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Abstract. We construct a one-dimensional toy model to describe the main features

of Borromean nuclei at the continuum threshold. The model consists of a core and

two valence neutrons, unbound in the mean potential, that are bound by a residual

point contact density-dependent interaction. Different discretization procedures are

used (Harmonic Oscillator and Transformed Harmonic Oscillator bases, or use of large

rigid wall box). Resulting energies and wave functions, as well as inelastic transition

intensities, are compared within the different discretization techniques, as well as

with the exact results in the case of one particle and with the results of the di-

neutron cluster model in the two particles case. Despite its simplicity, this model

includes the main physical features of the structure of Borromean nuclei in an intuitive

and computationally affordable framework, and will be extended to direct reaction

calculations.

1. Introduction

One of the most relevant research lines in Nuclear Structure nowadays is the investiga-

tion, both experimentally and theoretically, of nuclei under extreme conditions and, in

particular, nuclei far from the stability line. Examples of such systems are nuclei with

large neutron excess, with the barely bound outermost ones creating an extended den-

sity distribution, named as halo. Nuclei that do not accept more neutrons mark on the

isotope chart the neutron drip line, and along this line truly enticing and striking novel

nuclear structure phenomena are being observed. Nowadays measuring the properties of

such nuclei is the goal of the main experimental nuclear facilities around the world [1, 2].

The theoretical description of halo nuclei is strongly characterized by its weakly-

bound nature. Bound nuclei in the vicinities of the stability valley can be modeled

within a mean field potential partially filled with nucleons (protons and neutrons). In

this simplified model the stable ground-state configuration is schematically depicted in
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figure 1a, while the lowest nuclear excitations in this picture can be obtained by pro-

moting one or more nucleons to the still bound higher energy states, as shown in figure

1b. How is this simplified picture affected as nuclei get close to the neutron drip line?

In this case the neutron Fermi energy approaches to zero, as shown in figure 1c and

the corresponding neutron excited states must involve the promotion of a neutron to

continuum states (figure 1d). The last nucleons are so weakly-bound that the addition

of any correlation to the simple mean field model inevitably involves the inclusion of

the continuum in the system description.
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Figure 1: Schematic single-particle configuration of the ground-state (a) and its particle-

hole excitation (b) for a nucleus close to the stability valley. Corresponding situation

for a system close to the neutron drip line, with ground-state (c) and its excitation of a

nucleon to the continuum (d).

In accordance with this picture we present in this memory results for a one-

dimensional (1D) toy model of a particular kind of halo nuclei: the so-called Borromean

two-neutron halo nuclei. Borromean systems are three-body systems (core plus two par-

ticles) that are bound systems with no bound state in the possible binary subsystems.

The seminal best known examples of Borromean nuclei are 6He and 11Li, but other

Borromean nuclear systems have been proposed, e.g. 14Be and 22C [3].

The main ingredients of the present systems are a mean field 1D Woods-Saxon

potential, with all bound levels supposed to be totally filled and inert, plus two extra

neutrons added to this core. The resulting system, unbound at the mean-field level, is

bound due the action of a residual point contact density-dependent interaction. It is

clear that the description of such a system requires an adequate consideration of the
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role of the continuum. In order to do so we first deal with the one body mean field

Woods-Saxon potential in section 2. We select a set of Woods-Saxon potential pa-

rameter values that qualitatively model a nuclear structure problem and discretize the

system continuum, using a finite set of normalizable (square-integrable) pseudostates;

three different approaches have been followed. The first one consists in diagonalizing the

Woods-Saxon potential Hamiltonian matrix in a truncated Harmonic Oscillator (HO)

basis, the second makes use of a local scale transformation to construct a truncated

Transformed Harmonic Oscillator (THO) basis, while the third one uses a rigid wall box

(BOX) to achieve continuum discretization. We present in section 2.2 and 2.3 results

obtained for eigenvalues, eigenfunctions, and other quantities of interest (single-particle

transition of x and x2 operators, total strength, and sum rules), studying and comparing

the convergence properties of the different approaches. Since the one-body case can be

directly solved without resorting to continuum discretization, our results can be also

compared to the “exact” values.

Once the pseudostate description of the model Woods-Saxon potential has been set

up, we proceed in section 3 to state the two-body problem (two neutrons plus Woods-

Saxon core) in 1D, to define an appropriate basis, and to construct bound and excited

states by diagonalizing the system Hamiltonian with the different continuum discretiza-

tion procedures described in section 2. Besides the discussion on the convergence of

eigenvalues and eigenfunctions (section 3.2), we compute other quantities of interest as

transition intensities of x and x2 operators. The obtained results are compared in section

3.3 with those obtained describing the same system (core plus two neutrons) within the

“popular” di-neutron cluster model. The last section contains some concluding remarks

and suggestions of future investigations along the present line of research.

Though the simplification achieved devising our 1D model precludes us from

comparing directly to real nuclei, we expect that the present toy model, notwithstanding

its simplicity, contains the basic physical ingredients for a correct description of the

problem under study. A solution of a simplified toy model frequently casts light upon

a physical problem whose full solution is hindered by mathematical complexities or is

plainly not possible. Reduced dimensionality models of application in Nuclear Physics

can be found e. g. in [4, 5, 6]. In particular, some results for the model investigated

in the present memory can already be found in [7]. As a last remark we would like

to mention that the calculations presented have been carried out using fortran90,

gnu-Octave, and perl codes developed for this purpose [8], and that part of the results

were presented by one of the authors (LM) for the obtention of her master’s degree [9].

