). Hyphal growth and branching generate a complex network of 19 

interconnected cells called mycelium, which constitutes the main structure of the 20 

invasive phase (Figure 1A). A combination of external (air, light or stress) and internal 21 

(metabolites) cues causes in A. nidulans the induction of asexual development 22 

(Etxebeste et al. 2010; Rodriguez-Urra et al. 2012), resulting in the production of 23 

structures called conidiophores (Figure 1B; see below). Each conidiophore bears 24 

thousands of asexual spores or conidia, metabolically latent mitospores characterized by 25 
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low water content, arrested metabolism and the presence of mycotoxins (Adams et al. 1 

1998). Conidia production is a key step of fungal infection because it permits dispersal 2 

and the rapid propagation of mycoses (Gregory 1966). The numerous mitotic divisions 3 

required for conidia production have also been linked to an increased mutation supply 4 

and, thus, the emergence of strains resistant to fungicides (Zhang et al. 2015). 5 

Aspergillus nidulans in particular and filamentous fungi in general are also used as 6 

model organisms for the study of the mechanisms that control cell reprogramming and 7 

specialization in eukaryotes. Due to the relevance of asexual reproduction as a 8 

developmental program and its importance in the dissemination of mycoses, this review 9 

will summarize the knowledge on the signal transduction mechanism that genetically 10 

reprograms A. nidulans hyphae from the invasive (vegetative) to the dispersion 11 

(conidiation) mode. 12 

2. A combination of growth and budding events drives conidiophore development 13 

in Aspergillus nidulans. 14 

 Apparently, vegetative growth and conidiation are sequential and mutually 15 

exclusive processes separated in time by the reception and transduction of the induction 16 

signal. However, a detailed analysis of conidiation shows that its control is inexorably 17 

dependent on polar growth. During conidiophore development apical growth events are 18 

combined with budding processes (Mims et al. 1988) (Figure 1B). A thick-walled cell 19 

or foot-cell is initially generated at hyphal compartments distal from the growing tip. 20 

The foot-cell constitutes the mainstay of conidiophores. A branch called stalk emerges 21 

from the foot-cell and elongates through apical extension until its tip begins to swell, 22 

forming the vesicle. After a series of nuclear divisions, a massive multipolar budding at 23 

the dome of the vesicle generates metulae, uninucleated sterigmata which grow apically 24 

until they bud into phialides. This cell-type gives rise to long chains of conidia. The 25 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 
 

generation of as many as sixty metulae from a single vesicle, budding of each one into 1 

two phialides and the production of up to a hundred conidia by each phialide permits the 2 

synthesis of more than 10.000 conidia per conidiophore, multiplicating the probability 3 

of a successful dissemination. 4 

The metula is probably the conidiophore cell-type that best represents the 5 

requirement of polarity during conidiophore formation. Although they normally bud 6 

into phialides, a reversion of the conditions that initially induced conidiophore 7 

development aborts metula-to-phialide transition, resulting in a miss-scheduled apical 8 

lengthening and the production of hyphae-like structures (Etxebeste et al. 2009). This 9 

observation demonstrated that the activation of conidiophore development is reversible 10 

and that the process is completed if the conditions that induced it prevail. The 11 

mechanism that executes budding or hyphal-like extension of metulae is completely 12 

unknown and revisiting A. nidulans mutants failing in metulae emergence, elongation or 13 

budding, such as abaA or hymA (Karos and Fischer 1996; Sewall et al. 1990) could 14 

provide key information. Some aberrant-metulae phenotypes correspond to mutations in 15 

genes coding for known regulators of polarity such as the Ras-GAP protein GapA, the 16 

polarisome component BemA or the GTPase RacA (Harispe et al. 2008; Leeder and 17 

Turner 2008; Virag et al. 2007). An analysis of the interaction partners of these proteins 18 

in vegetative hyphae and metulae or the comparison of the transcriptional/proteomic 19 

