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Summary

Mitochondrial respiratory chain (MRC) complexes I, III and IV associate into a variety of 

supramolecular structures known as supercomplexes and respirasomes. While COX7A2L was 

originally described as a supercomplex-specific factor responsible for the dynamic association of 

complex IV into these structures to adapt MRC function to metabolic variations, this role has been 

disputed. Here we further examine the functional significance of COX7A2L in the structural 

organization of the mammalian respiratory chain. As in the mouse, human COX7A2L binds 

primarily to free mitochondrial complex III and to a minor extent to complex IV to specifically 

promote the stabilization of the III2+IV supercomplex without affecting respirasome formation. 
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Furthermore, COX7A2L does not affect the biogenesis, stabilization and function of the individual 

OXPHOS complexes. These data show that independent regulatory mechanisms for the biogenesis 

and turnover of different MRC supercomplex structures co-exist.

Graphical abstract

Introduction

The oxidative phosphorylation (OXPHOS) system is embedded in the lipid bilayer of the 

inner mitochondrial membrane and is composed of five multiprotein enzyme complexes as 

well as the two mobile electron carriers coenzyme Q (or Q) and cytochrome c (cyt c). The 

first four enzyme complexes (CI-CIV) comprise the mitochondrial respiratory chain (MRC), 

which facilitates electron transfer from reducing equivalents to molecular oxygen. The 

electron translocation through the MRC is coupled to the creation of a proton gradient across 

the inner mitochondrial membrane that will be used by the ATP synthase (complex V) to 

drive ATP synthesis. In recent years, it has been widely demonstrated that MRC complexes 

I, III and IV (CI, CIII, CIV) may associate to form a diversity of supramolecular assemblies 

known as supercomplexes (SCs) or respirasomes (Cruciat et al., 2000; Schagger and Pfeiffer, 

2000). However, the functional relevance of mitochondrial SCs is a matter of intense debate 

though they are conserved across species. In mammals, the respirasome is often referred to 

as SC I+III2+IV1-4. Biochemical analyses support the idea that the respirasome contains the 

MRC and the electron carriers and thus is a structural entity that can carry out respiration on 

its own (Acin-Perez et al., 2008). Some authors have proposed that SCs function to confer 

stability to CI (Moreno-Lastres et al., 2012; Schagger et al., 2004), to reduce reactive 

oxygen species (ROS) production (Maranzana et al., 2013), to facilitate electron channeling 

(Bianchi et al., 2004) and to mediate metabolic adaptation through the partition of Q into 

two different pools (Lapuente-Brun et al., 2013). However, the view that SC assemblies 

provide distinct electron translocation pathways is currently disputed. Kinetic and 

spectroscopic studies have challenged the substrate channeling model by concluding that (i) 
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cyt c is not trapped within the SCs and therefore it does not encounter any restriction of its 

diffusion (Trouillard et al., 2011), and (ii) the metabolic pathways for NADH and succinate 

oxidation impose different coenzyme Q redox steady state but communicate and converge 

on a single non-partitioned coenzyme Q pool (Blaza et al., 2014; Rigoulet et al., 2010). 

Moreover, cryo-electron microscopy analyses of the mammalian SC I+III2+IV1 does not 

support the substrate channeling model because the distance between the binding sites for 

coenzyme Q on CI and CIII, as well as the distance between the binding sites for cyt c on 

CIII and CIV, are sufficiently far away to allow free exchange (Althoff et al., 2011; Dudkina 

et al., 2011). Instead, it has been suggested that the relatively weak interactions between the 

MRC complexes that lead to SCs formation, could prevent deleterious protein aggregation in 

the densely packed inner mitochondrial membrane (Blaza et al., 2014). According to this 

latter idea, SCs formation would have no direct bioenergetic role but rather be a protective 

mechanism that prevents tight interactions between the individual OXPHOS complexes.

In budding yeast lacking CI, the formation and stabilization of the mitochondrial SC 

III2+IV1-2 is controlled by specific regulatory proteins called the respiratory supercomplex 

factors 1 and 2 (Rcf1 and Rcf2) (Chen et al., 2012; Strogolova et al., 2012; Vukotic et al., 

2012). While both proteins are preferentially associated with CIV, only Rcf1 seems to play a 

crucial role in SC stability, as it does its human ortholog HIG2A (Chen et al., 2012). A 

highly controversial issue involves the potential regulatory role of the protein COX7A2L/

COX7RP in the formation and stabilization of mitochondrial SCs. Mouse COX7A2L was 

reported to be present in SC III2+IV and the respirasomes, but not in free complex III or IV 

(Lapuente-Brun et al., 2013; Müller et al., 2015), and was therefore renamed the SC-specific 

assembly factor I (SCAFI). Certain wild-type mouse strains, e.g. C57BL/6J and BALB/c, 

are homozygous for a 6 bp deletion in the Cox7a2l gene and therefore express a short, 

unstable COX7A2L variant that was reported to lead to a failure to form SC III2+IV and 

respirasomes (Lapuente-Brun et al., 2013). Remarkably, the respiration rates and ATP 

production from CI and CII-linked substrates were reported to be higher in tissues from 

mice bearing the short COX7A2L isoform. The authors suggested that COX7A2L could 

mediate binding of CIV to SCs to physiologically regulate energy metabolism by providing 

alternate paths for electrons from different metabolic sources (NADH, FAD, or both), thus 

allowing optimization of respiration to substrate availability (for discussion, see (Barrientos 

and Ugalde, 2013)). Another study used Cox7a2l knockout mice (Ikeda et al., 2013) and 

reported that COX7A2L is a SC-specific factor that, in contrast to the previous model 

(Lapuente-Brun et al., 2013), would promote respirasome stability to gain full activity of the 