2. One-body problem

In many-body systems at the drip lines, e. g. halo nuclei, it is mandatory to include

continuum effects in the system description, starting with a single-particle basis that
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must include the positive energy part of the spectrum. In this section we start therefore

presenting different pseudostate methods to model weakly-bound one-body quantum

systems.

In pseudostate methods continuum wave functions are obtained as eigenstates of

the system Hamiltonian matrix in a truncated basis of square-integrable wave functions.

Continuum discretization methods include for example the use of Harmonic Oscillator

and Transformed Harmonic Oscillator basis, the use of large rigid wall box or, as

extensively used in reaction theories, the average method that build a basis of normalized

bin functions superposing true continuum wave functions. The results of the different

methods are tested in the case of a 1D Woods-Saxon potential with parameters chosen

in order to mimic the nuclear case for a light system.

2.1. Continuum Discretization with Pseudostates

The problem of particles moving in a one dimensional Woods-Saxon mean field can be

solved diagonalizing the Hamiltonian in different bases. In fact the solution of the 1D

time-independent Schroedinger equation (TISE)

Ĥ1bψ(x) = Eψ(x)→
[
− h̄

2

2µ

d2

dx2
+ VWS(x)

]
ψ(x) = Eψ(x), (1)

is reduced to the problem of building and diagonalizing a Hamiltonian matrix within

each of the considered bases. This will provide the eigenfunctions and the corresponding

energies of the problem, that are not limited to the bound states, but also pseudostates

in the continuum (positive energy states). The 1D Woods-Saxon potential is

VWS(x) =
V0

1 + e
|x|−R
α

(2)

and the chosen potential parameters are V0 = −50.00 MeV, R = 2.00 fm, α = 0.40

fm, and µ = 0.975 amu. This particular set of parameters has been chosen to set up

a 1D toy model representative of a light-mass weakly-bound nucleus. With this choice

of parameters the system has in fact three single-particle bound states whose energies

are presented in figure 2, with a weakly-bound third energy level (-0.51 MeV binding

energy).

The most popular approach in Quantum Mechanics to construct a basis of

pseudostates is provided by the Harmonic Oscillator [11]. To solve the TISE in a 1D

HO basis, the starting point is to generate a truncated N dimensional basis set of 1D

HO wave functions

φHOi (x) = Mi

√
aHi(ax)e−a

2x2/2; i = 0, . . . , N − 1. (3)

The parameter a = 4

√
µK/h̄2 is the inverse of the oscillator length with K equal to the

4-th constant of the Harmonic Oscillator, Hi(ax) is the i-th Hermite polynomial, and
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Figure 2: The model Woods-Saxon 1D potential and its bound wave functions. Those

shown in the figure have been computed using HO basis with N = 50.

Mi is a normalization constant

Mi =
1√

2ii!
√
π
. (4)

The HO basis can be easily constructed and the necessary integral calculations are

simplified making use of the Hermite polynomial recurrence relation [12]. Once

the matrix is diagonalized, we obtain a set of one-body eigenvalues, EHO
i , and

eigenfunctions, ψHOi (x). The eigenstates are linear combinations of the basis elements

ψHOi (x) =
N−1∑
k=0

αHOik φHOk (x); i = 0, . . . , N − 1. (5)

A disadvantage of the HO basis when used as a basis in variational methods to

model bound states is its Gaussian asymptotic behavior, compared to the true bound

states exponential behavior. This is even more so in continuum pseudostates. This fact

explains the success of the THO basis. A THO basis consists of a HO basis to which a

local scale transformation (LST) s(x) has been applied. The aim of this transformation

is to alter the HO wave functions asymptotic behavior. For details see, e. g. [13, 14, 15].

To solve the problem in a 1D THO basis our starting point is a truncated N

dimensional basis set φHOi (x) of 1D HO wave functions, which has to be scaled into the

new basis as follows

φTHOi (x) =

√
ds(x)

dx
φHOi (s(x)); i = 0, . . . , N − 1, (6)

according to the analytical LST function (see [15, 16])

s(x) =
[
x−m + (γ

√
x)−m

]− 1
m (7)

that is valid for x > 0; for negative x values we impose that s(x) is an odd function:

s(−x) = −s(x). The quantity γ is a parameter of the LST and is a variable parameter

of the calculation. Once the TISE for the 1D mean field Woods-Saxon potential

(2) is solved using the basis (6), we obtain a set of discrete eigenvalues, ETHO
i , and
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eigenfunctions, ψTHOi (x), and the latter can be written as a linear combination of the

THO basis states

ψTHOi (x) =
N−1∑
k=0

αTHOik φTHOk (x); i = 0, . . . , N − 1. (8)

A third way to obtain a continuum discretization is making use of a rigid box of

radius xb, with xb being large enough compared to the potential range

Vb(x) =

{
VWS if |x| < xb,

∞ if |x| ≥ xb.
(9)

This potential-in-a-box problem can be solved using standard numerical techniques for

the solution of differential equations, as for example the Numerov approach. Once

the 1D TISE for the mean field Woods-Saxon potential (2) is solved, we obtain the

eigenenergies EBOX
i and the one-body eigenfunctions ψBOXi (x).

