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Abstract  

Aims/hypothesis The stimulation of glucagon secretion in response to decreased glucose 

levels has been studied extensively. In contrast, little is known about the regulation of 

glucagon gene expression in response to fluctuations in glucose concentration. PAX6 is 

a key transcription factor that regulates the glucagon promoter by binding to the G1 and 

G3 elements. Here, we investigated the role of the transcription factor ALX3 as a 

glucose-dependent modulator of PAX6 activity in alpha cells. 

Methods Experiments were performed in wild type or Alx3-deficient islets and 

alphaTC1 cells. We used chromatin immunoprecipitations and electrophoretic mobility 

shift assays for DNA binding, immunoprecipitations and pull-down assays for protein 

interactions, transfected cells for promoter activity, and small interfering RNA and 

quantitative RT-PCR for gene expression. 

Results Elevations in the concentration of glucose resulted in stimulated expression of 

Alx3 and decreased glucagon gene expression in wild type islets. In ALX3-deficient 

islets, basal glucagon levels were non responsive to changes in glucose concentration. 

In basal conditions ALX3 bound to the glucagon promoter at G3, but not at G1. ALX3 

could form heterodimers with PAX6 that are permissive for binding to G3 but not to 

G1. Thus, increasing the levels of ALX3 in response to glucose resulted in the 

sequestration of PAX6 by ALX3 for binding to G1, thus reducing glucagon promoter 

activation and glucagon gene expression. 

Conclusions/Interpretation Glucose-stimulated expression of ALX3 in alpha cells 

provides a regulatory mechanism for the downregulation of glucagon gene expression 

by interfering with PAX6-mediated transactivation on the glucagon G1 promoter 

element. 

 



 3 

Keywords Glucagon, Transcription, Homeodomain, Paired domain, Alpha cells, 

Glucose-dependent gene expression. 

 

Abbreviations  

EMSA  Electrophoretic mobility shift assay 

ChIP  Chromatin immunoprecipitation 

HBSS  Hanks' balanced salt solution 

GST  Glutathione S-transferase 
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Introduction 

 Beta cell dysfunction, accompanied by reduced capacity of target tissues to 

respond to insulin, has been largely accepted as the main cause of chronic 

hyperglycaemia characteristic of diabetes [1, 2]. In recent years, however, dysfunctional 

glucagon hypersecretion contributing to high blood glucose has been recognized as an 

additional and important aetiopathogenic factor [3, 4]. Since hormonal stores depleted 

after secretion must be replenished by increasing glucagon gene expression and 

biosynthesis in a coordinated manner [5], the elucidation of the mechanisms that link 

glucagon gene transcription and glucagon secretion in response to fluctuations in 

glucose concentrations are of great importance for the understanding of the 

aetiopathogenic mechanisms of diabetes. 

 The stimulated secretion of glucagon from alpha cells in response to decreased 

blood glucose levels has been studied extensively [6-8]. In contrast, the study of 

glucose-regulated glucagon gene transcription has received relatively less attention and 

the mechanisms involved remain unclear [9-12]. Glucagon gene transcription in alpha 

cells is regulated primarily by at least four promoter elements, termed G1-G4 [13-15], 

that are recognized by several transcription factors including PAX6 [16-20]. PAX6 is 

particularly important because it is essential for the differentiation of alpha cells during 

development [21], and because it regulates the expression of the glucagon gene both 

directly [16, 22-24] and indirectly, acting on genes encoding transcription factors that in 

turn act on the glucagon promoter [25]. In addition, PAX6 regulates the expression of 

genes involved in prohormone processing [26] and glucagon secretion [27]. Therefore, 

PAX6 co-ordinately links glucagon production and secretion in alpha cells. However, it 

is unknown whether PAX6 or other G-element-binding transcription factors are 

involved in glucose-dependent regulation of glucagon gene expression. 
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 In this study, we show that ALX3, an aristaless-type homeodomain transcription 

factor expressed in islets cells previously found to be important for glucose homeostasis 

[28, 29], dynamically regulates glucose-dependent glucagon gene expression by 

engaging in protein-protein interactions with PAX6 that result in reduced PAX6 

accessibility to the glucagon promoter in the presence of increased glucose 

concentrations. 