MRC. The knockout study showed that respirasomes were present in mitochondria from 

skeletal muscle of C57BL/6J mice (Ikeda et al., 2013), despite previous claims that this 

mouse strain lacks respirasomes (Lapuente-Brun et al., 2013). In agreement, an in depth 

characterization of isolated heart and liver mitochondria from control mouse strains that 

either contained the full-length Cox7a2l gene (i.e., CD1 mice) or the variant with the 6 bp 

deletion (i.e., C57BL/6J, C57BL/6N and BALB/c mice), demonstrated that all mice had 

normal formation of respirasomes and normal respiratory chain function, thus showing that 

the truncated version of the Cox7a2l gene does not impact the bioenergetic capacity in vivo 
(Mourier et al., 2014a).
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The aim of the present work was to elucidate the functional importance of COX7A2L in the 

structural organization of the mammalian OXPHOS system. Our study demonstrates that 

COX7A2L preferentially interacts with mitochondrial CIII and to a minor extent with CIV 

to promote stabilization of the SC III2+IV in both mice and humans. However, COX7A2L 

has no role in the biogenesis, stabilization and function of the free OXPHOS complexes and 

it has no role in the formation of the respirasomes. These data show the co-existence of 

alternative regulatory mechanisms for the biogenesis and turnover of different respiratory 

chain SC structures.

Results

Mouse COX7A2L is essential for SC III2+IV formation in a respirasome-independent 
manner

In order to shed light on these contradictory conclusions regarding COX7A2L function in 

murine models (Ikeda et al., 2013; Lapuente-Brun et al., 2013; Mourier et al., 2014a), we 

first analyzed the COX7A2L levels relative to OXPHOS subunits by western blots in 

isolated heart mitochondria from CD1 versus C57BL/6 mice (Figure S1A). The allelic 

variation of the Cox7a2l gene in nuclear DNA is previously described (Mourier et al., 

2014a). The CD1 mice express high levels of a 113 amino acid COX7A2L protein isoform, 

whereas C57BL/6 mice express low levels of a slightly shorter and unstable COX7A2L 

protein isoform of 111 amino acids. CI and CIV subunits were present at similar levels in the 

wild-type CD1, C57BL/6J and C57BL/6N mice strains. However, the levels of COX7A2L 

and CIII subunits were slightly increased in the CIV-deficient conditional Lrpprc knockout 

mice compared with their wild-type littermates that all were maintained on the C57BL/6N 

background (Mourier et al., 2014b). These data suggest that COX7A2L as well as CIII are 

stabilized in the Lrpprc knockout mice as a response to the severe CIV deficiency.

In agreement with a previous report (Mourier et al., 2014a), BN-PAGE analysis of digitonin-

solubilized heart mitochondria from CD1 and C57BL/6 mice confirmed similar levels and 

activities of the respirasomes in all wild-type strains (Figures 1A-B). Analysis of COX7A2L 

distribution in CD1 mice (Figure 1C) showed its preferential co-segregation with free CIV, 

SC III2+IV and respirasomes, and to a minor extent with the CIII dimer. In the C57BL/6 

mice, however, COX7A2L was mostly found in CIII-containing structures (Figure 1C). 

These data suggest that the two-amino acid deletion and consequent reduction in COX7A2L 

levels mostly hampers the binding of COX7A2L to CIV, which nevertheless only provoked 

the disappearance of SC III2+IV (Figures 1B-C), without affecting free CIV or respirasome 

levels and activities (Figures 1A-C). Thus, the severely reduced COX7A2L levels in 

C57BL/6 mice do not hamper the association of CIV with the respirasomes, as previously 

proposed (Lapuente-Brun et al., 2013). To test whether the respirasome stability depends on 

COX7A2L levels, we exposed heart mitochondria from CD1 and C57BL/6J mice to 

increasing amounts of the detergent digitonin followed by BN-PAGE analysis (Figure S1B). 

Respirasome levels and organization were comparable between both mouse strains at the 

low digitonin-to-protein ratios. Also under the most stringent detergent conditions, 

respirasomes were still clearly detectable in the C57BL/6J mice albeit at slightly lower 

levels than in the CD1 mice. Noteworthy, SCs from both mouse strains reorganized in 
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different ways upon increasing digitonin treatment and some respirasome bands appeared to 

be more stable in C57BL/6J than in CD1 mice, and vice versa. We next analyzed DDM-

solubilized mouse heart mitochondria, condition in which respirasomes are disrupted (Figure 

S1C), and found that the co-segregation between COX7A2L and free CIV was totally lost, 

suggesting that their interaction is indeed labile. In CD1 mice, both COX7A2L and the CIII 

subunit CORE2 co-localized with the CIII dimer and SC III2+IV, whereas in C57BL/6 mice 

both proteins only were present in the CIII dimer. These data show that COX7A2L is 

essential for SC III2+IV stability, whereas it is dispensable for the respirasome formation.

Next we assessed import and assembly of the radiolabeled 113 amino acid COX7A2L 

isoform into isolated heart mitochondria from CD1, C57BL/6J and C57BL/6N mice by BN-

PAGE analyses (Figures 1D and S1D-E). We used mitochondria with dissipated membrane 

potential as controls to ensure that the protein import and assembly depends on the 

membrane potential across the inner mitochondrial membrane (Figure S1D). The 

comparison of migration patterns and the kinetics of formed assembly intermediates after 

import of COX7A2L or the CIII subunit RISP showed that the long COX7A2L isoform was 

incorporated into CIII-containing structures in all mice strains. We observed a preferential 

co-segregation of the newly imported COX7A2L with the CIII dimer at early time points 

after import (Figure 1D), whereas COX7A2L was present in higher molecular weight 

structures, such as SC III2+V and respirasomes, at later time points. These data demonstrate 

that COX7A2L preferentially interacts with CIII prior to SC formation. Additional import 

analyses of COX7A2L into isolated mitochondria from Lrpprc wild-type and knockout 

hearts (Figure S1E) revealed that COX7A2L associates with CIII independently of the 

presence of CIV.