2.2. Model Woods-Saxon Potential Energies and Wavefunctions

As previously stated, the PS approach that we follow implies the solution of the

model hamiltonian with different procedures. The obtained results depend on the

basis dimension for HO and THO methods or on the box radius xb for the BOX

method. We proceed to study the convergence of eigenvalues and eigenfunctions when

these parameters are varied. We focus not only on the energies, but also on the wave

functions asymptotic behavior. A proper description of the wave functions tails is, in

fact, crucial to reasonably describe the reaction properties of our system. This is even

more important when, as in our chosen specific case, the Woods-Saxon potential has a

very weakly-bound state (E2 = −0.51 MeV), as shown in figure 3.
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Figure 3: The Woods-Saxon model potential (thin blue), last squared bound wave

function (thick red) and the first squared continuum PSs (green) obtained with the

Hamiltonian matrix diagonalization (in particular BOX with xb = 100 fm).

In the HO case the key parameter is the basis dimension N; so we check the results

convergence with a varying basis size. In addition to the value of N, a second model
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parameter is the inverse oscillator length a. The inverse oscillator length determines

the curvature of the HO potential at the origin and thus how wide the potential is (see

Appendix A).

In the THO case results depend mainly on the basis dimension N and the parameter

ratio γ/b, where b = 1/a is the oscillator length. The second LST parameter, m, affects

very lightly to the calculations and has been fixed to a constant m = 4 value following

[14]. The ratio γ/b =
(

8µε
h̄2

)1/4
gives an extra degree of freedom to the approach compared

to the HO case. As discussed in [14, 15], the value of γ2

2b2
can be considered as an effective

momentum value, keff , and the asymptotic value of the basis functions is e−
γ2

2b2
|x|. As

γ/b increases (decreases) the basis spatial extension decreases (increases). Therefore,

for small γ/b values the positive eigenvalues tend to concentrate at lower energies, and

the γ/b ratio controls the density of PSs as a function of the excitation energy. This

useful property of THO basis makes this approach an interesting alternative to HO

[15]. For large γ/b values the THO reaches the HO limit. The improved asymptotic

wavefunction behavior is ascertained computing the bound states energy convergence.

If we fix the value of 5 keV as the energy convergence goal, an N = 50 basis is needed for

γ/b = 2.4fm−1/2 (as in the HO case) while it is enough with N = 20 for γ/b = 1.2fm−1/2.

All THO results have been calculated for γ/b = 1.2fm−1/2.

The third option considered for obtaining pseudostates is enclosing the potential

in a rigid wall box. The main parameter when solving the problem of a potential in a

rigid wall box is xb, the box width.

In the left panels of figure 4 we depict the eigenvalues of the model Woods-Saxon

potential as a function of the basis dimension N or the box radius xb, depending on the

method. Negative energy levels converge to the bound state energies quite fast. We

consider that an energy level is converged when ∆E ≤ 5 keV for a dimension increment

∆N = 10. As expected, the convergence is much faster for the ground and first excited

states than for the weakly-bound second excited state.

In the right panels of figure 4 we show for different parameter values the weakly-

bound state wave function tails, where the major differences can be found. Large N

values (in HO and THO cases) are required to extend towards large x values, reproducing

the exponential behaviour. Note that the THO approach leads to a faster convergence

than the bare HO approach. For the BOX case we show the wave function tail for

different box sizes.

2.3. Excitation Matrix Elements and Sum Rules

In this subsection we present results for the transition probabilities for the x and x2

operator from the weakly-bound state to excited states at positive energies. These are

the 1D equivalent of the dipole and quadrupole transition strengths to the continuum
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Figure 4: Left panels: Eigenvalues of the Woods-Saxon model potential as a function of

the number of basis states (in the HO and THO case) and as a function of the box radius

(in the BOX case). Right panels: asymptotic spatial dependence of the weakly-bound

state wave function (in logarithmic scale) as a function of x for different parameters

values.
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in 3D. As it is well known, the low binding energy of weakly-bound systems strongly

affects the response to the continuum and, therefore, the convergence of these matrix

elements is a crucial test for the discretization procedures.

The transition probability between bound states or between a bound state and a

continuum pseudostate (see the discussion in [17]) can be written as

Bn(b→ i) = |〈Ψb|On(x)|Ψi〉|2. (10)

with On(x) = x and x2 for n= 1 and 2, respectively. Therefore we need to compute the

integrals

〈Ψb|On(x)|Ψi〉 =
∫ +∞

−∞
dxΨ∗b(x)On(x)Ψi(x). (11)

By changing the N or xb parameters we expect a difference in the density of

continuum levels (as previously shown in the left panels of figure 4). For example,

in figure 5 we present the different distributions of B1 intensities obtained with the

THO procedure for N = 35 and N = 85, where this effect can be easily appreciated.