 

Methods 

Mice. Alx3 mutant mice [30] were maintained in our animal facilities and genotyped as 

described [31]. Experiments were performed with 12-16 week old male mice. 

Experimental protocols were approved by the institutional bioethics committee and 

meet the requirements of current Spanish and European Union legislation. 

 

Islets. Mouse pancreatic islets were isolated as described [32]. Details are provided in 

ESM Methods. 

 

Glucagon content. Batches of thirty islets were incubated overnight at 4ºC in 50 ml lysis 

buffer (70% [vol/vol.] ethanol, 0.4% [vol/vol.] HCl at 30% [vol/vol.], 29.6% [vol/vol.] 

distilled water). After centrifugation the supernatant was used for glucagon detection 

using an ELISA kit (YK090; Gentaur, Brussels, Belgium). 

 

Quantitative RT-PCR. Determinations were performed from total RNA samples as 

detailed in ESM Methods. 
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Cell lines. AlphaTC1 cells (alphaTC1-9, ATCC CRL-2350) were cultured as described 

[10] supplemented with 16 mmol/l glucose unless specified otherwise. BHK21 cells 

were cultured as described [28]. 

 

Electrophoretic mobility shift assays (EMSA). EMSA were performed as described [33]. 

The sequences of the oligonucleotides used are shown in ESM Table 2. When indicated, 

ALX3 [33] or PAX6 (Millipore, MAB5552) antibodies were added to the binding 

reaction. In Fig. 3e, the ab64985 ALX3 antibody (Abcam, Cambridge, UK) was used. 

 

Plasmids. ALX3 and PAX6 expression plasmids have been described [22, 28]. 

Oligonucleotides used for plasmid constructions are indicated in ESM Table 3. 

Luciferase reporter plasmids, plasmids encoding glutathione S-transferase (GST) fusion 

proteins and those used for in vitro transcription/translation are described in ESM 

Methods.  

  

Transfections. Cells (105 per well) were incubated with reporter plasmids (0.5 µg) 

mixed with Transfectin (BioRad) in serum-free medium. Expression plasmids or the 

corresponding empty vectors were used when required, keeping the total amount of 

DNA constant. Luciferase activity was determined and corrected for transfection 

efficiency using the Renilla luciferase assay kit (Promega). The Rous sarcoma virus 

enhancer reporter plasmid RSV-Luc was used as a standard for normalization. All 

transfections were performed in duplicates. 

 

GST Pull-down assays. [35S]Met-labelled and GST fusion proteins were used as 

described [33]. Details are provided in ESM Methods. 
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Immunoprecipitation. Immunoprecipitations [28] were performed using extracts from 

alphaTC1 cells, and were followed by immunodetection of PAX6 or ALX3 by western 

blot as indicated in ESM Methods. 

 

Chromatin immunoprecipitation (ChIP) assays. ChIP assays [29] were performed using 

chromatin extracted from mouse islets or alphaTC1 cells. Details are indicated in ESM 

methods. 

 

RNA interference (RNAi). RNAi [32] was performed using double stranded RNA 

duplexes  as described in ESM Methods. 

 

Western blots. Nuclear extracts from alphaTC1 cells and primary antibodies for ALX3 

[34] (1:4000 dilution), PAX6 (H-295, Santa Cruz Biotechnology) (1:1000 dilution) and 

actin (clone AC-15, Sigma; 1:10,000 dilution) were used [32]. 

 

Statistical analysis Results represent mean ± SEM for the indicated number of 

experiments. Statistical significance was calculated using Student’s t test. 