Human COX7A2L co-localizes with respiratory chain complexes III and IV, and complex III-
containing supercomplexes

In humans, only one COX7A2L protein of 114 amino acids has been reported in the NCBI 

database (http://www.ncbi.nlm.nih.gov/gene/9167). To clarify the functional role of the 

human COX7A2L protein, we first analyzed its distribution pattern in relation to free MRC 

complexes and SCs by performing BN-PAGE followed by western blot analyses. We 

analyzed digitonin-solubilized mitochondria from control 143B cells and cybrids with a 

severe CI assembly defect (CI-KD), total lack of CIII (CIII-KO) or total lack of CIV (CIV-

KO) (Figures 2A and S2A). In controls, COX7A2L co-localized not only with SC III2+IV 

and the respirasomes (SC I+III2+IVn), as previously described in murine models (Lapuente-

Brun et al., 2013; Müller et al., 2015), but also with SC I+III2, the CIII dimer (CIII2) and 

free CIV. The CI-KD cybrids, which harbored a >90% heteroplasmic mutation in the MT-
ND2 subunit gene of mtDNA (Ugalde et al., 2007), showed a strong reduction in the levels 

of SC I+III2+IVn, SC III2+IV and free CIV. Consistently, the amounts of COX7A2L within 

those structures were also reduced in the CI-defective cells compared with the controls. The 

CIII-KO cybrids lacked CIII due to a homoplasmic 4–base pair deletion in the MT-CYB 
gene that encodes cytochrome b (Rana et al., 2000). Lack of CIII caused the complete 

disruption of SC I+III2+IVn and SC III2+IV accompanied by increased levels of free CIV 

and CIV oligomers. In addition, a dramatic reduction in COX7A2L levels, comparable to 

that of the CIII structural subunits, was observed (Figure 2B). Only a minor residual 
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COX7A2L signal co-migrating with free CIV was seen at the longest exposures (Figure 

S2B), indicating that the lack of CIII profoundly affects the stability of COX7A2L and its 

binding to CIV. The CIV-KO cybrids harbor a homoplasmic nonsense mutation in MT-CO1 
(Bruno et al., 1999), leading to the disappearance of free CIV, SC III2+IV and SC I

+III2+IVn, accompanied by an accumulation of SC I+III2 and CIII2. Interestingly, 

COX7A2L could bind SC I+III2 and CIII2 in the absence of CIV, whereas very small 

amounts were bound to CIV in the absence of CIII. Thus, in human cells COX7A2L 

preferentially associates with CIII2 and CIII-containing structures and only to a minor extent 

with free CIV, showing that COX7A2L principally behaves as a CIII interactor rather than 

an assembly factor exclusive to CIV-containing SCs (Lapuente-Brun et al., 2013). The 

presence of COX7A2L in CIII2, SC I+III2 and I+III2+IVn was further confirmed by high-

resolution nano-LC/ESI-MS proteomic analysis of the blue native gel bands corresponding 

to SC I+III2+IVn in 143B cells, and to SC I+III2 and CIII2 in the CIV-KO mutant cybrids 

(Figures 2C-D and Table S1).

Overexpressed COX7A2L is imported into mitochondria and binds complexes III and IV 
without significantly enhancing supercomplex formation

We next investigated the cellular localization of human COX7A2L by transfecting control 

143B cells with a construct expressing COX7A2L with a C-terminal GFP-tag, of∼ 39.3 kDa 

(Figure S3A). Confocal microscopy showed co-localization of COX7A2L-GFP with the 

ATP synthase (complex V), thus confirming mitochondrial localization of the fusion protein 

(Figure 3A). Next, we analyzed by BN-PAGE the mitochondrial distribution of exogenous 

COX7A2L and the effect of COX7A2L overexpression on the assembly of the OXPHOS 

system. To this end, we initially used 143B cells transfected either with the GFP-tagged 

COX7A2L construct or with a vector that expressed COX7A2L with a C-terminal MYC-

DDK-tag, of∼ 16.2 kDa (Figures 3B and S3B). In 143B cells, COX7A2L-GFP was 

effectively overexpressed by∼ 15-fold relative to the endogenous COX7A2L (Figure S3A), 

while COX7A2L-MYC-DDK was overexpressed by∼ 2-fold (Figure S3B). BN-PAGE 

analyses confirmed the co-migration of exogenous COX7A2L with the CIII dimer, free CIV, 

SC III2+IV and with the respirasomes in digitonin-solubilized mitochondria (Figures 3B and 

S3C), thus showing that COX7A2L with both tags are efficiently incorporated into MRC 

complexes and SCs. Densitometric analyses of OXPHOS subunit distribution showed that 

the overexpression of tagged-COX7A2L induced no significant increase in the amounts of 

CIII- and CIV-containing structures (Figure 3C). We extended this analysis to HEK293 cells 

transfected with either the MYC-DDK-tagged COX7A2L construct or the MYC-DDK tag 

alone. In HEK293 cells, COX7A2L-MYC-DDK was effectively overexpressed by∼ 10-fold 

relative to endogenous COX7A2L (Figure S3B), and co-migrated with the CIII dimer, free 

CIV, SC III2+IV and the respirasomes (Figure S3D). Tagged-COX7A2L overexpression in 

HEK293 cells neither altered the levels of MRC complexes or SCs.

Next, we tested whether the COX7A2L co-localization with MRC complexes III and IV was 

due to a direct physical interaction. We performed co-immunoprecipitation assays of 

digitonin-solubilized mitochondrial lysates from HEK293 cells transfected with either the 

COX7A2L-MYC-DDK construct or the empty vector (Figure 4A). Immunoprecipitation 

with an anti-DDK antibody specifically pulled down the tagged-COX7A2L protein in cells 
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overexpressing COX7A2L-MYC-DDK. In addition, the CIII subunits CORE1, CORE2, 

CYC1, RISP and UQCRQ, and the CIV subunits COX1, COX4, COX5B and COX6C were 

detected in the co-immunoprecipitate (co-IP). The CI subunits NDUFA9 and NDUFS1 were 

barely detectable and CII was not detected in the co-IP samples. When reverse 

immunoprecipitation assays were performed using antibodies against CORE2 or COX1 

proteins, both the tagged and the endogenous COX7A2L proteins were successfully pulled 

down (Figures 4B-C). Importantly, immunoprecipitation with CORE2 (but not with COX1) 

pulled down the endogenous COX7A2L protein in cells transfected with the empty vector. 