profiles between hyphae and dissected metulae could lead to the identification of 20 

transcripts/proteins differentially expressed and participating in the decision of budding 21 

metulae into phialides. The adaptation to A. nidulans of advanced proteomic and 22 

transcriptomic procedures such as those developed by Shi and colleagues or Teichert 23 

and coworkers can be useful in this approach (Shi et al. 2015; Teichert et al. 2012). 24 
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3. Apical control of conidiation and tip-to-nucleus communication in vegetative 1 

hyphae. 2 

 The morphological transformations described above are regulated at the 3 

molecular level by two pathways. To control the synthesis of the conidiophore cell-4 

types, genes from the central developmental pathway (CDP) establish multilayer 5 

regulatory mechanisms (Adams et al. 1998; Park and Yu 2012). brlA is the first CDP 6 

gene, coding for a C2H2 TF and illustrating the complex genetic and molecular control 7 

required for building such a specific structure as the conidiophore (Figure 1B). Several 8 

transcription factors (TF) bind brlA promoter and the presence of an upstream open 9 

reading frame (uORF) leads to two possible transcripts, brlAα and brlAβ, each one 10 

being required at different developmental stages (Fischer and Kues 2006; Han et al. 11 

1993). Feedback regulatory loops on brlA mediated by CDP TFs have also been 12 

described, refining the expression and activity of BrlA isoforms and informing about the 13 

completion of the process (Aguirre 1993; Ni and Yu 2007). 14 

 Since conidiation proceeds when environmental conditions inducing it 15 

predominate, a mechanism must guarantee that those signals are correctly transduced to 16 

brlA promoter. Upstream developmental activators (UDAs) perform this role and, thus, 17 

loss-of-function mutations in UDA genes yield undifferentiated masses of vegetative 18 

hyphae forming cotton-like colonies designated as fluffy (Cortese et al. 2011; Etxebeste 19 

et al. 2010; Wieser et al. 1994; Wieser et al. 1997) (Figure 1B and 1C). This aconidial 20 

phenotype is caused by a low and delayed expression of brlA. The application of current 21 

molecular and cellular biology techniques has furthered the establishment of a temporal 22 

framework for important UDA proteins and the assignment of specific subcellular 23 

compartments to their activity. In addition, it has shown that those UDAs take 24 

advantage of the polar growth machinery to perform their signaling and regulatory roles 25 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 
 

from the very beginning of the vegetative stage (Etxebeste et al. 2009; Herrero-Garcia et 1 

al. 2015). 2 

FlbB is a bZIP (basic leucine zipper)-type UDA TF essential for the induction of 3 

conidiation and constitutes the first known example of a TF locating at the tip of 4 

filamentous fungal hyphae (Etxebeste et al. 2008). Once polarity is established, FlbB 5 

accumulates at the tip of germlings, apically to the region of endocytosis and 6 

independently to the cell-cycle phase (Etxebeste et al. 2009; Perez-de-Nanclares-Arregi 7 

and Etxebeste 2014). The presence of FlbB also at the tip of growing metulae 8 

demonstrates its tight relationship with polarity. In mature vegetative hyphae, FlbB is 9 

detected in nuclei, with the highest concentration in the apical nucleus and steadily 10 

decreasing quantities in successive nuclei (Etxebeste et al. 2008). The selective green-11 

to-red photo-conversion of the apical pool of an FlbB::Dendra2 chimera (Etxebeste and 12 

Takeshita 2015; Perez-de-Nanclares-Arregi and Etxebeste 2014) and the subsequent 13 

detection of red fluorescence in nuclei demonstrated a tip-to-nucleus migration of FlbB 14 

(Herrero-Garcia et al. 2015). Therefore, apical localization is a pre-requisite for FlbB to 15 

become transcriptionally competent and efficiently induce brlA expression in nuclei 16 