 

Results 

Decreased glucagon levels in Alx3-deficient islets Reduced levels of glucagon content 

and gene expression in islets of Alx3-deficient mice (Fig. 1) [29] could not be attributed 

to decreased expression of key transcriptional regulators, because PAX6 [16], FOXA2 

[20] and ARX [35] did not change whereas MAFB [17] increased (Fig. 1b). Thus, we 

hypothesized that ALX3 could regulate the glucagon promoter directly, and therefore 
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fluctuations in the levels of ALX3 could contribute to the dynamic regulation of 

glucagon gene expression depending on the metabolic needs of the organism. To test 

this hypothesis we investigated whether the levels of ALX3 in alpha cells vary 

depending on fluctuations in the concentration of glucose. 

 

Expression of Alx3 is stimulated by glucose and results in inhibition of glucagon gene 

expression The levels of Alx3 mRNA and protein were elevated when alphaTC1 cells 

were cultured in the presence of high glucose as compared to those cultured in low 

glucose, indicating that Alx3 is a glucose-responsive gene (Fig. 2a-c). We tested 

whether glucose-regulated Alx3 affects glucagon gene expression using cultured mouse 

islets. In wild type islets, increasing the concentration of glucose in the medium resulted 

in a significant increase in Alx3 expression (Fig. 2d), and a concomitant decrease in 

glucagon expression (Fig. 2e). In contrast, in Alx3-deficient islets, increasing the 

concentration of glucose did not result in a significant change in the expression of 

glucagon mRNA (Fig. 2e). A glucose-stimulated increase in insulin I expression was 

unaffected by lack of ALX3 (Fig. 2f). 

 

Alx3 binds specific sites of the glucagon promoter EMSA with nuclear extracts from 

alphaTC1 cells and probes corresponding to the G3 or G1 sites showed that at least two 

of the bands detected on the G3 probe were disrupted by the addition of ALX3- or 

PAX6-specific antibodies (Fig. 3b). At the G1 site, the addition of the PAX6 antibody 

disrupted the formation of DNA-protein complexes, whereas the addition of the ALX3 

antibody had no effect (Fig. 3c). The ALX3 antibody also inhibited the formation of a 

complex on the G150 site (Fig. 3d), a homeodomain-binding site located downstream 

from G1 (Fig. 3a) [36]. Mutations in the PAX6 paired domain-binding site of G3 
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indicated that lack of binding of PAX6 prevented recruitment of ALX3 (ESM Fig. 1). 

ChIP assays demonstrated that both ALX3 and PAX6 are physically bound to the same 

region of the native glucagon promoter in vivo (Fig. 3e). These experiments indicate 

that ALX3 and PAX6 are part of the protein complex assembled on G3, and that the G1 

site is bound by PAX6 as previously determined [36] but not by ALX3, which in turn 

recognizes the downstream G150 site.  

 

ALX3-PAX6 heterodimers bind G3 but not G1 To investigate whether ALX3 interacts 

directly with PAX6 we performed immunoprecipitations from alphaTC1 cells. PAX6 

was detected in samples immunoprecipitated with an ALX3 antiserum (Fig. 4a), and 

vice versa (Fig. 4b), but not in those immunoprecipitated with control serum, indicating 

that ALX3 and PAX6 physically interact in the nuclei of alpha cells. The domains from 

each protein required for this interaction were studied using GST pull-down assays 

using full length or truncated proteins (Fig. 4c). We found that [35S]Met-labelled full 

length PAX6 was able to interact specifically with GST-ALX3 or with GST-ALX3HD, 

containing only the ALX3 homeodomain, but not with control GST or with GST fusion 

proteins containing either the carboxyl or the amino terminus of ALX3 (GST-ALX3∆N 

or GST-ALX3∆C, respectively) (Fig. 4d). A similar pattern of interactions was found 

when the [35S]Met-labelled paired domain of PAX6 (PAX6PD) was used (Fig. 4e). 