These data show that COX7A2L physically interacts with complexes III and IV, but presents 

a higher affinity for CIII. According to the TOPCONS prediction software (http://

topcons.cbr.su.se/), human COX7A2L contains one transmembrane domain that spans 

amino acids 86 to 107, leaving most of the N-terminal part of the protein exposed to the 

mitochondrial matrix, and a short C-terminal stretch of 7 amino acids facing the inter 

membrane space. The direct association of COX7A2L with mitochondrial complexes III and 

IV is therefore compatible with its predicted topology.

Endogenous COX7A2L associates with respiratory chain complexes III and IV and with 
supercomplexes during their assembly process

We next analyzed the assembly kinetics of COX7A2L into MRC complexes and SCs by 

doxycycline-induced reversible inhibition of mitochondrial translation in control 143B cells 

(Moreno-Lastres et al., 2012). Doxycycline was removed from cell culture media after 6 

days of treatment, and samples were collected at different time points (0, 6, 15, 24, 48, 72 

and 96 hours). To follow the integration of endogenous COX7A2L into newly-assembled 

CIII, CIV and SCs, digitonin-solubilized mitochondria were separated by 2D-BN/SDS-

PAGE and subsequently analyzed by western blot using antibodies that recognize 

COX7A2L, CORE2 (CIII), RISP (CIII) and COX5A (CIV) (Figure 5A). Signals from at 

least three independent experiments were quantified by densitometry, normalized to CII 

levels and values were expressed relative to levels in untreated cells (SS, Figures 5B-C and 

S4A-D). After 6 days of doxycycline treatment (time 0h), there was a drastic decrease 

(80-95%) in the levels of the CIII dimer (CIII2), CIV, SC III2+IV and SC I+III2+IVn, as well 

as in the levels of COX7A2L that co-localizes with these structures. The CII levels remained 

normal after doxycycline treatment (not shown) as expected because this complex lacks 

mtDNA-encoded subunits. Once mitochondrial translation resumed (times 6-96 h, Figures 

5B-C), we observed a gradual increase of the levels of COX7A2L protein that co-localized 

with CIII2, in agreement with our previous results showing co-localization of newly-

imported COX7A2L and the CIII dimer in mouse heart mitochondria (Figure 1D). The 

incorporation of COX7A2L into CIII occurred in parallel to the insertion of the CORE2 

subunit, which gets assembled into CIII prior to the incorporation of RISP (Figure S4A). In 

contrast, the CIV levels increased prior to the binding of COX7A2L (Figure S4B), 

suggesting that COX7A2L only binds fully-assembled CIV. Once COX7A2L had bound to 

CIV, there was a simultaneous increase of the levels of COX7A2L in CIV and SC III2+IV 

(Figures 5B-C). Moreover, COX7A2L was incorporated into SC III2+IV in parallel with the 

CORE2 and COX5A subunits, but prior to the integration of RISP in this structure (Figure 

S4C). The incorporation of COX7A2L into respirasomes occurred concomitantly with the 

integration of CORE2 and COX5A, and earlier than the integration of RISP (Figure S4D), 
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which indicates that COX7A2L is incorporated before the respirasome formation is 

completed.

COX7A2L associates with complex III and supercomplex III2+IV prior to the insertion of the 
RISP catalytic subunit

In the reported CIII assembly models, incorporation of CORE2 allows the formation of a 

non-functional intermediate called pre-CIII, which contains CORE2 and the rest of CIII 

subunits except RISP and the smallest subunit (Qcr10 in yeast, UQCR11 in mammals), 

which are incorporated at a later assembly stage (Fernandez-Vizarra and Zeviani, 2015; 

Smith et al., 2012). This late assembly step is promoted by LYRM7/MZM1L, an assembly 

factor that binds RISP to stabilize it prior to its incorporation into CIII. HeLa cells that 

stably overexpress HA-tagged MZM1L show sequestering of RISP in a small subcomplex, 

thereby preventing CIII maturation (Sánchez et al., 2013). Doxycycline experiments 

suggested that human COX7A2L could be a component of pre-CIII, as this protein gets 

incorporated into CIII in parallel with the CORE2 subunit but before the incorporation of 

RISP (Figure S4A). To confirm this hypothesis, we analyzed COX7A2L distribution by BN-

PAGE of digitonin-solubilized mitochondria isolated from HeLa cells overexpressing 

MZM1L-HA (Figure 6). As observed by CI in gel activity (IGA), MZM1L over expression 

induced a decrease in the levels and activity of the respirasomes (SC I+III2+IV), as well as 

an accumulation of CI-containing structures (Figure 6A). As expected, the levels of the RISP 

subunit were strongly decreased in the respirasomes, SC III2+IV and in the CIII dimer, and 

there was a parallel accumulation of RISP in a small subcomplex that also contains 

MZM1L-HA (Sánchez et al., 2013) (Figure 6B). The amount of RISP remained relatively 

high in SC I+III2+IV compared with other structures, suggesting that this subunit is stably 

bound to the respirasomes. Upon MZM1L/LYRM7 overexpression, CORE2 and COX7A2L 

co-segregated with pre-SC III2+IV and pre-CIII (Figure 6B), further supporting that 

COX7A2L associates with pre-CIII before the incorporation of RISP takes place (Figure 

S4E). All in all, our data demonstrate that in human cells, the interaction of COX7A2L with 

CIV depends on the presence of pre-CIII, which formation is not affected by the lack of 

RISP (Figure 6) but is dependent on cytochrome b (Figure 2B).

COX7A2L downregulation causes supercomplex III2+IV disassembly without altering 
respirasome stability or respiratory chain function

We further investigated the effect of COX7A2L knockdown on mitochondrial function by 

using a mix of two small interfering RNAs (siRNAs) targeting exons 2 and 3 of COX7A2L 
mRNA. The COX7A2L knockdown efficiency was analyzed by SDS-PAGE of whole cell 

protein extracts from control 143B cells and CIV-KO mutant cybrids (Figures S5A-B). 

COX7A2L RNAi effectively knocked down the COX7A2L protein by 80% in the 143B cells 

and by 74% in the CIV-KO mutants, compared with cells transfected with unspecific 

scrambled siRNAs (C-). Next we analyzed the effects of COX7A2L silencing on OXPHOS 

system assembly by BN-PAGE in combination with CI in-gel activity and Western-blot 

analyses of mitochondrial-enriched fractions from 143B and CIV-KO cells (Figure 7A). 