(Momany 2015). Otherwise, conidiation is inhibited. 17 

 Different elements are required to target FlbB to its initial destination: the 18 

hyphal apex. Actin cytoskeleton plays an essential role in the transport from the 19 

subapex to the apex (Herrero-Garcia et al. 2015). The myosin molecular motor or 20 

additional proteins assisting this transport are completely unknown and proteomic 21 

approaches should be used in the future for their identification (number 1 in Figure 2). 22 

How FlbB reaches the subapex is an additional intriguing question since the addition of 23 

benomyl, a microtubule (MT)-destabilizing drug, to the growth medium does not inhibit 24 

its apical accumulation (Figure 2). MT-based anterograde transport of vesicles is the 25 
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main mechanism for feeding the subapex with plasmatic membrane and cell-wall 1 

materials, which are subsequently transported on actin filaments to the plasmatic 2 

membrane at the apex (Riquelme 2013). It could be hypothesized that FlbB could travel 3 

on a specific subpopulation of MTs less affected by benomyl addition, or that an FlbB 4 

subpopulation synthesized close to the tip could join directly actin patches (Manck et al. 5 

2015). However, the latter possibility would imply the transport of the flbB mRNA to a 6 

region close to the tip and it has been described that polarized transport of mRNAs in 7 

filamentous fungi and their localized or on-the-move translation are associated with 8 

endosome movement, which depends on MTs (Jansen et al. 2014). 9 

 Apical accumulation of FlbB depends on the bZIP transcriptional regulatory 10 

domain and the most C-terminal region (Herrero-Garcia et al. 2015). A fully conserved 11 

cysteine residue within the C-terminus apparently contributes to the acquisition of the 12 

three-dimensional structure required for anterograde transport. The presence within the 13 

central region of four conserved cysteine residues suggests that the C-terminal cysteine 14 

could determine the spatial conformation of FlbB through the formation of disulfide 15 

bonds with them, as occurs with Pap1, a TF that signals oxidative stress in 16 

Schizosaccharomyces pombe (Castillo et al. 2002). This possibility requires further 17 

analyses. 18 

Dimerization domains within bZIPs mediate the formation of complexes with 19 

other bZIP- or non-bZIP proteins, regulating its subcellular localization and activity 20 

(Schutze et al. 2008). The dimerization domain of FlbB is sufficient to establish an 21 

interaction with a second UDA protein, FlbE (Garzia et al. 2009; Herrero-Garcia et al. 22 

2015; Wieser et al. 1994). The absence of FlbE activity inhibits the apical accumulation 23 

of FlbB, dispersing it in the cytoplasm. Compared to the subapical accumulation 24 

observed when actin cables are destabilized, these results strongly suggest that FlbE not 25 
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only stabilizes FlbB at the tip but assist it in the anterograde transport to the apex 1 

(Herrero-Garcia et al. 2015) (Figure 2). Bioinformatic analyses on FlbE and its 2 

orthologs (Cortese et al. 2011) revealed the presence of conserved regions predictably 3 

involved in protein-protein interactions, post-translational modifications, targeting to 4 

subcellular compartments and signal recognition (our unpublished results). The 5 

determination of the role of these domains in FlbB/E transport and localization, their 6 

interaction, as well as the ability to induce conidiation will provide key information on 7 

how filamentous fungi locate proteins involved in signal transduction at the tip. 8 

 Although speculative, it is tempting to hypothesize with the reception of a signal 9 

at the apex, which would cause the modification and release of FlbB (number 2 in 10 

Figure 2). Proteins mediating the tip-to-nucleus migration of FlbB are completely 11 

unknown and proteomic approaches should be used for their identification (number 3 in 12 

Figure 2; see also next section). Nuclear accumulation of FlbB requires a bipartite 13 

nuclear localization signal (NLS) located close to the bZIP domain (Herrero-Garcia et 14 

al. 2015). Once in the nucleus, FlbB firstly induces the expression of a second UDA TF 15 

known as FlbD (Garzia et al. 2010). FlbD activity is essential for the activation of brlA 16 

expression and also for the completion of specific stages of sexual development 17 