Finally, the [35S]Met-labelled homeodomain of ALX3 (ALX3HD) could interact 

independently with either the paired domain or the homeodomain of PAX6 (GST-

PAX6PD or GST-PAX6HD, respectively) (Fig. 4f). These results indicate that the 

homeodomain of ALX3 is sufficient for heterodimerization via direct interactions with 

the paired domain or the homeodomain of PAX6. 
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 The DNA binding consequences of these interactions were investigated using 

EMSA. PAX6 synthesized in vitro using a reticulocyte lysate could bind to the G3 

probe as expected (Fig. 4g). In contrast, GST-ALX3HD, which bound efficiently to a 

previously described control probe (ESM Fig. 2a), failed to bind to G3 on its own. 

However, when the homeodomain of ALX3 was incubated together with PAX6 an 

additional band was generated, indicating that PAX6-ALX3 heterodimers can recognize 

G3 (Fig. 4g). In the case of the G1 site, binding of in vitro synthesized PAX6 (Fig. 4h) 

or of PAX6 present in nuclear extracts of alphaTC1 cells (Fig. 4i) was confirmed by the 

addition of a specific antibody that resulted in the disruption of binding. In both cases, 

the complexes containing PAX6 disappeared by the addition to the binding reaction of 

GST-ALX3, but remained undisturbed by the addition of control GST (Fig. 4h and i). 

Lack of binding of ALX3 to the G1 site was confirmed using recombinant ALX3 (ESM 

Fig. 2c and d). 

 These experiments indicate that ALX3-PAX6 heterodimers can bind to G3 

efficiently, but are not capable to recognize G1. Since G1 is a well-known target site for 

binding by PAX6, these results raised the possibility that increasing levels of ALX3 in 

alpha cells could result in inhibition of PAX6 binding to G1, thus resulting in decreased 

glucagon promoter activation. This notion was tested directly by transfections in 

alphaTC1 cells.  

 

Functional interactions between ALX3 and PAX6 on the glucagon promoter 

Overexpression of ALX3 resulted in decreased luciferase activity elicited by the 

glucagon promoter reporter plasmid Gcg370Luc (Fig. 5a). In marked contrast, 

overexpression of PAX6 resulted in increased luciferase activity (Fig. 5a). When 

overexpressed together, the transactivation activity of PAX6 was inhibited by ALX3 in 
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a concentration-dependent manner (Fig. 5b). In turn, increasing amounts of PAX6 were 

unable to transactivate the glucagon promoter in the presence of a fixed amount of 

ALX3 (Fig. 5b). 

 When using the Gcg370/205Luc reporter, including G3 but excluding G1, ALX3 

stimulated luciferase activity to a similar degree than that elicited by PAX6, and 

overexpression of both transcription factors concomitantly did not further increase or 

inhibit reporter activity (Fig. 5c). In contrast, when using Gcg122Luc, including G1 but 

excluding G3, overexpression of PAX6 stimulated luciferase activity, but 

overexpression of ALX3 decreased basal reporter activity and prevented transactivation 

by PAX6 (Fig. 5d). A similar pattern was found when using the reporter plasmids 

3xG3T81Luc, which carries three tandem copies of G3, or 3xG1T81Luc, which carries 

three tandem copies of G1, respectively (Fig. 5e and f). In BHK21 cells, which do not 

express ALX3 or PAX6 [33, 37], ALX3 did not increase Gcg370Luc activity on its 

own, but enhanced PAX6-dependent transactivation synergistically (ESM Fig. 3). 

However, this effect was reversed to an inhibition of luciferase activity with the highest 

amount of ALX3 used (ESM Fig. 3). These experiments support the notion that ALX3 

contributes to glucagon promoter activity by acting on G3 co-ordinately with PAX6, 

and that in turn it is able to inhibit PAX6-dependent promoter activity on G1 when 

ALX3 levels increase. 