The B1 and B2 distributions for HO, THO, and BOX cases are shown in figure 6 for the

calculations starting from the weakly-bound third state Ψ2(x). For a better comparison

of the convergence properties, in the last row of panels of figure 6 we also display the

summed Tot(B1)2→i =
∑N
i=1 | 〈Ψ2|x|Ψi〉 |2 and Tot(B2)2→i =

∑N
i=1 | 〈Ψ2|x2|Ψi〉 |2

transition intensities as function of the energy. These should be calculated including in

the {Ψi} set only those states above the initial state Ψ2, i.e. only the continuum states

in our case. However, in the calculation of the summed strength we have included also

the transition to lower energy bound states, which in principle are occupied by the core

particles and thus Pauli forbidden. In this way we can in fact compare the results with

the sum rules, that encompass all the states.
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Figure 5: B1 transition intensities calculated for the b = 2 weakly-bound state in THO

case with N = 35 (dark bars) and N = 85 (red light bars).

For our one-body problem, the Total Strength Sum Rule (TSSR) for an operator

O is

S(b)
T (O, N) =

N−1∑
i=0

| 〈Ψb|O(x)|Ψi〉 |2, (12)
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Figure 6: B1 (upper four panels) and B2 (lower four panels) energy distributions

calculated starting from the third bound state in HO, THO, and BOX cases (using

NHO = 250, NTHO = 85, and xb = 100fm). In the last rows the Tot(B1) and Tot(B2)

convergence to the expected values (green dotted lines) are reported as a function of

energy.

where |Ψb〉 is the bound state wave function (|Ψ2〉 in our case) and {|Ψi〉}Ni=1 is the set

of bound states plus pseudostates. In the large N limit, due to the basis completeness,

the TSSR is given by

lim
N→∞

S(b)
T (O, N) = 〈Ψb|O2(x)|Ψb〉 (13)

and can be easily calculated numerically from the bound state wave functions. These

values are depicted in figure 6 as green horizontal dotted lines and, as one can see, we

find a good agreement for all discretization procedures.

Another useful quantity to assess the goodness of a continuum discretization is the

Energy Weighted Sum Rule (EWSR)

E (b)
W (O, N) =

N−1∑
i=0

(Ei − Eb) | 〈Ψb|O(x)|Ψi〉 |2, (14)

where, again, |Ψb〉 is the bound state wave function and {|Ψi〉}Ni=1 is the set of bound
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states plus pseudostates. In the large N limit the EWSR is given by

lim
N→∞

E (b)
W (On, N) =

1

2

h̄2

µ
〈Ψb|

(
dOn(x)

dx

)2

|Ψb〉. (15)

Thus in the case of O1 = x, it results

E (b)
W (x,N →∞) =

1

2

h̄2

µ
, (16)

while for O2 = x2

E (b)
W (x2, N →∞) = 2

h̄2

µ
〈Ψb|x2|Ψb〉. (17)

These values are compared in table 1 with those calculated for different values of N for

the HO and THO discretization procedures and in table 2 for different values of xb for

the BOX procedure, summing the contributions of the different pseudostates. As one

can see from the convergence of the different sum rules, smaller N values are required in

the THO than in the HO case. In the BOX case a rather large value of xb is necessary.

HO THO

N TSSR EWSR N TSSR EWSR

(fm2) ( h̄
2

µ
) (fm2) ( h̄

2

µ
)

15 16.26 0.500 8 15.34 0.508

100 34.38 0.500 20 33.43 0.500

150 34.44 0.499 35 34.42 0.500

200 34.44 0.500 55 34.44 0.500

250 34.44 0.500 85 34.44 0.500

34.44 0.500 34.44 0.500

(a) B1

HO THO

N TSSR EWSR N TSSR EWSR

(fm4) ( h̄
2

µ
) (fm4) ( h̄

2

µ
)

15 242.7 31.59 8 200.3 -1.592

100 3137 68.80 20 2576 72.11

150 3205 68.89 35 3187 68.85

200 3212 68.90 55 3212 68.95

250 3213 68.91 85 3212 68.91

3213 68.91 3213 68.91

(b) B2

Table 1: The B1(O = x) (a) and B2(O = x2) (b) “exact” sum rules values in bold are

compared with those calculated for different values of N for the HO and THO bases

summing the contributions of the different pseudostates.
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B1 B2

xb TSSR EWSR TSSR EWSR

(fm) (fm2) ( h̄
2

µ
) (fm4) ( h̄

2

µ
)

15.00 23.61 0.499 733.3 67.23

35.00 34.18 0.500 2990 68.37

55.00 34.45 0.500 3211 68.91

85.00 34.45 0.499 3214 68.90

100.0 34.44 0.499 3213 68.90

34.44 0.500 3213 68.91

Table 2: The B1(O = x) (left) and B2(O = x2) (right) “exact” sum rules values in bold

are compared with those calculated for different values of xb for the BOX procedure,

summing the contributions of the different pseudostates.

As it is apparent from figure 6 the distribution of transition matrix elements to

continuum states follows the expected threshold shape of the multipole strength for

weakly-bound systems.

To emphasize this point it is interesting to compare the result obtained using

the discretized pseudostates with an analytic expression. This formula is obtained by

approximating the weakly-bound wave function by an exponential and the contiuum

state by a free plane wave. In this case, in fact, aside from a normalization factor and

as a function of the momentum k, the result is

dB1

dk
∝

∣∣∣∣∫ +∞

−∞
dx e−kb|x| x eikx

∣∣∣∣2 ∝ k2
bk

2

(k2 + k2
b )

4
(18)

where k is the momentum in the continuum and kb =
√

2µ|Eb|
h̄2

is the momentum

associated to the weakly-bound second state.