(Arratia-Quijada et al. 2012; Garzia et al. 2010). Secondly, FlbB and FlbD bind to target 18 

sequences located in a region of 300nts within brlA promoter (number 4 in Figure 2) 19 

and the loss of FlbB-binding in the absence of FlbD activity suggests that both TFs 20 

cooperate in the transcriptional regulation of brlA expression (Garzia et al. 2010). 21 

However, the exact number and nature of target sequences within brlA promoter have 22 

not been determined yet. It is worth mentioning that these protein-DNA binding assays 23 

were performed using vegetative samples (absence of conidiation). This means that, 24 

under non-inducing conditions, UDAs are able to bind brlA promoter but that the 25 
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configuration of this transcriptional complex cannot trigger conidiation. Consequently, a 1 

dynamic functional relationship between FlbB and FlbD, modifications at the chromatin 2 

level and the requirement of additional proteins for brlA induction have been proposed 3 

(Canovas et al. 2014; Kwon et al. 2010). 4 

 The absence of the transcriptional activity of FlbB influences additional cellular 5 

processes, such as the expression of secondary metabolism genes or the modulation of 6 

the timing between sexual and asexual reproductive cycles (Oiartzabal-Arano et al. 7 

2015). Multiple studies have demonstrated that the balance between sexual and asexual 8 

development is controlled at different levels and through diverse mechanisms, such as 9 

the VeA complex (light reception and secondary metabolism), NsdD (repressor of brlA 10 

and activator of sexual devevelopment), OsaA and UrdA (activators of brlA and 11 

repressors of sex, acting downstream of VeA) or Ppo proteins (control of development 12 

by fatty-acid derivatives) (Alkahyyat et al. 2015; Bayram et al. 2010; Bayram and Braus 13 

2012; Calvo 2008; Lee et al. 2014; Oiartzabal-Arano et al. 2015; Tsitsigiannis et al. 14 

2005). In conclusion, filamentous fungi invest multiple genetic resources in a 15 

continuous crosstalk between developmental programs, inhibiting one of the pathways 16 

when the other is induced. 17 

4. Concluding remarks and future prospects. 18 

The induction of conidiation in Aspergillus nidulans requires a specific 19 

subcellular distribution of two of its regulators, FlbB and FlbE. Most probably, the 20 

underlying signaling and transcriptional regulatory mechanism will be sensitive to any 21 

perturbation altering their localization or affecting the directional movement of FlbB 22 

between the tip and nuclei. Two lines of research should be considered for the future. 23 

On the one hand, a deeper understanding of intracellular transport processes is 24 

demanding to decipher how signaling molecules such as FlbB are located at the tip, or 25 
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how the bZIP TF migrates to nuclei. Theoretically, any genetic defect causing a 1 

reduction in the apical accumulation of FlbB will inhibit its transcriptional activity and 2 

the ability to produce asexual spores. We hypothesize two groups of proteins 3 

participating in such mechanisms: those with a general role in the transport of cargoes 4 

(such as cytoskeletal or motor proteins) and those specific players coupling FlbB to the 5 

corresponding transport pathway (as seems to be FlbE). Mutations in proteins belonging 6 

to the first group are supposed to cause pleiotropic defects while mutations in proteins 7 

from the second group should show a decrease in conidia production without affecting 8 

polar extension (Etxebeste et al. 2009; Garzia et al. 2009). Screening of aconidial 9 

mutants in which apical FlbB was delocalized would permit the identification of 10 

genes/proteins from any of these two groups. However, pleiotropic (if not lethal) 11 

phenotypes can be anticipated for mutants from the first group and also false positives 12 

caused by mutations in UDA genes, which decrease FlbB levels in vegetative hyphae 13 