Upon COX7A2L knockdown, there was a significant decrease in the signals of COX7A2L 

that co-localized with the CIII dimer, free CIV, and SCs III2+IV, I+III2 and I+III2+IVn. 

Despite the severe drop in COX7A2L levels we only observed a specific reduction in the 
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levels of SC III2+IV in the 143B cells, whereas the CI activity as well as levels of free 

OXPHOS complexes, other SCs and respirasomes were normal.

To gain deeper insight into the nature of SC III2+IV disruption in 143B cells, we performed 

2D-BN/SDS-PAGE and western blot analyses with antibodies against CORE2 (CIII), RISP 

(CIII), COX1 (CIV) and COX5B (CIV) (Figure 7B). Quantification of results from five 

independent experiments (Figures 7C and S5C-D) showed that COX7A2L knockdown 

specifically led to a significant decrease in the levels of the four analyzed subunits within SC 

III2+IV, but not in the other CIII- and CIV- containing structures. These data indicate that 

COX7A2L has a specific role in the stabilization of SC III2+IV, but not in the respirasome 

maintenance. Moreover, COX7A2L silencing did not result in a clear accumulation of 

intermediates smaller than complexes III and IV, indicating that their assembly and/or 

stability are not disturbed. In agreement with these results, COX7A2L knockdown in the 

CIV-KO mutant cybrids produced no significant alterations in the levels of the CIII dimer or 

SC I+III2 (Figures S6A-B). Altogether, our results show that the stabilization of SC III2+IV 

relies on the association of COX7A2L with MRC complexes III and IV.

Finally, we measured oxygen consumption rates (OCR) in 143B cells and found no 

significant differences between COX7A2L-silenced cells and cells transfected with 

scrambled siRNA (Figure S6C). In contrast, mitochondrial respiration was drastically 

reduced in the CI-KD cybrids that retained SC III2+IV but showed minimal levels of CI and 

respirasomes (Figure S6D). Respiratory chain activities measured in COX7A2L-silenced 

143B cells were also comparable to the activities in control cells (Figure S6E). These results 

show that a substantial loss of COX7A2L and SC III2+IV has no significant impact on MRC 

function in human cell lines.

Discussion

We have investigated the role of COX7A2L/COX7RP in the structural organization of the 

mammalian OXPHOS system, and clarified the apparent contradictions about the role of this 

protein in the literature (Ikeda et al., 2013; Lapuente-Brun et al., 2013; Mourier et al., 

2014a). Our data demonstrate that COX7A2L acts as a CIII-binding protein in mitochondria 

from mouse heart and human cell lines. Furthermore, COX7A2L is specifically required for 

SC III2+IV maintenance and this finding strongly argue against its previously proposed 

function as a SC-specific assembly factor that mediates respirasome formation.

We used a combination of COX7A2L immunodetection, high-throughput proteomics and 

mitochondrial in vitro import assays to demonstrate that COX7A2L co-migrates with the 

CIII dimer, free CIV, SC I+III2+IVn, SC I+III2 and SC III2+IV in both mice and humans. 

Thus, the COX7A2L protein is not exclusively present in SCs, as previously reported 

(Lapuente-Brun et al., 2013; Müller et al., 2015), but instead it predominantly associates 

with different CIII-containing structures. In mice, the long COX7A2L isoform preferentially 

interacts with CIII prior to SC formation. The small amount of COX7A2L that co-segregates 

with free CIV in the CD1 strain could reflect continuous turnover and exchange cycles 

between the SC-bound and free CIV states, or alternatively, a fraction of the COX7A2L-

bound CIV could be dissociated from SCs upon detergent extraction. Such dissociation 
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cannot be observed in the C57BL/6 mice because they have already lost the association 

between COX7A2L and CIV. Our data in human control and mutant cybrids lacking one 

MRC complex suggest that COX7A2L behaves as a structural component of CIII because 

COX7A2L preferentially binds this complex and the stability of COX7A2L depends on the 

presence of CIII. Accordingly, COX7A2L remains associated with the CIII dimer and CIII-

containing SCs in the absence of complexes I and IV. Furthermore, COX7A2L binds to a 

reported CIII assembly intermediate that lacks the RISP subunit (pre-CIII) before it interacts 

with free CIV, SC III2+IV or the respirasomes. In agreement with this observation, 

COX7A2L remained associated with pre-CIII in HeLa cells with an impaired incorporation 

of RISP. In contrast, lack of cytochrome b precludes the formation of pre-CIII and led to the 

disappearance of CIV-associated COX7A2L.

At variance with previous studies in fibroblasts from COX7A2L deprived mice (Lapuente-

Brun et al., 2013), COX7A2L overexpression in human cell lines did not cause a significant 

increase in the levels of MRC complexes III, IV or SCs. However, reduced COX7A2L levels 

led to a specific loss of SC III2+IV, but did not affect the amounts of free complexes III and 

IV, respirasomes or mitochondrial function. Similar to the situation in cultured human cells, 

the mouse COX7A2L variant of 113 amino acids is imported into mitochondria, where it 

preferentially associates with CIII-containing structures and plays an essential role in SC 

III2+IV stabilization. These results show that mammalian COX7A2L is essential to maintain 

SC III2+IV stability, but it plays no critical role in the assembly or stabilization of SC I

+III2+IVn. These findings strongly suggest that there are independent regulatory 

mechanisms for the biogenesis and turnover of SC III2+IV and the respirasomes. This is in 

accordance with previous observations suggesting that SC III2+IV gets fully-assembled after 

the completion of respirasome formation (Moreno-Lastres et al., 2012). Our current results 

also confirm that the levels of respirasomes and MRC activities in mitochondria from mouse 

hearts are not dependent on the allelic variations of Cox7a2l (Mourier et al., 2014a), and 

contradict the hypothesis that COX7A2L is an assembly factor that regulates respirasome 

formation to modulate respiration. The fact that respirasomes (but not SC III2+IV) are 

present in C57BL/6J mitochondria solubilized with a variety of detergent concentrations 

provides additional support for a role for COX7A2L to stabilize SC III2+IV. These data are 

in agreement with previous reports that show the presence of respirasomes in different 

tissues, including heart, liver and skeletal muscle, of C57BL/6 mice (Hatle et al., 2013; 