It is also possible for the one-body case to provide a comparison with an “exact”

calculation. In 1D for each positive energy there are two degenerate continuum wave

functions with momentum k = ±
√

2µE
h̄2

, one incoming from the left and the other

from the right. For each energy one could take the symmetric and antysimmetric

combinations of the momentum normalized continuum wave functions

Ψs
±k =

1√
2

[Ψ+k(x) + Ψ−k(x)] ,

Ψa
±k =

1√
2

[Ψ+k(x)−Ψ−k(x)] , (19)

〈Ψρ
k|Ψ

ρ′

k′〉 = δρρ′δ(k − k′),

where ρ = s, a. Since our weakly-bound state is symmetric, only antisymmetric states

are connected by the x operator. So the B1 distribution for the “exact” case is given by

dB1

dk
∝

∣∣∣∣∫ +∞

−∞
dx Ψ∗b(x) x Ψa

±k(x)
∣∣∣∣2 . (20)
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The comparison (in the BOX case) between analytical, “exact”, and pseudostates

results for B1 is shown in figure (7). The alternative methods are in good agreement.
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Figure 7: dB1

dk
, as a function of momentum, calculated in the BOX case (with xb = 120

fm, green bars) compared with analytical (dashed blue line) and “exact” results (solid

red line).

3. Two-body problem

After having investigated different approaches to discretize the continuum in a one-body

problem we proceed to a more complex, and physically more enlightening, two-body

system. Our schematic model in this case consists of a fully occupied Woods-Saxon core

plus two particles outside the core interacting via a matter density-dependent point

contact residual interaction. As anticipated in the introduction of this memory, our

goal with this choice is to model a simplified (1D) Borromean nucleus, i. e. a system

with a two-particle halo which is bound notwithstanding the possible core plus one

particle subsystem is unbound. This simplified 1D model has already been presented

[22, 21] and tested in some reaction applications [7].

The two-body model will be summarized in section 3.1, the results for the system

eigenvalues and eigenvectors will be shown in section 3.2, while other computed

quantities of physical interest will be given in section 3.3.

3.1. The two-body model

The two-body problem consists of two valence particles, moving in a one-dimensional

Woods-Saxon potential core (2), whose bound levels are assumed to be completely filled,

interacting via a density-dependent short-range attractive residual interaction

Vint(x1, x2) = V0δ(x1 − x2)− VRI
[
ρ[(x1 + x2)/2]

ρ0

]p
δ(x1 − x2), (21)
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where V0, VRI , p, and ρ0 are parameters, and ρ(x) is the core matter density

ρ(x) =
Nb−1∑
i=0

ψ∗i (x)ψi(x), (22)

where Nb is the number of occupied bound states. The formulation of this problem has

been introduced and presented in [23] for the 3D case. Note that in our 1D reduction

for a symmetric potential the core density (22) is a symmetric function of x. In the

following, we assume that the volume term V0 is zero and we only deal with the matter

density weighted term.

Since we model a drip line system, we have chosen the Fermi surface in such a way

that there are no available bound states, so the two unperturbed particles must lie in the

continuum. The final two-body state becomes bound due to the action of the residual

interaction between the two particles, akin to a 1D “Borromean” system. Thus, the

two-body Hamiltonian H2b is built combining the one-body Hamiltonian (2) with the

residual interaction (21)

H2b(x1, x2) = H1b(x1) +H1b(x2) + Vint(x1, x2). (23)

Our strategy is to diagonalize the two-body Hamiltonian (23) in a two-body basis

built with states that are above the Fermi energy surface. We proceed to detail the basis

construction following [23]. The full 1D one-body wave function has two components,

a spatial part and a spinor part

Ψ(1b)
n,ms(x) = ψn(x)χ(s)

ms , (24)

where the one-body spatial component has been previously obtained using any of the

methods presented in section 2.1.

The two-body basis can be constructed involving products of one-body wave

functions to obtain

Ψ
(2b)
n1,n2,S,mS

(x1, x2) = ψn1(x1)ψn2(x2)

×
∑

ms1 ,ms2

〈s1ms1s2ms2|s1s2SmS〉χ(s1)
ms1

χ(s2)
ms2

. (25)

Assuming that we are dealing with fermions, the full wave function (25) should be

antisymmetric under the interchange of the labels 1 and 2. Thus, if we consider the

singlet S = 0 wave function, the spin degrees of freedom are antisymmetric [24]

Ψ
(2b)
n1,n2,0,0(x1, x2) = ψn1(x1)ψn2(x2)

[
1√
2

(
χ

(1/2)
1/2 χ

(1/2)
−1/2 − χ

(1/2)
−1/2χ

(1/2)
1/2

)]
. (26)

The spatial part should be symmetrized, and the dimension of the problem for N one-

body spatial wave functions goes down from N2 to N(N + 1)/2 for the symmetric

two-body spatial wave functions ψ(2b)
n1,n2

(x1, x2)