 

Alx3 regulates glucose-dependent binding of PAX6 and glucagon expression in alpha 

cells Our data are consistent with a model according to which glucose-dependent 

decrease of glucagon gene expression could result from selective displacement of PAX6 

from G1 as a consequence of the formation of new PAX6-ALX3 heterodimers 

generated in response to increased levels of ALX3 induced by glucose (Fig. 6). In 
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alphaTC1 cells, glucose-dependent increase in ALX3 levels without affecting the levels 

of PAX6 (Fig. 6c) was accompanied by increased ALX3-PAX6 heterodimerization 

demonstrated by immunoprecipitation (Fig. 6d). As predicted by our model, increased 

levels of ALX3 specifically induced by high glucose concentrations (Fig. 6e) were 

accompanied by decreased binding of PAX6 to G1 (Fig. 6f). whereas binding of PAX6 

to G3 or of ALX3 to G150, respectively, were unaffected (Fig. 6g-h). Reduced binding 

to G1 was not observed when expression of ALX3 was silenced by siRNA (Fig. 6i-j).  

 We tested this model further in alphaTC1 cells with silenced expression of 

ALX3 (Fig. 7a-c). In the presence of 2.8 mmol/l glucose, glucagon expression was 

reduced in Alx3-knock down cells relative to control cells (Fig. 7d), likely reflecting 

loss of ALX3 binding to G3 and G150 (Fig. 7e). In contrast, in the presence of 16 

mmol/l glucose, glucagon expression increased in Alx3-knock down cells relative to 

control cells (Fig. 7f), reflecting availability of unsequestered PAX6, a stronger 

transactivator, for binding to G1 (Fig. 7g). These experiments support the requirement 

of ALX3 for glucose-dependent downregulation of glucagon gene expression in alpha 

cells. 

 

Discussion 

 Our work indicates that ALX3 participates in the regulation of glucagon 

expression by binding with PAX6 to G3, and independently to G150. PAX6 binds to G1 

in the absence of ALX3, but PAX6-ALX3 heterodimers are unable to recognize G1. 

This has important functional implications because the levels of ALX3 are up-regulated 

by glucose, thus favouring the formation of ALX3-PAX6 heterodimers engaging G1-

bound PAX6. In this manner, ALX3 sequesters PAX6 and prevents its binding to G1, 

leading to downregulation of transcriptional activity. The inhibitory effect of ALX3 on 
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G1-bound PAX6 is dominant because PAX6 is a stronger transactivator than ALX3. In 

agreement with this model, glucose-unregulated glucagon mRNA levels in ALX3-

deficient islets are higher that those observed in control islets under high glucose 

conditions (see Fig. 2e and ESM Fig. 4). In ALX3-deficient islets, PAX6 would be 

bound to both G1 and G3 regardless of the concentration of glucose, whereas in wild 

type islets, PAX6 would only be bound to G3, and the contribution of ALX3-bound to 

G3 and G150 would be small because ALX3 is known to be a weak transactivator [28] 

(see Fig. 5c and e). 

 Transcription factor interactions resulting in inhibition of glucagon expression 

by interfering with PAX6 have been described before. Some of these interactions may 

have implications in the context of the pharmacological treatment of diabetes [24], or 

during embryonic development to prevent glucagon expression in non-alpha islet cells 

[23, 36, 39], but their physiological relevance has not been completely established [40]. 

 Glucagon secretion in the presence of reduced concentrations of glucose is 

coupled to stimulated transcription of the glucagon gene triggered by an auto-regulatory 

loop ensuring continuous hormone availability [5]. Our data support the existence of an 

ALX3-dependent counter regulatory glucose-sensing mechanism acting at the 

transcriptional level, by virtue of which overproduction of glucagon would be prevented 

under conditions in which glucose concentration is elevated and secretion inhibited. 

Thus, downregulation of PAX6 function by glucose-induced modulation of the ALX3 

to PAX6 ratio links transcriptional regulation of gene expression in alpha cells to 

fluctuations in the circulating concentrations of glucose to accommodate glucagon 

biosynthesis to the metabolic demands of the organism. 