Ikeda et al., 2013; Jha et al., 2016; Milenkovic et al., 2013). In this regard, the previously 

reported absence of respirasomes in mouse strains with the truncated Cox7a2l allele 

(Lapuente-Brun et al., 2013) could have resulted from differences in the methodologies or 

reagents used for membrane solubilization. Indeed, we observed some variations in the 

intensity of SC isoforms between C57BL/6J and CD1 mice at high detergent concentrations; 

however the pattern was not constant, as specific SCs were stabilized in C57BL/6J mice but 

not in CD1 mice and vice versa. Based on our data we cannot exclude the possibility that the 

mechanisms of SC assembly are regulated in a tissue-dependent manner as recently 

proposed (Jha et al., 2016). However, it is important to acknowledge that the observed 

changes may not necessarily be a consequence of genetic COX7A2L variation, but could 

well be explained by other types of genetic differences among mouse strains.
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Our results argue that COX7A2L is permanently associated with CIII and that it exists in 

association/dissociation equilibrium with CIV, which can define the fate of CIV depending 

on whether COX7A2L is bound or not. This could provide a mechanism whereby 

COX7A2L-bound CIV is guided to the proximity of CIII to form and stabilize SC III2+IVn. 

The functional role of COX7A2L may resemble that described for HIG2A, the human 

ortholog of the yeast Rcf1 SC factor. In yeast, Rcf1 and Rcf2 preferentially associate with 

CIV to mediate SC III2+IV1-2 stability (Chen et al., 2012; Strogolova et al., 2012; Vukotic et 

al., 2012). Whereas Rcf2 is yeast-specific, several human homologs of Rcf1 have been 

reported, whereof HIG2A is involved in the stabilization of a proportion of CIV-containing 

SCs (Chen et al., 2012). C11ORF83 or UQCC3A, a cardiolipin-binding protein involved in 

early stages of human CIII assembly, has also been reported to act as a SC III2+IV 

stabilizing factor (Desmurs et al., 2015). The similarities in modes of action between these 

proteins and COX7A2L make it conceivable that they could act in conjunction having a 

respiratory chain “stabilizing” or “gluing” function, although further studies are required to 

demonstrate such functional interactions.

Interestingly, the COX7A2L-mediated absence of SC III2+IVn does not affect respirasome 

formation or maintenance. In addition, the fact that the formation and stabilization of a less 

abundant structure such as SC III2+IVn is regulated by specific proteins in a respirasome-

independent manner supports the existence of alternative assembly pathways for SC 

III2+IVn and the respirasomes. It may also be indicative of a specific, yet not well 

understood, physiological importance of SC III2+IVn. Results from others have suggested 

that SC III2+IVn could provide a MRC structure to receive electrons from CII (Lapuente-

Brun et al., 2013). However, given current evidence that puts in doubt the catalytic roles for 

mitochondrial SCs (Blaza et al., 2014; Trouillard et al., 2011), alternative non-catalytic 

functions should also be considered. These would include the regulation of MRC complexes 

distribution in specific cardiolipin microdomains within the densely protein-packed 

mitochondrial inner membrane, or a role in storage or preservation of excess MRC 

components to avoid futile continuous cycles of turnover and de novo synthesis. The 

experimental evidence of independent regulatory mechanisms and proteins for the 

biogenesis of intermediate SCs and the respirasomes opens new doors for exciting future 

investigations of the role for these supramolecular structures in the regulation of cellular 

energy supply.

Experimental Procedures

Cell Cultures

The CI-deficient cell line (CI-KD) harbors a homoplasmic m.4681T>C mutation in the MT-
ND2 subunit gene that leads to a severe CI assembly defect due to a p.L71P substitution 

(Ugalde et al., 2007). The CIII mutant (CIII-KO) cell line contains a homoplasmic 4–base 

pair deletion in the MT-CYB gene affecting the de novo synthesis of cytochrome b (Rana et 

al., 2000). The CIV mutant cell line (CIV-KO) lacks holo-COX due to the homoplasmic m.

6930G>A transition in the MT-COI gene, which creates a stop codon that results in a 

predicted loss of the last 170 amino acids of the COX1 polypeptide (Bruno et al., 1999). 

HeLa cells, either transduced with the empty pWPXLd-ires-PuroR vector or overexpressing 
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LYRM7-001-HA (MZM1L-HA), were generated as previously described (Sanchez et al., 

2013).

Cells were cultured in high-glucose Dulbecco's modified Eagle's medium (DMEM, Life 

Technologies) supplemented with 10% fetal calf serum (FCS), 2 mM L-glutamine, 1 mM 

sodium pyruvate, and antibiotics. To block mitochondrial translation, 15 μg/ml doxycycline 

was added for six days to the culture medium. Cells were grown in exponential conditions 

and harvested at the indicated time points.

In vitro Import

Radiolabeled COX7A2L, COX6A and RISP proteins were obtained by coupled transcription 

and translation in the presence of 35S-methionine (PerkinElmer) using TNT SP6 Quick 

Coupled System (Promega). Import experiments were performed on freshly isolated 

mitochondria from heart tissue as described before (Mourier et al., 2014a).

Immunoprecipitation

One milligram of mitochondrial protein from HEK293 transduced cells was solubilized in 

600 μl of 4 g /g digitonin-to-protein buffer as for BNE analyses. After centrifugation for 30 

min at 13,000 rpm at 4 °C, 50 μg of the supernatant was separated as the input fraction. The 

remainder supernatant was co-immunoprecipitated in resin spin columns (Pierce Co-IP Kit, 

Thermo Scientific) in which 15 μg of antibodies against DDK-tag (Oncogene), CORE2 or 

COX1 had been previously immobilized. The mixture was gently incubated overnight at 4°C 

in a rotating shaker and centrifuged at 1000 g for 1 min to separate the flow-through 

fraction. The column was washed three times with Lysis Buffer containing 1% NP-40 and 

proteins were eluted. The immunoprecipitate was divided into three aliquots, treated with 5× 

Loading Sample Buffer and heated at 95 °C for 5 minutes prior to loading.