(Garzia et al. 2009; Garzia et al. 2010; Herrero-Garcia et al. 2015). A proteomic 14 

analysis is also an interesting, and probably more straightforward, procedure to identify 15 

FlbB interactors assisting its anterograde or retrograde transport. 16 

On the other hand, a second major objective would be the analysis of the 17 

functional relationship between FlbB and FlbD. How these factors are spatially and 18 

temporally coordinated with the substantial number of TFs binding brlA promoter must 19 

also be clarified. For example, specific target sequences for FlbB and FlbD at brlA 20 

promoter should be determined as well as any modification in the regulatory mechanism 21 

caused by the binding of additional TFs or co-regulators (Spitz and Furlong 2012). A 22 

hypothetic interaction between FlbB and FlbD (preceding or following DNA binding) 23 

should also be considered. The UDA pathway may well serve as a model to discover 24 

novel aspects of transcriptional regulation mediated by bZIP and cMyb TFs. 25 
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The completion of those tasks might further, through a mechanistic comparison 1 

between A. nidulans and filamentous fungal pathogens, the identification of new 2 

molecular targets for the impairment of asexual development or the design of inhibitors 3 

for the chemical signals inducing it. 4 
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Figure legends. 1 

Figure 1: Vegetative growth and asexual development in Aspergillus nidulans. A) 2 

Colony formation. After an initial phase of isotropic growth, a polarity-site is selected 3 

within a spore. This generates the germ-tube, which grows apically through the addition 4 

of plasma membrane and cell-wall materials at the apex. Branching generates new 5 

polarity-sites, expanding hyphae in different directions. Blue, red and green circles 6 

represent proteins mediating exocitosis and endocitosis at the tip. Grey and maroon 7 

lines represent actin and tubulin cytoskeleton, respectively. Grey arrows indicate growth 8 

direction. The picture below represents a colony of Aspergillus nidulans. Peripheral 9 

hyphae (young hyphae; green circle) avoid the contact with each other and grow 10 

outwards. Hyphae in the central region (old hyphae; red circle) show an increased 11 

branching rate and do not avoid contact. Conidiophore development is also induced in 12 

the central region and is promoted by specific signals. B) Genetic control and 13 

morphological transformations leading to conidiophore formation. The UDA pathway 14 

transduces environmental signals to brlA, inducing the CDP pathway, which controls 15 

the formation of the vesicle, metulae, phialides and finally conidia (yellow and green 16 

color for young and mature conidia, respectively). Grey arrows indicate growth 17 

direction. F, S, V, M, P and C indicate foot-cell, stalk, vesicle, metulae, phialides and 18 

conidia, respectively. C) The aconidial flb (fluffy, low-brlA) phenotype. Left: Phenotype 19 

of wild-type, ΔflbB, ΔflbE and ΔflbD strains in solid minimal medium after 72 hours of 20 

culture at 37 ºC. Green color of the wild-type colony indicates the production of 21 

conidia. The cottony appearance and white color of mutant colonies indicate the 22 

absence of asexual development. Scale bar = 2 cm. Right: Northern-blot showing the 23 

expression level of brlA in wild-type, ΔflbB and ΔflbE strains 0, 6, 12, 24 and 48 hours 24 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



19 
 

after the induction of conidiophore development. rRNA was used as loading control. 1 

Reproduced from (Garzia et al. 2009) with permission. 2 

Figure 2: FlbB dynamics and transcriptional activity in vegetative hyphae. 3 

Numbers indicate the analyses suggested in the main text: 1) and 3) identification and 4 

characterization of proteins that mediate anterograde and retrograde migration of FlbB; 5 

2) identification of a hypothetic post-translational modification of FlbB related to an 6 

unknown signal; and 4) elucidation of the transcriptional regulatory mechanism 7 

mediated by FlbB and FlbD at the promoter of brlA. 8 
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