 PAX6 links glucagon production and secretion by coordinating the expression of 

a gene network regulating these processes at different levels [16, 22-27]. Therefore, it is 
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possible that these genes are regulated in a glucose-dependent manner via a mechanism 

involving selective interactions between PAX6 and ALX3 on different promoters. For 

example, the levels of MafB were elevated in islets from Alx3-deficient mice suggesting 

that ALX3 inhibits MafB expression. Although MAFB can act as a repressor [41], it is 

known to regulate glucagon gene expression [16, 17], and the MafB promoter contains 

two potential PAX6 binding sites [25]. Thus, inhibition of MafB expression by glucose-

induced ALX3-mediated downregulation of PAX6 transactivation may provide an 

additional mechanism to reduce glucagon promoter activity in the presence of high 

glucose levels.  

 Apart from genes encoding transcription factors regulating glucagon gene 

expression [25], PAX6 regulates the expression of additional genes in alpha cells 

including those encoding the prohormone convertase 2 and its chaperone 7B2, the fatty 

acid transporter GPR40, or the glucose-dependent insulinotropic peptide receptor 

(GIPR) [26, 27]. As these genes regulate glucagon production and secretion, the 

possible occurrence of glucose-dependent PAX6-ALX3 interactions on their promoters 

may be centrally important for the coordinated modulation of transcriptional 

mechanisms opposing glucagon overproduction under elevated glucose concentrations. 

This would place ALX3 as a key component of glucose-regulated glucagon production 

and secretion. 

 Both ALX3 and PAX6 contain paired-type homeodomains that can form dimers 

with selective DNA binding specificities [33, 42, 43]. Besides, PAX6, but not ALX3, 

contains a paired domain. Both the paired domain and the homeodomain of PAX 

proteins bind DNA, and in some cases they interact to promote cooperative binding to 

specific regulatory elements [44-46]. PAX6 heterodimerization and alternate utilization 

of different protein subdomains modulate sequence selection and target site specificity 
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of the binding partners [47]. In the glucagon promoter, the paired domain of PAX6 is 

sufficient for binding to G3, whereas the homeodomain is dispensable [48]. In contrast, 

both the paired domain and the homeodomain are essential for binding of PAX6 to G1 

[48]. Therefore, PAX6 bound to G3 by the paired domain could tether ALX3 via 

interactions between their homeodomains, so that ALX3-PAX6 interactions involving 

homeodomain heterodimerization would not disturb the paired domain-mediated 

binding of PAX6 to G3, thus providing stable transactivation from this element. Indeed, 

the interaction between the ALX3 homeodomain and the PAX6 paired domain may 

even contribute to binding [44-46]. This type of interactions between PAX6 and other 

homeodomain transcription factors has been shown to be important for transcriptional 

regulation [49]. In contrast, since the paired domain is not sufficient for PAX6 binding 

to G1 [48], utilization of the G1-bound PAX6 homeodomain after recruitment of ALX3 

for heterodimerization would preclude the use of PAX6 homeodomain for DNA 

binding, thus destabilizing the protein-DNA interaction at this site. 

 The mechanism by which Alx3 expression is stimulated by glucose is unknown. 

In the case of intact islets, it cannot be excluded that insulin released from beta cells in 

response to glucose may contribute to downregulation of glucagon gene transcription. 

However, the results obtained from alphaTC1 cells, which retain important 

physiological features of intact alpha cells [5, 10, 50] strongly argue in favour of a 

direct effect of glucose on Alx3 expression. 

 Our findings may have implications for the aetiopathogenic mechanisms of 

diabetes. Dysfunctional glucagon hypersecretion contributing to hyperglycaemia has 

been recognized as an important factor in this disease [3, 4], suggesting the existence of 

impaired glucose-dependent inhibitory mechanisms affecting glucagon gene expression 

and hormone secretion. As ALX3 is important for the maintenance of glucose 
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homeostasis in mice [29], it is possible that ALX3 loss-of-function mutations may 

contribute to dysregulated glucagon production in alpha cells. 
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Figures 

 

Figure 1. Reduced glucagon levels in Alx3-deficient mice. a Glucagon content in 

isolated islets from wild type (+/+) or Alx3-deficient (–/–) mice. n=6. b Relative mRNA 

levels of glucagon (Gcg) or alpha cell transcription factors and Pdx1 in islets of wild-

type (white bars) or Alx3-deficient (black bars) mice. n=5–15. *p<0.05. 