Blue Native Electrophoresis and In-Gel Activity Assays

Mitochondrial pellets and blue native analyses were performed as described before (Moreno-

Lastres et al., 2012; Mourier et al., 2014a). Native PAGE™ Novex® 3-12% Bis-Tris Protein 

Gels (Life Technologies) or self-made 4-10% polyacrylamide gradient gels were loaded with 

60-80 μg of mitochondrial protein. After electrophoresis, proteins were transferred to 

nitrocellulose or PVDF membranes at 40 V overnight and probed with specific antibodies.

Antibodies

Western blot was performed using primary antibodies raised against COX7A2L 

(ProteinTech), Myc (Origene), turbo-GFP (Origene), HA (Roche), β-actin (Sigma), and 

against the following human OXPHOS subunits: NDUFS1 (GeneTex); NDUFA9, NDUFB8, 

CORE2, RISP, CYC1, UQCRB, UQCRQ, COX1, COX4, COX5A, COX6C, SDHA, SDHB 

(Mitosciences); and COX5B (Santa Cruz). Peroxidase-conjugated anti-mouse and anti-rabbit 

IgGs were used as secondary antibodies (Molecular Probes). Immunoreactive bands were 

detected with an ECL prime Western Blotting Detection Reagent (Amersham) in a 

ChemiDoc™ MP Imager (Biorad). Optical densities of the immunoreactive bands were 

measured using the ImageLab™ (Biorad) and ImageJ analysis softwares.
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Indirect Immunofluorescence

Cells were fixed with 4% paraformaldehyde for 15 min, permeabilized for 15 min with 0.1% 

Triton X-100, and incubated in blocking buffer containing 10% goat serum for 1h. Cover 

slips were incubated with an antibody against monoclonal complex V α subunit and a Texas 

Red-conjugated anti-mouse secondary antibody (Abcam). Cover slips were rinsed, mounted 

in ProLong Gold antifade reagent (Molecular Probes) on glass slides, and cells were viewed 

with a Zeiss LSM 510 Meta confocal microscope and a 63× planapochromat oil inmersion 

objective (NA: 1.42). Sequential scanning of green and red channels was performed to avoid 

bleed-through effect. Cells were imaged randomly with 0,5-1,0 μm slices and 1024×1024 

pixels resolution. For colocalization analysis, the “Merge channels” plugin from the ImageJ 

1.48v software was used.

Statistical Data Analysis

All experiments were performed at least in triplicate and results were presented as mean ± 

standard deviation (SD) values. Statistical p values were obtained by application of the 

Friedman and Mann-Whitney U tests using the SPSS v21.0 program.

Ethics Statement

This study was performed in accordance with the guidelines of the Federation of European 

Laboratory Animal Science Associations. The protocol was approved by the Landesamt für 

Natur, Umwelt und Verbraucherschutz in Nordrhein-Westfalen in Germany.
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Highlights

1. COX7A2L preferentially interacts with respiratory chain complex III

2. COX7A2L is essential to stabilize the III2+IV supercomplex

3. COX7A2L is not necessary for biogenesis or maintenance of the 

respirasome

4. Biogenesis of the III2+IV supercomplex is not necessary for 

respirasome formation
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Figure 1. Mouse COX7A2L behaves as a complex III-binding protein specifically required for SC 
III2+IV assembly
(A) Supramolecular organization of the respiratory chain in heart mitochondria from wild-

type CD1, C57BL/6J and C57BL/6N (Lrpprc wt) mouse strains, as well as from Lrpprc 
deficient mice with a C57BL/6N genetic background. Mitochondria were extracted with a 

digitonin:protein ratio of 4 g/g and analyzed by BN-PAGE followed by CI and CIV-IGA 

assays. (B) Heart mitochondria were extracted with a digitonin:protein ratio of 6 g/g and 

analyzed by BN-PAGE followed by western blot with double fluorescent detection of CIII 

and CIV (anti-CORE2 or anti-COX1, green color) and COX7A2L-containing complexes 

(anti-COX7A2L, red color). White asterisks show the localization of SC III2+IV. (C) Heart 

mitochondria were extracted with a digitonin:protein ratio of 4 g/g and analyzed by 2D-BN/

SDS-PAGE followed by western blot and immunodetection with antibodies against 

COX7A2L and the indicated OXPHOS subunits. (D) Import of radiolabeled RISP and 

COX7A2L precursors and subsequent incorporation into CIII and SCs in intact heart 
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mitochondria from C57BL/6J and CD1 mouse strains. After the indicated incubation times 

(in minutes), mitochondria were solubilized in 6 g/g digitonin per protein and analyzed by 

BN-PAGE. I+III2+IVn, SC containing CI, CIII and CIV. I+III2, SC containing CI and CIII. 

III2+IV, SC containing CIII and CIV. III2, complex III dimer; IV, free complex IV; IVn, 

complex IV oligomers. See also Figure S1.
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Figure 2. Human COX7A2L comigrates with respiratory chain supercomplexes and free 
complexes III and IV
(A) Mitochondria from control 143B cells and mutant cybrids defective in complexes I (CI-

KD), III (CIII-KO) and IV (CIV-KO) were extracted with a digitonin:protein ratio of 4 g/g 

and analyzed by 2D-BN/SDS-PAGE and western blot with antibodies raised against 

COX7A2L, CORE2 and COX1. (B) Mitochondrial lysates from control and mutant cybrids 

were analyzed by SDS- PAGE and western blot with the indicated antibodies. (C) BN-PAGE 

and CI-IGA analysis of control 143B cells and CIV-KO mutant cybrids. After Coomassie 

staining, the SC I+III2+IV1 band was excised from the control lane and the bands 

corresponding to SC I+III2 and CIII were excised from the CIV-KO lane. Bands were 

subsequently analyzed by liquid chromatography coupled to tandem mass spectrometry. (D) 
MS/MS spectra from the doubly-charged COX7A2L tryptic peptide unambiguously detected 

by LC-ESI/MS in two independent experiments per sample. The amino acid sequence of the 

identified COX7A2L unique peptide is highlighted in red. The most intense signals on the 
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MS/MS spectra correspond to the main fragmentation series (b-amino and y-carboxy). 