ψ(2b)
n1,n2

(x1, x2) =

√
2− δn1,n2

2
[ψn1(x1)ψn2(x2) + ψn2(x1)ψn1(x2)] . (27)
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or, using the ket notation,

ψ(2b)
n1,n2

(x1, x2)→ |(s)n1n2〉 =

√
2− δn1,n2

2
(|n1n2〉+ |n2n1〉) . (28)

The matrix elements of the Hamiltonian (23) in the symmetrized basis are

〈(s)n′1n′2|H2b|(s)n1n2〉 =

√
(2− δn1,n2)(2− δn′1,n′2)

2
(En1 + En2)

× (δn1,n′1
δn2,n′2

+ δn1,n′2
δn2,n′1

) + 〈(s)n′1n′2|Vint|(s)n1n2〉, (29)

where the matrix element of the residual interaction is

〈(s)n′1n′2|Vint|(s)n1n2〉 = −VRI
√

(2− δn′1,n′2)(2− δn1,n2)

×
∫ +∞

−∞
dxψ∗n′1(x)ψ∗n′2(x)

[
ρ(x)

ρ0

]p
ψn1(x)ψn2(x). (30)

As the core density (22) is symmetric, the integrand has to be a symmetric function

too, which implies the selection rule

n1 + n2 + n′1 + n′2 = 2n; n = 0, 1, 2, . . . (31)

As we are dealing with a contact interaction, it is important to define an energy thresh-

old, Eth, beyond which the two-body basis components are not taken into account. Thus,

only basis states |(s)n1n2〉 such that En1 + En2 ≤ Eth will enter into the calculation.

This energy cut-off is due to the special characteristics of the point contact interaction

that forbid convergence when the full space is considered [23].

For each of the considered discretized bases (HO, THO, BOX) we solve the one-

body problem (1) to obtain a set of bound states and a set of pseudostates representing

the continuum. Then, using the positive-energy pseudostates, the Fermi-allowed two-

body basis is built and the two-body Hamiltonian (23) is diagonalized, computing the

matrix elements (29). This second part is common to all methods.

The residual interaction parameter values selected in the present work are as follows

V0 = 0.0 MeV, VRI = −38.0 MeV, ρ0 = 0.15 fm−1, (32)

p = 1, Eth = 50.0 MeV, µ = 0.975 amu.

3.2. Energies and Wavefunctions for the two-body model.

As in the one-body case, we check the bound state energy convergence and the wave

functions tails. A proper behavior in the tail region is essential in the description of two-

particle transfer processes in connection with the pairing field. We should emphasize

that, in comparison with the one-body case, the treatment of this case is a more complex

task, since it implies much larger bases.

In the first place we check the dependence of the resulting two-body Hamiltonian

eigenvalues with the dimension of the truncated 1D basis. This is depicted in figure

8a for the HO and 8b THO methods, while for the BOX method the dependence on
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the box radius is reported in figure 8c. As can be seen from those figures, the energy

of the bound state (red solid line) is converging, with residual minor oscillations, to a

limiting value Eb = −0.5 MeV. Note that without the residual interaction the two-body

system is unbound, and it is the attractive residual interaction between the two valence

neutrons that makes the system bound. To show the quantitative effect of the residual

interaction, we also depict in figure 8, as a dashed green line, the energy of the lowest

unperturbed two-particle state for each value of the parameter N or xb. The dotted blue

lines are the energies of the lower two-particle pseudostates in the continuum arising

from the diagonalization. As in the one-body case the convergence is faster with respect

to N for the THO case as compared to the simpler HO case.
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Figure 8: Panel a: first two-body Hamiltonian energies (solid red and dotted blue lines)

as a function of the dimension of the truncated 1D HO basis (left) and ground state

wavefunction tail Ψ(x, x) for different values of the one-body basis dimension (right).

Panel b: same for THO basis. Panel c: first two-body Hamiltonian energies as a function

of the radius xb of the BOX (left) and ground-state wavefunction tail Ψ(x, x) for different

values of the box radius (right). Also shown, as dashed green lines, the energies of the

lowest unperturbed two-particle state for each value of the parameter N or xb.

As in the one-body case it is important to check also the radial behavior of the



Bound and unbound nuclear systems at the drip lines: a one-dimensional model 17

bound eigenstate. To this end the resulting ground-state wave function Ψ(x, x) for

x1 = x2 = x is plotted in the right panels of figure 8 for different N values in the HO

and THO cases or xb for the BOX. In order to display the slow convergence in the

tail region, we show in the figure just the asymptotic part of the wave functions in a

logarithmic scale.

A further insight on the effect of the residual pairing correlations can be obtained

by looking at the features of the wave function (or its modulus squared) as a function of

the coordinates x1 and x2. The results obtained for the correlated two-particle ground

state are displayed in the figure 9 and should be compared with the uncorrelated case

displayed in figure 10. In order to better pinpoint the effect of correlations we define an

uncorrelated case with zero residual interaction, but with a mean field such to obtain

a two-particle uncorrelated wave function with the same total binding energy (−0.5

MeV) as the final correlated one. It is apparent from the comparison of the two figures

that the residual interaction has created a spatial correlation between the two particles,

proved by an increased probability along the bisector line x1 = x2, i. e. for small relative

distances. On the contrary, the uncorrelated wave functions looks completely symmetric

in the four quadrants, implying that the probability is not maximum for small relative

distances.