 

 

Figure 2. Glucose-stimulated expression of Alx3 reduces glucagon gene expression. a-b 

Levels of Alx3 mRNA (a) or protein (b) in alphaTC1 cells incubated in the presence of 

glucose at the indicated concentrations. In b, the results of three independent 

experiments for each condition are shown. c Densitometric quantification of the ALX3 
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bands relative to actin bands shown in b. d-f Levels of mRNA for Alx3 (d), glucagon 

(e) or insulin I (f) in islets from wild-type (white bars) or Alx3-deficient (black bars) 

mice incubated at the indicated concentrations of glucose. n=9-10. *p<0.05, **p<0.01. 

 

 

Figure 3. ALX3 binds to the glucagon gene promoter. a Relative location of the G3, G1 

and G150 sites in the glucagon promoter. Arrows indicate the location of primers used 

for qPCR. b-d EMSAs showing the binding of nuclear proteins from alphaTC1 cells to 

G3 (b), G1 (c) or G150 (d). The absence (–) or presence of specific or non-specific 

(NSC) competing (500-fold molar excess) oligonucleotides, or the addition of PAX6 or 
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ALX3 antibodies, or control IgG or NRS is indicated. Arrowheads indicate complexes 

containing PAX6 and/or ALX3. e ChIP assays analysed by qPCR showing 

amplification of a region of the glucagon (Gcg) promoter containing G3 

immunoprecipitated with ALX3 or PAX6 antibodies, or with control non-immune 

rabbit serum (NRS) from alphaTC1 cells or from mouse islets. The 

phosphoenolpyruvate carboxykinase (PCK) gene was used as negative control. *p<0.05; 

n=3. 

 

 

Figure 4. Physical interactions and DNA binding of ALX3 and PAX6. a-b Western 

blots (WB) for PAX6 (a) or ALX3 (b) on samples immunoprecipitated from alphaTC1 

cells with an ALX3 or a PAX6 antibody, respectively. The band showing PAX6 

interacting with ALX3 is indicated by arrow. *Non-specific bands. (NRS, non-immune 

rabbit serum). c Full length and truncated versions of ALX3 or PAX6 used in GST pull-
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down experiments. HD, homeodomain; PD, paired domain. d-f GST pull-down 

experiments performed with 35S-labeled PAX6 (d), PAX6 paired domain (e), or ALX3 

homeodomain (f). g EMSA with in vitro transcribed/translated PAX6 (+) or control 

reticulocyte lysate (–) incubated with radiolabelled G3 in the absence or presence of 

GSTAlx3HD. Arrow indicates a PAX6-GSTAlx3HD heterodimer. h-i Binding of in 

vitro transcribed/translated (IVT) PAX6 (h) or alphaTC1 nuclear extracts (i) to 

radiolabelled G1. The complex containing PAX6 (arrow), identified by addition of a 

specific antibody, was inhibited by GSTAlx3 but not by control GST. 

 

 

Figure 5. Functional interactions between ALX3 and PAX6 on the glucagon promoter. 