Doubly-charged fragments are marked with superscript 2+. I+III2+IVn, SC containing CI, 

CIII and CIV. I+III2, SC containing CI and CIII. III2+IV, SC containing CIII and CIV. III2, 

complex III dimer. IV, complex IV. IV2, complex IV dimer. See also Table S1 and Figure S2.
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Figure 3. Overexpressed COX7A2L localizes to mitochondria with minor effects on the 
respiratory chain complexes and supercomplexes
(A) Confocal microscopy of 143B cells transiently transfected with the COX7A2L-GFP 

construct and with the empty-GFP vector as a control. Upper images show the GFP signal. 

Middle images show the mitochondrial network using an antibody against the ATPase a 

subunit. Lower images show the overlay between the two signals. (B) BN-PAGE and 

western-blot analyses of control 143B cells transiently transfected both with the COX7A2L-

GFP or COX7A2L-MYC-DDK constructs, and with their corresponding empty vectors. 

Membranes were incubated with antibodies raised against COX7A2L and the indicated 

OXPHOS subunits. (C) Densitometric analysis of the MRC complexes and SCs in 143B 

cells transfected with both COX7A2L- tagged constructs. The optical densities of 

immunoreactive bands that had not reached saturation levels were measured with the 

ChemiDoc™ MP Image Analyzer software package (Biorad). The antibody signals within 

the same structures were quantified; the mean values were normalized by CII and expressed 
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as percentages of the cells transfected with the empty vectors (horizontal bar). Values 

represent the mean ± SD from four independent experiments. I+III2+IVn, SC containing CI, 

CIII and CIV. III2+IV, SC containing CIII and CIV. III2, complex III dimer. IV, complex IV. 

IV2, complex IV dimer. II, complex II. See also Figure S3.
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Figure 4. COX7A2L physically binds complexes III and IV
(A) COX7A2L co-immunoprecipitation assay. Digitonin-solubilized mitochondrial extracts 

(4 g digitonin / g protein) from HEK293 cells transiently transfected with COX7A2L-MYC-

DDK (+) or the empty MYC-DDK construct (-) were immunoprecipitated using an anti-

DDK antibody. (B) The same digitonin-solubilized mitochondrial extracts were 

immunoprecipitated using antibodies against CORE2, or (C) against COX1. Samples were 

subsequently analyzed by SDS-PAGE and western blot with the indicated antibodies.
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Figure 5. Assembly kinetics of COX7A2L in free complexes and supercomplexes
(A) Mitochondria from doxycycline-treated 143B cells were extracted with a 

digitonin:protein ratio of 4 g/g and analyzed by 2D-BN/SDS-PAGE and western blot with 

the indicated antibodies. (B) Densitometric profiles representing the assembly progress of 

COX7A2L in CIII- and CIV- containing structures. (C) Mean incorporation rates of 

COX7A2L into CIII- and CIV- containing structures. The signals from three independent 

experiments were quantified and normalized by CII. Time point values are expressed as 

percentages of the untreated cells (SS), and indicated as means ± SD. I+III2+IVn, SC 

containing CI, CIII and CIV. III2+IV, SC containing CIII and CIV. III2, complex III dimer. 

IV, complex IV. See also Figure S4.

Pérez-Pérez et al. Page 24

Cell Rep. Author manuscript; available in PMC 2016 August 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. COX7A2L binds to complex III assembly intermediates
(A) Digitonin-solubilized mitochondrial extracts (4 g digitonin / g protein) from HeLa cells 

transduced with the MZM1L-HA contruct or with the empty vector (PuroR) were analyzed 

by BN-PAGE and CI-IGA assays or alternatively, by western blot and immunodetection. 

Asterisks indicate unspecific signals that do not appear on 2D-BN/SDS-PAGE gels. (B) 
Subsequent 2D-BN/SDS-PAGE and western blot analyses were performed with antibodies 

against COX7A2L, the indicated OXPHOS subunits and the HA epitope. I+III2+IVn, SC 

containing CI, CIII and CIV. I+III2, SC containing CI and CIII. I*, complex I-containing 

structure. III2+IV, SC containing CIII and CIV. Pre-III2+IV, SC containing pre-CIII and CIV. 

III2, complex III dimer. Pre-III2, pre-CIII lacking the RISP subunit. IV, complex IV; IV2, 

complex IV dimer. II, complex II. Subcomplexes that contain CORE2 and COX1 are 

indicated as subCORE2 and subCOX1, respectively. The association of RISP and MZM1L 

is indicated as RISP+MZM1L.
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Figure 7. COX7A2L down regulation specifically decreases the levels of supercomplex III2+IV 
without affecting respirasome biogenesis
The effect of COX7A2L knockdown on MRC complex assembly was investigated in 

untreated (CO), mock-transfected (C-), and COX7A2L siRNA-transfected (i) 143B cells and 

in the CIV-KO mutants. (A) Mitochondria were extracted with a digitonin:protein ratio of 4 

g/g and analyzed by BN-PAGE followed by CI-IGA assays, or alternatively, by western blot 

and immunodetection with the indicated antibodies. (B) 2D-BN/SDS-PAGE and western 

blot analyses of 143B cells upon COX7A2L silencing. (C) The optical densities of 

immunoreactive bands that had not reached saturation levels were measured. The signals 

within SC III2+IV were quantified, normalized by CII, and shown as means ± SD from five 

independent siRNA experiments. Values are expressed as percentages of the cells transfected 

with scramble RNA (C-, horizontal bar). I+III2+IVn, SC containing CI, CIII and CIV. I+III2, 

SC containing CI and CIII. III2+IV, SC containing CIII and CIV. III2, complex III dimer. IV, 

complex IV. IV2, complex IV dimer. II, complex II. See also Figures S5 and S6.
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