The enhanced spatial correlation in the correlated case can be even better

appreciated by cutting the wavefunctions presented in figures 9 and 10 along the x1 = x2

bisector. Correlated and uncorrelated sections are compared in figure 11, showing

the strong enhancement in the correlated case. This enhancement will be reflected

an increasing probability for two-particle transfer, two-particle breakup or knock-out

processes, with strong angular correlation between the two emitted particles in the two

latter cases [25]. We can note that all discretization methods provide similar results,

although again the number N of shells required to get convergence in THO is smaller

than in HO.

3.3. Transition matrix elements for x and x2 operators

The knowledge of the ground and excited two-particle states allows us now to calculate

matrix elements of different operators, e.g. x and x2, between the ground state and all

“continuum” excited states. Besides checking the different discretization methods, one

can compare the energy strength distribution with those obtained within the di-neutron

cluster model.

We start by extending the x and x2 operators to the two-particle case. Defining

D12 = x1 + x2, (33)

Q12 = x2
1 + x2

2, (34)

and we compute the transition integrals

〈Ψb|O(x1, x2)|Ψi〉 =
∫ +∞

−∞
dx1dx2 Ψ∗b(x1, x2)O(x1, x2)Ψi(x1, x2), (35)
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(a) HO (b) THO

(c) BOX

Figure 9: Contour plots of the probability density for the two-body bound state with

binding energy E = −0.5 MeV using the correlated Hamiltonian (23) constructed with

different bases: HO with N = 200 in panel (a), THO with γ/b = 1.2 fm−1/2 and N = 75

in panel (b), and a BOX with xb = 100 fm in panel (c).
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Figure 10: Same than figure 9, but for the wave function obtained with an uncorrelated

Hamiltonian (zero residual interaction), with a single particle potential depth modified

to obtain for the two-particle system the same binding energy as in the correlated case

(E = −0.5 MeV).
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Figure 11: Two-body bound state along the x1 = x2 bisector for the correlated and

uncorrelated cases presented in figures 9 and 10.

where O(x1, x2) = D12 or Q12, Ψb(x1, x2) is the two-body ground state, and the set

{|Ψi(x1, x2)〉} reptesents the two-body continuum pseudostates.

The resulting distribution of modulus squared matrix elements from the ground

state to continuum states is reported in figure 12 for the different discretization methods

and for different values of N (HO and THO) or xb (BOX). Upper frames refer to B1 =

|〈Ψb|D12|Ψi〉|2, lower frames to B2 = |〈Ψb|Q12|Ψi〉|2. Since the different calculations lead

to different densities of states, for a better comparison of the convergence properties we
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also display in the legends of the figure the integrated values.
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Figure 12: Results for the B1 and B2 transition intensities in the microscopic two-

body approach as a function of the excitation energy, using the different discretization

methods. Numbers in each panel legend are the integrated values. In the HO case the

basis dimension is N= 200, in the THO case N= 100, and for the BOX case the radius

is xb = 90 fm.

It would be natural trying to interprete the above results in terms of sum rules. This

is more complex in the case of the TSSR see (13), since it would require the evaluation

of the expectation value of x1x2 operator. It is, on the other hand, easier to evaluate

the EWSR: in an A-body system, for one-body operators, it can be calculated as

E (b)
W (x1, ..., xA) =

1

2

h̄2

µ
〈Ψb|

A∑
i=1

(
∂O(xi)

∂xi

)2

|Ψb〉. (36)

The fulfillment of the EWSR is an indication of the goodness of the discretization

method, but also of the completeness of the basis, as stated for the one-body case in

Section 2.3. The EWSR value is in fact only recovered when a complete basis is used

which is not our case. Since we are dealing with a delta function, we truncate all bases

up to a certain energy. Since the values of the transition matrix elements are rapidly

decreasing (cf. figure 12) we may assume that the cut-off is not so relevant. However,
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it is much more important that in our model we have assumed a saturated and frozen

core: states that correspond to both particles in a “forbidden” bound state or states

which represent combinations of one particle in a core state and another in a one-body

continuum state have not been included in the two-body basis. For this reason the

comparison with the EWSR for the two-body case is beyond our simple approach.

We conclude this section by comparing the results obtained in the two-body model

with the corresponding distribution of matrix elements obtained within the di-neutron

cluster model [26]. To this end we have considered a 1D cluster of two neutrons with

mass µ = 1.885 amu moving in a potential defined in such a way to reproduce the same

binding energy (E= −0.50 MeV) and quantum numbers of the two-body model case:

V0 = −50.9 MeV, R = 5.0 fm, α = 0.4 fm. (37)

In this case the transition intensities to continuum are calculated with a one-body

operator xclus, the c.m. coordinate of the cluster, and the basis states are single-particle

bound and pseudo states {|Φi〉} generated by the “cluster” potential. In lower panel of

figure 13 we present the cluster response B1 = |〈Φb|xclus|Φi〉|2 with the corresponding

two-body calculations B1 = |〈Ψb|x1 + x2|Ψi〉|2. For this comparison we have chosen

THO results with N= 100 for the “microscopic” case and N= 200 for the cluster case.