Relative luciferase activities elicited in alphaTC1 cells cotransfected with Gcg370Luc 
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(a and b), Gcg370/205Luc (c), Gcg122Luc (d), 3xG3T81Luc (e) or 3xG1T81Luc (f) 

reporter plasmids and the indicated amounts (ng) of expression plasmids encoding 

either ALX3 or PAX6. The relative positions of the G3 and/or G1 elements in the 

glucagon promoter is depicted on top of the histograms. n=4-6. *p<0.05; **p<0.01; 

***p<0.001. 

 

 

Figure 6. ALX3 prevents binding of PAX6 to G1 in a glucose-dependent manner. a-b 

Hypothetical model of the glucose-dependent regulation of glucagon gene expression in 
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alpha cells by ALX3 and PAX6. c Western blot showing glucose-dependent induction 

of ALX3 but not PAX6 in extracts of alphaTC1 cells used for immunoprecipitations 

(d). d Glucose-enhanced ALX3-PAX6 interaction shown by western blot (WB) for 

ALX3 on samples from alphaTC1 cells immunoprecipitated (IP) with a PAX6 antibody 

(e, empty lane). e Western blot showing glucose-dependent induction of ALX3 but not 

PAX6 in extracts of alphaTC1 cells used in EMSA. f-h EMSA showing binding of 

nuclear extracts from alphaTC1 cells cultured at the indicated concentrations of glucose 

to G1 (f), G3 (g) or G150 (h). Arrows indicate the presence of PAX6 (f and g) or ALX3 

(h) identified by the addition of specific antibodies. Arrowhead, supershifted ALX3 (h). 

i Western blot showing levels of ALX3 in alphaTC1 cells transfected with control or 

Alx3 siRNA. j EMSA showing binding to G1 of nuclear extracts from alphaTC1 cells 

transfected with control or Alx3 siRNA. In i and j, glucose concentrations for cultured 

cells are indicated. NRS, non-immune rabbit serum. 
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Figure 7. Glucose-dependent regulation of glucagon expression by ALX3. a Levels of 

Alx3 mRNA in alphaTC1 cells transfected with control or Alx3 siRNA (n=4). b Western 

blot showing levels of ALX3 in alphaTC1 cells transfected with control or Alx3 siRNA. 

Results from two representative experiments are shown. c Densitometric quantification 

of ALX3 bands relative to actin bands obtained from western blots similar to those 

shown in b (n=6). d-g Relative levels of glucagon mRNA in alphaTC1 cells cultured at 

the indicated concentrations of glucose and transfected with control or Alx3 siRNA 

(n=4) (d and f) and the respective schematic interpretation of the results in each 

condition (e and g). *p<0.05; **p<0.01. 


	Mercedes Mirasierra and Mario Vallejo
	Instituto de Investigaciones Biomédicas Alberto Sols
	Email: mvallejo@iib.uam.es
	Abstract
	Aims/hypothesis The stimulation of glucagon secretion in response to decreased glucose levels has been studied extensively. In contrast, little is known about the regulation of glucagon gene expression in response to fluctuations in glucose concentrat...
	Methods Experiments were performed in wild type or Alx3-deficient islets and alphaTC1 cells. We used chromatin immunoprecipitations and electrophoretic mobility shift assays for DNA binding, immunoprecipitations and pull-down assays for protein intera...
	Results Elevations in the concentration of glucose resulted in stimulated expression of Alx3 and decreased glucagon gene expression in wild type islets. In ALX3-deficient islets, basal glucagon levels were non responsive to changes in glucose concentr...
	Conclusions/Interpretation Glucose-stimulated expression of ALX3 in alpha cells provides a regulatory mechanism for the downregulation of glucagon gene expression by interfering with PAX6-mediated transactivation on the glucagon G1 promoter element.
	Keywords Glucagon, Transcription, Homeodomain, Paired domain, Alpha cells, Glucose-dependent gene expression.
	Abbreviations
	EMSA  Electrophoretic mobility shift assay
	ChIP  Chromatin immunoprecipitation
	HBSS  Hanks' balanced salt solution
	GST  Glutathione S-transferase
	RNAi  RNA interference
	Discussion
	Acknowledgements We thank Dr. Ivan Quesada (Miguel Hernandez University, Elche, Spain) for providing alphaTC1 cells, and Dr. Frits Meijlink (Netherlands Institute for Developmental Biology, Utrecht, The Netherlands) for originally providing Alx3-defic...
	References