The two distributions have the same shape but, apart from a different normalization

factor, the maxima are not located at the same energy. This suggests that the position

of the peak in the B(E1) distribution could provide a hint on the possible validity of

the popularly used “di-neutron cluster” model.
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Figure 13: Results for the B1 transition intensities in the microscopic two-body approach

(upper panel, THO with N= 100) compared with the di-neutron cluster calculation

(lower panel, THO with N= 200).

4. Summary and Conclusions

The goal of the present memory is to investigate aspects of a weakly-bound 1D quantum

two-particle system. The 1D simplified model permits a clear description of the relevant



Bound and unbound nuclear systems at the drip lines: a one-dimensional model 22

physical parameters without the mathematical complexities associated with the full 3D

case.

The model system is composed of a core that is a mean field potential modeled by a

Woods-Saxon, plus two valence nucleons bound by a matter density-dependent delta

residual interaction. The inclusion of the continuum in the description of the chosen

system is absolutely mandatory and we have explored three different discretization (HO,

THO, and BOX). We have obtained the bound state and pseudostates (positive energy

states) of the system. Pseudostates are considered a finite and discrete representation

of the two-body continuum spectrum. Note that in order to construct the basis for

the two-body case we need the solution of the one-body mean field potential, both for

bound states and pseudostates.

In the one-body case, in addition to the calculation of the system eigenstates we com-

pute transition intensities and sum rules of different operators to assess the goodness

of the continuum description achieved with the different methods. Besides, we compare

our results with “exact” and approximate approaches, thus probing the validity of the

different discretization procedures.

In the two-body case, we build the two-particle bases, compute the system eigenvalues

and eigenvectors, and study the bound state energy convergence and the nature of its

wave function. We also compute the transition intensities for the two-body system for

the linear (B1) and quadratic (B2) operators. We compare our B1 result with the di-

neutron approximation result, showing how the distributions peak at different energies.

We suggest that this fact could be used to discriminate among the two approaches.

As already mentioned in the introduction, we have developed the computer codes re-

quired to perform the calculations included in the memory [8].

The results obtained in the one- and two-body cases for HO, THO, and BOX agree

satisfactorily. The pseudostate method turns out to be a computationally efficient ap-

proach to deal with weakly-bound systems.

In the one-body case the system is so simple that large bases (several hundred elements)

can be used requiring a very small computing time. However, for the two-body system,

despite the symmetrization and energy threshold, the involved matrices dimension is

much larger and the problem is computationally heavier. In fact, this is the main rea-

son to support the use of a THO basis, that requires smaller dimension. Despite the

necessity of calculating an optimal γ/b ratio for the problem under study, the THO

basis offers two important advantages. The first is the possibility of tuning the density

of continuum states, making possible to enlarge the pseudostates density at energies rel-

evant for the process under study. The second advantage is the exponential asymptotic

behavior of its basis elements. The combination of these two facts makes the conver-

gence in the THO case faster than in the other two methods. Though in the present

case this advantage is not decisive, in more involved many-body calculations it can be

of major relevance.
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The present results open up many possible lines to proceed the investigation on

weakly-bound systems. We list some promising research lines for the future:

• the simplicity of the present approach allows its use to model transfer reactions

and breakup processes in a simplified and schematic way, along the line already

displayed in [25, 27, 28];

• the present model could provide a convenient way of reckoning the importance of

the pairing interaction in the continuum and the effect of resonances [29] though

the absence of centrifugal barrier in our 1D model implies in the latter case the

introduction of an ad-hoc barrier in the potential;

• the inclusion of core excitations in the model opens up also a very enticing line of

research. These core excitations have been proved to play an important role in the

determination of the structure of some halo nuclei [30, 31] and this model could

offer a convenient (and simple) test ground for their study.
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Appendix A: a procedure for the HO inverse oscillator length optimization

In accordance with other cases the value of this parameter has been fixed to minimize

the ground state energy with a small HO basis [15] . In fact, we could use an N = 1

basis, that is, a basis with the HO ground state as its only component, to obtain a

crude approximation to the system ground state energy. In this way a is a variational

parameter. However, in cases like the model Woods-Saxon potential, with a weakly-

bound state in addition to other bound states, the a value obtained using only the

ground state is too large, and the resulting harmonic potential too narrow. This implies

that it is necessary a very large HO basis dimension to sample the large spatial region

where the tails of the weakly-bound state are still significant. To overcome this problem

one should use a smaller a value. This can be done manually, though we have deviced the

following algorithm. Let us assume that, as in the selected study case, the potential has

three bound states and the last one is weakly bound. We first make the minimization

explained above; then with the obtained a value we build the basis and the system

Hamiltonian is diagonalized. At this point it is possible to evaluate the expectation value

of the x2 operator for the weakly bound wave function i. e. 〈ΨHO
2 |x2|ΨHO

2 〉. We then

compare this result with the same matrix element calculated for a HO basis. We can set a

new inverse oscillator length a equating 〈ΦHO
2 |x2|ΦHO

2 〉 = 5
2
a−2 to 〈ΨHO

2 |x2|ΨHO
2 〉. Once

the new parameter is obtained, we reconstruct the basis and diagonalize again before
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proceeding to the observable calculation. The optimization of the inverse oscillator

length allows to construct a HO basis which encompasses the full bound states spatial

range.
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